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RANK AND ORDER CONDITIONS FOR IDENTIFICATION IN
SIMULTANEOUS SYSTEM OF COINTEGRATING EQUATIONS

WITH INTEGRATED VARIABLES OF ORDER TWO 1

Rocco Mosconi2 and and Paolo Paruolo2,3

This paper discusses identification of systems of simultaneous cointegrating equa-
tions with integrated variables of order two. Rank and order conditions for iden-
tification are provided for general linear restrictions, as well as for equation-by-
equation constraints. As expected, the application of the rank conditions to triangular
forms and other previous formulations for these systems shows that they are just-
identifying. The conditions are illustrated on models of aggregate consumption with
liquid assets and on system of equations for inventories.

Keywords: Identification, (Multi-)Cointegration, I(2), Stocks and flows, Inventory
models.

1. INTRODUCTION

The identification problem of system of simultaneous equations (SSE) lies at
the heart of classical econometrics, see e.g. Koopmans (1949). Rank (and order)
conditions for identification of these systems provide necessary and sufficient (or
simply necessary) conditions under which it is possible to estimate the structural
form of economic interest. These conditions are well summarized in Fisher (1966)
or Sargan (1988).
Simultaneous systems of cointegrating (CI) equations have revived interest

on SSE over the last two decades, especially for variables integrated of order 1,
I(1), see Engle and Granger (1987). Systems of CI equations provide statistical
counterparts to the economic concept of equilibrium; identification conditions
are hence important to distinguish when different equations correspond to dif-
ferent stable economic-equilibrium relations. For I(1) simultaneous systems of
CI equations the rank and order conditions for identification coincide with the
classical ones, see e.g. Saikkonen (1993), Davidson (1994) and Johansen (1995a).
More recently, simultaneous CI systems with variables integrated of order 2,

I(2), have also been used to accommodate models with stock and flow variables,
see Hendry and von Ungern-Sternberg (1981) and Granger and Lee (1989). The
relevance of a coherent economic framework for both stock and flow variables is
well documented in econometrics, see e.g. Klein (1950). Several flow variables,
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such as Gross Domestic Product, have been found to be well described as I(1)
variables; if this is the case, then the corresponding stocks are I(2) by construc-
tion.
Inventory models, for example, involve stock and flow variables, see e.g. Arrow

et al. (1951). Additional examples are given by models of aggregate consump-
tion, income and and wealth, see Stone (1966, 1973), of public debt, government
expenditure and revenues, of the (stock of) mortgage loans and periodic repay-
ments.
A different rationale for I(2) models is provided by the literature on integral

control mechanisms in economics initiated by Phillips (1954, 1956, 1957). Here,
variables are cumulated on the way to build an ‘integral stabilization policy’,
or integral control. Haldrup and Salmon (1998) discuss the relations of integral
control mechanisms with I(2) systems. In the rest of the paper we indicate ‘stock
variables’, or stocks – i.e. cumulated levels, as Xt and ‘flow variables’, or flows –
i.e. levels, as ∆Xt, where ∆ is the difference operator.
Stock and Watson (1993) and Johansen (1992) (henceforth SW and J92 re-

spectively) gave contributions on the representation of I(2) systems. In I(2) sys-
tems, CI equations may involve both stock and flow variables, and they represent
dynamic equilibrium relations. These equations are called ‘multi-cointegrating’
relations, see Granger and Lee (1989) and Engsted and Johansen (1999). They
are a special case of ‘polynomial-cointegration’ relations, as introduced by Engle
and Yoo (1991). A different type of CI equations consists of linear combina-
tions of flow variables only; they represent balancing equations for flows, as in
balanced growth models. Below, we label these CI equations as ‘proportional
control’ relations.
The presence of multi-CI and proportional control CI relations gives a richer,

albeit more complicated, structure of SSE. In fact, one key feature of I(2) systems
is that the first differences of the multi-CI equations also contain proportional
control terms; moreover, linearly combining multi-CI equations and proportional
control equations result in alternative and equivalent multi-CI equations. As
shown below, this gives rise to an identification problem that differs from the
one encountered in I(1) systems.
Inference on systems of CI equations with I(2) variables has typically been

based on reduced forms; see inter alia Boswijk (2000, 2010), Johansen (1995a,
1997, 2006), Kitamura (1995), Kurita et al. (2011), Paruolo (2000); Paruolo and
Rahbek (1999), Rahbek et al. (1999) and Stock and Watson (1993). A notable
exception is given by Johansen et al. (2010), who noted that the identification
of the coefficients of the stock variables in multi-CI equations, β say, is identical
to the identification of SSE with I(1) variables only, see their Section 4.2. The
identification of the structural form of the remaining coefficients in the multi-CI
equations and of the other CI equations has instead been left undiscussed.
The identification problem for simultaneous CI systems of equations with I(2)

variables thus appears not to have been (fully) addressed in the literature; this
is the purpose of the present paper. We provide rank and order conditions for
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identification for general linear restrictions. The leading special case of linear
equation-by-equation constraints is also discussed. These rank and order con-
ditions hold in general, irrespective of the subsequent estimation and inference
method of choice, and type of model. In particular they apply to Vector Au-
toRegressive (VAR) processes, employed e.g. in Johansen (1996) or to linear
processes, employed in SW.1 Moreover, when the rank conditions are applied
to the triangular form of SW or to similar formulations in line with the ones
discussed in Johansen (1996), it is found that both are just-identifying.
The rank and order conditions provided here are also helpful in sequential

identification schemes, as the one suggested in Johansen et al. (2010). There,
the CI coefficients β multiplying the stock variables in the multi-CI relations are
identified first, leaving all other CI coefficients unrestricted. Once β has been
identified, (estimated) and fixed, one then has to check the identification of the
other CI coefficients, θ say. The correct rank conditions for identification of θ are
the ones given here.
The rest of the paper is organized as follows: Section 2 reports a motivating

example; Section 3 introduces the relevant system of simultaneous equations;
Section 4 discusses rank and order conditions for general affine restrictions. Sec-
tion 5 presents results for equation-by-equation constraints. Sections 6 and 7
illustrate these results on selected special cases. Section 8 concludes. Proofs are
placed in the Appendix.
In the following a := b and b =: a indicate that a is defined by b; (a : b)

indicates the matrix obtained by horizontally concatenating a and b. For any
full column rank matrix H, H̄ indicates H(H ′H)−1 and H⊥ indicates a basis of
the orthogonal complement of the space spanned by the columns of H. vec is
the column stacking operator, ⊗ is the Kronecker product, blkdiag(A1, . . . , An)
a block-diagonal matrix with A1, . . . , An as diagonal blocks.
We use the notation Xt = I(d) to mean that Xt is a vector process integrated

of order d, i.e. that ∆dXt is a stationary linear process with a non-zero moving
average (MA) impact matrix, where d is an integer, and initial values are chosen
appropriately.2

2. A MOTIVATING EXAMPLE

This section reports an example on sales and inventories, taken from Granger
and Lee (1989); it is used here to show how the identification problem arises in
models with stock and flows.

Let st and qt represent sales and production of a (possibly composite) good.
Sales st are market-driven and trending; in particular Granger and Lee assume
that they are I(1). Production qt is chosen to meet demand st, i.e. st and qt

1SW considered a linear process setup and discuss the triangular form for systems with
I(2) variables. Boswijk (2000) discussed the relation between the triangular form and other
formulations of the error correction terms in I(2) VAR systems.

2This is in line with the definition of I(0) in Johansen (1996).
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have the same trend. Hence zt := qt − st, the change in inventory, is I(0). This
corresponds to xt := (qt : st)

′ being CI with cointegrating vector (1 : −1)′, i.e.

(2.1) (1 : −1)′xt = I(0).

The stock of inventory Zt =
∑t

i=1 zi + Z0 can be expressed in terms of the

cumulated sales St =
∑t

i=1 si+S0 and cumulated production,Qt =
∑t

i=1 qi+Q0.
Because qt and st are assumed to be I(1), Qt and St are I(2), and the previous
CI relation of xt := (qt : st)

′
in (2.1) corresponds to Xt := (St : Qt)

′ being CI
with cointegrating vector (1 : −1)′, i.e. (1 : −1)′Xt = I(1).

The principle of inventory proportionality anchors the inventory stock Zt to a
fraction of sales st, i.e. it satisfies Zt = ast+I(0). Because Zt and st are I(1), the
relation Zt = ast+I(0) is a CI relation; it involves the stock variables Xt and the
flow variables xt = ∆Xt. In this case, Granger and Lee define Xt := (St : Qt)

′

to be multi-cointegrated, with ‘multi-CI vector’ (1 : −1 : −a : 0)′ i.e.

(2.2) (1 : −1 : −a : 0)

(
Xt

∆Xt

)
= I(0).

The present paper investigates the following question: is the multi-CI vector
in (2.2) unique (with or without the 0 restriction in the last entry)? This is an
instance of the identification problem addressed in the paper. In fact, the set of
CI relations (2.1) and (2.2) forms a system of two equations,

(2.3)

(
1 −1 −a 0
0 0 1 −1

)(
Xt

∆Xt

)
= I(0).

Pre-multiplication by the following 2× 2 matrix with generic b

(
1 b

0 1

)

gives a system of equations with (1 : −1 : −(a+b) : b)′ in place of (1 : −1 : −a : 0)′

as multi-CI relation. Hence, without a 0 restriction on the last entry of this vector,
the first equation, and hence the system, is not identified.

3. THE RELEVANT SIMULTANEOUS SYSTEM OF EQUATIONS

In this section we introduce the relevant SSE for general I(2) systems. Let Yt
be a p× 1 vector of I(2) variables. Let also Xt := (Y ′

t : D′
t)

′ be an n × 1 vector
where Dt is a (n− p)× 1 vector of deterministic components; SW take Dt = t2

with n = p+ 1.3

3When there are no deterministic components we set n = p and Xt = Yt.



IDENTIFICATION IN I(2) COINTEGRATED SYSTEMS 5

Next consider the set of possible CI relationships involving Xt and ∆Xt, both
of which contain nonstationary variables; hence one needs to consider the variable
vector (X ′

t : ∆X
′
t)

′
.4 Consider first a set of r < p equations of the form

(3.1) β′Xt + υ′∆Xt =
(
β′ υ′

)( Xt

∆Xt

)
= µ1t + I(0)

where β and υ are n×r and β is of full column rank r. Hereafter µit, i = 1, 2, is a
deterministic vector, containing linear combinations of terms of the form ∆uDt,
u ≥ 2. When Dt = t2 as in SW, one has µt = µ, a constant vector.
When some rows in υ′ are equal to 0, the corresponding rows in υ′ describe CI

relations that reduce the order of integration of Xt from 2 to 0, see (3.1). When,
instead, some row in υ′ is non-zero, the corresponding equation involves both
stocks and flows, and it is hence a multi-CI equation. Remark that eq. (3.1) gives
the structural form corresponding to eq. (5.1c) in SW’s representation. Similarly
it gives the structural form corresponding to eq. (2.4) in J92’s representation.
The assumption that β′ has full row rank r is similar to the requirement of

classical SSE that there is a set of r variables for which the system can be solved
for. In other words, if β′ had not been of full row rank, one could have reduced
the number of equations correspondingly. It is simple to observe that one needs
r < p, because r = p would contradict the assumption that Yt = I(2).
The first differences of eq. (3.1), β′∆Xt+υ

′∆2Xt, are also stationary; this im-
plies that β′∆Xt is stationary, i.e. that β

′∆Xt contains r CI relations. Moreover,
other CI relations involving only ∆Xt can be present in the form

(3.2) γ′∆Xt =
(
0 γ′

)( Xt

∆Xt

)
= µ2t + I(0),

where γ is n × s and of full column rank. This gives the structural form corre-
sponding to eq. (5.1b) in SW’s representation and to eq. (2.2) in J92’s represen-
tation.
Similarly to β′ above, we assume that γ′ has been reduced to be of full row

rank s, which must be less than p. Moreover, γ′ needs to be linearly independent
from β′, otherwise the SSE composed of β′∆Xt and γ

′∆Xt would contain some
redundant equations; this implies that s must be less than p − r. SW and J92
proved that, for the system to contain I(2) variables, one needs s < p− r.
Collecting terms, we find that the following system of 2r + s stationary SSE

is relevant for the discussion of identification in I(2) cointegrated system

(3.3) ζ ′
(

Xt

∆Xt

)
=




β′ υ′

0 γ′

0 β′



(

Xt

∆Xt

)
= µt + I(0),

where ζ ′ indicates the matrix of CI SSE coefficients and µt := (µ′
1t : µ

′
2t : ∆µ

′
1t)

′.
Remark that ζ ′ contains cross-equation restrictions given by the presence of β′

in the first and third block of rows.
4Note that deterministic components are included in both Xt and ∆Xt.
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The identification problem can now be presented as follows. An equivalent
stationary SSE is obtained by pre-multiplying eq. (3.3) by Q′ with

(3.4) Q :=




Q11
r×r

0 0

Q21 Q22
s×s

0

Q31 Q32 Q11


 .

where Qjj are non-singular matrices, j = 1, 2. In fact the coefficient matrices in

Q′




β′ υ′

0 γ′

0 β′



(

Xt

∆Xt

)
=




β⋆′ υ⋆′

0 γ⋆′

0 β⋆′



(

Xt

∆Xt

)

have the same 0 and cross-equation restrictions, where β⋆ = βQ11, γ
⋆ = γQ22 +

βQ32, υ
⋆ = υQ11 + γQ21 + βQ31. This gives rise to the identification problem

for SSE with I(2) variables.
We observe that this identification problem is different from the one encoun-

tered in I(1) system; in that case the observationally equivalent structures are
induced by any non-singular matrix Q, see Saikkonen (1993), Davidson (1994)
and Johansen (1995a). Here, instead, the 0 and cross-equation restrictions imply
that Q satisfies the structure in (3.4). Hence, unlike in I(1) system, one need to
discuss appropriate rank and order conditions for identification that differ from
the classical ones; this is the contribution of the present paper.
Now consider a sequential identification procedure that first aims at identifying

β through affine restrictions of the type R′
◦ vecβ = c◦, and subsequently consider

identification of (υ : γ). The identification of β is standard, and the associated
rank condition is rankR′

◦(Ir⊗β) = r2, see Sargan (1988) and Johansen (1995b).
When β is identified, the identification problem for (υ : γ) is of the type (3.4)
with Q11 = Ir; the identification conditions for (υ : γ) are a special instance of
the rank conditions given in the next section, where the restriction on (υ : γ) are
joined with the restrictions in R′

◦ vecβ = c◦.

4. GENERAL AFFINE RESTRICTIONS

In this section we consider the SSE (3.3) under general linear restrictions on ζ.
Generic affine restrictions are defined first, and next rank and order conditions
for identification are given. These results are specialized to equation-by-equation
restrictions in the next section.
We now introduce additional notation. Recall the form in (3.4) of the class of

matrices that gives rise to lack of identification; let Q00 := (Qij)i=2,3;j=1,2 be
the square matrix of dimension r+ s in the lower left corner of Q, and note that
vecQ = N((vecQ11)

′ : (vecQ00)
′)′ for an appropriate (2r+ s)2 × (r2 + (r+ s)2)

matrix N that maps the free elements of Q to vecQ. The precise form of N is
given in Lemma 5 in the Appendix.



IDENTIFICATION IN I(2) COINTEGRATED SYSTEMS 7

We next wish to partition the matrix ζ into appropriate sub-blocks. To this
purpose, define (L1 : L2 : L3) := I2r+s, Lij := (Li : Lj), i, j = 1, 2, 3, where
L1 and L3 have r columns and L2 has s columns; these matrices act on the
columns of ζ ; for instance we indicate ζi := ζLi and ζ

ij := ζLij . Remark that
ζ12 contains all parameters in ζ. Similarly, define (J1 : J2) := I2n, where J1
and J2 have n columns each; these matrices act on the rows of ζ. In particular
J ′
2ζ = (υ : γ : β), which again contains all parameters in ζ.
Affine restrictions on ζ can be stated directly on ζ, or on ζ12 or on J ′

2ζ,
because all these matrices contain the nonzero coefficients matrices υ, γ, β. As
a consequence, it is simple to verify that the following identities hold

(4.1) vec ζ = A vec ζ12, vec ζ12 = B vec (J ′
2ζ),

where A and B are appropriate 0-1 matrices, described in detail in Lemma 6 in
the Appendix.

Affine restrictions on ζ can be written in terms of ζ, ζ12 and J ′
2ζ as follows:

(4.2) R′

m×u
vec ζ = c, R′

†
m†×v

vec ζ12 = c†, R′
⋄

m⋄×f

vec (J ′
2ζ) = c⋄

where u := 2n(2r+s), v := 2n(r+s), f := n(2r+s). Due to (4.1), the restrictions
design matrices R, R† and R′

⋄ in (4.2) need to satisfy the following identities

R† = (B̄R⋄ : B⊥),(4.3)

R = (ĀR† : A⊥) = (ĀB̄R⋄ : ĀB⊥ : A⊥),(4.4)

and c† = (c′⋄ : 0′)′, c = (c′† : 0
′)′ = (c′⋄ : 0′ : 0′)′, see Lemma 7 in the Appendix.

We are now in the position to state the rank and order conditions.

Theorem 1 (Identification, general case) Let j := rank (R′(I2r+s ⊗ ζ)N); one
has

(4.5) j = rank
(
R′

†Ā
′(I ⊗ ζ)N

)
= rank(R′

⋄B̄
′Ā′(I ⊗ ζ)N).

A necessary and sufficient condition (rank condition) for the restrictions (4.2)
to identify ζ is given by

(4.6) j = r2 + (r + s)2.

A necessary but not sufficient condition (order condition) for (4.6) is

(4.7) m⋄ ≥ r2 + (r + s)2.

The rank condition in (4.6) can be compared with the one obtained for stan-
dard SSE, see e.g. Sargan (1988), Chapter 3, Theorem 1. The matrix R′(I2r+s⊗

ζ)N in the rank condition here is very similar to the matrix R′(I2r+s ⊗ ζ) in
the standard case, the only difference being the additional factor N here. This is
due to the different class of matrices Q in (3.4) that give rise to observationally
equivalent structures.
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5. EQUATION-BY-EQUATION RESTRICTIONS

In this section we specialize the rank and order conditions to the case of
equation-by-equation constraints. We indicate the i-th column of ζ as ζi. Note
that the coefficients in ζ ′ can be expressed as a function of the first r+s columns
in ζ, i.e. by ζ12.
Equation-by-equation restrictions can be hence formulated on the first r + s

columns ζi in ζ
12 as follows

(5.1) R′
i

mi×2n
ζi = ci, i = 1, . . . , r + s.

These restrictions are a special case of (4.2), with

R† = blkdiag(R1,R2),

where R1 = blkdiag(R1, . . . , Rr) collects the first r equations (in ζ1) and R2 =
blkdiag(Rr+1, . . . , Rr+s) the second s equations (in ζ

2). For the latter equations
in ζ2, the zero restrictions on the first n entries imply that

(5.2) Ri =

(
In 0
0 R

γ
i

n×mi−n

)
, ci =

(
0n
c
γ
i

)
, i = r + 1, . . . , r + s,

where 0u indicates an u × 1 vector of zeros. The following theorem gives rank
and order conditions for the case of equation-by-equation restrictions using the
notation in (5.2).

Theorem 2 (Identification, equation-by-equation restrictions) Let the restric-
tions be given as in (5.1), (5.2); then the i-th column of ζ, i = 1, . . . , r (i.e.
column i in ζ1) is identified if and only if

(5.3) rank (R′
iζ) = 2r + s, i = 1, . . . , r;

the i-th column in ζ, i = r + 1, . . . , r + s (i.e. column number i − r in ζ2) is
identified if and only if:

(5.4) rank
(
R

γ′
i (γ : β)

)
= r + s, i = r + 1, . . . , r + s.

The joint validity of rank conditions (5.3) for i = 1, . . . , r and (5.4) for i =
r+1, . . . , r+ s is equivalent to the rank condition (4.6), which, in this case, can
be expressed equivalently as follows

(5.5) rank (R′
1 (Ir ⊗ ζ)) = r (2r + s) and rank

(
R′

2

(
Is ⊗ ζ23

))
= s (r + s) .

A necessary but not sufficient condition (order condition) for (5.3) is

(5.6) mi ≥ 2r + s, i = 1, . . . , r.

Similarly, a necessary but not sufficient condition (order condition) for (5.4) is

(5.7) mi − n ≥ r + s, i = r + 1, . . . , r + s.
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In practice, conditions (5.3) and (5.4) can be controlled prior to estimation by
generating random numbers for the parameters and substituting them into (5.3)
and (5.4), as suggested by Boswijk and Doornik (2004). Alternatively one could
modify the generic identification approach of Johansen (1995a), Theorem 3, to
obtain conditions that do not depend on specific parameter values.

6. ILLUSTRATION

In this section we illustrate the use of the rank and order conditions. The dis-
cussion is based on models of aggregate consumption with liquid assets discussed
in Hendry and von Ungern-Sternberg (1981), henceforth HUS, and on the model
of inventories introduced in Section 2.
HUS discuss the role of liquid assets in integral control mechanisms for the

aggregate consumption function. As pointed out in HUS, when flow variables
(as income and consumption) are I(1), the corresponding stock variables (as
components of wealth), are in general I(2). Define ct as real consumption of
nondurables and services, yt as real income, andWt as real liquid assets. Consider
the time series

(6.1) rt := ∆Wt − yt + ct.

which includes expenditure for durable goods, investment in other assets, and an
‘inflation tax’ on liquid assets. Define now, for t = 1, . . . , T , the stock variables
Yt =

∑t
j=1 yj , Ct =

∑t
j=1 cj , Rt =

∑t
j=1 rj with Wt = W0 + Yt − Ct − Rt, see

(6.1).
Next consider the following 5-dimensional vector Xt = (Yt : Ct : Rt : πt : it)

′
,

where πt is inflation and it is the real interest rate. Assuming as in HUS that yt
and ct are I(1), one finds that Xt is I(2) because it contains the cumulation of
yt and ct. In line with HUS, we also posit that liquidity Wt, inflation πt and the
interest rate it are I(1). This implies that, defining ej as the j-th column of I5,
the vectors (e1 − e2 − e3), e4 and e5 belong to the span of (β : γ).
HUS postulate the existence of an ‘integral control’ CI relationWt = τyt+I(0)

and a ‘proportional control’ CI relation ct = θyt + I(0). Given that rt contains
expenditure for durable goods, investment in other assets, and an inflation tax
on liquid assets, rt should depend on the real interest rate it for the non-liquid
assets component, and on inflation πt and past liquidity Wt for the inflation tax
component. If this dependence can be represented as a linear relation, one could
postulate the existence of a CI relation of the type

(6.2) rt = ψπt + ϕit + ξWt + I(0)

where we have used the fact that Wt−1 =Wt −∆Wt (with ∆Wt = I(0)) can be
replaced by Wt in the CI relation (6.2).
Placing together (i) the ‘integral control’ CI relation Wt = τyt + I(0), (ii) the

‘proportional control’ CI relation ct = θyt + I(0), (iii) the CI relation (6.2), and
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(iv) the requirement that (e1 − e2 − e3), e4 and e5 belong to the span of (β : γ),
one deduces that r = 2, s = 2.5

Moreover, the above implies the following CI SSE

ζ ′ =




β′ υ′

γ′

β′


 =




1 −1 −1 0 0 −τ 0 0 0 0
−ξ ξ ξ −ψ −ϕ 0 0 1 0 0

−θ 1 0 0 0
0 0 0 0 1
1 −1 −1 0 0
−ξ ξ ξ −ψ −ϕ



.

Notice that the second vector in γ is here represented as e4; this follows from
the assumption that the vectors (e1 − e2 − e3), e4 and e5 belong to the span of
(β : γ) and the form of β and of the first column of γ. This implies that, provided
ψ 6= 0, e4 can be obtained as a linear combination of the columns in β and γ.

We can now check whether this specification is identified or not. Let fi denote
the i-th column in I10, ej the j-th column of I5 and 0u the u× 1 vector of zeros.
The equation-by-equation restriction matrices, see (5.1) and (5.2), are given by

R1 = (f1 : · · · : f5 : f7 : · · · : f10) , c1 = (1 : −1 : −1 : 0′6)
′, m1 = 9,

R2 = (f1 + f2 : f1 + f3 : f6 : · · · : f10) , c2 = (0′4 : 1 : 0′2)
′, m2 = 7,

R
γ
3 = (e2 : · · · : e5) , c

γ
3 = (1 : 0′3)

′, m3 = 9,

R
γ
4 = I5, c

γ
4 = (0′4 : 1)′, m4 = 10.

The first two equations meet therefore the order condition (5.6), since mi ≥

2r + s = 6 for i = 1, 2. Also, the third and fourth equations meet the order
condition (5.7), since mi − 5 ≥ r + s = 4 for i = 3, 4.

Consider now the rank condition (5.3) for the first two equations. One finds

(6.3) ζ ′R1 =




1 −1 −1 0 0 0 0 0 0
−ξ ξ ξ −ψ −ϕ 0 1 0 0

1 0 0 0
0 0 0 1
−1 −1 0 0
ξ ξ −ψ −ϕ




which has rank 2r + s = 6 if and only if ψ is different from 0. Hence, for all
parameter values except for a set of Lebesgue measure 0, the rank condition
(5.3) is satisfied by the first equation, which is hence (generically) identified.
Because m1 − 2r − s = 3, there are 3 over-identifying restrictions.

5If instead one assumes that πt and it are I(0) and rt is I(1) and does not cointegrate, one
would expect e′

4
Xt and e′

5
Xt to be stationary. This would imply r = 3 and s = 1, with e4, e5

included in column span of β.
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For the second equation we find

ζ ′R2 =




0 0 −τ 0 0 0 0
0 0 0 0 1 0 0

−θ 1 0 0 0
0 0 0 0 1
1 −1 −1 0 0
−ξ ξ ξ −ψ −ϕ




which has rank 5 < 2r+s = 6. Hence, the rank condition (5.3) fails for the second
equation, which therefore is not identified. If one added the further restriction
ξ = 0, corresponding to the addition of f1 as an additional column in R2 (the
first one, say), one would find instead

ζ ′R2 =




1 0 0 −τ 0 0 0 0
0 0 0 0 0 1 0 0

−θ 1 0 0 0
0 0 0 0 1
1 −1 −1 0 0
0 0 0 −ψ −ϕ




which has rank 2r + s = 6 if and only if ψ is different from 0. Hence the rank
condition (5.3) is satisfied by the second equation when ξ = 0, for all parameter
values except for a set of Lebesgue measure 0. The equation is hence (generically)
identified.6 Because in this case m2 − 2r − s = 1, there is 1 over-identifying
restriction.
Consider finally the third and fourth equations. One has r+s = 4 in (5.4) and

(γ : β)
′
R

γ
3 =




1 0 0 0
0 0 0 1
−1 −1 0 0
ξ ξ −ψ −ϕ


 ,

(γ : β)
′
R

γ
4 =




−θ 1 0 0 0
0 0 0 0 1
1 −1 −1 0 0
−ξ ξ ξ −ψ −ϕ


 .

The matrix for the third equation has rank 4 if and only if ψ 6= 0. The matrix for
the fourth equation has rank 4 if and only if ψ 6= 0 or θ 6= 1 or both. Hence, for
all parameter values, except for a set of Lebesgue measure 0, the rank condition
(5.4) is satisfied by both equations, which are hence (generically) identified.
Because m3 − n − r − s = 0 the third equation is just-identified while, being

m4−n− r− s = 1, there is 1 over-identifying restriction on the fourth equation.
Note that the identification of equations 1, 3 and 4 does not depend on the
additional restriction ξ = 0 required for identification of the second equation.

6Note that the first equation remains identified also under ξ = 0, because the rank in (6.3)
does not depend on the value of ξ.
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Consider now the model of inventories in Section 2, and the specification in
eq. (2.3). One has r = 1, s = 0; for the first equation

ζ ′R1 =

(
1 −1 0
0 0 −1

)

which has rank 2, so that the rank condition (5.3) is satisfied. The number of
restrictions is m1 = 3, and the number of overidentifying restrictions is m−2r−
s = 1.
When one makes the element in position 1, 4 of ζ ′ unrestricted, however, one

finds

ζ ′R1 =

(
1 −1
0 0

)

which has rank 1, so that the rank condition (5.3) fails. Note that the order
condition is met in this case, see (5.6), because m1 = 2r = 2.

7. TRIANGULAR FORMS AND OTHER SCHEMES

In this section we consider triangular forms and other similar identification
schemes on ζ. Using the rank condition above, we show that these restrictions
are just-identifying. More specifically, we first consider a normalization similar
in spirit to Johansen (1991) for I(1) systems; next we discuss the triangular form
of SW, which is shown to be a special case of the former restrictions.
In I(1) models, the CI parameters are contained in β; in that context, one

popular just-identified normalized version of β is βc := β(c′β)−1, where c is a
matrix of the same dimensions of β with the property that c′β is square and
nonsingular, see Johansen (1991). In the special case of c chosen as c := (Ir : 0),
the normalized CI vectors β′

c take the form of β′
c := (I : −A), which gives the

triangular form, see Phillips (1991). The choice of β′
c := (I : −A) accommodates

any reduced form of the simultaneous systems of equations associated with β.7

Consider now a CI SSE with I(2) variables, associated with ζ. Assume one
can specify a matrix c0 of the same dimension of β and a matrix c1 of the same
dimension of γ, with the property that c′0β and c′1γ are square and nonsingular
and that (c0 : c1) has full column rank.
Given the matrices c0 and c1, we consider the following restrictions on ζ, i.e.

on β, υ and γ:

(7.1) c′0β = Ir, (c0 : c1)
′
(υ : γ) = blkdiag (0r,r, Is) ,

where the first equality includes r2 constraints and the second one (r + s)
2
, with

a total of m⋄ = r2 + (r + s)
2
restrictions. The following proposition applies.

7See Johansen (1995a) for a discussion of the corresponding structural forms and their
identification.
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Proposition 3 (Normalizations) The m⋄ = r2+(r + s)
2
restrictions (7.1) are

just-identifying.

We next show that constraints (7.1) contain the triangular form of SW as a
special case. Let c0 and c1 be chosen to satisfy (7.1) and also orthogonal to one
another, c′0c1 = 0. Define c2 to be any choice of (c0 : c1)⊥; this implies that the
matrix C := (c0 : c1 : c2) is square and nonsingular, because it is composed of
orthogonal blocks. Next consider the following rotation of Xt, given by the vari-
ables X̃t := (X ′

0t : X
′
1t : X

′
2t)

′
:= C̄ ′Xt, where Xit is defined as c̄′iXt and where

C̄ := (c̄0 : c̄1 : c̄2) by block-orthogonality.8 The following proposition applies.

Corollary 4 (Triangular form) Let β, υ and γ be the parameters in ζ nor-
malized by the just-identifying restrictions (7.1), where c0, c1 and c2 are cho-
sen orthogonal to one another, c′icj = 0, i 6= j. Then the cointegrated SSE
associated with ζ can be expressed equivalently in terms of the rotated variables
X̃t := (X ′

0t : X
′
1t : X

′
2t)

′
:= C̄ ′Xt, C := (c0 : c1 : c2), as follows




β′ υ′

0 γ′

0 β′



(

Xt

∆Xt

)
=




Ir −A1 −A2 0 0 −A3

0 0 0 0 Is −A4

0 0 0 Ir −A1 −A2



(

X̃t

∆X̃t

)
.(7.2)

The r.h.s. of (7.2) corresponds to the triangular form in SW, see eq. (4.2) in
Theorem 4.1 in Boswijk (2000). Because this is a special case of Proposition 3,
ζ in (7.2) is just-identified.

8. CONCLUSIONS

This paper provides order and rank conditions for general linear hypotheses
on the cointegrating vectors in I(2) systems; results are illustrated for the case
of equation-by-equation restrictions on models of aggregate consumption with
liquid assets and on models of inventories.
If one has in mind an equation-by-equation identification scheme, the main

implications of our results, stemming from the block triangularity of the matrix
Q in (3.4), are the following.
(i) The coefficients in β, i.e. the coefficients involving the stock variables in the

multi-CI equations, might be identified separately following the standard
approach adopted for I(1) systems, see Johansen et al. (2010).

8For instance C can be chosen as the identity matrix or any permutation of the columns of

the identity matrix so that, as in SW, the variables in X̃t coincide with the variables in X (or
permutations thereof).
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(ii) In this case, however, identification of the coefficients in γ, i.e. the coeffi-
cients of the proportional control relations, has to be analysed jointly with
β in a non-standard way, since each column of γ can be replaced with a
linear combination of columns of γ and β, but not the other way round.

(iii) Even more relevantly, the identification analysis of the coefficients in υ,
i.e. the coefficients involving the flow variables in the multi-CI equations,
requires a joint non-standard analysis of υ, γ and β, since each column of
υ could be replaced with a linear combination of columns in υ, γ and β,
but not the other way round.

Therefore, even if the purpose of identification is to check whether multi-CI
equations are identified or not, one has to resort to the identification results dis-
cussed in this paper; in fact, applying standard identification results to multi-CI
equations, i.e. placing at least r restrictions on each equation and then checking
for the usual rank condition is incorrect. Another advantage of the approach dis-
cussed in this paper is that alternative identification schemes are also covered,
involving for example (linear) cross-equation restrictions.
The present approach is based on algebraic conditions similar to the ones

employed in Sargan (1988) for classical SSE. These rank and order conditions
can be linked to quantities related to the likelihood, as in Rothenberg (1971) for
the case of classical SSE. This link is analysed in a separate paper to which we
refer for further details, see Mosconi and Paruolo (2014).
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A. APPENDIX

Lemma 5 (Matrix N) One has

(A.1) N = (L1 ⊗ L1 + L3 ⊗ L3 : L12 ⊗ L23) .

Proof of Lemma 5: Eq. (A.1) is proved observing that Q = L1Q11L
′
1 +

L3Q11L
′
3 + L23Q00L

′
12, and applying the vec operator. Q.E.D.

Lemma 6 (Structure of connecting matrices A and B) The A and B matrices
in (4.1) are given by

A
u×v

=

(
I2n(r+s)

U ′
1 ⊗ J2J

′
1

)
= (L12 ⊗ I2n) + (L3 ⊗ J2)(U

′
1 ⊗ J ′

1),(A.2)

B
v×f

= (Ir+s ⊗ J2 : U1 ⊗ J1),(A.3)

where B has ortho-normal columns, B̄ = B, and U1, U2, with r and s columns
respectively, are defined as (U1 : U2) := Ir+s.

Proof of Lemma 6: To find the A matrix, observe that vec ζ = ((vec ζ12)′ :
(vec ζ3)′)′, and that ζ3 = J2J

′
1ζ

12U1. Vectorizing, one finds vec ζ3 = (U ′
1 ⊗

J2J
′
1) vec ζ

12 from which (A.2) follows. To find the B matrix, write ζ12 = J2(υ :
γ) + J1βU

′
1 and vectorize. Q.E.D.

Lemma 7 (Relation among affine restrictions design matrices) Due to (4.1),
the design matrices R, R† and R⋄ in (4.2) need to satisfy the identities (4.3),
(4.4).

Proof of Lemma 7: Eq. (4.1) shows that A′
⊥ vec ζ = 0, B′

⊥Ā
′ vec ζ = 0,

vec ζ12 = Ā′ vec ζ and that vec(J ′
2ζ) = B̄′Ā′ vec ζ. Together, these equality imply

(4.3), and (4.4). Q.E.D.

Proof of Theorem 1: We first prove (4.5). Observe that the rows of R′ cor-
responding to A⊥, see (4.3), give zero rows in R′(I2r+s ⊗ ζ)N hence

(A.4) j = rankR′
†Ā

′(I ⊗ ζ)N = rankR′
†

(
(U1 ⊗ ζ1) : (Ir+s ⊗ ζ23)

)

because Ā′(I⊗ζ)N = ((U1⊗ζ
1) : (Ir+s⊗ζ

23)). Similarly observe thatB′
⊥Ā

′(I2r+s⊗

ζ)N = 0, which implies (4.5) by (4.4).
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We next wish to show that, if ζ and ζ⋆ := ζQ both satisfy (4.2), then Q = I2r+s

iff (4.6) holds. Hence assume R′ vec ζ = c and R′ vec ζ⋆ = c; subtract these two
equations term by term and set G := I2r+s −Q. Partition G conformably with
Q and write vecG = Ng where g := ((vecG11)

′ : (vecG00)
′)′ and N is defined

in (A.1); one finds

(A.5) 0 = R′ vec(ζG) = R′(I2r+s ⊗ ζ) vecG = R′(I2r+s ⊗ ζ)Ng

Observe that G = 0 iff g = 0; this proves the rank condition (4.6). The order
condition (4.7) is proved observing that m⋄ and r2 + (r+ s)2 are the number of
rows and columns of R′

⋄B
′
⊥Ā

′(I2r+s ⊗ ζ)N . Q.E.D.

Proof of Theorem 2: Condition (5.5) follows from (A.4) by substituting
R† = blkdiag(R1,R2). Q.E.D.

Proof of Proposition 3: Observe that one can write (7.1) as R′
⋄ vec (J

′
2ζ) =

c⋄ with R⋄ = blkdiag (Ir+s ⊗ (c0 : c1) : Ir ⊗ c0). Recall that Ā
′(I⊗ζ)N = ((U1⊗

ζ1) : (Ir+s ⊗ ζ23)) from the proof of Theorem 1, so that

B̄′Ā′(I ⊗ ζ)N = (Ir+s ⊗ J2 : U1 ⊗ J1)
′
((U1 ⊗ ζ1) : (Ir+s ⊗ ζ23))

=

(
U1 ⊗ υ Ir+s ⊗ (γ : β)
Ir ⊗ β 0

)
.

Hence one finds, when (7.1) are satisfied,

R′
⋄B̄

′Ā′(I ⊗ ζ)N =

(
U1 ⊗ g′υ Ir+s ⊗ (c0 : c1)

′ (γ : β)
Ir ⊗ c′0β 0

)

=


 0 Ir+s ⊗

(
0 Is
Ir c′1β

)

Ir2 0




which is square and of full rank r2+(r+s)2. Thus the normalisations (7.1) satisfy
the rank condition for identification (4.6); moreover, the order condition (5.6) is
satisfied with an equal sign, i.e. the restrictions are just-identifying. Q.E.D.

Proof of Corollary 4: Define D = blkdiag(C,C), and observe that C−1 =
C̄ by block-orthogonality. Hence one has ζ ′ (X ′

t : ∆X
′
t)

′
= ζ ′DD̄′ (X ′

t : ∆X
′
t)

′
=

ζ ′D
(
X̃ ′

t : ∆X̃
′
t

)′
, where we have used orthogonal projections in the form I =

CC̄ ′. It remains to show that ζ ′D has the form on the r.h.s. of (7.2). First observe
that

ζ ′D =




β′C υ′C

0 γ′C

0 β′C




where β′C = (Ir : −A1 : −A2) and γ′C = (0 : I : −A4) by (7.1), where
Ai indicate generic matrices of appropriate dimensions. Finally, because (c0 :
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c1)
′υ = 0, applying orthogonal projections of the form I = C̄C ′, one finds

υ = c̄2c
′
2υ = −c̄2A3, with A3 := −c′2υ. This completes the proof. Q.E.D.
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