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Abstract

This paper shows how an airline monopoly uses refundable and non-refundable tick-

ets to screen consumers who are uncertain about their travel. Our theoretical model

predicts that the difference between these two fares diminishes as individual demand

uncertainty is resolved. Using an original data set from U.S. airline markets, we find

strong evidence supporting our model. Price discrimination opportunities through re-

fund contracts decline as the departure date nears and individuals learn about their

demand.
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1 Introduction

Consider a potential traveler who is planning to buy a plane ticket in advance. However, at

this moment, he is not certain whether he will travel. Let his valuation for traveling be v.

If the airline offers him a refundable ticket now, he will be willing to pay v for that ticket.

But if the airline offers him a non-refundable ticket, his willingness to pay should be less

than v.1 Once he knows with certainty whether he wants to travel, there is no reason why

he should be willing to pay more for a refundable ticket than for a non-refundable ticket.

This paper presents a theory that explains how a monopolist can use refundable and

non-refundable tickets to screen consumers and extract more surplus when consumers have

to select a contract before knowing their demand with certainty.2 In the simple two-period

model, the airline will offer both ticket types in advance to consumers who are uncertain

about their demand and have different willingness to pay. We derive optimal refundable

and non-refundable fares that depend on each consumer’s willingness to pay and the prob-

ability of travel. Consumers with high willingness to pay buy refundable tickets, and con-

sumers with low willingness to pay buy non-refundable tickets. Furthermore, we find that

the difference between these two fares consists of a quality component—the refundability

value—and a price-discrimination component. A comparative-statics analysis provides an

empirical implication of the model: the gap between the two fares diminishes as the date

of departure approaches and consumers become more certain about their individual de-

mand. Therefore, the airline’s ability to separate consumer types and to price discriminate

vanishes.

In the empirical section we test the main empirical implication from the theory. We

collected from the online travel agency Expedia.com an original panel data set of refund-

able fares, non-refundable fares, and seat inventories across 96 U.S. domestic monopoly

routes at various days prior to the departure date. The data collection focuses on posted

one-way economy-class fares to control for price differentials associated with other ticket

1This ex-ante willingness to pay for a non-refundable ticket is analogous to the option price in Cicchetti

and Freeman (1971). Schmalensee (1972) and Graham (1981) show that the option price may be greater or

smaller than the expected willingness to pay.
2Even though we focus on airlines, the results can also be applied to other industries where goods are

sold in advance with a refundable option, such as cruises, car rentals, and lodging.
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restrictions; for example, Saturday-night stayover, minimum and maximum stay, first-class

travel, and connecting legs. These restrictions are commonly used as ‘fences’ to implement

other forms of price discrimination and congestion pricing and to deal with aggregate de-

mand uncertainty. The panel structure of the data controls for unobservable time-invariant

carrier-, route-, and flight-specific characteristics. Moreover, the fact that both fares were

collected at the same time for the same seat allows us to control for unobserved time-variant

seat-specific characteristics. The estimation method, which takes into account the dynamic

adjustment between the difference in fares and seat inventories, shows strong evidence that

price discrimination through refund contracts vanishes as the departure date nears. In

addition, a nonparametric specification indicates that most of the individual demand un-

certainty, as implied by the carriers’ pricing strategy, is resolved during the last two weeks

prior to the departure date.3

In the literature, Gale and Holmes (1993) and Dana (1998) use advanced-purchase

discounts as a means of price discrimination to improve capacity utilization in monopolistic

and competitive markets respectively. In contrast, we show that an airline monopoly can

use a refundability option to screen consumers and increase the airline’s expected profit.

Courty and Li (2000) suggest a theoretical model for a monopolist that price discriminates

via refund contracts consisting of a price a buyer has to pay in advance and a refund the

buyer can receive after he learns his valuation of the good. While Courty and Li’s purpose

is to find an optimal refund contract consisting of an advance payment and a refundable

amount, our goal is to find an optimal contract consisting of a non-refundable price and a

refundable price for each type. In a related work, Akan et al. (2011) present a generalization

of Courty and Li (2000) with consumers who learn their valuations gradually and with a

seller that can vary the length of time during which the tickets are refundable. Bilotkach

(2009) presents a model explaining refund contracts under costly capacity and demand

uncertainty.

The rest of the paper is structured as follows. Section 2 presents the theoretical model,

3There are many ways that uncertainty could be resolved. In this paper, by resolved uncertainty, we

mean an increase in the probability that a ticket holder wants to travel on a particular date as the trip

date nears. These results, in addition, help explain the large price dispersion in airlines documented in

Borenstein and Rose (1994) and more recently in Gerardi and Shapiro (2009).
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including the consumer’s problem and the airline’s problem, and describes the airline’s

price menu in equilibrium. Section 3 presents the empirical analysis by first describing the

data, then setting the empirical model, and closing with the results. Section 4 concludes.

2 Theoretical Analysis

Consider a monopolistic airline that sells homogeneous seats on a flight to consumers whose

type, high (H) or low (L), is not observable to the airline. In airline markets, it is common

to see consumers buy tickets in advance despite uncertainty in their travel plans. In our

two-period model, consumers have unit demands and have to decide whether to buy a

ticket in period 1. However, they learn in period 2 whether they want to fly or not (i.e.,

demand equals 1 or 0). Let travel and no travel be mutually exclusive states of nature in

which a consumer wants and does not want to travel respectively. The risk in the state

of nature that each consumer faces is an individual risk that is independent from those of

other consumers. For θ = H,L, we let πθ denote the probability that type θ consumer

wants to travel and hence 1−πθ the probability that the consumer does not want to travel.

Both types have a positive valuation of traveling vθ and share the same utility function u

with u′ > 0 and u′′ ≤ 0. We normalize u so that u(0) = 0.

2.1 The Consumer’s Problem

In period 1, the airline offers refundable and non-refundable tickets to all consumers. If a

type θ consumer buys a refundable ticket at price p in period 1 and learns that he wants to

travel in period 2, then he will use the ticket and his utility will be u(vθ − p). If he learns

that he does not want to travel, he will request a refund and his utility will be his status

quo, u(0), which is equal to zero. In contrast, if the consumer buys a non-refundable ticket

at price p, his utility will be u(vθ − p) if he wants to travel and u(−p) otherwise. Under

expected utility theory, type θ consumer’s expected utility from buying a refundable ticket

at price p is denoted by

U r
θ (p) = πθu(vθ − p) (1)
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and type θ consumer’s expected utility from buying a non-refundable ticket at price p is

denoted by

Unr
θ (p) = πθu(vθ − p) + (1− πθ)u(−p). (2)

Note that there is no time value of money. If a consumer does not buy a ticket, his

utility in period 2 will be zero in both states.4 Then type θ’s reservation price for a

refundable ticket is vθ and type θ’s reservation price for a non-refundable ticket is cθ such

that Unr
θ (cθ) = 0; i.e.,

πθu(vθ − cθ) + (1− πθ)u(−cθ) = 0. (3)

Note that cθ is an increasing continuous function of πθ from [0, 1] onto [0, vθ].
5

Now we explain how a consumer decides which type of ticket to buy when the airline

simultaneously offers non-refundable and refundable tickets in period 1. Formally, let the

airline offer a price menu (pnr, pr) in which pnr represents a non-refundable price and pr

represents a refundable price. Each consumer’s action set includes buy a refundable ticket,

buy a non-refundable ticket, and not buy a ticket. We find that type θ consumers best

response is given by:

(i) buy a refundable ticket if U r
θ (p

r) ≥ Unr
θ (pnr) and U r

θ (p
r) ≥ 0,

(ii) buy a non-refundable ticket if Unr
θ (pnr) > U r

θ (p
r) and Unr

θ (pnr) ≥ 0,

(iii) buy no ticket if Unr
θ (pnr) < 0 and U r

θ (p
r) < 0.

2.2 The Airline’s Problem

We now turn to the airline’s pricing problem. In particular, we are interested in a separating

equilibrium where type H consumers buy refundable tickets and type L consumers buy

non-refundable tickets. We solve for the optimal separating price menu and show that it

constitutes an equilibrium under reasonable conditions.

Let the numbers of type H and type L consumers in period 1 be NH and NL and the

expected numbers of type H and type L consumers that want to travel in period 2 be

4It is possible to extend the model by imposing a cost on the consumer who wants to travel but does not

have a ticket so that his utility is lower than zero. However, the differences in the results are immaterial.
5For example, if u(x) = ln(1 + x/1000), vL = 500, and πL = 0.6, then we find that cL = 268.
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nH = πHNH and nL = πLNL respectively. The airline, which has zero marginal cost and

a capacity at least nH + nL, announces pnr and pr at the beginning of period 1. Since

the airline does not know each consumer’s type, we let the airline derive its belief about

each consumer type from NH and NL. After observing the prices, consumers’ strategies

could be either pooling (i.e., both types choose the same action) or separating (i.e., each

type chooses a different action). We define an equilibrium as a combination of the airline’s

beliefs and strategy (pnr, pr) and each consumer’s strategy given θ and (pnr, pr) so that the

airline’s expected profit and each consumer’s expected utility are maximized.

We are interested in separating equilibria in which each consumer type buys a different

type of ticket. However, we cannot identify which consumer type buys which type of

ticket without further assumptions about vθ and πθ for θ = H,L. Thus we assume negative

correlation between valuation and certainty about travel (i.e., vH > vL and πH < πL). This

is a realistic assumption because most business travelers have a higher willingness to pay

for a ticket and are less certain about their travel than pleasure travelers. As a result, type

H consumers buy refundable tickets, type L consumers buy non-refundable tickets, and the

airline’s expected profit is equal to NLp
nr + nHpr. Given these consumers’ strategies, we

solve for the airline’s optimal price menu below and present the solution in Proposition 1.

Nonetheless, this separating price menu does not always constitute an equilibrium because

it may be possible for the airline to increase expected profit by using an alternative price

menu inducing other responses from the consumers. We provide necessary and sufficient

conditions for existence of this separating equilibrium in Proposition 2.

The airline’s optimization problem can be written as:

max
pnr,pr

NLp
nr + nHpr (4)

s.t.

U r
H(pr) ≥ Unr

H (pnr) (5)

Unr
L (pnr) ≥ Unr

L (pr) (6)

U r
H(pr) ≥ 0 (7)

Unr
L (pnr) ≥ 0. (8)
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The incentive-compatibility constraints, (5) and (6), are required for type H consumers to

prefer buying a refundable ticket and type L consumers to prefer buying a non-refundable

ticket, while the participation constraints, (7) and (8), are required for both consumer types

to buy a ticket. There are two possibilities: either cL ≥ cH or cL < cH . If cL ≥ cH , type

L consumers are willing to pay more for a non-refundable ticket while type H consumers

are willing to pay more for a refundable ticket. It follows that the airline can separate the

consumers by simply setting (pnr, pr) = (cL, vH).6

Now consider the case where type L consumers are willing to pay less for a non-

refundable ticket than type H consumers (i.e., cL < cH). If the airline sets (pnr, pr) =

(cL, vH), type H consumers will find non-refundable tickets more attractive than refund-

able tickets because U r
H(vH) < Unr

H (cL). To obtain the separating equilibrium, the airline

must lower the refundable price to be no larger than m so that U r
H(m) = Unr

H (cL). That

is,

πHu(vH −m) = πHu(vH − cL) + (1− πH)u(−cL). (9)

We say that the difference between vH and m is the information rent taken by type

H consumers. The airline offers this discount to prevent type H consumers from buying

a non-refundable ticket. In this case the solution is (pnr, pr) = (cL,m).7 We summarize

these results in Proposition 1.

Proposition 1 Given the following assumptions:

(i) vH > vL > 0.

(ii) 0 < πH < πL < 1.

(iii) u′ > 0 and u′′ ≤ 0.

6For example, let u(x) = ln(1 + x/1000). For type L consumers, vL = 500 and πL = 0.6, so cL = 268.

For type H consumers, vH = 800 and πH = 0.3, so cH = 185. Since cL ≥ cH , the airline sets (pnr, pr) =

(268, 800).
7Let u(x) = ln(1 + x/1000). For type L consumers, vL = 500 and πL = 0.6, so cL = 268. For type H

consumers, vH = 800 and πH = 0.5, so cH = 323. We find that m = 678. Since cL < cH , the airline sets

(pnr, pr) = (268, 678).
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The airline’s optimal price menu so that type L consumers buy non-refundable tickets and

type H consumers buy refundable tickets is given by

(pnr, pr) =











(cL, vH) if cL ≥ cH

(cL,m) if cL < cH

(10)

where cθ and m are defined in (3) and (9) respectively.

Proof See the above argument.

Given the separating response in which type L consumers buy non-refundable tickets

and type H consumers buy refundable tickets, the airline maximizes its profit by always

selling non-refundable tickets at cL. If a type L consumer is willing to pay more for a non-

refundable ticket than a type H consumer (i.e., cL ≥ cH) then the type H consumer will

find a refundable ticket priced at vH more attractive than a non-refundable ticket. Despite

the fact that a non-refundable ticket costs less, it gives a type H consumer lower expected

utility than a refundable ticket. Hence the optimal pricing menu is (pnr, pr) = (cL, vH). In

contrast, if a type H consumer is willing to pay more for a non-refundable ticket than a type

L consumer (i.e., cH > cL) he will find a non-refundable ticket priced at cL more attractive

than a refundable ticket priced at vH . So the airline has to lower the refundable price to

m so that the expected utilities from both ticket types are equal, and by our tie-breaking

rule, he will buy a refundable ticket.

Even though the airline sells tickets to the two consumer types at different prices, we

cannot claim that the difference between the two prices, pr − pnr, is solely due to price

discrimination because the two ticket types have different qualities. We decompose the

fare difference into two components: pr−vL and vL−pnr. The second component, which is

equal to vL− cL, is the refundability value to type L consumers because it is the difference

in willingness to pay for a refundable ticket versus a non-refundable ticket. If cL ≥ cH , the

first component equals the difference in willingness to pay for a refundable ticket between

the two consumer types. Since the airline can sell refundable tickets to type H consumers at

a higher price than what type L consumers are willing to pay, we say that this component

is the airline’s price discrimination. If cL < cH , the price discrimination component is

smaller because the airline has to lower the refundable price to separate consumers.
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2.3 Equilibrium Prices

We have shown in Proposition 1 that the airline’s optimal price menu conditional on ob-

taining a separating equilibrium in which type H consumers buy refundable tickets and

type L consumers buy non-refundable tickets is (pnr, pr) = (cL, vH) if cL ≥ cH and

(pnr, pr) = (cL,m) if cL < cH . However, this separating response may not be best to

the airline and hence the described price menu may not constitute an equilibrium. For

instance, if there are only a few type H consumers, a pooling response in which all con-

sumers buy refundable tickets may be more profitable. We provide necessary and sufficient

conditions for the airline to find the separating response most profitable in the following

proposition.

Proposition 2 Given the following assumptions:

(i) vH > vL > 0.

(ii) 0 < πH < πL < 1.

(iii) u′ > 0 and u′′ ≤ 0.

Necessary and sufficient conditions for existence of an equilibrium where type L consumers

buy non-refundable tickets and type H consumers buy refundable tickets are

NH

NL
≥

πLvL − cL
πH(vH − vL)

(11)

if cL ≥ cH and
πLvL − cL
πH(m− vL)

≤
NH

NL
≤

cL
πH(vH −m)

(12)

if cL < cH , where cθ and m are defined in (3) and (9) respectively.

Proof See Appendix.

To assure that the separating response where the airline sells refundable tickets to type

H consumers and non-refundable tickets to type L consumers constitutes an equilibrium,

we must show that the airline’s maximum profit given this response is not lower than its

maximum profit from each of other consumers’ responses.8 The inequality in (11) and the

8In the proof of Proposition 2, we compare the airline’s profit from the optimal price menu in (10) to

profits from other optimal price menus given other consumers’ responses.
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left inequality in (12) guarantee that the separating price menu from (10) yields a higher

profit than the optimal price menu conditional on obtaining a pooling equilibrium with

both types buying refundable tickets. Both inequalities suggest that NH/NL must be large

enough because the airline makes more profit from type H and less profit from type L with

the separating price menu. To maximize its profit while making both type H and type L

consumers buy refundable tickets, the airline must set pnr really high so that no one would

want to buy a non-refundable ticket. With this pooling price, the airline makes less profit

from type H consumers because it has to lower pr to vL so that refundable tickets attract

all consumers. However, the airline makes more profit from type L consumers by selling

them refundable instead of non-refundable tickets because of risk aversion. We show in the

appendix that cL ≤ πLvL whenever u′′ ≤ 0 and hence the profit from selling non-refundable

tickets to type L consumers, NLcL, is smaller than NLπLvL which is the airline’s profit

when selling them refundable tickets.9

In addition to pooling-on-refundable response described above, we also consider other

consumers’ responses in the proof of Proposition 2 and find that the separating price menu

dominates all other responses regardless of NH and NL when cL ≥ cH . However, when

cL < cH , another candidate of equilibrium arises because the airline might prefer selling

only refundable tickets to type H consumers and no tickets at all to type L consumers.

Remember that the optimal separating price menu given cL < cH is (pnr, pr) = (cL,m).

Since the airline sells refundable tickets at a discounted price, m, it may be more profitable

to the airline, when NH is large enough, to set pnr very high so that a non-refundable ticket

is unattractive to everyone and increase pr to vH .10

In short, the separating price menu in (10) constitute an equilibrium when the propor-

tion of type H to type L population is neither too large nor too small. If there are relatively

9Consider the example in Footnote 5. If NH = NL = 50, the separating price menu yields (15× 800) +

(50 × 268) = 25, 400 in profit which is greater than profit from the pooling-on-refundable price menu,

(15 × 500) + (30 × 500) = 22, 500. If the NH/NL ratio was not large enough, say NH = 10 and NL = 90,

the airline would try to sell refundable tickets to all consumers and make (3× 500) + (54× 500) = 28, 500

in profit instead of (3× 800) + (90× 268) = 26, 520 from separating.
10Following with the example in Footnote 8, with NH = 90 and NL = 10. The separating price menu

yields (45 × 678) + (10 × 268) = 33, 190 in profit which is smaller than profit from selling only refundable

tickets to type H, 45× 800 = 36, 000.
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many type L consumers, the airline will prefer selling refundable tickets to both types at

vL. On the other hand, if there are relatively many type H consumers and the willingness

to pay for a non-refundable ticket of type L is less than that of type H, the airline will

prefer selling only refundable tickets to type H at vH and no tickets at all to type L.

The restrictions (11) and (12) can be simplified when consumers are risk neutral because,

as we see from (3), cL = πLvL when u′′ = 0, and as a result, the inequality in (11) and

the left inequality in (12) are automatically satisfied. So we can say that when consumers

are risk neutral and cL ≥ cH , the airline’s separating price menu given in Proposition 1

always constitutes an equilibrium. In contrast, if cL < cH , we still need to impose the right

inequality of (12) even when u′′ = 0. Nonetheless, we can say that it is very likely to see

the separating price menu in equilibrium if consumers are slightly risk averse because both

restrictions on NH/NL are easier to satisfy.

2.4 Empirical Implication

We now provide an interesting empirical implication from this theoretical model: the gap

between refundable and non-refundable prices diminishes as the flight date nears and the

consumers become more certain about their travel plans. Let πH and πL be continuous

functions of τ , the time length between period 1 and period 2 in the theoretical model (i.e.,

the number of days between when agents consider buying a ticket and the departure date).

We assume the following:

(i) πL(τ) and πH(τ) are non-increasing in τ .

(ii) πL(τ) ≥ πH(τ) for all τ .

(iii) πL(0) = πH(0) = 1.

The possibility that each passenger becomes more certain about traveling because he

may have more information as the departure date approaches can justify (i). Conditions

(ii) and (iii) mean that type L travelers are more certain about traveling than type H

travelers on any day prior to departure and that there is no uncertainty about traveling

on the departure date. These are practical conditions because most business travelers are

more uncertain about their travel than pleasure travelers when they buy tickets in advance,

and all agents know with certainty whether they are flying on the departure date.
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We learn from (3) that cθ is a continuous function of πθ and that dcθ/dπθ > 0. It follows

from the above assumptions that when τ is small (i.e., close to departure date) both πL and

πH will be close to 1 and, as a result, cL < cH . In contrast, when τ is large, it is possible

that the difference between πL and πH is so large that cL ≥ cH . We show below that

regardless of whether cL ≥ cH or cL < cH the gap between refundable and non-refundable

prices are smaller as τ decreases.

If cL ≥ cH , the airline sets (pnr, pr) = (cL, vH). Since πL increases as τ decreases, we

find from (3) that cL also increases and the gap between pr and pnr becomes smaller. On

days close to departure, πH will be large enough that cH > cL and the airline sets (pnr, pr) =

(cL,m). From (9) we find that, as πH approaches 1, m converges to cL. Therefore, the

difference between the refundable and non-refundable fares diminishes as the departure date

approaches (i.e., τ → 0). When τ = 0, the airline sets (pnr, pr) = (cL, cL) = (vL, vL).
11

There is only one price on the departure date because there is no benefit from paying more

for a refundable ticket when individual demand uncertainty is fully resolved. The airline’s

ability to screen consumers vanishes, making price discrimination opportunities through

refund contracts disappear.

3 Empirical Analysis

3.1 Data

We collected from the online travel agency Expedia.com the lowest posted refundable and

non-refundable one-way economy-class fares for 96 flights that departed on June 22, 2006.

Following Stavins (2001) we focused on a single day, Thursday, to control for price differen-

tials associated with systematic peak-load pricing over days of the week. The data form a

panel with 96 cross-sectional units observed over 28 periods. Each cross-section corresponds

to a specific carrier’s non-stop flight between a city pair. Fares were recorded every three

days, from 82 days prior to departure to one day prior to departure, i.e., τ = 1, 4, 7, . . . , 82.

The carriers considered are American, Alaska, Continental, Delta, United, and US Airways.

11As the date of travel approaches the model allows for the possibility that we move from the separating

equilibrium to other equilibria. This will not be an issue if NH and NL satisfy the conditions in Proposition

2 for all τ .
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The share of each carriers’ flights in the data set was chosen to be close to the carrier’s

share of the U.S. market.

A monopoly route, as defined by Borenstein and Rose (1994), is a route on which

a single carrier operates more than 90 percent of the weekly direct flights. Following a

similar but stricter criterion, each of our 96 monopoly routes is operated by a carrier who

is the sole supplier of non-stop service between the city pair. Tickets with one or more

stops and first-class travel tickets are considered to be of significantly different quality.

By picking non-stop flights and one-way fares we control for price differences associated

with different ticket restrictions, cost differences associated with round-trip tickets, and

price variations related to more sophisticated itineraries. Dealing with one-way tickets is

particularly important in our model because the traveler may also be uncertain about the

return portion in a round-trip ticket.

[Insert Figure 1 here.]

Figure 1 shows the average refundable and non-refundable fares across all 96 monopoly

routes at different points prior to the departure date. The dashed lines are 95% confidence

intervals for the means and are calculated separately for every point in time using the

t-distribution. The figure shows that there is a strong tendency for non-refundable fares

to increase faster than refundable fares, suggesting that as the flight date nears consumers

resolve their individual demand uncertainty.

3.2 Main Result

The panel structure of the data allows us to control for time-invariant flight-, carrier-,

and route-specific characteristics. This includes all time-invariant characteristics in Stavins

(2001), who used a cross section of tickets. However, there are time-variant cost components

that arise at seat-level. Stochastic peak-load pricing, as explained in Borenstein and Rose

(1994), depends on the degree of price adjustment as demand is revealed over time. Prices

on the same flight can vary with the purchase date and with the probability, at the time the

ticket is sold, that demand will exceed capacity. In models of aggregate demand uncertainty
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where sellers commit to a price schedule, Dana (1998, 1999) considers the existence of an

effective cost of capacity, which also changes across seats.

To control for these time-variant seat-specific characteristics, we take advantage of the

fact that both refundable and non-refundable fares were obtained at the same time for

the same seat. Hence, taking the difference between these two fares will wipe out these

characteristics.12 The basic logarithmic specification of the reduced-form model that we

estimate is given by

ln(prijt − pnrijt) =
∑

s=4,7,...,82

βsI
[τt=s]
t +X ′

ijtδ + νij + εijt, (13)

where the subscript i refers to flight, j to route, and t to time. Following the theoretical

section, pr and pnr are the refundable and non-refundable ticket prices, and τ is the number

of days prior to departure when the two prices were recorded. The indicator variables I
[τt=s]
t

are each equal to one at different number of days to departure, i.e., τ = 4, 7, . . . , or 82.

Because I
[τ=1]
t is the omitted category, βτ captures the logarithm of the difference in the

price gap between τ days and 1 day to departure. X ′
ijt is a vector of controls that includes

the lagged dependent variable and the load factor (LOAD), defined as the ratio of occupied

seats to total seats.13 Finally, νij denotes the unobservable flight-specific effect and εijt

denotes the remaining disturbance.

[Insert Table 1 here.]

From the summary statistics presented in Table 1, we find that refundable fares are,

on average, 51% larger than non-refundable fares. As expected, variation in fares across

flights is very close for both fare types, but non-refundable fares appear to have more

within-flight variation than do refundable fares. Table 2 presents the estimates of the

12Controlling for these costs has limited the availability of empirical papers on airline price discrimination.

Stavins (2001) looks at price differentials due to ticket restrictions; however, those ticket restrictions are

understood to solve the peak-load pricing problem as well (see Courty and Li, 2000, p. 716).
13Given that overbookings are usually a small fraction of the total number of tickets, LOAD is assumed

to be proportional to bookings. LOAD was obtained from the seat-availability map, where the available or

prime seats reported by Expedia.com are counted as available seats. Escobari (2009), Escobari (2012) and

Alderighi et al. (2012) explain the importance of controlling for seat availability.
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coefficients of Equation 13. All columns are estimated using flight fixed effects to control

for route-, carrier-, and flight-specific characteristics. As robustness checks, the second

column controls for capacity utilization using LOAD, while the third column includes

LOAD and the lagged dependent variable. The numbers in parentheses are t-statistics

based on cluster-robust standard errors, clustered by airline. Column 1 shows that at a

1% significance level, with the exception of 4 days in advance, the price gaps are larger

than the gap from 1 day in advance. The decline in the gap appears to occur during the

last 13 or 16 days prior to departure, with statistically nonsignificant fluctuations in the

gap during earlier dates. The estimates indicate that, for example, the price difference is

211% larger when τ = 7 days and 298% larger when τ = 16 days.14 Columns 2 and 3

show that the percentage gap decline is smaller when controlling for capacity utilization

and even more so when additionally including the lagged dependent variable. We can see

that across all specifications the main result holds—the difference between refundable and

nonrefundable fares is smaller closer to departure.

[Insert Table 2 here.]

As a robustness analysis we also use the difference and system GMM methods proposed

in Holtz-Eakin et al. (1988), Arellano and Bond (1991), Arellano and Bover (1995), and

Blundell and Bond (1998) to estimate

ln(prijt − pnrijt) =
3

∑

s=1

γsτ
3
t +X ′

ijtδ + νij + εijt. (14)

We model the lagged dependent variable and LOAD in X ′
ijt as endogenous and weakly

exogenous respectively. A weakly exogenous LOAD means that the number of seats sold

up to time t can be affected by past realizations of the differences in fares.15

Table 3 presents the results. For comparison purposes, the first column shows the OLS

estimates of the pooled regression model. Exploiting the panel structure of the data, the

14Sweeting (2012) runs a similar specification, but of prices—not a price gap—on a set of dummies to

analyze the dynamics of prices in secondary markets for Major League Baseball tickets.
15Bilotkach et al. (2011) present a specification in which the load factor is affected by previous prices,

consistent with our assumption of weak exogeneity of LOAD. Moreover, weak exogeneity is also consistent

with Deneckere and Peck (2012) and the dynamic demand estimation in Escobari (2012).
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second column presents the within-flight regression estimates. While the signs of the day-

in-advance coefficients in both specifications are consistent with a fluctuating difference in

earlier dates and a sharp decrease in the gap close to departure, the squared and cubic

terms are not statistically significant.

The third and fourth columns report the two-step first-differenced GMM panel es-

timator as proposed in Holtz-Eakin et al. (1988) and Arellano and Bond (1991). The

t-statistics in parentheses are based on the Windmeijer finite-sample correction for the

standard errors of the two-step estimates. The GMM difference panel estimator works

by taking first-differences to eliminate time-invariant characteristics and assumes that the

error term, εijt, is not serially correlated. Moreover, in this estimation the series LOADijt

may be endogenous in the sense that LOADijt is correlated with εijt and earlier shocks

but uncorrelated with εij,t+1 and subsequent shocks. Then lagged values of LOADijt are

valid instruments in the first-differenced equation. Column 3 uses LOADij,t−2 as an in-

strument, while column 4 uses LOADij,t−3 and earlier lags as instruments.16 To deal with

the problem that the new error term, εijt − εij,t−1, is correlated with the lagged dependent

variable, ln(prij,t−2 − pnrij,t−2) is also used as an instrument. To address the validity of the

specifications, columns 3 and 4 also report two tests. To test the hypothesis that the error

term, εijt, is not serially correlated, we test whether the differenced error term is second-

order serially correlated. The p-values reported for the serial correlation test provide strong

support for a valid specification. To test the overall validity of the instruments, we provide

a Sargan test of over-identifying restrictions. The validity of lagged levels dated t − 2 as

instruments in column 3 is rejected. However, it is not rejected for lagged levels dated t−3

(and earlier) as instruments.

[Insert Table 3 here.]

Blundell and Bond (1998) point out that, when the explanatory variables are persistent

over time, lagged levels of these variables are weak instruments for the regression equation

in differences. To reduce the potential bias and imprecision of the difference estimator,

16τt, τ
2
t , and τ3

t are treated as strictly exogenous across all specifications.
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we use the system estimator as suggested in Blundell and Bond (1998). Usual weak-

instrument tests cannot be implemented in these GMM specifications, so we use the known

bias in the difference GMM by comparing its sample performance with the pooled OLS

and within-group estimators, which have known properties in dynamic panel data, and

see if the system GMM improves the precision of the estimates. This system estimator

combines the regression in differences with the regression in levels. The instruments for the

regression in levels are the lagged differences of the corresponding variables. The validity

of the instruments relies on an additional assumption: There is no correlation between the

differences of LOAD and the flight-specific effects, but there may be correlation between

the levels of LOAD and the flight-specific effects. Columns 5 and 6 in Table 3 report the

two-step system GMM estimator, with the figures in parentheses being t-statistics based in

the Windmeijer robust estimator. The serial-correlation test shows strong support for the

assumption of no serial correlation, and the Sargan provides strong support for the validity

of the instrument list. In addition, the difference Sargan that tests for the additional

moment conditions used in the levels equations accepts their validity. We find that the

coefficients on τt, τ
2
t , and τ3t are statistically significant in all GMM specifications and that

the signs are consistent with a quick decline in the gap close to departure.

[Insert Figure 2 here.]

Finally, our last robustness check is aimed at addressing nonlinearities in a very flexible

way by estimating a nonparametric model with fixed effects. The estimation follows the

kernel methods of Racine and Li (2004) for a mix of discrete (τ) and continuous (LOAD)

data types.17 This approach allows for interactions between τ and LOAD and for nonlin-

earities in and between both. The smoothing parameters are calculated with least squares

cross-validation. The results are summarized in the partial regression plot of Figure 2,

which presents the multivariate regression function via a bivariate plot with LOAD held

constant at its median and permits a direct comparison of the parametric and nonpara-

metric results. The black dots are the nonparametric results, with the bars representing

asymptotic standard errors. The solid line is the gap profile as estimated by our preferred

17This estimator has better finite-sample properties than the popular local kernel estimator.
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specification of column 6, Table 3. Consistent with the dummy variable regression of Ta-

ble 2, there is a sharp decrease in the gap during the last two to three weeks prior to

departure. The gap between pr and pnr closes as the departure date nears and consumers

are more certain about their travel plans. While there does not seem to be much learning

during earlier dates, most of the learning takes place during the last two weeks prior to

departure.

4 Conclusions

This paper shows the importance to airlines of offering a menu of prices namely refundable

and non-refundable fares. We show that a monopolistic airline can separate consumers

who are uncertain about their demand for travel and have different willingness to pay. The

fact that individual demand uncertainty is not fully resolved by the time the individual

buys a ticket is used by the seller to price discriminate and extract more surplus. In

our model, buyers can use refund contracts to insure against uncertainty in consumption.

One implication from the theoretical model is that the gap between refundable and non-

refundable fares is a function of the individuals’ travel uncertainty. If there is no uncertainty

in individual demand, there is no difference in buying a refundable or a non-refundable

ticket, and hence there should be no difference between these two fares.

The empirical section looks at the dynamics of the price gap, refundable minus non-

refundable, in 96 monopoly routes and tests whether the individual demand uncertainty

implied by the carrier’s pricing strategy is resolved as the departure date approaches. After

controlling for unobserved time-invariant flight-, carrier-, and route-specific characteristics,

unobserved time-variant seat-specific characteristics, and potential sources of endogeneity,

the results show that the theoretical predictions are empirically supported. Second-degree

price discrimination in the form of refund contracts shrinks as the departure date nears.

Nonlinear parametric specifications and a nonparametric regression show that most of the

individual demand uncertainty is resolved during the last two weeks, when the opportunity

for price discrimination through refund contracts declines.
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Appendix

In this appendix we first prove two lemmas that we use to derive the result in Proposition

2 and then we prove the proposition.

Lemma 1 If u′′ S 0, then cθ S πθvθ.

Proof. We rewrite (3) as
−u(−cθ)

u(vθ − cθ)− u(−cθ)
= πθ. (15)

We multiply both sides of (15) by vθ/cθ to obtain

−u(−cθ)/cθ
[u(vθ − cθ)− u(−cθ)]/vθ

=
πθvθ
cθ

. (16)

If u′′ S 0, the left-hand side of (16) T 1 and, as a result, cθ S πθvθ.

Lemma 2 If u′′ S 0, then m T cL
πH

.

Proof. We rewrite (9) as

−u(−cL)

u(vH − cL)− u(vH −m)
=

πH
1− πH

. (17)

We multiply both sides of (17) by (m− cL)/cL to obtain

−u(−cL)/cL
[u(vH − cL)− u(vH −m)]/(m− cL)

=
πH(m− cL)

(1− πH)cL
. (18)

If u′′ S 0, the left-hand side of (18) T 1 and, as a result, m T cL
πH

.

Proof of Proposition 2

Since the airline cannot observe each consumer’s type, the airline may try to set prices

so that consumers either pool or separate their strategies. We summarize the consumers’

responses to the airline’s price menu as follows:

(i) Pooling 1 : The airline sells refundable tickets to both types (RB).

(ii) Pooling 2 : The airline sells non-refundable tickets to both types (NB).
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(iii) Separating 1 : The airline sells only refundable tickets to type H (RH).

(iv) Separating 2 : The airline sells only non-refundable tickets to either type H or L (NL

if cL > cH or NH if cL < cH).

(v) Separating 3 : The airline sells refundable tickets to typeH and non-refundable tickets

to type L (RHNL).

We consider these responses under two cases: cL ≥ cH and cL < cH . For RB the airline

maximizes its profit by setting pnr ≥ max{cH , cL} and pr = vL in both cases. For NB the

airline sets pnr = cH if cL ≥ cH , pnr = cL if cL < cH , and pr > vH in both cases.

For RH the airline sets pnr > cL if cL ≥ cH , pnr ≥ cH if cL < cH , and pr = vH in

both cases. For NL in case cL > cH , the airline sets pnr = cL and pr > vH . For NH in

case cL < cH , the airline sets pnr = cH and pr > vH . Note that NL is not possible when

cL ≤ cH and that NH is not possible when cL ≥ cH .

For RHNL, Proposition 1 states that the airline sets pnr = cL and pr = vH if cL ≥ cH

and pnr = cL and pr = m if cL < cH . The airline’s profits for each response by the

consumers in the two cases are summarized in Table A-1.

[Insert Table A-1 here.]

Let Π(·) denote the airline’s maximum profit given consumer responses to the air-

line’s price menu. If cL ≥ cH we find that Π(RHNL) ≥ Π(RH) and Π(RHNL) ≥ Π(NL).

Given that u′′ ≤ 0, Lemma 1 suggests cH ≤ πHvH . Hence Π(RHNL) ≥ Π(NB). If

NH

NL
≥ πLvL−cL

πH(vH−vL)
, then Π(RHNL) ≥ Π(RB).

If cL < cH Π(RH) ≥ Π(NH) because cH ≤ πHvH . Given that u′′ ≤ 0, Lemma 2 suggests

πHm ≥ cL. Hence Π(RHNL) ≥ Π(NB). If NH

NL
≥ πLvL−cL

πH(m−vL)
, then Π(RHNL) ≥ Π(RB). If

NH

NL
≤ cL

πH(vH−m) , then Π(RHNL) ≥ Π(RH).
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Table 1: Summary statistics

Variables Mean Std. Dev. Min. Max. Obs.

prijt

overall 494.486 169.181 144.000 1715.310 2628

between 156.974 144.000 735.497 96

within 64.167 141.262 1474.299 27.375

pnr
ijt

overall 327.749 171.588 64.000 914.000 2628

between 156.654 74.107 665.786 96

within 70.204 164.642 852.249 27.375

τt 41.500 24.238 1.000 82.000 2688

LOADijt 0.591 0.241 0.038 1.000 2688
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Table 2: Regression estimates, separate day dummies

(1) (2) (3)

VARIABLES Coef t-stat Coef t-stat Coef t-stat

I
[τt=4 days]
t 0.527 (1.575) 0.510 (1.518) -0.212 (-0.368)

I
[τt=7 days]
t 2.106*** (5.375) 2.067*** (5.361) 1.035*** (2.852)

I
[τt=10 days]
t 2.614*** (5.290) 2.523*** (5.502) 1.580*** (3.638)

I
[τt=13 days]
t 2.565*** (4.141) 2.451*** (4.297) 1.285** (2.489)

I
[τt=16 days]
t 2.977*** (4.306) 2.800*** (4.613) 1.653*** (2.989)

I
[τt=19 days]
t 3.013*** (4.190) 2.803*** (4.505) 1.672*** (2.619)

I
[τt=22 days]
t 2.999*** (5.066) 2.737*** (5.800) 1.670*** (3.748)

I
[τt=25 days]
t 2.963*** (4.708) 2.674*** (5.423) 1.550*** (3.101)

I
[τt=28 days]
t 3.036*** (4.751) 2.727*** (5.623) 1.565*** (3.031)

I
[τt=31 days]
t 3.092*** (4.903) 2.737*** (6.072) 1.615*** (3.500)

I
[τt=34 days]
t 3.124*** (5.081) 2.733*** (6.471) 1.562*** (3.425)

I
[τt=37 days]
t 3.187*** (5.081) 2.757*** (6.465) 1.654*** (3.540)

I
[τt=40 days]
t 3.069*** (4.980) 2.609*** (6.587) 1.336*** (2.678)

I
[τt=43 days]
t 3.418*** (6.369) 2.927*** (9.515) 1.711*** (4.084)

I
[τt=46 days]
t 3.325*** (6.522) 2.809*** (10.10) 1.597*** (4.079)

I
[τt=49 days]
t 3.331*** (6.698) 2.796*** (10.95) 1.532*** (3.921)

I
[τt=52 days]
t 3.442*** (7.401) 2.878*** (12.56) 1.615*** (4.517)

I
[τt=55 days]
t 3.439*** (7.441) 2.863*** (12.93) 1.636*** (4.709)

I
[τt=58 days]
t 3.392*** (7.049) 2.795*** (12.38) 1.555*** (4.545)

I
[τt=61 days]
t 3.429*** (7.006) 2.818*** (11.96) 1.667*** (5.306)

I
[τt=64 days]
t 3.291*** (5.722) 2.665*** (8.860) 1.529*** (4.352)

I
[τt=67 days]
t 3.249*** (5.028) 2.601*** (7.173) 1.466*** (3.658)

I
[τt=70 days]
t 3.257*** (4.891) 2.600*** (6.902) 1.603*** (5.278)

I
[τt=73 days]
t 2.993*** (3.390) 2.315*** (3.978) 1.320*** (2.624)

I
[τt=76 days]
t 3.003*** (3.425) 2.315*** (4.053) 1.396*** (2.856)

I
[τt=79 days]
t 2.861*** (3.194) 2.161*** (3.686) 1.204** (1.962)

I
[τt=82 days]
t 3.177*** (4.309) 2.469*** (5.897)

LOADijt -1.350** (-2.138) -0.953** (-2.221)

ln(prij,t−1 − pnr
ij,t−1) 0.515*** (8.332)

Observations 2,628 2,628 2,519

Within R-squared 0.312 0.319 0.492

Notes: The dependent variable is ln(prijt−pnr
ijt). t-statistics in parentheses based on cluster-

robust standard errors, clustered by airline; ∗∗∗p-value<0.01, ∗∗p-value<0.05, ∗p-value<0.1.

All specifications estimated with flight fixed effects.
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Table 3: Regression estimates, cubic model

(1) (2) (3) (4) (5) (6)

OLS Within GMM Dif GMM Dif GMM Sys GMM Sys

VARIABLES levels groups t− 2 t− 3 t− 2 t− 3

τt/102 7.970** 11.578** 10.349*** 12.423*** 11.782*** 12.043***

(2.222) (2.537) (2.610) (3.860) (6.475) (5.411)

τ2t /10
4 -17.228* -24.928* -21.435*** -25.486*** -25.525*** -26.080***

(-1.865) (-1.891) (-4.211) (-4.782) (-5.019) (-5.183)

τ3t /10
6 11.236 15.898 13.680*** 16.220*** 16.783*** 17.152***

(1.608) (1.501) (4.077) (4.389) (4.136) (4.353)

LOADijt -0.434*** -0.828** -0.068 0.102 -0.317 -0.289

(-5.578) (-2.156) (-0.026) (0.064) (-0.129) (-0.124)

ln(prij,t−1 − pnr
ij,t−1) 0.854*** 0.530*** 0.572*** 0.554*** 0.566*** 0.560***

(22.736) (10.772) (6.221) (6.073) (6.679) (6.168)

Serial correlation testa(p-value) 0.605 0.619 0.604 0.609

Sargan testb(p-value) 0.004 0.066 0.689 0.988

Difference Sargan testc(p-value) 1.000 1.000

Notes: The dependent variable is ln(prijt − pnr
ijt). Columns 2 through 6 control for carrier-, route-, and flight-specific

characteristic. t-statistics in parentheses for the OLS and the Within groups based on cluster-robust standard errors,

clustered by airline. t-statistics in parentheses for the two-step system GMM based on Windmeijer WC-robust estimator;

∗∗∗p-value<0.01, ∗∗p-value<0.05, ∗p-value<0.1. a The null hypothesis is that the errors in the first-difference regression

exhibit no second-order serial correlation (valid specification). b The null hypothesis is that the instruments are not

correlated with the residuals (valid specification). c The null hypothesis is that the additional instruments t− 3 are not

correlated with the residuals (valid specification).

Table A-1: The airline’s profits given consumers’ responses

Consumers’ responses cL ≥ cH cL < cH

RB NHπHvL +NLπLvL NHπHvL +NLπLvL

NB NHcH +NLcH NHcL +NLcL

RH NHπHvH NHπHvH

NL NLcL n.a.

NH n.a. NHcH

RHNL NHπHvH +NLcL NHπHm+NLcL
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Figure 1: Average pr and pnr with 95% confidence intervals
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Figure 2: Nonparametric partial regression plot and cubic model
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