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Abstract 
With the growing share of wind production, understanding its impacts on electricity price and 

greenhouse gas (GHG) emissions becomes increasingly relevant, especially to design better 

wind-supporting policies. Internal grid congestion is usually not taken into account when 

assessing the price impact of fluctuating wind output. Using 2006-2011 hourly data from Ontario 

(Canada) , we establish that the impact of wind output, both on price level and marginal GHG 

emissions, greatly differs depending on the congestion level. Indeed, from a 3.3% price 

reduction when wind production doubles, the reduction jumps to 5.5% during uncongested 

hours, but is only 0.8% when congestion prevails. Similarly, avoided GHG emissions due to wind 

are estimated to 331.93 kilograms per megawatt-hour (kg/MWh) using all data, while for 

uncongested and congested hours, estimates are respectively 283.49 and 393.68 kg/MWh. 

These empirical estimates, being based on 2006-2011 Ontario data, cannot be generalized to 

other contexts. The main contribution of this paper is to underscore the importance of 

congestion in assessing the price and GHG impacts of wind. We also contribute by developing an 

approach to create clusters of data according to the congestion status and location. Finally, we 

compare different approaches to estimate avoided GHG emissions. 
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1. Introduction 

1.1. Literatures review  

There is a growing literature on the impacts of wind generation upon the reliability and 

operation of power grids ([1]-see reference’s footnote 1). Environmental concerns have also 

stimulated interest in wind generation as an environmentally-friendly alternative energy source 

[2, 3]. Despite these interests, far too little attention has been paid to the “price effects” of this 

intermittent resource in a competitive electricity market and to the avoided emissions resulting 

from wind generation. By “price effects”, we refer to the price drop per megawatt hour (MWh) 

of generated wind power. By “avoided emissions”, we refer to the emission increase that would 

have prevailed, given the current generation mix, if wind power had not been injected to the 

grid. 

A paper by Sensfuss et al [4] where the effect of renewable energy (RE) generation on German 

electricity spot prices in 2006 were measured, shows that there is no impact of RE production on 

electricity spot prices during the low-load period, while it reaches up to 36 €/MWh in hours of 

peak demand. The final results show a reduction in the average market price of 7.83 €/MWh in 

2006 due to renewable energy production. Jónsson et al [5] reach similar results in studying how 

the spot prices in West Denmark are affected by wind power forecasts. However, the study 

points out that the extent of this impact is difficult assess. Using an example, the authors explain 

that when the forecast wind penetration is below 4% of total output, there is little or no effect 

on spot prices, but with a forecasted wind generation of 11% or more of the total, the spot 

prices gradually decrease. Munksgaard et al [6] also analyse the impact of wind on the spot 

hourly market price with and without the wind power capacity included in the power system. 

Results show that in a “no wind” situation (under 500 MW), prices can increase by up to 600 

DKK/MWh (80 €/MWh) and in an “extreme wind situation”, when wind power penetration 

exceed 1,500 MW, spot prices on hourly basis are reduced to a range of approximately 

250 DKK /MWh (34 €/MWh). These figures reflect price extremes which are very unlikely; 

nevertheless, the paper concludes that the extreme scenarios would lead to a decreased spot 

price of 12-14% in West Denmark and 2-5% in East Denmark. Similar conclusions are reached for 

other countries in Weigt [7], Woo et al [8, 9], and Culter et al [10], where eventual cost saving 

resulting from wind energy are estimated in the German, the North American (i.e. ERCOT) and 

the Australian market respectively.  

As we can see, the reviewed papers cover a wide range of figures for the price effects of wind 

power generation. Price heavily depend on certain key characteristics such as the wind 

penetration level, the power generation mix (grid mix), and the cost of the marginal technology 

displaced by wind. Nevertheless, despite the fact that each paper covers a specific set of 

characteristics, they essentially draw similar conclusions: increased wind power penetration and 

production places a downward pressure on spot prices.  

Wind power does contribute to a reduction in energy prices, but interconnector capacities can 

play a very significant role in bringing the price to zero at times. Bach [11] claims that Swedish 
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congestion policy is the reason for unstable prices in East Denmark. Sweden tries indeed to 

maintain uniform prices over all the country, which means that local variations in demand are 

not mitigated by price changes (or weakly so), but have to be matched by variations in supply. If 

local generation is not able to match these changes, power has to be conveyed to the zone, 

meaning that the grid is easily congested. Eventually, internal bottlenecks are transferred into 

reduced trading capacity with (East) Denmark, which is left on its own to cope with the 

variations in wind generation. A similar effect is also identified in a study by Li et al. [12], in an 

agent-based model. The authors evidence that, during peak hours, a relatively lower price is 

observed within isolated submarkets endowed with exceeding generation capacity. This comes 

as a consequence of the congestion following insufficient transmission capacities that prevent 

power to be transferred to the areas where it is most needed. Clearly, accounting for congestion 

is essential when assessing the price drop per megawatt hour (MWh) of wind power, as the 

additional wind power is dispatched over a smaller or a larger area. Surprisingly, this fact is 

ignored in the studies mentioned in the literature review. Moreover, these studies only assess 

the price effect of wind production and ignore the impact of wind power on GHG emissions. 

Some studies on the impact of wind generation on GHG emissions can be found in the literature. 

A 2013 paper by Kaffine et al [13] looks at avoided emissions in Texas related to wind 

generation. They cover 25,000 hours between 2007 and 2009 and build a model to estimate the 

impact of hourly wind generation on hourly emissions data, independently obtained from 

different sources. Their approach ignores congestion issues and requires the availability of 

hourly emissions data – which is problematic in many cases. 

To the best of the author’s knowledge, this study is the first attempt towards quantifying the 

impacts of large-scale wind power in reducing electricity prices and GHG emissions from the 

power system, while taking into consideration internal congestion effects. The Ontario 

deregulated electricity market is the selected case study to reach the paper’s objective.  

1.1. The Ontario real time electricity market 

Ontario is the most wind powered province in Canada with slightly more than 2,000 MW of 

installed wind generation capacity in 2013 [14]. This position is expected to remain unchanged, 

as there is a 2018 target of 10,700 MW of renewable energy generation capacity. This excludes 

hydropower, and is expected to be met thanks to a 7,500 MW wind generation capacity, as 

stated in the Ontario Government’s Long Term Energy Plan (LTEP) [15]. Moreover, the Ontario 

Government released the results of the Feed-in-Tariff review and made a commitment to meet 

the 2018 wind generation capacity target by signing required contracts by 2015 [16]. 

The Ontario’s Feed-in-Tariff program offers 11.5 cents/kWh to wind producers [17]. This 

appears to be very generous when compared to the average Hourly Ontario Electricity Price 

(HOEP) 1, which ranged between 3.1 and 4.8 cents/kWh from 2006 to 2011, see Table 1. 

1
 The HOEP is a wholesale spot price fluctuating according to bids and demand levels. One can learn more 

about how it is determined by going to the IESO web page 
https://www.ieso.ca/imoweb/siteShared/wholesale_price.asp 
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Moreover, the increased wind penetration comes in a context of increased relative share of 

nuclear generation, significant decrease of coal generation (see Table 2), and reduced demand 

after 2008, as a result of economic recession. Thus, wind power is added to an electricity system 

which tends to be, at least currently, in over-capacity, and for which associated GHG emissions 

are decreasing. In such context, concerns regarding the relevance of wind power have risen in 

recent years. Engineers in particular have expressed their worries about negative prices (Table 

1), see for instance the Ontario Society of Professionnal Engineers’s (OSPE) recent report [18]. 

The Ontario independent electricity system operator (IESO) indeed started in 2010 a stakeholder 

consultation on renewable integration, leading to new dispatch rules for variable generation (i.e. 

wind and solar), among other changes (see [19]). These changes are however considered 

relatively minor by some commentators (see [20]) and will not eliminate the price impact of 

growing wind outputs. 

Table 1. Negative Electricity Price Periods in the Ontario Wholesale Market [18] 

Annual Period 
Sept 15 to Sept 
14 

Hours with 
Negative 
prices 

Days with 
negative 
prices 

Lowest 
HOEP* 
$/MWh 

Average 
HOEP* 
$/MWh 

Wind 
penetration 

(%)** 

Total 
demand 
(TWh) 

2006/07 3 2 -1.66 44.89 0.5 151 
2007/08 32 11 -14.59 48.68 0.8 143 
2008/09 319 62 -52.08 38.35 1.5 135 
2009/10 58 31 -128.15 33.56 1.8 137 
2010/11 138 56 -138.79 31.58 2.4 138 

Totals 550 162 -- 39.48 1.3 786 

*HOEP is the Hourly Ontario Electricity Price (Wholesale price). 

** Average wind penetration as a percentage of the total yearly output (MWh).  

Given the above, knowing the extent to which wind power reduces electricity prices and GHG 

emissions of the Ontario power system appears extremely relevant, while providing useful 

insights for other markets. Section 2 presents the proposed methodology to tackle these issues. 

Table 2. Electricity generation by fuel type and percentages (as a function of the total output (MWh)) 
[21]* 

Annual Period 
Sept 15 to Sept 
14 

Coal 
(%) 

Hydro 
(%) 

Gas 
(%)*** 

Biomass 
(%) 

Nuclear 
(%) 

Wind 
(%) 

2006/07** 17.9 22.0 6.7 0.7 52.2 0.6 

2007/08 16.2 23.9 6.3 0.6 52.2 0.8 

2008/09 8.8 25.2 6.3 0.7 57.5 1.4 

2009/10 9.8 22.3 7.7 0.8 57.6 1.8 

2010/11 3.3 24.1 8.1 0.9 61.2 2.4 

* Hourly energy output and capability of each generating facility are provided by IESO upon request 

**since March 2006. 

***The Lennox generating station can operate using either gas or oil. All its output has been included in 

the gas-fired category. 
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2. Methodology 

2.1. Data collection 

Detailed data obtained for this study come from the IESO. These data include variables such as 

the hourly wind electricity production from each operational wind farm. Table 3 summarises the 

data used and their sources. These data are grouped on a zonal basis, as the province of Ontario 

is divided into ten interconnected zones. For every zone, a dataset is compiled on an hourly 

basis (i.e. 51,140 hours) and include the amount of produced electricity per fuel type, the zonal 

demand and the zonal price. The Ontario zone diagram, shown in Figure 1, identifies the ten 

zones and the generation technologies available in each zone. 

 

Table 3.Datasets sources for the period between March 2006-December 2011 

Data name  Description and comments Resolution Source 
Wind Output Hourly energy output of each 

Wind farm (MWh) 
Site specific  [22] 

Electricity Zonal Price* Hourly Nodal Prices for the 10 
Zones ($/MWh) 

Zonal  [22] 

Hourly Ontario Electricity 
Price (HOEP) 

Wholesale market price ($/MWh) Provincial [22] 

Electricity Demand Hourly Demand for the 10 Zones 
(MWh) 

Zonal [22] 

Generator Output Hourly energy output and 
capability of each generating 
facility (MWh) 

Site specific [21]**  

*For all zones, zonal prices correspond to nodal prices. Exception resides for the northeast and 
the northwest zones, as for each zone, three nodal prices are available. For the sake of 
simplicity, the nodal price within which the wind farm is located is selected. 
**Hourly energy output and capability of each generating facility were provided by the IESO. 

As illustrated in Figure 1, transmission lines link together Ontario zones. Congestion caused by 

limited transmission capacity happens. If the transmission capacity of a branch is limited during 

high wind generation, the magnitude of price changes is likely to be higher. Congestion leads to 

the emergence of distinct pricing areas. Therefore wind generation has a different impact on 

prices and on power production by other sources, whether there is congestion or not. The 

additional wind power is indeed dispatched over a smaller or a larger area. Surprisingly, as 

mentioned earlier in the literatures review, congestion issues are ignored in the studies 

assessing the effect of wind production. 

Fig 1. Ontario with zones superimposed including available power plants by fuel types [23, 24] 

We define uncongested hours as those for which the price in different zones are within a 

$5/MWh range. While being arbitrary to some extent, there is no “typical” price spread due to 

congestion, according to the IESO.2 This $5 threshold allows the identification of large price 

2
IESO customer relations personnel communication 
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differentials due to congestion rather than other technical network or dispatch constraints (e.g. 

transmission losses). 

If the price difference between adjacent zones exceed 5$/MWh, for a given hour, clustering 

techniques are applied to isolate subgroups of adjacent zones having a price difference below 

5$/MWh. To do so, we assessed for every hour (for a total of 51,144 hours), where the price 

difference between adjacent zones exceeded the 5$/MWh threshold. The MATLAB/Simulinks 

software was used for that purpose. In addition to this, a frequency analysis is applied to isolate 

the most frequent price difference locations (i.e., frequent congestion locations). Figure 2 

presents the obtained 12 clusters. The analysis proceeds in five steps or “levels”. Level 0 is the 

complete data set. From this set, we extracted the 19,458 hours where all the 10 zonal prices 

are within a $5 price range (Cluster 1). We interpret this price convergence between all zones as 

a sign of absence of network congestion. The remaining 31,682 hours (All\Cluster 1) were 

further divided in four groups, out of which two clusters could be identified (Clusters 2.1 and 

2.2), based on geographic and price proximity. The two remaining data groups were further 

divided into smaller clusters, as illustrated in Figure 2. The 10 obtained clusters are described in 

Table S1 (see supporting information). 

Fig 2. Profile of the spatio-temporal clusters 

2.2. Price statistical analysis 

Articles reviewed in section 1.1 quantified the impacts of large-scale wind power in reducing 

electricity prices using several methods. These methods can be classified as either “accounting” 

methods [8, 9, 25], or “modeling” ones [3, 12]. Accounting methods use historical generation 

data. The primary advantage of such approach is the fact that it relies upon data collected from 

the actual grid and upon measures attached to real grid operations. Datasets used in this 

approach include various historical plant-level datasets, such as the ones presented in Table 3. 

The most significant limitation of accounting methods is the inability to redispatch the system if 

some changes are introduced, and this is where simulation models (i.e. “modeling” methods) 

are useful. The later allow for system redispatch, investigation of possible power exchanges 

between regions, and more generally, the exploration of scenarios that differ markedly from the 

actual situation. 

Redispatching the power system as a consequence of wind power penetration is very unlikely in 

the short run and anyway not within the scope of this study. Moreover, we aim at measuring 

the actual impact of wind generation upon the (historical) hourly price and GHG emissions 

within each of the IESO zonal markets. We thus naturally adopt the “accounting” approach and 

perform a regression analysis to measure the impact of wind generation. This analysis was 

performed with the SPSS statistical software for Windows, version 19.0. We are aware that, due 

to the complexity of electricity price dynamics, regressions are unable to fully explain the price 

behavior or produce accurate forecasts. However, these regressions are sufficient to test the 

main claim of this work that is the very fact that wind production has an impact on both 

electricity spot prices and GHG emissions, and that this impact depends on congestion. 
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The regression model is presented in equation (1) and results are presented in section 3.2. A 

panel regression model is used, where all metric variables are expressed in the log form.  𝑙𝑜𝑔 𝑌𝑡 = 𝛼 + ∑𝑟 (𝛽𝑟 𝑙𝑜𝑔 𝑥𝑟𝑡)+∑𝑖 (𝛾𝑖 𝑀𝑖𝑡) + ∑𝑗 �𝛿𝑗  𝐷𝑗𝑡� + ∑𝑘  (𝜆𝑘 𝐻𝑘𝑡) + 𝛾 𝑇𝑡 + 𝜀𝑡 (1) 

Yt denote the zonal price in a particular cluster at time t (i.e. hour, t=1,…, 51,144). When 

multiple zones are in a cluster, we use the average of the different zonal prices. When all zones 

are used, we use the HOEP. The price Yt, which is the dependent variable in a linear regression 

model with partial adjustment, is driven by two sets of variables. First, numeric metric variables, 

denoted xrt (r=1,…, 7) provide information on hourly demand and production. These variables 

are defined below in more details. Second, a set of three time-dependent binary indicators 

account for the month of the year (Mit), the day of the week (Djt), and the hour of the day (Hkt), 

with i=1,…, 11 (Januray to November); j=1,…, 6 (Monday to Saturday); k=1,…, 23, (hours of the 

day) respectively. A trend variable (Tt) also captures the long-term trend across the six years 

covered by the data set. Twelve sets of coefficients are estimated, one for each of the 12 

clusters, the whole data set and a subset of the data (all congested hours). These results are 

used to explore the impact of changes in wind generation the price level. 

The seven metric variables xrt are defined as follows: 

- x1t is the hourly wind generation within the IESO system (in MWh), which is largely at the 

mercy of random wind conditions. We hypothesize that rising wind generation reduces price, 

which translates into the hypothesis: β1<0.  

- x2t, x3t is the hourly MWh nuclear and hydropower generation in the IESO system. Nuclear 

generation is baseload. Reducing nuclear output due to maintenance, repair or refuel is 

expected to be associated to a raise of the price. The same reaction is expected with a decrease 

of hydropower generation. This translates into the hypothesis: β2,3<0. 

- x4t, x5t, and x6t are the hourly MWh coal, natural gas3, and biomass generation in the IESO 

system. They are likely to be the marginal technologies. We thus hypothesize that rising 

generation will be associated to a raise of the electricity price, which translates into the 

hypothesis: β4,5,6>0.  

- x7t is the hourly MWh demand in IESO’s zones for a given cluster. Higher loads will be 

associated to a raise of the prices; hence, β7 is hypothesized to be positive. 

2.3. GHG emissions reductions 

Wind generation is a technology with low variable, operating and maintenance costs. When 

wind plants are integrated in power systems and generate electricity, if they are used, 

technologies with higher marginal costs, such as coal, gas and oil-fired plants, are displaced in 

the merit order (supply curve) [26]. To estimate the GHG emissions reductions, price bids from 

3
 The Lennox generating station can operate using either gas or oil. All its output has been included in the 

gas-fired category. 
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generators, defining the supply curve, would be ideal for the analysis. However, price bids are 

not publicly available in Ontario. In the absence of such data, the identification of technologies 

operating at the margin is not straightforward. A variety of methods to estimate “avoided 

emissions” can be used, based on a) average emissions or b) marginal emissions, or c) a 

combination, our “hybrid approach”. A harmonization of these methods is still missing [27]. In 

the absence of a clearly dominant method, we used four different ones to estimate the avoided 

emissions resulting from the Ontario wind energy deployment over the March 2006 - December 

2011 period. The selected methods, based on the use of our hourly electricity generation 

dataset per fuel type, are described in the following subsections. Once again, hourly energy 

output and capability data of each generating facility were provided by the IESO. 

A-Average approach 

A common way of modeling electricity supply considers the regional grid mix, such as the 

Ontario average mix. This approach, which significantly simplifies the complexity of the grid, is 

still commonly used to estimate the avoided emissions from electricity production [28]. 

Environment Canada has estimated the average GHG intensity of electricity generation in 

Ontario to be 170 Kg CO2eq/MWh [29] (see Table 4). By using this GHG intensity, we consider 

that for every MWh from wind, 170 kg CO2eq are avoided. This GHG intensity, which is based on 

reported facility data from Environment Canada’s GHG emissions reporting program, considers 

only operations of power plants (fuel combustion) and does not account for the full life cycle 

GHG emissions associated with electricity generation. Emissions associated to the construction 

and decommissioning of facilities or those related to mining, refining and transportation of fuels 

are indeed ignored. Mallia et al. have recently estimated that the average life cycle GHG 

intensity of electricity generation in Ontario is 201 kg CO2eq/MWh [30]. Table 4 contains GHG 

intensities for electricity generation in 2008 for the Ontario region. In this paper, when using the 

average approach, we assume no change in these figures from 2006 to 2011. 

Table 4. GHG emission rates in the Ontario Province (kg CO2eq/MWh) [29, 30] 

 Operation emissions only All life cycle emissions 

Average  170.0 201.0 
   

Nuclear 0.2 4.8 
Hydropower 0.0 22.0 
Coal 1,006.0 1,069.0 
Natural gas 435.0 497.0 
Wind 0.0 10.7 

 

B-Marginal approach 

Methods based on average emission rates are criticized for failing to identify and account for the 

displaced generation units. Indeed, hourly variations are lost when using annual average figures. 

The difference in annual and shorter time periods may be highly relevant, in particular when 
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there is significant variation in electricity production mix between peak and base load [30]. 

Therefore, the marginal approach is considered superior to the average approach, even if 

marginal data related to electricity supply are often considered too complex to be modeled 

accurately [28]. Such complexity explains why studies often assume only one specific marginal 

technology, even in contexts where several technologies are at the margin at different times of 

the day.  

To isolate the marginal technology at different times, we used the hourly output by technology 

provided by IESO. We use two different marginal approaches. The first one consists in 

computing, on an hourly basis, the relative change in the use of each technology, to identify 

which technology is the most responsive. For each type of technology, the difference in output 

between a given hour (t) and the preceding one (t−1) is divided by the latter output (t−1) 4. The 

technology showing the highest absolute value (of percentage change) is defined as the 

marginal one. Therefore, the marginal technology is identified as a responsive technology 

adjusting its electricity production more than other technologies. As an example, coal power 

plants can be marginal units if their use can quickly change according to fluctuating zonal price. 

In the second marginal approach, we repeat the computation without dividing by the output at 

(t−1). The technology showing the highest output change (in MWh) is defined as the marginal 

one. The first marginal approach tends to identify technologies contributing relatively less to the 

total production, but that are more able to quickly increase their production (for instance 

natural gas or coal). The second marginal approach, by not normalizing, tends to identify the 

technology the more able to adjust its production quickly, regardless of its initial level of use (for 

instance, hydropower). Once marginal units are identified on an hourly basis, the specific GHG 

emission rates (Table 4) are used to quantify the avoided emissions as a consequence of wind 

generation. 

C-Hybrid approach 

As a combination of the marginal and the average approach, this method is based upon the fact 

that more than one technology sees its production level changing as a consequence of wind 

generation. Indeed, from the observed hourly power outputs of the Ontario system, almost all 

power plants change their production on an hourly basis (even low cost technologies such as 

nuclear, hydro or coal). Therefore, this approach suggests that changes as a consequence of 

wind production have an impact on possibly all power plants. For this approach, we estimate 

the individual contribution of each generation type to the variation of the total hourly electricity 

production between an hour (t) and the preceding one (t−1). This is then used as the basis to 
estimate a weighted GHG emission impact of wind.  

4
 We applied this procedure before clustering to avoid loss of information related to the output of the 

preceding hour. 
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3. Results 

3.1. Descriptive statistics: correlation 

Table 5 (A and B) shows that the correlations between zonal prices and both total production 

and total demand (loads) are much higher than the correlation between wind output and prices. 

Correlations found are almost always highly statistically significant. This observed higher 

correlation confirms findings of previous studies that were not considering congestion effects [8, 

31]. Also, there is no clear evidence of the influence of wind generation on the spot price. While 

Table 5-A hints at a usually negative effect of an increase in wind generation on the spot price (-

0.19 with all data, without clustering), it does not paint a clear picture of what the real effect 

may be. Indeed, many other variables can simultaneously have an impact on price; mostly 

demand levels, making the marginal impact of wind hardly observable with correlation data. 

Furthermore, depending upon the considered cluster, the correlation between wind generation 

and prices indeed ranges between -0.13 (cluster 4.5) and 0.07 (cluster 2.1). 

Table 5-A. Summary statistics for the sample period of March 2006-December 2011. “*” and “**” denote 
significance at the level α=5% and α=1% respectively. 

 
 Variable N Min Mean Max 

Standard 
deviation 

Correlation with 

Price 
Total 
Production 

Total 
Demand 

Wind 
Output 

A
ll 

w
/o

 
C

lu
st

er
in

g HOEP 51,144 -138 39 1,891 26 1.00 0.56** 0.58** -0.19** 
Total Production 51,144 10,879 16,822 39,108 2,358  1 0.90** -0.13** 
Total Demand 51,144 10,493 16,496 26,768 2,564   1 -0.11** 
Wind Output 51,144 0 231 1,610 250    1 

C
lu

st
er

 1
 

A
ll 

zo
n

es
 

   
 

      
Zonal Price 19,458 -36 22 1,846 18 1.00 0.30** 0.34** -0.03** 
Total Production 19,458 10,342 15,510 33,324 1,799 

 
1.00 0.88** 0.11** 

Total Demand 19,458 10,097 14,639 22,760 2,137 
  

1.00 0.10** 
Wind Output 19,458 0 330 1,610 299 

   
1.00 

 
            

    

C
lu

st
er

 2
.1

 
N

W
-E

SS
A

 Zonal Price 5,983 -50 37 193 12 1.00 0.39** 0.47** 0.07** 
Total Production 5,983 331 2,149 3,931 722 

 
1.00 0.64** 0.10** 

Total Demand 5,983 1,366 2,276 3,187 333 
  

1.00 0.03* 
Wind Output 5,983 0 48 257 50 

   
1.00 

 
          

     

C
lu

st
er

 2
.2

 
O

TT
A

W
A

-W
 

Zonal Price 25,129 -650 44 1,265 19 1.00 0.34** 0.40** -0.09** 
Total Production 25,129 12 15,123 35,351 1,794 

 
1.00 0.80** -0.05** 

Total Demand 25,129 8,880 14,077 22,169 1,995 
  

1.00 0.01* 
Wind Output 25,129 0 134 1,347 176 

   
1.00 

 
          

     

C
lu

st
er

 3
.1

 
TO

R
O

N
TO

-W
 

Zonal Price 4,079 -149 88 1,923 49 1.00 0.18** 0.23** -0.09** 

Total Production 4,079 7,434 15,020 19,227 1,634 
 

1.00 0.79** -0.16** 

Total Demand 4,079 7,651 13,184 18,982 1,739 
  

1.00 -0.13** 

Wind Output 4,079 0 91 962 108 
   

1.00 

 

   
 

      

C
lu

st
er

 3
.2

 
O

TT
-E

as
t Zonal Price 1,980 -480 75 1,925 82 1.00 0.18** 0.29** -0.02** 

Total Production 1,980 367 1,480 3,418 493 
 

1.00 0.66** -0.09** 

Total Demand 1,980 1,344 2,452 3,523 467 
  

1.00 -0.22** 

Wind Output 1,980 0 15 191 35 
   

1.00 
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Table 5-A (Continued). Summary statistics for the sample period of March 2006-December 2011. “*” and 
“**” denote significance at the level α=5% and α=1% respectively. 

 
 Variable N Min Mean Max 

Standard 
deviation 

Correlation with 

Price 
Total 
Production 

Total 
Demand 

Wind 
Output 

C
lu

st
er

 3
.3

 N
E-

ES
SA

 

   
 

      
Zonal Price 22,090 -650 51 1,916 33 1.00 0.28** 0.39** 0.02** 

Total Production 22,090 0 1,517 3,047 601 
 

1.00 0.54** 0.12** 

Total Demand 22,090 1,347 2,352 3,344 311 
  

1.00 0.01 

Wind Output 22,090 0 40 185 49 
   

1.00 

C
lu

st
er

 3
.4

 

N
W

 

Zonal Price 25,703 -2,000 -12 1,866 287 1.00 0.03** 0.02** -0.02** 

Total Production 25,703 0 706 1,538 169 
 

1.00 0.51** -0.14** 

Total Demand 25,703 0 13 690 81 
  

1.00 -0.10** 

Wind Output 25,703 0 1 94 6 
   

1.00 

    
 

      

C
lu

st
er

 4
.1

 

N
E 

Zonal Price 3,613 -975 94 1,786 142 1.00 0.16** 0.34** -0.06** 

Total Production 3,613 314 1,873 3,075 629 
 

1.00 0.35** 0.18** 

Total Demand 3,613 782 1,290 1,874 178 
  

1.00 -0.13** 

Wind Output 3,613 0 42 185 52 
   

1.00 

 

   
 

      

C
lu

st
er

 4
.2

 

ES
SA

 

Zonal Price 3,613 -461 106 1,920 158 1.00 0.14** 0.37** -- 

Total Production 3,613 0 310 422 120 
 

1.00 0.23** -- 

Total Demand 3,613 539 1,030 1,609 201 
  

1.00 -- 

Wind Output -- -- -- -- -- 
   

-- 

 

   
 

      

C
lu

st
er

 4
.3

. 

O
TT

A
 

Zonal Price 4,577 -660 139 2,000 151 1.00 0.02 0.16** -- 

Total Production 4,577 
 

59 74 19 
 

1.00 0.16** -- 

Total Demand 4,577 419 1,444 2,205 228 
  

1.00 -- 

Wind  Output -- -- -- -- -- 
   

-- 

 

   
 

      

C
lu

st
er

 4
.4

 

Ea
st

 

Zonal Price 4,577 -979 116 1,933 142 1.00 0.17** 0.22** -0.04* 

Total Production 4,577 359 1,529 3,625 521 
 

1.00 0.65** -0.02 

Total Demand 4,577 361 1,195 1,759 179 
  

1.00 -0.13** 

Wind Output 4,577 0 4 191 21 
   

1.00 

    
 

      

C
lu

st
er

 4
.5

 

R
ES

ID
U

EL
 

TO
R

O
N

TO
-W

 

Zonal Price 2,478 -459 139 1786 180 1.00 0.26** 0.34** -0.13** 

Total Production 2,478 7,917 14,497 19,406 2,142 
 

1.00 0.84 -0.24** 

Total Demand 2,478 7,085 12,901 19,424 2,418 
  

1.00 -0.28** 

Wind Output 2,478 0 123 1,060 152 
   

1.00 

 

That correlations between wind generation and prices appear limited is not surprising given that 

wind generation remain anyway relatively small when compared to loads variations. This makes 

of more remarkable the results of the correlation decomposition that we perform (explained 

below), which evidence that accounting for congestion is indeed important when measuring the 

impact of wind generation. 

Given a data set, it is always possible to write the correlation between two variables as a 

combination of (1) the correlation measured on a subset of data, (2) the correlation measured 

on the complementary subset and (3) the “inter-sets correlation” i.e. the product of the 

difference in the average values over the two subsets, for the two variables of interest (see the 

formula in supporting information).  
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We look at the statistical distribution of the variable of interest over non-congested hours 

(Cluster 1) and congested hours (All\Cluster 1). This gives rise to Table 5-B. We compute in turn 

the decomposition of the correlations attached to this dataset partition, which gives rise to table 

5-C. This provides interesting hints to the understanding of the following correlation table, as 

computed for the complete dataset. 

Table 5-B makes it clear that accounting for congestion is essential when looking at electricity 

market. The statistical distribution of variables is completely different during congested hours 

and non-congested hours. In particular, the average price (HOEP) during congested hours is 

about twice its value during non-congested hours (48.52$/MWh as compared to 24.79$/MWh). 

This remarkable gap is observed despite the fact that our definition of congestion is not very 

restrictive, so that a number of hours that are considered as “congested” actually display a very 

low level of congestion. In fact, more 60% of the hours are classified as “congested” and the 

average load during “congested” hours is only at 76% of the maximum load observed with no-

congestion. It is also worth noticing that wind generation during uncongested hours is on 

average twice the average generation then during congested hours (respectively 330 and 170 

MW). This makes clear, if needed, that it is not wind generation that causes congestion. In fact, 

even at its maximum (1,610 MW), wind generation remains smaller than one tenth of the 

average load (16,496 MW). By contrast, the average load is higher by almost 3,000 MW during 

congested hours, as compared to uncongested ones. 

Table 5-B Statistical distribution over non-congested hours (Cluster 1) and congested hours (All\Cluster 1). 
“*” and “**” denote significance at the level α=5% and α=1% respectively. 

 
 Variable N Min Mean Max 

Standard 
deviation 

Correlation with 

Price 
Total 
Production 

Total 
Demand 

Wind 
Output 

C
lu

st
er

 1
    

 
      

HOEP 19,458 -128.4 24.79 299.54 13.53 1 0.43** 0.51** -0.03** 

Total Production 19,458 10342 15510 33324 1799  1 0.88** 0.11** 

Total Demand 19,458 10097 14639 22760 2137   1 0.10** 

Wind Output 19,458 0 330 1610 299    1 

C
lu

st
er

 

A
ll\

C
lu

st
er

 1
 

HOEP 31,686 -138.79 48.52 1891.14 28.60 1 0.48** 0.50** -0.11** 

Total Production 31,686 12 17629 39108 2299  1 0.88** -0.08** 

Total Demand 31,686 10531 17347 26768 2424   1 -0.05** 

Wind Output 31,686 0 172 1464 193    1 

 

We can go further in the analysis of correlation. As a careful reader may have noticed, the 

correlation between wind generation and price as measured on each set of data separately (ρ=-

0.03 and ρ=-0.11) is smaller in absolute value than the correlation measured on the whole set of 

data (ρ=-0.19-see Table 5-A). As illustrated in Figure 3, this is not a typo or an error in the 

computation but a consequence of the differences in the average values over the two sets. We 

actually compute that more than 67% of the correlation as computed over the overall set is 

actually explained by these differences. This makes plain the importance of performing a 

disaggregated analysis.  
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Fig 3. Aggregate and within clusters effects. 

 

That 67% of the correlation between wind generation and price can be seen as an artefact of the 

measure (that follows from not distinguishing uncongested and congested hours) may have 

been considered by some as an extreme case, only exhibited to support our approach. It is not, 

not only from a theoretical standpoint, but also from an empirical one. In fact our data reveal 

that, during uncongested hours, wind generation and load are weakly positively correlated 

(small positive correlation). By contrast, during congested hours, there is on average slightly less 

wind generation when the demand is higher (small negative correlation). It follows that the 

figure obtained by looking at whole dataset is entirely explained by the difference in average 

values over the two subsets. We obtain that inter-cluster differences explain 112% of the 

correlation, meaning that the number obtained is larger and with the opposite sign of the 

(weighted) average correlation, as calculated over each data cluster. 

Table 5-C Decomposition of the correlations 

A
ll\

C
lu

st
er

 1
 

  
 

  
    

HOEP 0.715 0.311 0.316 -0.056 71.46% 55.21% 50.96% 28.64% 

Total Production  0.588 0.504 -0.038  58.84% 53.62% 28.13% 

Total Demand   0.554 -0.023   51.23% 16.51% 

Wind Output    0.367    36.74% 

 

Beside the methodological point that accounting for congestion is essential in performing a 

sound numerical analysis, the above is also an additional illustration that correlation is a very 

crude instrument. Further analysis is needed to characterize wind generation’s price effects, to 

control for the many other variables influencing the hourly price. The price regressions 

presented below provide a first step in this direction, where in fact the initial correlation 

observations are interchanged between uncongested and congested hours: wind generation 

lowers electricity price much more during uncongested hours than during congested one. 

3.2. Price statistical analysis 

Before estimating model (1), we conducted on the entire data set a series of standard tests to 

ensure our results would not be coming out of spurious regressions due to the presence of a 

unit root. The Augmented Dicky-Fuller, Phillips Perron, KPSS and DF-GLS tests unanimously 

reject the presence of a unit-root in the time series in levels (HOEP) and logs (log HOEP)5. In 

5
 More details on the result of these tests are available on request. 

 
 Variable 

Contribution to the correlation 
Contribution in the variance-covariance 

matrix 

Price 
Total 
Prod. 

Total 
Demand 

Wind 
Output 

Price 
Total 
Prod. 

Total 
Demand 

Wind 
Output 

C
lu

st
er

 1
   

 
  

    

HOEP 0.098 0.063 0.082 -0.008 9.83% 11.26% 13.23% 3.86% 

Total Production  0.221 0.213 0.037  22.13% 22.60% -27.22% 

Total Demand   0.264 0.039   24.44% -28.09% 

Wind Output    0.539    53.94% 
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addition, standard errors estimated with the Newey-West automatic lag selection yielded quasi-

identical results to the one obtained without this procedure. For the sake of simplicity, we used 

the ordinary least square (OLS) to obtain all our estimates, for the different clusters. 

Table 6 presents the analysis results from equation (1) for each of the twelve clusters, plus the 

two other sets of data (all data and data for all congested hours). Estimates of coefficients lead 

to the following four observations:  

1. Impact of wind generation. The statistically significant estimates for β1 in the whole data set, 

for uncongested hours (Cluster 1) and for congested hours (All\Cluster 1) indicate that a 100% 

increase in wind generation is associated to a decrease in price of respectively 3.3%, 5.5% and 

0.8%. This corroborates the price effects already founded by previous studies [8, 32], and 

supports our first hypothesis. However, the more important observation to make is the higher 

impact of wind during uncongested hours than during congested hours. The further breakdown 

of congested hours in smaller clusters even shows that the impact becomes non-significant, 

except in one cluster (2.2).  There is strong intuition behind this finding: in Ontario, uncongested 

hours (which are of course base load hours) are mostly supplied by nuclear power plants. As 

they can hardly be adjusted to let the wind output be used instead of theirs, the electricity price 

has to decrease by a larger amount. This induces a higher demand, absorbing the increased 

wind production. During peak hours (congested ones), there are more power plants online, and 

therefore more possibilities to reduce output to let the wind output be a substitute to other 

technologies, instead of stimulating electricity demand by lowering prices. 

Another explanation for the lower impact of wind during congested hours than during 

uncongested hours, which can be surprising given the correlations presented in Table 5, lies in 

the correlation between demand and wind output. As shown in Table 5-B, demand is positively 

correlated to wind output during uncongested hours (0.10) while it is negatively correlated 

during congested hours (-0.05). Both correlations are small but significant. This helps explaining 

why the price-wind correlation is lower during uncongested hours (-0.03) than congested hours 

(-0.11): higher demand during windy hours lead to higher prices (due to the higher demand), 

despite the influence of wind. Conversely, during congested hours, lower demand during wind 

hours decreases the price… which “inflates” the observed higher negative correlation between 

price and wind. The econometric analysis made here corrects the erroneous conclusions one 

could make by simply using the correlation results. 

2. Impact of nuclear and hydro generation. Estimates for β2 indicate that a 10% drop in nuclear 

generation (MWh) is associated to a price increase of 6.6% when all data are used, but of 

10.53% during uncongested hours (Cluster 1). The impact is much lower when there is some 

congestion: only a 3.59% increase. This comes in support of our second hypothesis. The second 

hypothesis is also supported when we refer to the β3 estimate (hydro generation) for the whole 

data set: a 10% drop in hydro generation would increase the price by 1.09%.  However, this 

finding does not hold when we look into uncongested and congested clusters: hydro generation 

actually follows price, as the positive (and significant) estimates for β3 show in most clusters. 
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This corresponds better to the intuitive idea that flexible hydro generation is used when 

demand requires it (and is use to a lower extent when demand declines). 

3. Impact of thermal generation. The statistically significant, and positive, estimates for β4 (coal) 

and β5 (natural gas) come in support to our third hypothesis. However, β6 (biomass) is negative, 

and may indicate that biomass power plants operate more like base load plants than marginal 

ones. Some exceptions are also noticed for β5 (natural gas): during uncongested hours (cluster 1) 

and in some specific congested clusters (2.1, 3.3, 3.4, 4.1), natural gas generation lowers the 

price. This could simply be explained by an energy overflow, moving the supply curve to the left, 

and consequently decrease the price in these clusters [11]. As a matter of fact, when we refer to 

Table 2, one can notice that electricity generation from natural gas increased between 2006 and 

2011 (from 6.7% or 10.12 TWh to 8.1% or 11.12 TWh). This happened while the Ontario demand 

decreased from 151 to 138 TWh. Consequently, high supply frequency can increase in such 

market conditions, especially under some tight grid conditions. In these three clusters, indeed, 

loads are much greater than local supply, meaning that natural gas comes as a relief to supply 

from other Ontario zones.  

4. Impact of load. The statistically significant estimates for β7 support our fourth hypothesis that 

an increase in electricity demand is systematically associated to an increase of the price. 

Finally, we can mention that there is a slightly positive (significant) trend throughout the data 

set: when accounting for all other variables, the hourly prices tend to grow from 2006 to 2011. 

However, the decrease in loads during the same period explains why average yearly prices are 

decreasing (see Table 1). 

3.3. GHG emissions reductions from Ontario wind production 

GHG emissions reductions should also be considered as part of a comprehensive analysis on the 

impacts of wind generation, which is usually presented as a substitute to “dirty” generation and 

sometimes as a source of carbon “credits”6. In fact, when wind plants are integrated in power 

systems, the system supply curve is altered in a way that more thermal generation such as coal, 

gas and oil-fired plants may be displaced. 

Table 7 summarizes our estimates of the decrease in GHG emissions associated with increased 

wind. As a result of the four estimation approaches we use, without clustering, GHG emissions 

reduction amounts to an average of 170 kg of CO2-eq./MWh (with average approach), 615 (first 

marginal approach), 290 (second marginal approach) and 331 (hybrid approach). These results 

suggest the modest efficiency of wind production in reducing GHG emissions: less than 

emissions from a natural gas power plant in most cases. In the first marginal approach, the high 

value is mostly the result of the bias this approach has to identify coal as a marginal unit, as 

discussed in section 2.3. Table S2 (in the supporting information) documents the decrease in 

6
 See for instance the Alberta (Canada) “Quantification Protocol For Wind-Powered Electricity 

Generation”, where wind can be used as offsets in the carbon market.[33] Alberta Environment. Offset 
Protocol Development Guidance. Edmonton: Alberta Environment; 2011. p. 92.  
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GHG emissions as a consequence to wind penetration using a life cycle methodology. It is found 

that, extending the boundaries by including GHG emissions from all life cycle stages (resource 

extraction to end-of-life) increases the net result of avoided GHG emissions by a maximum of 

31%, over the 2006–2011 period. This percentage of increased GHG emissions is representative 

of the electricity sector when we take into account all the life cycle stages [34]. 

As we did for the price impact (Table 6), we compare the avoided GHG emission differences 

when congestion issues are taken into account and when they are not (Tables 7 and 8). As 

mentioned above, there may be congestion in power transmission during period with wind 

power generation. Thus if the transmission capacity cannot cope with the required power 

export, the supply area is separated from the rest of power market and constitutes its own 

pricing area. With an excess supply of power in this area, conventional powers have to reduce 

their production, since it is generally not possible to limit the power production of Wind [35]. 

Hence, the final estimates of avoided GHG emissions should be sensitive to transmission 

capacity and its state. 

In table 7, we observe that the GHG impact of wind greatly varies between clusters. As 

intuitively expected given the greater reliance on nuclear and hydro power during low 

demand/uncongested hours, our estimates show that more GHG is avoided during congested 

hours (All\Cluster 1) compared to uncongested ones (Cluster 1 All zones). The second marginal 

approach shows that indeed 364 versus 233 kg/MWh are avoided during congested hours, while 

the hybrid approach results in a 393 versus 283 kg/MWh comparison. Obviously, the average 

approach cannot account for these differences, while the first marginal approach, because of its 

bias towards identifying coal as a marginal technology, and although less during high 

load/congested hours, leads to opposite figures. 
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Table 6. Regression results obtained by OLS. For brevity, this table does not report the coefficient estimates for the intercept and binary indicators (hour of the day, day and 
month) that indicate statistically significant time-dependence of the hourly prices. Values in ( ) are standard errors of the coefficient estimates, ‘‘*’’ and ‘‘**’’ denote 
significance at level α=1% and 5% respectively. 

Variable coefficient  

 Dependent variable: Market price (i.e. Average zonal prices) 

All w/o 
Clustering 

(1) 

Cluster 1 All\ 
Cluster1 

Cluster 2.1 Cluster 2.2 Cluster 3.1 Cluster 3.2 Cluster 3.3 Cluster 3.4 Cluster 4.1 Cluster 4.2 Cluster 4.3 Cluster 4.4 Cluster 4.5 

All zones NW-ESSA OTT-W TOR-W OTT-EAST NE-ESSA NW NE ESSA OTTAWA EAST RESIDUAL 

Total R2 0.49 0.37 0.46 0.47 0.27 0.39 0.48 0.33 0.62 0.41 0.42 0.15 0.42 0.45 

Root mean squared 
error (RMSE) 

0.04 0.07 0.02 0.01 0.02 0.02 0.09 0.03 0.03 0.12 0.11 0.06 0.12 0.09 

Trend 
0** 
(0) 

0** 
(0) 

0** 
(0) 

0** 
(0) 

0** 
(0) 

0** 
(0) 

0** 
(0) 

0** 
(0) 

-0.016** 
(0.003) 

0 
(0) 

0 
(0) 

0** 
(0) 

0 
(0) 

0** 
(0) 

β1:Hourly wind 

generation (MWh)  

-0.033** 

(0.002) 

-0.055** 

(0.005) 

-0.008** 

(0.002) 

0.006 
(0.003) 

-0.013** 

(0.002) 

-0.002 
(0.004) 

0.04 
(0.025) 

-0.004 
(0.002) 

0.09 
(0.048) 

-0.008 
(0.012) 

-- -- -0.01 
(0.037) 

0.011 
(0.012) 

β2:Hourly nuclear 
generation (MWh):  

-0.66** 
(0.026) 

-1.053** 
(0.06) 

-0.359** 
(0.023) 

-- -0.247** 
(0.025) 

-0.015 
(0.063) 

-- -- -- -- -- -- -- -0.02 
(0.179) 

β3:Hourly hydro-
power gen (MWh)  

-0.109** 
(0.014) 

0.071* 
(0.03) 

0.158** 
(0.014) 

0.058** 
(0.015) 

0.148** 
(0.018) 

0.974** 
(0.055) 

-0.18 
(0.113) 

0.012* 
(0.006) 

1.372* 
(0.576) 

-1.695** 
(0.283) 

-0.038 
(0.023) 

-- 0.051 
(0.228) 

2.3** 
(0.132) 

β4:Hourly coal 
generation (MWh)  

0.074** 
(0.002) 

0.138** 
(0.004) 

0.046** 
(0.002) 

0.048** 
(0.005) 

0.033** 
(0.003) 

0.118** 
(0.008) 

 -0.029** 
(0.01) 

0.202* 
(0.082) 

-- -- -- -- 0.035* 
(0.014) 

β5:Hourly natural 
gas gen (MWh)  

0.075** 
(0.01) 

-0.101** 
(0.023) 

0.183** 
(0.009) 

-0.153** 
(0.022) 

0.02** 
(0.008) 

0.019 
(0.014) 

-0.044 
 (0.1) 

-0.103** 
(0.007) 

-1.189** 
(0.353) 

-0.193** 
(0.058) 

-- 0.011 
(0.039) 

-0.149 
(0.165) 

-0.045 
(0.04) 

β6:Hourly biomass 
generation (MWh) 

-0.048** 
(0.005) 

0.029* 
(0.012) 

-0.075** 
(0.004) 

-0.081** 
(0.011) 

-- -- -- -- -0.489 
(0.291) 

-0.02 
(0.036) 

-- -- -- -- 

β7:Hourly zone load 
(MWh) 

3.267** 
(0.043) 

2.826** 
(0.1) 

2.177** 
(0.04) 

1.519** 
(0.077) 

1.705** 
(0.043) 

1.333** 
(0.098) 

2.756** 
(0.378) 

2.455** 
(0.043) 

-0.817 
(1.52) 

5.579** 
(0.205) 

5.067** 
(0.163) 

2.314** 
(0.124) 

3.767** 
(0.671) 

2.494** 
(0.252) 

 

Number of hours 51,144 19,458 31,686 5,983 25,129 4,079 1,980 22,090 25,703 3,613 3,613 4,577 4,577 2,478 

Average zonal price 
(1) ($/MWh) 

39.49 21.91 48.52 37.21 43.56 87.61 74.68 51.37 -11.55 82.31 106.43 138.56 115.79 139.49 

Average production 
(MWh) 

16,822 15,510 17,629 2,149 15,123 15,020 1,480 1,517 706 1,873 310 59 1,529 14,497 

Average demand 
(MWh) 

16,496 14,639 17347 2,276 14,077 13,184 2,452 2,352 13 1,290 1,030 1,444 1,195 12,901 

Average Wind 
production (MWh) 

231.98 329.77 172 47.87 134 91.39 15.13 40.31 0.66 41.83 -- -- 4.29 122.82 

(1) The HOEP is used for the Ontario w/o Clustering regression.
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Table 7. GHG emissions reductions from Ontario wind energy resources (million tonnes of CO2eq, totals for 2006–2011, unless otherwise specified)  

Approach 
All w/o 

Clustering 

Cluster 

1 All\ 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 
All zones Cluster1 NW-ESSA OTT-W TOR-W OTT-EAST NE-ESSA NW NE ESSA OTTAWA EAST RESIDUAL 

Average  2.02 1.09 0.93 0.05 0.57 0.06 5.09E-03 1.51E-01 2.89E-03 2.57E-02 -- -- 3.34E-03 5.17E-02 

Marginal (1) 7.32 4.05 3.28 0.11 2.19 0.16 4.26E-03 6.76E-02 3.41E-03 1.69E-02 -- -- 2.09E-03 1.51E-01 

Marginal (2) 3.46 1.50 1.98 0.02 1.75 0.19 2.76E-03 2.29E-02 1.36E-03 4.36E-03 -- -- 1.19E-03 1.24E-01 

Hybrid 3.95 1.82 2.14  0.04 1.62 0.17 3.32E-03 4.62E-02 1.97E-03 8.90E-03 -- -- 1.49E-03 1.22E-01 

 

Total wind production 
(TWh) 

11.9 6.42 5.45 0.286 3.38 0.373 0.03 0.89 0.017 0.151 -- -- 0.0196 0.304 

Average approach (1) 
(kgCO2eq/MWh) 

170 170 170 170 170 170 170 170 170 170 -- -- 170 170 

Marginal approach(2) 
(kgCO2eq/MWh) 

615.13 630.84 600.61 384.62 647.93* 428.95 142.00 75.96* 200.59 111.92 -- -- 106.63 496.71 

Marginal approach(3) 
(kgCO2eq/MWh) 

290.76 233.64 364.15 69.93 517.75* 509.38 92.00 25.73* 80.00 28.87 -- -- 60.71 407.89 

Hybrid approach (4) 
(kgCO2eq/MWh) 

331.93 283.49 
393.68 139.86 479.29* 455.76 110.67 51.91* 115.88 58.94 -- -- 76.02 401.32 

(1) A common way of modeling electricity supply considers the regional grid mix, in this case the Ontario average mix. 
(2) The first marginal approach consists in computing the relative change (%) in the use of each technology (output (t)-output (t-1))/ output (t-1)  
(3) The second marginal approach consists in computing the total change (MWh) in the use of each technology (output (t)-output (t-1)) 
(4) All power plants change their production on an hourly basis, therefore, the hybrid approach suggest that changes as a consequence of wind production 
has an impact on all power plants. 
* These values represent the highest and the lowest value within each approach. 
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Table 8 compare aggregated estimates with and without clustering. The difference does not 

exceed 8%7. These results show that from a combined perspective, taking congestion into 

account does not radically change the estimates of avoided emissions – even if these avoided 

emissions greatly depend on the marginal technology used at the time of wind production (as 

shown in the cluster values presented in Table 7). 

Table 8. Avoided GHG emissions estimates and approaches comparison (million tonnes of CO2eq, totals 
for 2006–2011). 

Approach 

System boundary 

Operation emissions only All life cycle emissions 

Without 
Clustering 

With 
Clustering 

Difference* 
Without 
Clustering 

With 
Clustering 

Difference 

Average (1) 2.02 2.02 0%  2.38 2.38 0% 

Marginal (2) 7.32 6.76 8%  7.80 7.22 7% 

Marginal (3) 3.46 3.61 -5% 3.75 3.92 -5% 

Hybrid (4) 3.95 3.84 3% 4.27 4.16 3% 

*(Without Clusturing – With Clusturing) /Without Clusturing 
(1) A common way of modeling electricity supply considers the regional grid mix, in this case the 
Ontario average mix. 
(2) The first marginal approach consists in computing the relative change (%) in the use of each 
technology (output (t)-output (t-1))/ output (t-1)  
(3) The second marginal approach consists in computing the total change (MWh) in the use of 
each technology (output (t)-output (t-1)) 
(4) All power plants change their production on an hourly basis, therefore, the hybrid approach 
suggest that changes as a consequence of wind production has an impact on all power plants. 

  

7
 Observations remain the same when we compare the avoided emissions results of (cluster 1 + All\cluster 

1) and All Without Clustering, no matter the applied approach (see Table 7).  
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Conclusion and Outlook 
This paper explores wind power integration issues by assessing, for the province of Ontario 

(Canada), the impacts of hourly regional wind generation on prices and GHG emissions, over 6 

years of market operations (2006-2011). The main contribution of this research paper is to 

account for internal grid congestion in the analysis. Ontario’s wind energy penetration reached a 

level of 2.4% and is expected to increase despite the limited interconnection between the zones 

within the province. As such, it represents an interesting example of low and constrained wind 

penetration in a wholesale electricity market. Our findings suggest that while electricity demand 

continues to have the greatest influence on prices, wind output is associated to a decrease of 

the electricity price. The impact of wind during congested and uncongested hours is found to be 

very different, both in terms of price and avoided GHG emissions. During uncongested hours, 

the impact of a 100% increase in wind production reduces the price by 5.5%, while during 

congested hours the price decreases by only 0.8%. When not discriminating between the two, 

one would conclude in a 3.3% price decrease. With respect to GHG emissions, we find that 

avoided GHG emissions per MWh of wind increase by about 50% (more than 100 kg 

CO2eq/MWh) during congested hours compared to uncongested ones, in two of our estimation 

approaches. 

Beyond illustrating the importance of congestion, and providing estimates of its impacts in a 

specific context, our contribution is to propose a methodological approach to create clusters 

and to estimate avoided GHG emissions, by using four different approaches to identify the 

marginal technology. While wind penetration grows in electricity systems, these contributions 

are important to fully understand the impacts of wind outputs on electricity prices and grid-

related emissions. Without such understanding, incorrect economic incentives could be given to 

wind producers (e.g. in the amount of carbon credits their production is entitled to) and 

unforeseen price levels could lead to problematic dispatch outcomes and payments.  
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Appendices 
Table A.1. Clusters description 

 

No Cluster Cluster 

Ontario w/o 
Clustering 

1 All 
zones 

2.1 NW-
ESSA 

2.2 
OTT-W 

3.1 
TOR-W 

3.2 
OTT-EAST 

3.3 
NE-ESSA 

3.4 
NW 

4.1 
NE 

4.2 
ESSA 

4.3 
OTTAWA 

4.4 
EAST 

4.5 
RESIDUAL 

Included 

zones 
All (10) 
zones 

All (10) 
zones 

NW-NE-
Essa 

Ottawa-E-
Toronto-
Niagara-

SW-Bruce-
W 

Toronto-
Niagara-

SW-Bruce-
W 

Ottawa-E NE-Essa NW NE ESSA OTTAWA EAST 

Toronto-
Niagara-

SW-Bruce-
W 

Number 

of hours 
51,144 19,458 5,983 25,129 4,079 1,980 22,090 25,703 3,613 3,613 4,577 4,577 2,478 
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Table A.2. GHG emissions reductions from Ontario wind energy resources using life cycle methodology (million tonnes of CO2eq, totals for 2006–2011). 
Avoided GHG emission excludes life cycle GHG emission from wind power of 10.7 KgCO2eq/MWh 

Approach 
Ontario w/o 
Clustering 

Cluster 

1 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 
All zones NW-ESSA OTT-W TOR-W OTT-EAST NE-ESSA NW NE ESSA OTTAWA EAST RESIDUAL 

Average  2.38 1.29 0.06 0.68 0.07 6.02E-03 1.79E-01 3.42E-03 3.04E-02 -- -- 3.95E-03 6.12E-02 

Marginal (1) 7.80 4.30 0.12 2.34 0.18 4.98E-03 8.39E-02 3.79E-03 2.01E-02 -- -- 2.51E-03 1.63E-01 

Marginal (2) 3.75 1.64 0.03 1.87 0.20 3.34E-03 3.51E-02 1.62E-03 6.47E-03 -- -- 1.52E-03 1.33E-01 

Hybrid 4.27 1.98 0.05 1.73 0.18 3.95E-03 6.05E-02 2.28E-03 1.14E-02 -- -- 1.85E-03 1.31E-01 

 

Total wind 

production (TWh) 
11.9 6.42 0.286 3.38 0.373 0.03 0.89 0.017 0.151 -- -- 0.0196 0.304 

Average approach (1) 
(KgCO2eq/MWh) 

201 201 201 201 201 201 201 201 201 -- -- 201 201 

Marginal approach(2) 
(KgCO2eq/MWh) 

655.46 669.78 419.58 692.31* 482.57 166.00 94.27* 222.94 133.11 -- -- 128.06 536.18 

Marginal approach(3) 
(KgCO2eq/MWh) 

315.13 255.45 104.90 553.25* 536.19 111.33 39.44* 95.29 42.85 -- -- 77.55 437.50 

Hybrid approach (4) 
(KgCO2eq/MWh) 

358.82 308.41 174.83 511.83* 482.57 131.67 67.98* 134.12 75.50 -- -- 94.39 430.92 

(1) A common way of modeling electricity supply considers the regional grid mix, in this case the Ontario average mix. 
(2) The first marginal approach consists in computing the relative change (%) in the use of each technology (output (t)-output (t-1))/ output (t-1)  
(3) The second marginal approach consists in computing the total change (MWh) in the use of each technology (output (t)-output (t-1)) 
(4) All power plants change their production on an hourly basis, therefore, the hybrid approach suggest that changes as a consequence of wind 
production has an impact on all power plants. 
* These values represent the highest and the lowest value within each approach.

24 
 



A.3. Correlation Decomposition: 

Let I be a set of data and consider any decomposition into two disjoint sets J and K.  

( I = JUK and J K∩ =∅ ). 

The correlation of the two variables p and w over the set I which writes by definition: 

( )( )

( ) ( )
( ),

2 2

cov ,
,

var ( ) var ( )

t I t I
Ip w t I

I

I I
t I t I

t I t I

p p w w
p w

p w
p p w w

ρ ∈

∈ ∈

− −
= =

− −

∑

∑ ∑
 

where I
p  and I

w  stand for the average values of  p  and w over I respectively and var
I and 

cov
I stand for the variance and the covariance of their arguments, as computed over the set I. 

The above formula can be rewritten as: 

( )( ) ( ) ( )

( ) ( )
,

2 2

1 cov , 1 cov ,

.

1 var ( ) 1 var ( ) 1 var ( ) 1 var ( )

J K J K J K

p w

I

J K J K J K J K

J K
p p w w p w p w

K J

J K J K
p p p p w w w w

K J K J

ρ

   
− − + + + +   

   =
       

− + + + + − + + + +       
       

 

This allows decomposing the correlation between the variables p and w over the set I as deriving 
from the correlation within each subset but also from the differences across sets.  
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Fig 1. Ontario with zones superimposed including available power plants by fuel types [23, 24] 

 

  



 

Fig 1. Profile of the spatio-temporal clusters 

  



 

Fig 3. Aggregate and within clusters effects. 
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