
Munich Personal RePEc Archive

Fat-tailed uncertainty and the

learning-effect

Hwang, In Chang

14 February 2014

Online at https://mpra.ub.uni-muenchen.de/53671/

MPRA Paper No. 53671, posted 15 Feb 2014 10:13 UTC



Fat-tailed Uncertainty and the Learning-effect  

In Chang Hwang 

VU University Amsterdam, Institute for Environmental Studies, Amsterdam, The 

Netherlands 

De Boelelaan 1087, Amsterdam, The Netherlands, 1081 HV, E-mail: i.c.hwang@vu.nl 

Abstract 

One of the recent findings in the economics of climate change is that emissions control plays 

a significant role in the reduction of the tail-effect of fat-tailed uncertainty on welfare. The 

current paper gives another perspective: the learning-effect. The effect of emissions control 

on welfare is decomposed into the direct effect and the learning-effect. Although this has 

been known for thin-tailed uncertainty in the literature, this paper takes a different approach: 

the changes in temperature distributions under fat-tailed uncertainty and learning. 
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1 Introduction 

One of the recent findings in the economics of climate change is that optimal carbon tax does 

not accelerate for many plausible situations as the uncertainty about climate change increases  

(Karp, 2009; Hwang et al., 2013a, b; Millner, 2013; Horowitz and Lange, 2014), as implied 

by Weitzman’s Dismal Theorem (Weitzman, 2009). This is because emissions control, 

together with investment, which was absent in the model of Weitzman (2009), plays a 

significant role in the reduction of the effect of fat-tailed uncertainty on welfare (the tail-

effect).  

Beside its direct impact, emissions control has an implicit impact on welfare in that carbon 

emissions produce information on the true state of the world through increased warming. 

Since learning or the (partial) resolution of uncertainty has value, this should be accounted 

for when the decision on emissions control is made.  

The hypothesis of this paper is that the possibility of learning reduces the marginal benefits 

of emissions control, compared to the case where there is no learning. As a result, learning 

reduces the stringency of climate policy compared to the no-learning case. Although this has 

been known for thin-tailed uncertainty in the literature (e.g., Kolstad, 1996a, b; Ulph and 

Ulph, 1997; Kelly and Kolstad, 1999; Webster, 2002; Ingham et al., 2007), this paper takes a 

different approach: the changes in temperature distributions under fat-tailed uncertainty. This 

approach is also taken by Pindyck (2011, 2012) and Millner (2013), but their models are too 

stylized and furthermore do not account for learning.  

Section 2 presents the model. Sections 3 and 4 investigate the changes in temperature 

distribution and the rate of tail-slimming (Weitzman, 2013), respectively. The main results 

are given in Section 5. Section 6 concludes.  



2 The Model 

The learning-effect is discussed in this paper with a simple dynamic model as in Equation (1). 

The problem of a decision maker is to choose the rate of emissions control in each period so 

as to maximize social welfare defined as the discounted sum of expected utility of 

consumption.  

               (  )           (  )   ∫               (1) 

 

where   is social welfare,   is time period,   is the rate of emissions control,   is the 

utility function,   is the discount factor,   is the expectation operator,   is consumption 

per capita,       is an uncertain parameter such as the equilibrium climate sensitivity,     
is the set of any variable, and    is the probability distribution function (PDF) of  .  

A unit increase in carbon emissions induces higher temperature in the future through 

Equations (2-4). 

     (    )       (   )     (2) 

          (    ) (3) 

     (         )    (4) 

  

where   is the carbon stock,   is the emission-output ratio,   is gross output per capita,   

is the depreciation rate of the carbon stock,    is radiative forcing from the carbon stock,     is radiative forcing from a doubling of carbon dioxide,   is air temperature deviations 

from the initial period, and   is a constant.  



Equation (4) says that a doubling of carbon dioxide induces a temperature increase of  , 

the equilibrium climate sensitivity. Without loss of generality it is assumed that     ,      , and      in this paper.  

Carbon emissions reduce expected social welfare due to the loss of consumption as a 

consequence of adverse climate change (Equation 5). Thus the decision maker tries to control 

the amount of carbon emissions. Emissions control comes at a cost as in Equation (6). 

     (      )⁄     (5) 

           (6) 

 

where   is the abatement cost function,  (>0),   (>0),   (>1) and  (>1) are economic 

parameters. For simplicity   is normalized to be one. 

Equations (2-6) and the conditions for the parameter values are generally consistent with 

the literature (e.g., Gregory and Forster, 2008; Nordhaus, 2008; Weitzman, 2012).  

The hyperbolic absolute risk aversion (HARA) utility function is applied in this model. 

Note that the constant relative risk aversion (CRRA) utility function, usually used in the 

literature, is a special case of HARA. If     (7) becomes CRRA. 

 (  )                (7) 

 

where  ,  (≥0), and  (>0) are parameters. It is assumed that  (    )  ⁄    for utility to be 

increasing and concave in consumption.  



The uncertain parameter is assumed to have a fat-tailed distribution in the sense that 

probability density diminishes slowly than exponentially in the upper tail (Weitzman, 2009; 

Pindyck, 2011). In this paper the distribution of Roe and Baker (2007) is applied, which is 

widely discussed in the literature (e.g., Weitzman, 2009; Millner, 2013). Applying the other 

fat-tailed distributions does not affect the general findings of this paper, as argued in Hwang 

et al. (2013). The notation for time is dropped for convenience, unless otherwise confused.  

      √           { 
    [(   ̅     )  ] 
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where   ̅ and    are the parameters of the climate sensitivity distribution,    is a constant. 

To solve the learning model, the random variable is transformed to derive the PDF of 

temperature increases as follows.  

        ( )      √                { 
    [   ̅             ] 

} 
 

 (9) 

 

where    is the PDF of future temperature increases and  ( )  (      )   . Note that    is 

a fat-tailed distribution in that             (   )⁄    for any    .  

3 Temperature Distribution and Tail-slimming Rate 

The parameters    and   ̅ are subject to change in the learning model. For instance, the 

belief of the decision maker on the climate sensitivity can be updated as information (e.g., 

temperature records) accumulates (Kelly and Kolstad, 1999). In the Bayesian statistics 



literature, with a normal likelihood function, it is well known that the posterior mean tends to 

the (pre-specified) true value and the posterior variance approaches zero asymptotically over 

time (Cyert and DeGroot, 1974). With this in mind and without loss of generality, it is 

assumed that   ̅   ⁄   . The general findings of this paper are not affected by this 

assumption. In addition, following the literature on learning (e.g., Kelly and Kolstad, 1999; 

Leach, 2007) it is assumed that       ⁄   . For instance, Hwang et al. (2014) find that 

           (              ⁄ )⁄ , where     is the variance of temperature shocks and    is a 

parameter. Since      ⁄   , it is clear that       ⁄  (     ⁄ )  (     ⁄ )   . Together 

with the fact that      ⁄    from Equation (2-4), this translates into      ⁄  (     ⁄ )  (      ⁄ )     
The PDFs of temperature increases for three hypothetical scenarios are illustrated in Figure 

1. Distribution 1 refers to the case where radiative forcing is doubled relative to the pre-

industrial level. Distributions 2 and 3 refer to the cases where there is learning (a 50% 

reduction in    ) and there is a 50% reduction in carbon emissions, respectively compared to 

the case for Distribution 1. Since this paper focuses on the tail-effect, only the probability 

density of the upper tail is considered below. This is reasonable in that the upper tail 

dominates the others in a usual cost-benefit analysis under deep uncertainty (Weitzman, 

2009). As shown in the figure, for any   in the upper tail, probability density increases in 

radiative forcing (      ⁄   ). Likewise, for any   in the upper tail, probability density 

increases in uncertainty (      ⁄   ). 



 

Figure 1 PDFs of temperature increases  

 

One of the important things to be considered in the economics of catastrophic climate 

change is the rate of tail-slimming in the bad tail (Weitzman, 2013). If the tail-slimming rate 

of the upper tail is slower than the one for objective function, willingness to pay to avoid 

catastrophic climate change becomes arbitrarily large.  

The tail-sliming rate at temperature    in the upper tail can be defined as in Equation (10). 

Since the fatness of the PDF decreases as temperature increases in the upper tail, the negative 

sign is attached in Equation (10).  

      |           √          { 
    [   ̅            ] 

} 
 {        (   ̅          )     }||
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(10) 

 



As expected, the tail-sliming rate is increasing in radiative forcing (see also Figure 2). This 

means that carbon emissions play a role in reducing the fatness of the upper tail, other things 

being equal. In addition, the tail-sliming rate is increasing in uncertainty as in Equation (11). 

This implies that learning is faster for larger uncertainty. 

    (      |    )            [(   ̅  )   ]     {   [   ̅  ] }|       (11) 

 

 

Figure 2 Tail-sliming rate of each distribution in Figure 1 

 

4 The Learning-effect 

From Equation (1), optimal climate policy should satisfy the first order condition as follows. 

For simplicity arguments of each function are dropped. 

               ∫  (          )         (12) 

 



The left hand side (LHS) of Equation (12) is the marginal abatement costs, whereas the 

right hand side (RHS) is the expected marginal benefits of emissions control (or the expected 

marginal avoided damage costs). 

Without loss of generality we consider a three-period problem below. For the last period it 

is assumed that      and     (  ). The problem is recursively solved by backward 

induction (Bellman and Dreyfus, 1962). If     is assumed to be a solution for the second 

period, given   , the maximized social welfare     is calculated as in Equation (13).
1
  

     (   )   ∫  (   )      (       ̅      )       (13) 

 

where        (   |  ),        (   |  ),          (   |  ),   ̅    ̅ (   |  ),          (   |  ). 

The first order condition for the first period reads: 

          (  ) (  )   ∫ (                       )      (14) 

 

where        (      ̅    ),        (  ),   ̅    ̅(  ),        (  ).   

Substituting Equation (13) into Equation (14) and rearranging lead to Equation (15).  

                                                           
1
 Hwang et al. (2013a) investigates the conditions for the convergence of RHS in Equation (12) under the no-

learning case.  



          (  ) (  )   
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(15) 

 

Equation (15) says that the marginal benefits of emissions control are the discounted sum 

of the expected marginal social welfare. The last term of RHS can be decomposed applying a 

chain rule: 

  ∫ ∫ {  (   )              (   )                (   )              } (  )        (16) 

 

The last term in the bracket of RHS can be further decomposed into Equation (17). Note 

that it has been assumed that    ̅    ⁄   . 

                                (17) 

 

The first term of RHS in Equation (17) reflects the effect of emissions control on the PDF 

of temperature increases through the changes in radiative forcing, whereas the second term is 

added because the parameters of the distribution change as learning takes place. Thus the 

second term is named the ‘learning-effect’ hereafter.
2
  

                                                           
2
 Note that the PDF of temperature increases for the second period     changes only by radiative forcing. 

After observing information in the second period the decision maker updates her PDF for the upcoming period. 



The conditions for RHS in Equation (15) to converge do not change from the no-learning 

case of Hwang et al. (2013), since the first term in RHS dominates the other terms regarding 

the existence of solutions.  

It is clear that (     ⁄ )  (      ⁄ )    and (     ⁄ )  (      ⁄ )    in the upper tail 

from Figure 1. These relations imply that the learning-effect offsets to some extents the effect 

of deep uncertainty on welfare. The marginal benefits of emissions control falls as the 

decision maker learns, and thus the optimal level of emissions control or carbon tax decreases 

when there is a possibility of learning, compared to the no-learning case. 

The offsetting ratio is calculated as in Equation (18). The ratio grows in three conditions: 1) 

the quality of information that carbon emissions produce (     ⁄   ) increases, 2) carbon 

emissions are larger (    ), and 3) the level of learning is larger (    ⁄ ). 

|(     ⁄ )  (      ⁄ )(     ⁄ ) |               (   ̅           )         (   ̅           )                →                (18) 

 

Finally let us consider the case for active learning. Active learning refers to the case where 

the decision maker explicitly affects the rate of learning (see Hwang et al., 2013c). If the 

decision maker invests on climate science to raise the speed of learning (R > 0, where R is the 

amount of investment), and if research is effective in reducing uncertainty (     ⁄  < 0), then 

the offset ratio becomes far larger (see Equation 18). Consequently, there is an additional 

reduction of the marginal benefits of emissions control, hence the less stringent climate 

policy.  



5 Conclusion 

The effect of learning under fat-tailed uncertainty has been investigated in this paper using a 

simple dynamic model. The effect of emissions control on welfare is decomposed into the 

direct effect and the learning-effect. Main findings of this paper are that the possibility of 

learning reduces the marginal benefits of emissions control, compared to the case where there 

is no learning. As a result, learning reduces the stringency of climate policy. The fatter is the 

tail of the distribution and the faster is learning the larger is the learning-effect. Hwang et al. 

(2013c, 2014) investigate this issue with numerical models. 
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