Jarraya, Bilel (2013): Asset allocation and portfolio optimization problems with metaheuristics: a literature survey. Published in: Business Excellence and Management , Vol. 3, No. 4 (2013): pp. 38-56.
Preview |
PDF
MPRA_paper_53698.pdf Download (317kB) | Preview |
Abstract
The main objective of Markowitz work is seeking optimal allocation of wealth on a defined number of assets while minimizing risk and maximizing returns of expected portfolio. At the beginning, proposed models in this issue are resolved basing on quadratic programming. Unfortunately, the real state of financial markets makes these problems too complex. Metaheuristics are stochastic methods which aim to solve a large panel of NPhard problems without intervention of users. These methods are inspired from analogies with other fields such as physics, genetics, or ethologic. Already various Metaheuristics approaches have been proposed to solve asset allocation and portfolio optimization problems. In a first time, we survey some approaches on the topic, by categorizing them, describing results and involved techniques. Second part of this paper aims providing a good guide to the application of Metaheuristics to portfolio optimization and asset allocation problems.
Item Type: | MPRA Paper |
---|---|
Original Title: | Asset allocation and portfolio optimization problems with metaheuristics: a literature survey |
English Title: | Asset allocation and portfolio optimization problems with metaheuristics: a literature survey |
Language: | English |
Keywords: | Portfolio, Asset allocation, Metaheuristics, Mono-objective problems, Multi-objective problems. |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 53698 |
Depositing User: | Dr Bilel JARRAYA |
Date Deposited: | 16 Feb 2014 15:55 |
Last Modified: | 28 Sep 2019 22:14 |
References: | Aranha, C., Iba, H., 2007. “Modelling cost into a genetic algorithm-based portfolio optimization system by seeding and objective sharing” In Evolutionary Computation. CEC 2007. IEEE Congress on (2007), IEEE, 196–203. Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B., 2010. “Differential evolution (deoptim) for non-convex portfolio optimization” MPRA Paper 22135, University Library of Munich, Germany. Bolshakova, I., Girlich, E., Kovalev, M., 2009. “Portfolio Optimization Problems: A Survey”. Preprint: Faculty of Mathematics, Otto-von-Guericke University Magdeburg. Branke, J., Scheckenbach, B., Stein, M., Deb, K., Schmeck, H., “Portfolio optimization with an envelope-based multi-objective evolutionary algorithm”. European Journal of Operational Research 199, 3, 684–693. Cerny, V., 1985. “Thermodynamical approach to the travelling salesman problem” Journal of Optimization Theory and Applications, 45, 1, 41-51. Chan, M.C., Wong, C.C., Cheung, B.K.S., Tang, G.Y.N., 2002. “Genetic algorithms in multi-stage portfolio optimization system” In Proceedings of the Eighth International Conference of the Society for Computational Economics, Computing in Economics and Finance. Chang, T., Meade, N., Beasley, J., and Sharaiha, Y., 2000. “Heuristics for cardinality constrained portfolio optimization” Computers and Operations Research 27, 13, 1271–1302. Chang, T., Yang, S., Chang, K., 2009. “Portfolio optimization problems in different risk measures using genetic algorithm” Expert Systems with Applications 36, 7, 10529–10537. Chen, W., Zhang, R-T., Cai, Y-M., Xu, F-S., 2006 “Particle swarm optimization for constrained portfolio selection problems” In International Conference on Machine Learning and Cybernetics. 2425-2429. Coello Coello, C.A., Salazar Lechuga, M., 2002. “MOPSO : a proposal for multiple objective particle swarm optimization” Proceedings of the 2002 IEEE Congress on Evolutionary Computation, 2, 1051-1056, IEEE Press. Coello Coello, C.A., Toscano Pulido, G., Salazar Lechuga, M., 2004. “Handling multiple objectives with particle swarm optimization” IEEE Transactions on Evolutionary Computation, 8, 3, 256-279. Coello Coello, C.A., Veldhuizen, D.A., Lamont, G.B., 2002. “Evolutionary Algorithms for Solving Multi-Objective Problems” Kluwer Academic Publishers. Colorni, A., Dorigo, M., Maniezzo. V., 1992. “Distributed Optimization by Ant Colonies” Proceedings of the 1rst European Conference on Artificial Life, 134-142, Elsevier Publishing. Corne, D.W., 2001. “PESA II: Region-based Selection in Evolutionary Muliobjective Optimization, In Proceedings of the Genetic and Evolutionary Computation” Conference GECCO'2001, 283-290, San Francisco, California. Crama, Y., Schyns, M., 2003. “Simulated annealing for complex portfolio selection problems” European Journal of Operational Research, 150, 3. 546-571. Deb, K., 2000. “A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization : NSGA II, Parallel problem Solving form Nature – PPSN VI” Springer Lecture Notes in Computer Science, 849-858. Doerner et al. 2006. “Pareto Ant Colony Optimization: a metaheuristic approach to multiobjective project portofolio selection” Annals of Operations Research, 131, 79-99. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., 2001. “Ant colony optimization in multiobjective portfolio selection”. In 4th Metaheuristics International Conference, 243-248. Dorigo, M., Blum. C., 2005. “Ant colony optimization theory: A survey” Theoretical Computer Science, 344, 243-278. Dorigo, M., Maniezzo, V., Colorni, A., 1996. “Ant System : optimization by a colony of cooperating agents” IEEE Transactions on Man. Cyber., Part B, 26, 1, 29-41. Eddelbuttel, D., 1996. “A hybrid genetic algorithm for passive management” In Working Paper presented at the Second conference on computing in economics and Finance, Society of computational economics. Eiben, A.E., Smith, J.E., 2003. “Introduction to Evolutionary Computing” Natural Computing Series, Springer. Engrand. P., 1997. “A multi-objective optimization approach based on simulated annealing and its application to nuclear fuel management” Proceedings of the 5th International Conference on Nuclear Engineering, 416-423, American Society Of Mechanical Engineers. Fieldsend, J., Everson, R., Singh, S., 2003. “Using unconstrained elite archives for multiobjective optimization” Evolutionary Computation, IEEE Transactions 7, 3, 305–323. Figueroa-Lopez, J.E., 2005. “A selected survey of portfolio optimization problems” Fonseca, C.M., Flemming, P.J., 1995. “An overview of evolutionary algorithms in multiobjective optimization” Evolutionary Computation, 3, 1, 205-209. Fraser, A.S., 1957. “Simulation of genetic systems by automatic digital computers” Australian Journal of Biological Sciences, 10, 484-491. Friesz, T.L., 1993. “The multiobjective equilibrium network design problem revisited: a simulated annealing approach” European Journal of Operational Research, 65, 44-57. Gagné, C., Gravel, M., Price. W.L., 2004. “Optimisation multiobjectif à l'aide d'un algorithme de colonies de fourmis” Inf. Syst. and Operational Research, 42, 1, 23-42. Geyer, A., Hanke, M., Weissensteiner, A., 2009. “A stochastic programming approach for multi-period portfolio optimization”. Computational Management Science, 6, 2, 187-208. Glover, F., 1986. “Future paths for integer programming and links to artificial intelligence” Computers and Operations Research, 13, 533-549. Glover, F., Laguna, M., 1997. “Tabu Search” Kluwer Academic Publishers. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M., 1989. “Self-Organized Shortcuts in the Argentine Ant” Naturwissenchaften, 76, 579-581. Hochreiter, R., 2008. “Evolutionary stochastic portfolio optimization” Natural Computing in Computational Finance, 67–87. Holland, J., 1975. “Adaptation in Natural and Artificial Systems” University of Michigan Press, Ann Harbor. Horn. J., Nafpliotis, N., 1993. “Multiobjective Optimization using the Niched Pareto Genetic Algorithm” Illigal TR. n° 93005. Kennedy, J., Eberhart, R.C., 1995. “Particle Swarm Optimization” Proceedings of the IEEE International Conference On Neural Networks, 1942-1948, IEEE Press. Kirkpatrick, S., Gelatt, S., Vecchi, M., 1983. “Optimization by simulated annealing”, Science, 220, 4598, 671-680. Knowles, J.D., Corne, D.W., 1999. “The Pareto Archived Evolution Strategy : A New Baseline Algorithm for Multiobjective Optimisation” Congress on Evolutionary Computation, 98-105, Washington. Knowles, J.D., Corne, D.W., Oates, M.J., 2000. “The Pareto-Envelope based Selection Algorithm for Multiobjective Optimization” In Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature (PPSN VI), 839-848, Berlin. Krink, T., Paterlini, S., 2011. “Multiobjective optimization using differential evolution for real-world portfolio optimization”. Computational Management Science, 8, 1, 157-179. Li, X., 2003. “A non-dominated sorting particle swarm optimizer for multiobjective optimization” Proceedings of the 2003 Genetic and Evolutionary Conference, LNCS 2723, 37-48, Springer. Lin, D., Li, X., Li, M., 2005. “A genetic algorithm for solving portfolio optimization problems with transaction costs and minimum transaction lots” In Lipo Wang, Ke Chen, and Yew Ong, editors, Advances in Natural Computation, volume 3612 of Lecture Notes in Computer Science, 441-441. Springer Berlin / Heidelberg. Lin, D., Wang, S., Yan, H., 2001. “A multiobjective genetic algorithm for portfolio selection problem” In Proceedings of ICOTA 2001, Hong Kong. Markowitz, H., 1952. “Portfolio selection” The journal of finance 7, 1, 77–91. Mishra, S.,K., Panda, G., Meher, S., 2009. “Multi-objective particle swarm optimization approach to portfolio optimization” In World Congress on Nature and Biologically Inspired Computing, 1612-1615. Nishimura, K., 1990. “On mathematical models of portfolio selection problem” Management Review, 26, 1, 369-391. Pareto, V., 1986 “Cours d'économie politique” vol. 1 et 2, F. Rouge, Lausanne. Pincus, M., 1970. “A Monte Carlo method for the approximate solution of certain types of constrained optimization problems” Operational Research, 18, 1225-1228. Raquel, C.R., Naval, J.P.C., 2005. “An effective use of crowding distance in multiobjective particle swarm optimization” Proceedings of the 2005 Genetic and Evolutionary Computation Conference, 257-264, ACM Press. Ray, T., Liew, K.M., 2002. “A swarm metaphor for multiobjective design optimization” Engineering Optimization, 34, 2, 141-153. Rechenberg, I., 1965. “Cybernetic Solution Path of an Experimental Problem” Royal Aircarft Establishment Library Translation. Rechenberg, I., 1973. “Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution” Stuttgart. Reynolds, C.W., 1987. “Flocks, herds and schools: a distributed behavioral model” Computer Graphics, 21, 4, 25-34. Ruiz-Torrubiano, R., Suarez, A., 2007. “Use of heuristic rules in evolutionary methods for the selection of optimal investment portfolios” In Evolutionary Computation. CEC 2007. IEEE Congress on (2007), IEEE, 212–219. Schoenauer, M., Michèle, S., 1987. “Contrôle d'un Algorithme Génétique” Revue d'Intelligence Artificielle, 10, 2-3, 389-428. Serafini, P., 1992. “Simulated annealing for multiple objective optimization problems” Proceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei, 1, 87-96. Siarry, P., Dréo, J., Pétrowski, A., Taillard, E., 2006. “Métaheuristiques pour l'optimisation difficile” Eyrolles. Soleimani, H., Golmakani, H., Salimi, M., 2009. “Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm” Expert Systems with Applications 36, 3, 5058–5063. Srinivasan, D., Seow, T.H., 2003. “Particle swarm inspired evolutionary algorithm for multiobjective optimization problem” Proceedings of the 2003 Congress on Evolutionary Computation, 3, 2292-2297, IEEE Press. Srivinas, N., Deb, K., 1993. “Multiobjective Optimization using Nondominated Sorting in Genetic Algorithms” Technical Report, Departement of Mechanical Engineering, Institute of Technology,India, Streichert, F., Ulmer, H., Zell, A., 2004. “Comparing discrete and continuous genotypes on the constrained portfolio selection problem” In Genetic and Evolutionary Computation–GECCO, Springer, 1239–1250. Subbu, R., Bonissone, P.P., Eklund, N.H.W., Bollapragada, S., Chalermkraivuth, K.C., 2005. “Multiobjective financial portfolio design: a hybrid evolutionary approach” In Congress on Evolutionary Computation, 1722–1729. Thong, V., 2007. “Constrained Markowitz Portfolio Selection Using Ant Colony Optimization” Erasmus Universiteit. Tsao, C., Liu, C., 2006. “Incorporating value-at-risk in portfolio selection: An evolutionary approach” Tech. rep., Working Paper. Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D., 1999. “MOSA method: a tool for solving multiobjective combinatorial optimization problems” Journal of Multicriteria Decision Analysis, 20, 221-236. Vassiliadis, V., Dounias, G., 2008. “Nature inspired intelligence for the constrained portfolio optimization problem” In John Darzentas, George Vouros, Spyros Vosinakis, and Argyris Arnellos, editors, Artificial Intelligence: Theories, Models and Applications, 5138 of Lecture Notes in Computer Science, pages 431-436. Springer Berlin / Heidelberg. Wilson, E.O., 1975. “Sociobiology: The new synthesis” Belknap Press. Yu, T-Y., Tsai, C., Huang, H.-T., 2010. “Applying simulation optimization to the asset allocation of a property–casualty insurer” European Journal of Operational Research 207, 499-507. Zitzler, E., Deb K., Thiele, L., 1999. “Comparison of Multiobjective Evolutionary Algorithms: Empirical Results” Tech. Report n° 70, Swiss Federal Institute of Technology (ETH), Zurich. Zitzler, E., Thiele, L., 1998. “An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach” TIKReport n° 43. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/53698 |