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ABSTRACT 
The aim of the study is to describe the general upper limit of the age of the universe with the help of different cosmological 

models of the universe. Here homogeneous and isotropic assumptions of the observed universe are not strictly followed to 

calculate the present age of the universe. Einstein equations play an important role in cosmology to determine the present 

age of the universe. The study stresses on the works of Friedmann, Robertson-Walker (FRW) universe and Raychaudhuri 

equations. The paper tries to find the general upper limit of the age of the universe with easier mathematical calculations. 

 

Keywords: Einstein equation, geodesic, Hubble constant, space-time manifold, universe.  

 

1.  INTRODUCTION 
Friedmann, Robertson-Walker (FRW) universe 

is based on the assumption that the universe is exactly 

homogeneous and isotropic. In FRW models there is an 

all encompassing big bang singularity in the past as the 

origin from which the universe emerges in a very hot 

phase and continues its expansion as it cools. The three 

parameters 0H , 0q   and 0  fully characterize these 

models, which are called the Hubble constant, the 

deceleration parameter and the density parameter, 

respectively. The Hubble constant is believed to be in the 

range of 11Mpckm 12040  . There is a considerable 

uncertainty in determining the value of deceleration 

parameter and as a result, the question of the present 

density of the universe; or whether it is open or closed 

model, remains uncertain. The determination of present 

age and density of the universe are two very important 

issues in cosmology, as they determine the future 

evolution and the nature of the universe.  

 

The paper is organized as follows: 

 

In section–2 we briefly discuss the portion of 

general relativity related to this paper following [1, 6, 7]. 

FRW models are written in section–3 for the convenience 

to discuss the paper clearly following Islam [3]. 

Raychaudhuri equations are introduced in section–4 [6, 

9]. The upper limit of the age of the universe, the main 

portion of the paper, is described in section–5 and the 

final section is of the concluding remarks. 

 

2. STUDY RELATED DISCUSSION OF 

GENERAL RELATIVITY 
General relativity models the physical universe 

as a four-dimensional 


C  Hausdorff differentiable 

space-time manifold M with a Lorentzian metric g of 

signature   ,,,  which is topologically connected, 

paracompact, space-time orientable and without 

boundary. It was realized that though locally the laws of 

physics are those of special relativity and space-time is 

very nearly flat rise to a non-flat, curved continuum which 

would also admit a suitable differential structure. The 

universe is not simply a random collection of irregular 

distributed matter, but it is a single entity, all parts of 

which are connected. When considering the large scale 

structure of the universe, the basic constituents are 

galaxies, which are congregation of more than 10
10

 stars 

bound together by their mutual gravitational attraction. 

The universe is the totality of galaxies which are causally 

connected [1]. 

 

2.1  Some Related Definitions 

Now we will discuss some definitions related to 

this paper. The definitions will help the readers to 

understand the concept of the paper easily. 

 

Topological Space  
Let M be a non-empty set. A class T of subsets of 

M is a topology on M if T satisfies the following three 

axioms: 

 

1. M and   belong to T, 

2. the union of any number of open sets in T 

belongs to T, and 

3. the intersection of any two sets in T belongs to T. 

 

The members of T are open sets and the space 

(M, T) is called topological space. 

 

Connected Sets  

A subset A of a topological space M is 

disconnected if   open subsets G and H of M such that  

GA  and HA  are disjoint non-empty sets whose 

union is A. In this case HG   is called a disconnection 

of A. A set is connected if it is not disconnected.  

 

Hausdoroff Space 
A topological space M is a Hausdorff space if for 

pair of distinct points  Mqp ,  there are disjoint open 

sets U  and U  in M such that Up  and Uq .    

 

Paracomact Space 

An atlas   ,U  is called locally finite if there 

is an open set containing every Mp  which intersects 
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only a finite number of the sets U . A manifold M is 

called a paracompact if for every atlas there is locally 

finite atlas    ,O  with each O  contained in some 

U . Let 


V  be a time like vector, then paracompactness 

of manifold M implies that there is a smooth positive 

definite Riemann metric K  (discussed later) defined on 

M.        

 

Space-time Manifold 
The above properties of general relativity are 

suitable when we consider for local physics. As soon as 

we investigate global features then we face various 

pathological difficulties such as, the violation of time 

orientation, possible non-Hausdorff or non-

papacompactness, disconnected components of space-

time etc. Such pathologies are to be ruled out by means of 

reasonable topological assumptions only. However, we 

like to ensure that the space-time is causally well-

behaved. We will consider the space-time Manifold (M, g) 

which has no boundary. By the word ‘boundary’ we mean 
the ‘edge’ of the universe which is not detected by any 
astronomical observations. It is common to have 

manifolds without boundary; for example, for two-spheres 

S
2
 in 

3  no point in 
2

S  
is a boundary point in the 

induced topology on the same implied by the natural 

topology on 
3 . All the neighborhoods of any 

2
Sp  

will be contained within 
2

S  in this induced topology. We 

shall assume M to be connected i.e., one cannot have 

YXM  , where X and Y are two open sets such that 

YX . This is because disconnected components 

of the universe cannot interact by means of any signal and 

the observations are confined to the connected component 

wherein the observer is situated. It is not known if M is 

simply connected or multiply connected. M is assumed to 

be Hausdorff, which ensures the uniqueness of limits of 

convergent sequences and incorporates our intuitive 

notion of distinct space-time events [6]. 

 

Space-time Orientation 

Let B be the set of all ordered basis  ie  for 

vector space 
pT , the tangent space at point p. If   ie  

and  
je  are in B, then we have 

i

i

jj eae   . If we 

denote the matrix  
ija  then   0det a . An n-

dimensional manifold M is called orientable if M admits 

an atlas  iiU ,  such that whenever  ji UU
 

then the Jacobian, 0det 











j

i

x

x
J , where  ix  and 

 jx 
 
are local coordinates in iU  and  jU  respectively. 

The M o bious strip is a non-orientable manifold. A vector 

defined at a point M o bious strip with a positive 

orientation comes back with a reversed orientation in 

negative direction when it traverses along the strip to 

come back to the same point [4, 6]. 

 

Hypersurface 

The Minkowski space-time is defined by; 

 
22222

dzdydxdtds  .   (1) 

 

Here the surface t = 0 is a three-dimensional surface with 

the time direction always normal to it. Any other surface t 

= constant is also a spacelike surface in this sense. Let S 

be an  1n -dimensional manifold. If there exists a 


C  

map MS :
 
which is locally one-one i.e., if there is 

a neighborhood N for every Sp  such that   

restricted to N is one-one, and 
1  is a 


C as defined on 

 N , then   S  is called an embedded sub-manifold 

of M. A hyper surface S of any n-dimensional manifold M 

is defined as an  1n -dimensional embedded sub-

manifold of M. Let 
pV  be the  1n -dimensional 

subspace of 
pT  of the vectors tangent to S at any Sp  

from which follows that there exists a unique vector 

p

a
Tn   and is orthogonal to all the vectors in 

pV . 
a

n  is 

called the normal to S at p.  If the magnitude of  
a

n  is 

either positive or negative at all points of S without 

changing the sign, then 
a

n  could be normalized so that 

1ba

ab nng
 
where abg  is an indefinite metric in the 

sense that the magnitude of non-zero vector could be 

either positive, negative or zero  and is defined by;  

 


 dxdxgds 2
.    (2) 

 

If 1ba

ab nng  then the normal vector is time like 

everywhere and S is called a spacelike hyper surface. If 

the normal is spacelike everywhere on S with a positive 

magnitude, S is called a time like hyper surface. Finally, S 

is null hyper surface if the normal 
a

n  is null at S [4, 6]. 

 

2.2  Einstein Field Equations 
Einstein’s field equations are very important in 

general relativity, cosmology and particle physics.  

 

We can write a relation of general relativity as; 

 



 ARAA  ;;;;

,   (3) 

 

where the tensor; 

    



















  ;;R  (4) 
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is a tensor of rank four and called Riemann curvature 

tensor. Taking inner product of both sides of (4) with 

g  one gets covariant curvature tensor 

 




























 













xx

g

xx

g

xx

g

xx

g
R

2222

2

1
+ 

 









 g .    (5) 

 

Contraction of curvature tensor (5) gives Ricci tensor; 

 




 RgR  .    (6) 

 

Further contraction of (6) gives Ricci tensor; 

 




RgR ˆ .     (7) 

 

The space-time  gM ,  is said to have a flat connection 

iff; 

 

0
R .     (8) 

 

This is necessary and sufficient condition for a 

vector at a point p to remain unaltered after parallel 

transported along an arbitrary closed curve through p. 

This is because all such curves can be shrunk to zero, in 

which case the space-time is simply connected. 

 

Let us assume the matter content of the universe 

as a perfect fluid. The energy momentum tensor 


T  is 

defined as; 

 
  uuT  0     (9) 

 

where 0  is the proper density of matter, and if there is 

no pressure, and 
dt

dx
Xu


 

 

is a tangent vector. A 

perfect fluid is characterized by pressure  xpp  , 

then the energy momentum tensor can be written as; 

 

    pguupT   ,             (10) 

 

where   is the scalar density of matter. 

 

The principle of local conservation of energy and 

momentum states that; 

 

0; 
T .               (11) 

 

In the Einstein field equations Einstein stated 

that the universe is static. Einstein introduced a 

cosmological constant  0  for static universe 

solutions as; 

 




T
c

G
gRgR

4

8

2

1  
  .          (12) 

 

Einstein’s field equations (12) for 0  can be written 

as; 

 




T
c

G
RgR

4

8

2

1  
 .               (13) 

 

where 
1110673.6 G  is the gravitational constant and 

810c m/s is the velocity of light but in relativistic unit 

G = c = 1. Hence in relativistic units (13) becomes; 

 

  TRgR  8
2

1
  .               (14) 

 

It is clear that divergence of both sides of (13) and (14) is 

zero. For empty space 0T  then 
 gR   , then; 

 

0R  for 0 ,                (15) 

 

which is Einstein’s law of gravitation for empty space. 
 

The Schwarzschild exterior solution of Einstein’s 
field equations describes the gravitational fields outside a 

spherically symmetric star where there is no matter 

present and space-time is empty. The space-time distance 

ds for gravitating mass m in   ,,,rt  coordinates 

between two infinitesimally separated events is given by 

the metric; 

 

   

 22222

1

22  sin
2

1 
2

1  ddrdr
r

m
dt

r

m
ds 






 






 



      (16) 

 

The above space-time has an apparent singularity 

at mr 2  as seen by the divergence of metric 

components of equation (16). It was thought initially that 

the above represents a singularity in the space-time itself 

and that physics goes seriously wrong at mr 2 . After 

some efforts it is realized that this is not a genuine space-

time singularity but merely a coordinate defect, and what 

was really needed was an extension of the Schwarzschild 

manifold. Such an extension of the space-time was 

obtained by Kruskal and Szekeres [5, 10] and this may be 

regarded as an important insight involving a global 

approach. However at r = 0 there is a genuine curvature 

singularity where the Kretschman scalar 

 
 RR  i.e., space-time curvature 

components tend to infinity [6]. 
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3.  FRIEDMANN, ROBERTSON-WALKER 

(FRW) MODELS 
Soon after the Einstein’s field equations were 

discovered, Friedmann showed that the universe must 

have originated a finite time ago from an epoch of infinite 

density and curvatures where all the known physical laws 

break down which we call ‘big bang’. So we cannot 
predict what was happened in the period of big bang and 

before big bang. Therefore, we can say that it is a 

singularity in space-time topology [3]. 

 

In   ,,,rt  coordinates the Robertson-Walker 

line element is given by; 

 

   










 2222

2

2
222 sin

1
 ddr

kr

dr
tSdtds   

         
(17)  

 

where  tS  is the scale factor and k is a constant which 

denotes the spatial curvature of the three-space and could 

be normalized to the values +1, 0, –1. When k = 0 the 

three-space is flat and the model is called Einstein de-

Sitter static model, when k = +1 and k = –1 the three-

space are of positive and negative constant curvature; 

these incorporate the closed and open Friedmann models 

respectively (Figure 1). 

 

 

     S(t)                      k = –1 

 

 

                                                     k = 0 

 

 

                                                     

                         

                               k = 1 

                                                   

                                                   

                                          

 

                                                                                   t 

                  0tt 
                           1tt   

 

Fig 1:  The behavior of the curve S(t) for the three values 

k = –1, 0, +1; the time 0tt 
 
is the present time and 

1tt 
 
is the time when S(t) reaches zero again for k = +1 . 

 

4.  RAYCHAUDHURI EQUATIONS 
Raychaudhuri equations play important roles to 

describe the gravitational focusing and space-time 

singularities. Amal Kumar Raychaudhuri established it in 

1955 to describe gravitational focusing properties in 

cosmology. Raychaudhuri [9] developed a set of 

equations which contribute to find the gravitational 

focusing in the space-time. Raychaudhuri equations [9] 

can be written as; 

 

222 22
1  

 
n

VVR
dt

d
.                   

(18) 

 

(n = 2 for null geodesic, and n = 3 for time like 

geodesics), where  


V  denotes the time like tangent 

vector in the manifold to the congruence. Raychaudhuri 

equations (18) which describe the rate of change of the 

volume expansion as one moves along the time like 

geodesic curves in the congruence [6].   

 

Here 0  is expansion, 0  is shear and 

  is rotation/vorticity tensors which are defined as 

follows: 

 

 




 hhV ;

 
  

  h
3

1


 

 

 




 ;Vhh . 

 

The spatial part h  of the metric tensor is defined as; 

 

 VVgh  .           (19) 

 

5.  UPPER LIMIT OF THE AGE OF THE 

UNIVERSE 
 

5.1  Matters of the Universe 

The development in modern astrophysics states 

that dark matter surrounds the bright stars and galaxies, 

and constitutes the dominant material content of our 

universe. The dark matter seems to be present on all 

distance scales from the local neighborhood of our sun 

and the Milky Way, to clusters and supper clusters of 

galaxies and also up to the expansion scale of the universe 

(about 14 billion light years). In local scale the expansion 

of dark matter can be had in terms of brown dwarfs but on 

larger scales no satisfactory explanation exists in terms of 

ordinary matter. At present time, the evidence of the dark 

matter seems to be (i) low mass, faint stars (ii) massive 

black holes and (iii) massive neutrinos, axions or particles 

predicted by super symmetry. Of these axions are the 

most popular candidate as it seems to fit best the 

astrophysical requirements. Axions could have been 

produced in the early universe, and if the axion has a 

small, non-zero rest mass, and then they would be 

gravitationally dominant today. The existence of axions 

was originally invoked when Pecei and Quinn [8] 

explained the property of C–P (charge and parity) 

conservation of strong interactions. 
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5.2  Mathematical Approach 

In FRW models the universe is homogeneous 

and isotropic but there is no fundamental physical 

justification that isotropy and homogeneity are strictly 

obeyed in all regions of space and at all epochs of time. 

Here we consider the universe is inhomogeneous and 

anisotropic by means of a general globally hyperbolic 

space-time. The standard cosmological space-times such 

as FRW models, Bianchy or steady state cosmologies, are 

all globally hyperbolic. Let S be a spacelike Cauchy 

surface. The initial data specified on such a hyper surface 

can be evolved into future or past to predict the future and 

past state of the universe by means of hyperbolic 

differential equation. We consider one parameter family 

 tS  of spacelike Cauchy surfaces which make it possible 

to refer to the state of the universe at any epoch of a point 

conjugate to a spacelike hyper surface tS  along a time 

like geodesic  .  

 

In this paper we would like to investigate within 

the globally hyperbolic framework the extension into the 

past of time like geodesic trajectories by considering the 

gravitational focusing effect of the matter in a space-time. 

Let the present epoch be characterized by a spacelike 

global Cauchy surface 0S , at 0t  and the matter 

distribution is given by;  

 

0
2

1







  

 VVTgT              (20) 

 

where 


V  is unit time like vector and T  is stress-

energy tensor. The term 


 VVT  is the energy density 

measured by a time like observer with the unit tangent 

four velocity of the observer, 


V . Relation (20) is called 

strong energy condition, which states that there are no 

negative energy fields in the space-time. By Einstein 

equations (13), equation (20) implies; 

 

0
 VVR .                (21) 

 

In our study we do not need the exact 

homogeneity or isotropy of mass-energy distribution on 

0S , we assume for the simplicity of consideration that 

there exists a minimum for energy distribution on 0S . By 

the observed expansion of the universe, this should 

exhibit a non-decreasing behavior in the past, which 

means that there exist some 0B  such that; 

 

0 BVVR


 .            (22) 

 

at present and all past epochs. 

 

For 0  (18) becomes;  

    

          

       (23) 

 
 

A time like geodesic  t  will be orthogonal to 

0S  provided the expansion   along  t  satisfies 

i

i   at 0S , where 
ij  is the second fundamental 

form of the spacelike hyper surface. Let 
dt

dz

z
.

1
  with  

3
xz   then (23) becomes [3]; 

 

  0
2

2

 xtH
ds

xd
           (24) 

 

where    22
3

1 
  VVRtH . 

 

Now we have to find a point p conjugate to 0S  

along  t , that is to find a solution x(t)  to equation (24) 

which vanishes at p (Figure 2).  So that initially for some 

constant  ; 

 

   ,0 x and  

 

x
dt

dx
 

3

1
 ,   


 

 3

1

0tdt

dx
            (25) 

 

which vanishes at p.  

 

0S  

                                                      q         t = 0                       
 

 

 

 

                                
 t  

 

                                                     

 

                                                    p 

 

 

 

Fig 2: Point p is conjugate to 0S  along  . t  

 

To solve equation (24) we use Sturn comparison 

theorem which compares the distribution zeros of the 

solutions u(t) and v(t) of the equations [2] ; 

 

.2
3

1 22  
  VVR

dt

d
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  012

2

 utG
dt

ud
 ,    

            (26) 

  022

2

 vtG
dt

vd
  

 

where 21 GG   in an interval (a, b). The theorem then 

shows that if u(t) has m zeros in bta   then v(t) has 

at least m zeros in the same interval and the k
th

 zero of v(t) 

is must be earlier than the k
th 

zero of u(t). 

 

Now let, 

  

   22 2
3

1
minmin 

  VVRtHA    

 

and consider the equation; 

 

02

2

2

 xA
dt

xd
.              (27) 

 

If we apply the Sturm theorem to equations (24) 

and (27) we observe that if the solution to equation (27) 

satisfying the initial conditions (25) has a zero in the 

interval 10 tt  , then the solution of equation (24) 

defined by the same initial conditions must have a zero in 

the same interval, which must occur before the zero of the 

solution of equation (27). Now the general solution of 

(27) can be written as; 

 

 AtCCx  21 sin .                (28) 

 

Let us choose the initial condition as; 

 

 
   2

1
22

1
0

A

x







,  

 

   2
1

22
0 A

dt

dx

t 


 








.              (29) 

 

Since the universe is expanding everywhere so 

0
  on  0S  . The universe may contract or it may 

expand at some places and may contract in some other 

places, but we shall not consider such possibilities here, 

instead we consider only expanding behavior. Using 

initial conditions (29), solution (28) can be written as; 

 

 At
A

x  sin
1

              (30) 

 

with  

   












 

2
1

22

1sin

A

A




 . 

 

We have 
2

0
   and a zero for x must 

occur within the interval; 

 

2
0


 At   

A
t

2
0


 ,          (31) 

 

i.e., if  t  is any time like curve geodesic orthogonal to 

0S , then there must be a point p on  t , conjugate to 

0S , within the above interval where 

  0min2  tHA . 

 

No time like curve from 0S  can be extended into 

the past beyond the proper time length 
A2


. Let q be an 

event on 0S
 
and   be a past directed, endless time like 

curve from  0q . Let   can be extended to arbitrary 

values of proper time in the past, then choose 









A
p

2
 
  to be an event on this trajectory. Then 

there exists a time like   from p orthogonal to 0S  along 

which the proper time lengths of all non-spacelike curves 

from p to 0S
 
are maximized and further,    does not 

contain any conjugate point to 0S
 
between p and 0S . 

Again, we have shown that any time like geodesic  t  

must contain a point conjugate to 0S
 
within the proper 

time length 
A2


. But this is impossible and we can say 

that time like curve from can be extended into the past 

beyond the proper time length 
A2



 

i.e., 
A

t
2

max


 . 

 

Now the above results can be applied to obtain 

general upper bounds to the age of a globally hyperbolic 

universe in the following manner.  

 

 By using (10) and (13) we can write, 

 







  TVVTGVVR

2

1
8 




  
 

 

   GPGVPGVVR    
 448

24   
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 PGVVR 34  
  .           (32) 

 

4.3  Limit of the Age of the Universe 
We assume that energy density of the present 

universe is mainly contributed by the non-relativistic free 

gas of neutrinos for which  P  then (32) becomes; 

 


 GVVR  4

 
 

  GVVRA  
3

4
2

3

1
min 22 

   

 

where   is the present density of the universe. Hence the 

maximum possible age of the universe maxt , is given by; 

 

2
1

2
1

max
16

3

4

3

22 


















GGA
t

  





        

(33) 

 

with the basis of general globally hyperbolic space-time 

(Figure 3). 

 

 

  S                                        q       t = 0, present epoch  

                                                  

     0 AVVR


                                                                                                     

                                                       

                                                                                                                                               

                                     I
–
(q) I

+
(p) 

                                                                               

                                            
 
  

                                             p 

                                        I
–
(p) 

                                                                                 maxt
 

 
                    Singularity at r = 0 

 

Fig 3: No time like curve   from the surface S extends 

the maximum limit maxt  in the past and must encounter a 

space-time singularity before this epoch. 

 

 

 

In radiation dominated models we can write  


3

1
P , then (32) becomes; 

 

             (34) 

   

Then (33) becomes; 

 

2
1

max
 32

3










G
t


 .           (35) 

 

Both (33) and (35) give upper limits to the age of the 

universe irrespective of whether or not the distribution of 

whether on 0S  is isotropic and homogeneous which does 

not assume. 

 

The average mass density as indicated by the 

visible galaxies is about 10
–30

 gm cm
–3

. The X-ray 

observations strongly favor the existence of a hot ionized 

intergalactic gas within the cluster of galaxies whereas 

weakly interacting massive neutrinos could be another 

source. If the microwave background radiation (MBR) as  

having some kind of global origin, then MBR  provides a 

firm lower limit of the min  sought for and general upper 

limit to the age of the universe as given by (35) is; 

 

12
2

1

max 102.3
 32

3











G
t


  years,           (36) 

 

 
3104.4 MBR  gm cm

–3
. 

 

The relationships (34) and (36) provide upper 

limits to the age even when allowing for departures from 

homogeneity and isotropy. If we take the contribution by 

matter into account, we have to choose an entire range of 

densities as suggested by the above mentioned 

possibilities.                                                                                               

 

The average matter density arising from all 

possible sources is believed to be between 
3110

 to 
2810

gm cm
–3

.  

 

For 
3110  gm cm

–3
 in (36) we find;  

 

10
2

1

max 1043.9
 32

3
 










G
t


  years,          (37) 

 

and for 
2810  gm cm

–3
 in (36) we find;  

 

10
2

1

max 1094.0
 32

3
 










G
t


  years.        (38)

 
 

We observe that the general upper bound on the 

age of the universe varies from about 
101094.0   years 

for the highest possible present density, to about 
101043.9   years for the lowest possible value of the 

density.  

 

.8 GVVR  
 
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The following Table 1 shows the possible 

maximum age of the universe as a function of mass-

energy density [4]. 

 

Table 1:  Maximum possible age of the universe as a 

function of mass-energy density 

 

Matter density 

(10
–31  

gm cm
-3

) 
maxt , 10

10
 years 

1 9.43 

4 4.72 

8 3.34 

12 2.72 

16 2.36 

20 2.11 

30 1.72 

40 1.49 

60 1.22 

80 1.05 

100 0.94 

 

The total time elapsed from the big bang 

singularity in FRW model at t = 0 to the present epoch is 

introduced by a spacelike hyper surface 0S  which gives 

the age of the universe [3,11]; 

 

 0

1

0 qfHtage

                (39) 

 

where 0H  and 0q  are the Hubble constant and 

deceleration parameters respectively. Here  0qf  is a 

monotonic decreasing function of 0q  is given as follows:
 

 

      







 

1
1

cosh2121
0

12
3

00

1

00
q

qqqqf
,   

                                                                 
,

2

1
0 0  q

 

 

 
3

2
0 qf , ,

2

1
0 q

 
  (40) 

 

                                                                      ,
 

.
2

1
0  q

 

  

 

Here   10 qf  at 00 q  and   00 qf  at 

0q .  

 

The observational data are extremely uncertain 

regarding the value of 0q  and 0H , so 
aget  is that of 0H  

lies between 11Mpckm 12040  . This corresponds to 

the upper bounds on age is given by; 

 
















11

0

9

11

0

9

max
Mpckms120for year    101.8

Mpckms40for year   104.24

H

H
t  .   (41) 

 

Comparing (41) with Table 1 we see that 

universe need not be exactly Friedmann type, and, 0H  

and 0q  are not required which are anyway uncertain at 

the moment. 

 

6.  CONCLUSIONS 
In this paper we have tried to describe the 

general upper limit of the age of the universe. We have 

described related topics of general relativity thinking for 

the common readers. The universe is homogeneous and 

isotropic around us about 14 billion light years. In our 

discussion we have not strictly followed the homogeneity 

and isotropy of the universe to determine the age of the 

universe.  We have applied various types of models to 

find the present age of the universe. In every case we have 

found the figure is around 10
10

 years. We have avoided 

difficult mathematical calculations and have displayed 

diagrams where necessary.   
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