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Abstract

This paper investigates the rates of technological progress, total output growth, and per

capita output growth when population growth is negative by using a semi-endogenous

R&D growth model. The analysis shows that within finite time, the employment share

of the final goods sector reaches unity, the employment share of the R&D sector reaches

zero, and accordingly, the rate of technological progress leads to zero. In this case, the

growth rate of per capita output asymptotically approaches a positive value.
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1 Introduction

This paper investigates the rates of technological progress, total output growth, and per

capita output growth when population growth is negative by using a semi-endogenous R&D

growth model.

Japan first experienced a fall in population in 2005 since the war, and then also experi-

enced negative population growth in 2009 and 2011. According to the data from the Min-

istry of Internal Affairs and Communications, the rates of decrease in population in Japan

are −0.1% in 2005, −0.4% in 2009, and −2.0% in 2010. Moreover, in Italy and Germany

too, concern about population decline has been increasing (World Bank, 2013). Therefore,

population decline is an urgent problem in developed economies.

Given that population growth can be negative in reality, we need to consider this case

as well. However, considerations of negative population growth in the field of economic
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growth theory have just started (Ferrara, 2011). Among them, Christiaans (2011) is a very

interesting study.1 He shows the importance of negative population growth by using a sim-

ple growth model. Consider a neo-classical growth model with a production function that

exhibits increasing, but relatively small, returns to scale. When the population growth rate is

negative, contrary to expectations, per capita output growth is positive. To obtain increasing

returns to scale, he uses externality arising from capital accumulation. However, he does not

explicitly consider endogenous technological progress.

Based on the above observation, we use Jones’ (1995) R&D growth model in which

technological progress is endogenously determined to investigate how growth rates of key

variables are determined when population growth is negative. He points out that scale effects

specific to endogenous growth models à la Romer (1990), that is, the larger the level of pop-

ulation becomes, the faster per capita output grows, are not realistic. Then, he removes scale

effects by modifying the specification of an R&D function, and obtains that the faster the

growth rate of population becomes, the faster per capita output grows.2 In this model, labor

allocation between the final goods producing sector and the R&D sector are endogenously

determined, which determines the rates of technological progress and economic growth.3

We apply Jones’ (1995) model to a case in which population growth is negative. Our

analysis shows that when population growth is negative, the long-run rate of technological

progress is zero, that of total output growth is negative, and that of per capita output growth

is positive.

The remainder of the paper is organized as follows. Section 2 presents the framework

of our model and derives the system of differential equations. Sections 3 and 4 investigate

the dynamics of the model when population growth is positive and negative, respectively.

Section 5 concludes the paper.

1Sasaki (2014) builds a small-open-economy, semi-endogenous-growth model with negative population

growth and investigates the relationship between trade patterns and per capita consumption growth.
2In Jones’ (1995) model, scale effects in terms of growth are removed whereas scale effects in terms of

level, that is, the larger the level of population becomes, the higher the level of per capita income becomes,

are not removed. For a systematic exposition of scale effects and semi-endogenous growth, see Jones (1999),

Jones (2005), Aghion and Howitt (2005), and Dinopoulos and Sener (2007).
3Some studies criticize the empirical validity of Jones’ (1995) semi-endogenous growth model. For ex-

ample, Abdih and Joutz (2006) and Madsen (2008) conduct empirical analysis and conclude that Romer’s

(1990) endogenous growth model is more realistic than Jones’ (1995) semi-endogenous growth model. Strulik

et al. (2013) empirically show that there is a negative correlation between population growth and total factor

productivity growth. Moreover, Sasaki (2011) states that the relationship between population growth and per

capita real income growth differs for developed and developing countries.
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2 The model

We present a slightly simplified Jones’ (1995) model for ease of exposition. However, the

essence is the same, and hence, we briefly explain the model. A closed economy with no

government consists of three sectors: the final goods producing, capital goods producing,

and R&D sectors. The production function of the final goods sector is given by

Y = L1−α
Y

∫ A

0

xαi di, 0 < α < 1, (1)

where Y denotes the output of final goods; LY , the employment of the final goods sector; xi,

the input of capital goods; A, the number of capital goods; and α, a positive parameter. Final

goods are used as numéraire.

The market for final goods is perfectly competitive. Profits of final goods producing

firms are given by

ΠY = L1−α
Y

∫ A

0

xαi di − wY LY −

∫ A

0

pixi di, (2)

where wY denotes the final goods sector’s wage rate; and pi, the rental price of capital good

that the i-th capital good firm produces. From the profit maximization condition and equa-

tion (1), we obtain

wY = (1 − α)
Y

LY

, (3)

pi = αL1−α
Y x

−(1−α)

i
. (4)

The market for capital goods is monopolistically competitive. The i-th capital good is

produced only by the i-th capital good firm. The i-th capital good firm buys a blueprint from

the R&D sector, and produces finished capital goods by borrowing unfinished capital goods

at an interest rate r. Unfinished capital goods can be converted into finished capital goods at

zero cost. Accordingly, profits of capital goods producing firms are given by

Πi = pi(xi)xi − rxi, (5)

where pi(x)i is the inverse demand function for the i-th capital good and given by equation

(4). Considering symmetric equilibrium, from the profit maximization condition, we obtain

pi = p =
r

α
, (6)
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xi = x =

(
αL1−α

Y

p

) 1
1−α

. (7)

Substituting equations (6) and (7) into equation (5), we obtain

Πi = Π = α(1 − α)
Y

A
. (8)

Total capital stock K is the sum of capital goods.

K =

∫ A

0

x di = Ax. (9)

Substituting equation (9) into equation (1), we obtain the aggregate production function as

follows:

Y = Kα(ALY)1−α. (10)

Thus, with equations (4), (6), (9), and (10), the interest rate is given by

r = α2 Y

K
. (11)

The market for blueprints is perfectly competitive. In equilibrium, the price of blueprints

PA is equal to the discounted present value of profits that new capital goods produce. Ac-

cordingly, the following non-arbitrage condition holds.

Π

r
= PA. (12)

Here, for simplicity, we consider a situation in which there is neither capital gain nor capital

loss, that is ṖA = 0 (ẋ = dx/dt, hereafter).4

Let LA be the employment of R&D sector. Then, the full employment condition leads to

LY + LA = L, (13)

where L denotes total population. We assume that the growth rate of total population n is

constant and can be positive (n > 0) or negative (n < 0).

4If we assume that only a market for newly invented blueprints exists and that old blueprints are not traded,

neither capital gain nor capital loss accrues (Adachi, 2000, ch. 9).
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The production function of the R&D sector is given by

Ȧ = δLA, where δ = Aγ, 0 < γ < 1, (14)

where δ denotes externality specific to knowledge production. An individual firm takes δ as

given to maximize profits. The aggregate production function of the R&D sector is given by

Ȧ = LAAγ, (15)

where γ is the degree of externality.

Profits of the R&D sector are given by

ΠA = PAδLA − wALA. (16)

From the profit maximization and free entry conditions, we obtain

wA = PAδ. (17)

Using equations (14) and (17), we obtain

wA = PAAγ. (18)

Equalizing the wage rate of the final goods sector with that of the R&D sector from

equations (3) and (18), that is, wY = wA, we obtain

α
Y

LY

= PAAγ. (19)

From equations (8), (11), and (12), we can eliminate the interest rate r:

K

PAA
=
α

1 − α
. (20)

We now turn to consumers’ behavior. According to Zhang (2007), consumers solve the

following utility maximization problem.

max
C,S

U = C1−sS s, 0 < s < 1, (21)

s.t. C + S = Y, (22)
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where C denotes consumption of final goods; and S , savings. From this, we obtain

C = (1 − s)Y, (23)

S = sY. (24)

Therefore, the assumption of a constant saving rate adopted by Solow (1956) has some

micro-foundations. The original version of Jones’ (1995) model uses dynamic optimization

for consumer behavior. However, for simplicity, we assume the constant saving rate.

From the final goods market clearing condition, total saving S is equal to investment I.

K̇ = I = sY, 0 < s < 1, (25)

where we assume that the rate of depreciation is zero for simplicity.

Eliminating PA from equations (19) and (20), and substituting equation (10) into the

resultant expression, we obtain

σ =

(

α2

1 − α

) 1
α

A
2−γ−α
α K−

1−α
α L−1 = σ(A

+
,K
−
, L
−

), (26)

where σ = LY/L denotes the employment share of the final goods sector. Accordingly, the

employment share of the R&D sector is given by 1 − σ = LA/L. Equation (26) states that if

A, K, and L are given, the value of σ is determined.

Summarizing the above equations, we obtain the following two differential equations.

K̇

K
= sK−(1−α)(AσL)1−α, (27)

Ȧ

A
= (1 − σ)LA−(1−γ). (28)

3 Analysis when population growth is positive

When n > 0, there exists a balanced growth path (BGP, hereafter) along which A and K grow

at constant rates and σ stays constant. In the following analysis, gx denotes ẋ/x. Calculating

ġK/gK and ġA/gA from equations (27) and (28), and letting the resultant expressions be zero,

we obtain the BGP growth rates of A and K as follows:

g∗A = φn > 0, φ ≡
1

1 − γ
> 1, (29)

g∗K = (1 + φ)n > 0, (30)
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where an asterisk “∗” denotes the BGP value of a variable. Accordingly, A and K con-

tinue to increase at constant rates. In this case, from equation (26), we can know that σ

stays constant. Based on equations (29) and (30), we introduce the following scale-adjusted

variables.

a ≡
A

Lφ
, (31)

k ≡
K

L1+φ
. (32)

In addition, from equation (26), σ is rewritten as follows:

σ =

(

α2

1 − α

) 1
α

a
2−γ−α
α k−

1−α
α = σ(a

+
, k
−
). (33)

Accordingly, when a and k are given, σ is determined. The growth rate of σ is given by

σ̇

σ
=

2 − γ − α

α

ȧ

a
−

1 − α

α

k̇

k
. (34)

Summarizing the above discussions, we obtain the following system of differential equa-

tions.

k̇ = k
[

sk−(1−α)a1−ασ(a, k)1−α − (1 + φ)n
]

, (35)

ȧ = a
{

[1 − σ(a, k)]a−(1−γ) − φn
}

. (36)

When n > 0, we can show that there exists the steady state values such that k∗ > 0 and

a∗ > 0. From k̇ = ȧ = 0, we obtain

k∗ =
[s(1 − α)]

2−γ−α
(1−α)(1−γ)

[α2(1 + φ)n]
α

1−α

{

[sφ(1 − α) + α2(1 + φ)]n
} 2−γ

1−γ

> 0, (37)

a∗ =

{

s(1 − α)
[

s(1 − α)φ + α2(1 + φ)
]

n

} 1
1−γ

> 0. (38)

We now turn to the stability analysis. The elements of the Jacobian matrix J that corre-

sponds to equations (35) and (36) are given by

J11 =
∂k̇

∂k
= −

(1 − α)(1 + φ)n

α
< 0, (39)

J12 =
∂k̇

∂a
=

(1 − α)(2 − γ)(1 + φ)n

α

k∗

a∗
> 0, (40)
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J21 =
∂ȧ

∂k
=
α(1 + φ)n

s

a∗

k∗
> 0, (41)

J22 =
∂ȧ

∂a
= −

(1 − γ)φn

1 − σ∗
−
α(2 − γ)(1 + φ)n

s
< 0. (42)

All elements are evaluated by the steady state values. In this simplified Jones’ (1995) model,

both k and a are state-variables. Accordingly, the necessary and sufficient conditions for the

local stability of the steady state are that the trace of J is negative and the determinant of J

is positive. From equations (39) and (42), we can easily find that tr J = J11 + J22 < 0. The

determinant of J is given by

det J = J11J22 − J12J21 =
(1 − α)(1 − γ)φ(1 + φ)n2

α(1 − σ∗)
> 0. (43)

Accordingly, the sign of det J is positive. Therefore, the local stability condition is satisfied:

k and a converge to their respective steady state values from arbitrary initial values k0 and

a0.5

With equations (10), (31), and (32), the production function for final goods is rewritten

as

Y = σ1−αa1−σkαL1+φ. (44)

Hence, the growth rate of per capita output y = Y/L is given by

gy = (1 − α)
σ̇

σ
+ (1 − α)

ȧ

a
+ α

k̇

k
+ φn. (45)

At the steady state, k̇ = ȧ = σ̇ = 0. Accordingly, the BGP growth of per capita output leads

to

g∗y = φn > 0. (46)

Therefore, the BGP growth rate of per capita output is proportional to population growth.

5If we consider dynamic optimization of consumers, the Euler equation for consumption appears. In addi-

tion, if we consider capital gain and capital loss, the differential equation for PA also appears. Hence, Jones’s

model consists of four differential equations. The dynamic stability of Jones’ model in this case is fully ana-

lyzed by Arnold (2006).
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4 Analysis when population growth is negative

When n < 0, the right-hand sides of equations (35) and (36) are always positive. Hence, we

find that there never exists a situation in which k̇ = ȧ = 0. Since σ(a, k) is restricted to the

range of σ ∈ [0, 1], the growth rate of a is always positive even if σ takes any value. Thus,

a continues to increase through time, and consequently, the growth rate of a asymptotically

approaches −φn > 0 because a−(1−γ) in equation (36) approaches zero with γ < 1.

At this stage, the dynamics of σ(a, k) are uncertain: σ may increase, decrease, or con-

verge to a constant value. First, if σ continues to decrease and reaches σ = 0, then the

growth rate of k becomes −(1 + φ)n > 0. Next, we consider a case in which σ continues to

increase and reaches σ = 1 and a case in which σ converges to a constant value. In both

cases, we can prove that the term k−(1−α)a1−α of equation (35) converges to zero in the long

run. Define z = k−(1−α)a1−α. Differentiating both sides with respect to time, we obtain

ż = (1 − α)[(1 − σ)a−(1−γ) − sσ1−αz + n]z. (47)

Note that σ in equation (47) is unity or a constant. For t → ∞, we have a−(1−γ) → 0 because

ga is always positive. Accordingly, we rewrite equation (47) as follows:

ż = −(1 − α)(sσ1−αz − n)z. (48)

Since n < 0, we have sσ1−αz − n > 0, and hence, the steady state value is z∗ = 0. Moreover,

since dż/dz|z∗ = (1 − α)n < 0, the steady state is locally stable. Therefore, the term z =

k−(1−α)a1−α approaches zero in the long run. Therefore, in these cases too, the growth rate of

k becomes −(1 + φ)n > 0.

Given the growth rates of a and k, from equation (34), the growth rate of σ becomes

−n > 0 in the long run: σ continues to increase in the long run. Note that σ is restricted to

the range of σ ∈ [0, 1]. Accordingly, within finite time, σ becomes σ = 1. This means that

within finite time, the employment share of the R&D sector becomes zero and that of the

final goods sector becomes unity.

We confirm the above discussions by using numerical simulations. We set the baseline

parameters and initial values as follows:

n = −0.01, α = 0.3, γ = 0.8, s = 0.5, k(0) = 0.01, a(0) = 0.01. (49)

Figure 1 shows the time paths of σ when n = −0.01, −0.02, and −0.03. Figure 2 shows

the time paths of σ when γ = 0.6, 0.7, and 0.8. Figure 3 shows the time paths of σ when

s = 0.5, 0.6, and 0.7. All figures show that the employment share of the final goods sector

9



continues to increase through time and reaches unity within finite time.6

[Figures 1, 2, and 3 around here]

Therefore, within finite time, the employment share of the R&D sector becomes zero,

and hence, the growth rate of A becomes zero within finite time. Accordingly, we can say

that there exists a t1 ∈ (0,∞) such that we have σ ∈ (0, 1) during t ∈ [0, t1) and we have

σ = 1 during t ∈ [t1,∞). Hence, the system of differential equations is decomposed into two

sub-systems:

S1 : for t ∈ [0, t1)






k̇ = k
[

sk−(1−α)a1−ασ(a, k)1−α − (1 + φ)n
]

,

ȧ = a
{

[1 − σ(a, k)]a−(1−γ) − φn
}

.
(50)

S2 : for t ∈ [t1,∞)






k̇ = k
[

sk−(1−α)a1−α − (1 + φ)n
]

,

ȧ = −φna.
(51)

System S1 corresponds to t ∈ [0, t1) while system S2 corresponds to t ∈ [t1,∞). Then, at

time t1, system S1 switches to system S2. By investigating system S2, we find that in the

long run, the growth rates of k and a asymptotically approaches −(1+ φ)n > 0 and −φn > 0,

respectively. In this case, from equation (45), the growth rate of per capita output y = Y/L

is given by

gy = −(1 − α)(φn) − α[(1 + φ)n] + φn = −αn > 0. (52)

That is, even if population growth is negative, the growth rate of per capita output is positive

in the long run.

Suppose that some economic policy could keep the employment share of the final goods

sector, σ, constant through time. In this case too, in the long run, the growth rate of per

capita output asymptotically approaches gy = −αn > 0.

Therefore, when population growth is negative, per capita output continues to increase

at the rate of −αn > 0 in the long run. In this case, the rates of economic growth, capital

accumulation, and technological progress are respectively given by gY = (1 − α)n < 0,

gK = 0, and gA = 0.

Proposition 1. Suppose that the growth rate of population is constant and negative. Then,

in a semi-endogenous R&D growth economy, the growth rates of total output, technological

progress, and per capita output are negative, zero, and positive, respectively.

6Figure 4 shows that if we take a more longer span, σ increases exponentially.
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Figure 5 shows the long-run relationship between population growth and per capita out-

put growth. The larger the absolute value of population growth, the faster per capita output

growth becomes.

[Figure 5 around here]

Why do we obtain these results? From equation (10), per capita output growth is rewrit-

ten as follows:

gy = (1 − α)

(

σ̇

σ
+

Ȧ

A

)

︸              ︷︷              ︸

RD effect

+ α
˙̃k

k̃
︸︷︷︸

CD effect

, (53)

where k̃ = K/L denotes per capita capital stock. Thus, the per capita output growth is

decomposed into the two effects: the R&D effect (RD effect, hereafter) and the capital

deepening effect (CD effect, hereafter). After t = t1, we have σ = 1 and gA = 0, and thus,

the RD effect vanishes and only the CD effect lasts. The CD effect is given by

˙̃k

k̃
=

K̇

K
− n = sĀ1−αk̃−(1−α) − n > 0, (54)

where Ā denotes the constant value of A after t1. The CD effect is always positive, and thus,

k̃ increases indefinitely. Hence, gk̃ converges to

lim
k̃→∞

gk̃ = −n > 0. (55)

From equation (53), we obtain gy = −αn > 0.

5 Conclusions

By using Jones’ (1995) semi-endogenous growth model, we investigate the long-run growth

rates of per capita output when population growth is negative. Our results show that when

population growth is negative, in the long run, the growth rate of technological progress

is zero, that of total output is negative, and that of per capita output is positive. Therefore,

incorporating negative population growth in growth models is more complicated than simply

replacing a positive population growth rate with a negative population growth rate.

Our analysis focuses only on the long-run relationship between negative population

growth, economic growth, and technological progress. In particular, we only investigate

growth rates after sufficiently long time has passed. Accordingly, analysis of transitional
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dynamics along which growth rates approaches constant values is inadequate. Hence, de-

tailed analysis of transitional dynamics will be left for future research. In addition, our

analysis neglects effects of negative population growth on population composition, social

security system, and so forth. These effects should be included in future research.
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Figure 2: Employment shares of the final goods sector through time for different values of γ
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Figure 3: Employment shares of the final goods sector through time for different values of s
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Figure 4: Employment share of the final goods sector during the period t ∈ [0, 500]
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Figure 5: Relationship between population growth and per capita output growth
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