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Abstract

We consider an economy where production generates externalities, which can be
reduced by additional �rm level expenditures. This requires �rms to raise outside
�nancing, leading to deadweight loss due to a standard agency problem vis-à-vis
outside investors. Policy is constrained as �rms are privately informed about their
marginal cost of avoiding externalities. We �rst derive the optimal linear pollution
tax, which is strictly lower than the Pigouvian tax for two reasons: First, higher �rm
outside �nancing creates additional deadweight loss; second, through redistributing
resources in the economy, a higher tax reduces average productive e¢ciency. We
analyze various instruments that achieve a more e¢cient allocation, in particular,
nonlinear pollution taxes, which can no longer be implemented through a tradable
permit scheme alone, and grants tied to loans, which are frequently observed in
practice.

�We thank seminar participants at Carlos III Madrid, Imperial College London, and the University of
Frankfurt for helpful comments.

yUniversity of Frankfurt. E-mail: fho¤mann@�nance.uni-frankfurt.de.
zUniversity of Frankfurt and Imperial College London. E-mail: inderst@�nance.uni-frankfurt.de.
xFrankfurt School of Finance and Management, UNEP Center for Climate and Sustainable Energy

Finance. E-mail: u.moslener@fs.de.



1 Introduction

We consider an economy where �nancially constrained �rms must invest to reduce exter-

nalities from production. The amount of external �nancing that �rms raise interferes with

productive e¢ciency due to a standard moral-hazard problem. We show how in such an

environment, the optimal linear tax on externalities - or, likewise, the optimal amount

of tradable pollution rights - di¤ers from the Pigouvian tax and how there is scope for

additional policies, such as loan-based grants. As we discuss below, such grants are fre-

quently observed in practice, in particular in relation to sizable investments into CO2

reduction, which should indeed be non-negligible in terms of �rms� �nancing capability.

Our contribution is, however, more general, as we explore optimal government intervention

in a production economy with externalities, �nancing constraints, and private information

about the individual costs of reducing these externalities.

Pigou (1920) showed that the optimal tax on a good that generates externalities should

be equal to the marginal external e¤ect that arises from the consumption and production

of that good. We identify two reasons why, in the presence of �nancing constraints, the

optimal linear tax is strictly below the respective Pigouvian tax. First, the optimal tax -

or, likewise, the aggregate amount of permissible pollution rights - must take into account

the ine¢ciencies caused when more outside �nance must be raised to cover additional

abatement costs. Second, when �rms have di¤erent (marginal) abatement costs, even

when tax proceeds are distributed back to agents in equilibrium, a higher tax leads to

a redistribution that reduces average productive e¢ciency - again working through the

underlying agency problem of �rms vis-à-vis outside investors.

When the government is not constrained by, for instance, a supranational scheme of

tradable pollution rights, which is akin to a linear tax, we show how it can improve

e¢ciency through implementing, instead, a nonlinear tax. Under the optimal nonlinear

tax, the tax-induced bene�t from abatement is highest at relatively low levels and at

relatively high levels. Though this thus dampens the impact on the "average polluter",

compared to those �rms that end up with relatively low or relatively high abatement, we

show that due to the increased e¢ciency it can lead to higher abatement for all �rms under

the optimal nonlinear tax (compared to the optimal linear tax).

In particular when the use of nonlinear taxes is restricted by a system of tradable pollu-
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tion rights, but also more generally, e¢ciency can be improved by introducing loan-based

grants. Though these must still respect incentive compatibility, i.e., prevent opportunistic

behavior, they allow to compensate more e¤ectively for the redistribution of resources that

is generated by a tax on externalities. Combining taxes on externalities with grants linked

to loans - as is frequently observed in practice - thus dominates taxes or pollution permits,

as it allows to achieve the same reduction in externalities while ensuring higher aggregate

e¢ciency. In fact, even when tradable permits or emission taxes are used to regulate

emissions, they are often applied in combination with other, �nance-linked interventions.

In Germany, for instance, a state-owned bank (KfW) provides on a large scale subsidized

credit to businesses that apply energy-saving technologies or invest to reduce CO2 output.

The UK government, in turn, is setting up a "Green Investment Bank" which will provide

investment subsidies and low-interest loans.

Our paper is somewhat related to the literature that analyzes the e¤ect of liability

on environmental care. In some of this literature (cf. the survey in Boyer et al. 2007),

compensation for damages is restricted by agents� limited resources or the limited liability

embedded in the �nancial structure that they use to �nance production. Imposing an

extended liability also on the providers of outside �nance may then impact e¢ciency, in

particular in the presence of �nancial frictions and imperfect �nancial markets (cf. Pitch-

ford 1995, Boyer and La¤ont 1997, Tirole 2010).1 As noted above, our results deviate from

the Pigou rule, which would prescribe to set the tax so as to fully internalize the marginal

social damage from pollution. Our argument is di¤erent from that in Atkinson and Stern

(1974), who �nd that the second-best provision of public goods under private information

will be lower than the �rst-best provision, and also di¤erent from the general notion in the

public �nance literature that a tax on externalities may itself add distortions in production

or consumption. Recent contributions in the public �nance literature have restored the

Pigou rule, most notably through the use of nonlinear income taxes that compensate for

such tax-induced distortions on production and consumption in these models (cf. Kaplow

2006; Jacobs and de Moij 2011).2 We solve for the optimal mechanism and show that in

1The interaction between private �nancial frictions and public policy has been addressed also in the
literature on entrepreneurship that examines various rationales for policy intervention, in particular the
possible spillover e¤ects created by start-ups. Boadway and Tremblay (2005) o¤er a broad overview of
the literature, which mainly focuses on tax considerations.

2As pointed out in Kaplow (2006), the key is to recognize that the environmental tax will induce,
ceteris paribus, redistribution and that this a¤ects the relationship between the Pigouvian tax increment
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the presence of outside �nancing constraints there is still a wedge between the optimal

marginal tax rate and the Pigouvian tax.3

The rest of this paper is organized as follows. Section 2 introduces the economy. Section

3 derives some preliminary results. In Sections 4 and 5 we solve for the optimal linear and

nonlinear tax on the externality. In Section 6 we allow the government to use, as an

additional instrument, a grant linked to the size of �rms� loans. Section 7 summarizes our

results. The Appendix collects proofs as well as additional technical material to which we

refer to in the main text.

2 The Economy

Agents and Endowments. We consider an economy populated by a unit mass of agents

indexed by i 2 I = [0; 1]. There are two points of time: t = 0 and t = 1. Agents have access

to the same production technology that pays out in the �nal period t = 1. Abstracting

�rst from both the presence of a policymaker and the presence of externalities, starting

production in t = 0 requires the investment of I0 � 0 and generates in t = 1 either zero

output or an output of x > 0.4 The likelihood of a positive outcome depends on the non-

observable, real-valued e¤ort e that the respective agent exerts. For our purpose it will be

convenient to make agents� utility separable in e¤ort cost (as well as in the consumption

of externalities, in what follows). The respective e¤ort cost function is denoted by c(e),

while the likelihood of positive output x is given by p(e). Here, c(e) and p(e) are both

strictly increasing.

For what follows, we only need that the functions are continuously di¤erentiable, so

that a marginal change in contractual and policy parameters has indeed a marginal impact

on e¢ciency through a¤ecting the choice of e¤ort. However, it is convenient to stipulate, in

addition, that c00 > 0, p00 � 0, c0(0) = 0, p0(0) > 0, and that c0(e)=p0(e) becomes su¢ciently

and social marginal damages. Cf. earlier in a similar vein Diamond and Mirrlees (1971), who state
that distributional concerns do not justify violating production e¢ciency if the government can optimally
adjust taxes (on consumption).

3Rothschild and Scheuer (2013) also �nd a deviation of the optimal externality correction from the
Pigouvian level in a model where agents can earn their income in traditional activities as well as through
socially unproductive rent-seeking. When the government cannot observe the shares of individual agents�
income earned in the two activities the corrective component of the optimal non-linear income tax scheme
in their model deviates from the Pigouvian correction due to a "sectoral shift e¤ect" in general equilibrium.

4In our model, the investment outlay and output are both measured in the same unit of "resources"
or capital.
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large as p(e) approaches one. Taken together, these conditions ensure a unique, interior

solution for the e¤ort choice problem of the agent.

Agents have originally zero resources and thus have to raise capital from outside in-

vestors. To be speci�c, we may think of this as raising capital abroad. We stipulate that

the agents� utility is linear in the resources that they consume and that they do not dis-

count future consumption, which is why in our model the only rationale for borrowing (i.e.,

raising outside �nance) is for production. In terms of contracting with outside investors,

we stipulate that the output realization is veri�able and can thus be part of a �nancial

contract.

Externalities. Production generates negative externalities, which can be reduced by

additional investment. Precisely, we stipulate that when the production of agent i creates

yi � 0 units of these externalities, then this a¤ects all other agents equally and, thereby,

generates the social loss �yi with � > 0. Recall that we assume that utility is also additively

separable in externalities. That is, when after t = 1 agent i is left with wi resources for

consumption and has exerted e¤ort ei, then his total utility is

ui = wi � c(ei)� �

Z

j2I

yjdj: (1)

Note that this implies that an agent�s private incentives to reduce his own externality yi

are zero, given that the impact is distributed uniformly across all agents (with mass one).

Externalities are veri�able.

Generating a level of externalities y, e.g., by using the respective technology mix or

by operating production accordingly, is associated with a particular production cost. It is

convenient, albeit this is without loss of generality, to stipulate that there is a given maxi-

mum level of externalities y (per �rm). Consequently, the respective avoided externalities

can be denoted by a = y � y.

An agent�s cost of avoiding externalities depends on his type. De�ne the strictly positive

real-valued type by �i, where we assume that �i is, for all i 2 I, independently and

identically distributed according to the distribution function F (�), permitting a density

function f(�) > 0 for all � 2 [�; �]. We capture abatement costs by the twice continuously

di¤erentiable function K(a; �) with K(0; �) = 0, K1(a; �) > 0 for a 2 (0; y), K1(0; �) = 0,

K1(y; �) = 1, and K11(a; �) > 0, as well as K2(a; �) < 0 for a 2 (0; y).5 Further, we

5The subscripts indicate partial derivatives with respect to the respective argument, e.g., K1(a; �) :=
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stipulate that types � are ordered such that

K12(a; �) :=
@2K(a; �)

@a@�
< 0: (2)

That is: Higher types � have everywhere strictly lower marginal costs of abatement. For

instance, we could take K(a; �) = k(a)=�, where k(a) inherits the properties of K(a; �).

Note that the respective costs are incurred, together with the investment I0, right when

production starts in t = 0. Further, observe that the agent�s economic success (output of

x or zero) does not directly interact with the generation of externalities. However, as we

show below, the likelihood of success interacts with the incurred abatement costs and thus

the need to raise more external �nance.6

Our chosen set-up, where the reduction in negative externalities is a function of in-

vestment, allows also for the following alternative interpretation. We could think of y or

likewise a = y � y as a (continuous) veri�able technology choice, e.g., the "amount" of

additionally installed fuel-e¢cient equipment or of energy-e¢cient building material that

is used when setting up production. Though the purchase costs may be the same for all

agents, agents� costs of installation or, more generally, their total opportunity costs may

di¤er, given the buildings, equipment, and technologies that they already own. For higher

�, the associated costs are lower according to condition (2).7

Feasible Policies. We introduce a utilitarian policymaker, who maximizes the expected

utility of all agents: E
�R
uidi

�
. For simplicity, we refer to the policymaker as the govern-

ment and consider various policy instruments. Our benchmark is that of a linear tax on

externalities, coupled with a transfer that is paid out of tax receipts. We characterize the

optimal linear tax and show how with �nancial constraints this is strictly di¤erent from

the Pigouvian tax. As we argue, the outcome can also be implemented through a market

for pollution rights. There is, however, no scope for the government to raise �nance on

@K(a; �)=@a.
6Our assumption that there is no direct interaction between externalities and the likelihood of high

output allows to restrict contracts with external investors to repayments that are conditional only on
realized output, as this is then a su¢cient statistic for e¤ort. However, we will later allow for the possibility
that also output is taxed as a way to redistribute resources between agents of di¤erent type.

7When taking this interpretation, a given choice of technology could then be associated with some
(possibly stochastic) generation of externalities (for which we would then need a di¤erent notation).
Without loss of generality, any policy could then, however, target directly the adoption of the technology,
a. Also, the agents� utility function (1) and thus also the policymaker�s objective function could be
rewritten accordingly, namely as a function of expected externalities, without changing results.
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behalf of agents, unless it would use this to, at the same time, redistribute resources. This

can, however, also be achieved through providing grants linked to the amount of outside

�nance that agents privately raise, which is a policy that is frequently observed in practice

(cf. the Introduction). We characterize the optimal grant scheme. With such grants in

place, we argue further that there is no additional role that taxes levied on output could

play for the purpose of e¢ciently redistributing resources.8

A further improvement of e¢ciency can, however, be achieved when the linear tax -

or, likewise, a market for pollution rights that induces such a linear tax - is replaced by a

nonlinear tax scheme. Here, we use a mechanism design approach to solve for the optimal

such nonlinear tax scheme and we illustrate the di¤erence to the optimal linear tax with

the help of numerical examples.

3 Preliminary Result: The Outside Financing Prob-

lem

Consider the problem of an agent who must raise capital L (a "loan") to start production.

As he can only pay back in case output is positive, the contract with outside investors can

be restricted to a single variable: The repayment R that is made in case the output equals

x. Given some repayment R, note that the agent�s payo¤ is

p(e)(x�R)� c(e);

so that the uniquely optimal e¤ort level e� is given by the �rst-order condition

p0(e�)(x�R)� c0(e�) = 0: (3)

This can be substituted to obtain the investors� break-even requirement

p(e�)R = L: (4)

While (3) and (4) together may have multiple solutions, we pick in what follows the pair

(R; e�) that has the lowest value R and, consequently, achieves the highest payo¤ for the

agent. Clearly, this is the unique equilibrium in a game where either outside investors

compete or the agent makes a take-it-or-leave-it o¤er. Further, it is immediate that e� is

then strictly decreasing in L while R is strictly increasing.

8As we discuss below, the right to these tax receipts could then be sold ex-ante so as to alleviate
�nancial constraints (at least for some types).
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The Surplus Function. Denote

! = p(e�)(x�R)� c(e�);

which given the binding break-even constraint (4) is the total expected surplus net of the

funding expenditures. By the previous discussion we can write this as a function of L:

!(L).

With L = 0 and thusR = 0, the agent would choose a �rst-best value solving p0(eFB)x�

c0(eFB) = 0, thereby realizing a total surplus of !(0). Note that this is gross of externalities

and all possible transfers. Clearly, it holds that e� < eFB whenever L > 0. When we thus

compare the total net surplus at the benchmark with L = 0 and at any other choice L > 0,

we have generally

!(L) < !(0)� L:

This di¤erence beyond the change in funding requirements captures the crucial inef-

�ciency that arises from the outside �nancing problem. It follows as the agent shirks

when he no longer realizes the full bene�ts from putting in higher e¤ort. Observe fur-

ther that from the break-even constraint (4) the agent is the residual claimant, so that

it follows immediately that !(L) is strictly decreasing in L: As more of the output has

to be promised away as repayment to outside investors, the agent�s incentives to exert

e¤ort further decline, resulting in a further reduction of e¢ciency. This captures the key

ine¢ciency that arises from the agency problem due to non-observable e¤ort and the need

to raise outside �nance.

General Contracts. So far, we restricted attention to deterministic contracts with out-

side investors, as described by the required repayment R. Given risk neutrality of both

agents and outside investors, without loss of generality the most general, stochastic con-

tract is described as follows. Note �rst that (L; !(L)) describes investors� and the agent�s

expected payo¤s once �nancing is sunk (net of e¤ort costs, but gross of initial capital L).

A contract with investors could now prescribe the following, next to the initial provision

of capital L: A distribution over values Ln with E[Ln] = L so that when a particular value

Ln is drawn, the contract that is then implemented stipulates for the investor the expected

repayment of Ln and, consequently, the expected payo¤ !(Ln) for the agent. Clearly, by

optimality the chosen lottery would maximize E[!(Ln)] subject to E[Ln] = L. Denote the
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respective realized value by

b!(L) = maxE[!(Ln)]:

Importantly, while it is immediate that also b!(L) is strictly decreasing in L, it is also
concave: b!00(L) � 0 at points of di¤erentiability. (It is continuous and di¤erentiable almost
everywhere.) The argument follows simply by contradiction: If this was not the case, then

we could �nd from Jensen�s inequality three values L1 < L < L2 and two probabilities

�1 and �2 so that L = L1�1 + L2�2 while b!(L) < b!(L1)�1 + b!(L2)�2, contradicting the
asserted optimality of b!(�) at L.

Lemma 1 If the agent needs initial �nancing of L, then under the optimal contract that

lets outside investors just break even he realizes the expected payo¤ (net of costs of e¤ort)

b!(L), which is continuous, strictly decreasing with b!0(L) < �1, and concave.

In what follows, we �nd it more convenient to suppose that already the payo¤ function

!(L), for which we did not use lotteries, is strictly concave. (Still, our subsequent results

hold generally when we use, instead, b!(L).) For instance, we could stipulate that p(e) = e
and c(e) = e2=(2
), where 
 is then taken to be su¢ciently large so as to ensure that

p(e) < 1 holds in equilibrium. This example is also used further below for an illustration.

4 Linear Tax and Tradable Pollution Rights

4.1 Preliminary Results

In this Section, we consider the following problem that a government faces. The govern-

ment can choose the parameters of a linear tax policy. That is, depending on the volume

of produced externalities, yi, each agent is taxed according to the function
9

�(y) = � 0 + � 1y: (5)

Here, � 1 is the per-unit tax on the externality, while the �xed component � 0 takes into

account the overall distribution that is achieved by (optimally) making the government�s

budget just balance:

� 0 + � 1

Z
yidi = 0: (6)

9Strictly speaking, the tax schedule is an (a¢ne) two-part tari¤.
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Our motivation for the restriction to such a linear tax is the following. First and fore-

most, as we argue in more detail below, such a scheme corresponds to the implementation

of a system of tradable pollution rights. In that case, the government�s choice parame-

ter would be the aggregate volume of externalities. Taking as a benchmark the outcome

where such a system of tradable pollution rights is in place, we later argue how this can be

optimally complemented with additional policies, such as tax-subsidized loans. Further,

the characterization of the optimal linear tax will make transparent how both the presence

of �nancing constraints and agent heterogeneity generally a¤ect the implications of taxing

externalities and, thereby, the optimal level and form of government intervention.

Without loss of generality, we stipulate that the agent must "purchase" the respective

pollution rights (or pay the tax) when starting production in t = 0. Consequently, without

resources on his own, an agent must raise outside �nance equal to

L(y; �) = max fI0 +K(y � y; �) + �(y); 0g : (7)

Note that, from !0(L) < �1, it is not optimal for the agent to raise outside �nance for

consumption while it is equally optimal to use all of his own resources to reduce the amount

of external �nancing raised.

Optimal Abatement. Given the tax scheme �(y) = � 0 + � 1y, we consider �rst the

program of an individual agent. The agent chooses yi and, consequently, has to raise

L(yi; �i), as given by (7). Dropping the subscript i, an agent of type � thus chooses y to

maximize ! (L(y; �)) with L(y; �) given by (7).

Lemma 2 Suppose the government imposes a (budget-balancing) tax-cum-transfer �(y) =

� 0+ � 1y. Then, an agent of type � chooses the optimal level of externalities y
�(�) and thus

a unique level of abatement a�(�) = y � y�(�) so that

K1(a
�(�); �) = � 1; (8)

from which a�(�) is strictly increasing in both � 1 and �. Still, higher-type agents invest

less in abatement and thus need to raise less outside �nance:

dL(�)

d�
= K2(a

�(�); �) < 0: (9)
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Proof. See Appendix.

Hence, with a linear tax on externalities, each agent chooses a level of abatement so

that the marginal �nancial bene�ts that follow from a reduction in the incurred tax are

equal to the marginal cost of abatement. Importantly, productive e¢ciency, as expressed

through the slope !0, plays no role in this trade-o¤. Moreover, note that, under the agent�s

optimal choice, his need to raise outside �nance is always strictly decreasing in his type.

In fact, as the agent chooses his privately optimal level of abatement, depending on �, this

follows immediately from optimality, as otherwise higher-type agents could not enjoy a

higher expected utility !(L).

4.2 Optimal Tax

The objective function of a utilitarian government is to maximize the expected utility of

all agents:

E[ui] =

Z
[!(Li)� �yi] di:

(This uses that !(Li) already takes into account the investment costs, as these are funded

by outside investors.) Given the agent�s optimal decision, using Lemma 2, the government�s

program is then to maximize

E[ui] =

Z

�

[!(L(y�(�); �))� �y�(�)] dF (�) (10)

subject to the budget-balancing constraint (cf. (6))

� 0 + � 1

Z

�

y�(�)dF (�) = 0: (11)

Take for a moment the benchmark without �nancial constraints, so that everywhere

!0(�) = �1. Then, from substitution of (11) into (10) while using the agent�s �rst-order

condition (cf. Lemma 2) we would obtain the Pigou rule � 1 = �. This obviously implements

the �rst-best outcome, despite agents� private information about their marginal cost of

abatement. The following result characterizes, instead, the optimal linear tax when agents

must raise outside �nance and when this gives rise to a deadweight loss due to agency

problems.
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Proposition 1 The optimal linear per-unit tax � 1 satis�es

� 1

�
�

Z

�

!0(L(y�(�); �))dF (�)

�
= ��

R
�
!0(L(y�(�); �))

�
y�(�)�

R
�
y�(�0)dF (�0)

�
dF (�)

R
�
dy�(�)
d�1

dF (�)
;

(12)

which implies that � 1 is strictly smaller than �.

Proof. See Appendix.

From (12) an optimal tax � 1 is strictly lower than �. This is so for two (albeit related)

reasons. The �rst reason is captured by the multiplier

�
�

Z

�

!0(L(y�(�); �))dF (�)

�
> 1 (13)

on the left-hand side (cf. Lemma 1 for !0 < �1); given
R
�
dy�(�)
d�1

dF (�) < 0, the second

reason is captured by the term

�
�

Z

�

!0(�)

�
y�(�)�

Z

�

y�(�0)dF (�0)

�
dF (�)

�
> 0; (14)

which is subtracted on the right-hand side in (12). We discuss both terms in turn.

The term (13) captures the fact that, to reduce externalities, agents must raise outside

�nance. Due to the associated agency problem this involves an additional "shadow cost",

namely in the form of lower e¢ciency as e¤ort becomes ine¢ciently low. (Formally, !0 <

�1.)

Next, the term (14) captures the e¢ciency implications of the redistribution of re-

sources that goes hand-in-hand with the applied taxation, namely from agents with higher

marginal abatement costs to agents with lower marginal abatement costs. The impact of

redistribution on aggregate productive e¢ciency is negative. This follows from the follow-

ing two observations: First, with a linear tax high-type agents incur, under the optimal

choice y�(�), strictly lower costs of abatement; second, ! is strictly concave. As the tax

on externalities shifts resources to high-type agents, this reduces the agency problem of

high-type agents but increases the agency problem of low-type agents. Thus, it makes

the already more productive high-type agents (endogenously) still more productive, while

further reducing productivity of low-type agents. This leads to a reduction in aggregate

e¢ciency of production in the economy.

11



4.3 Pollution Permit Scheme

It is straightforward to see that the government could implement the outcome of Proposi-

tion 1 also as follows. The government could set a total maximum capacity for externalities

Y and allocate this uniformly (and for free) across all agents. Thus, each agent receives

the same capacity, which we may write as Yi = Y , as there is the measure one of agents

in the economy. These capacities (or "pollution rights") are then traded in the market.

When � 1 is the resulting price, we obviously have that K1(a
�(�); �) = � 1, as previously

in (8), together with Z
a�(�)dF (�) = y � Y:

This uniquely links � 1 to Y , and vice versa. The equivalence of the two policy instruments

can then be seen immediately from substituting into the funding retirement (7)

L(y�(�); �) = I0 +K(y � y
�(�); �) + �(y�(�)� Y )

= I0 +K(y � y
�(�); �) + �(y�(�)�

Z

�

y�(�)dF (�)):

This is just the same as under the linear tax, after substituting the "break-even" constraint

for taxes (11).

Corollary 1 The optimal linear tax can be implemented through a pollution permit scheme,

where each agent receives the same level of tradable pollution rights Y .

Roadmap to Further Analysis. Proposition 1 isolated two (related) reasons for why

the optimal tax under �nancing constraints is strictly below the optimal Pigouvian tax: the

shadow cost of raising �nancing, which is due to the agency problem, and the associated

redistribution, which in the aggregate exacerbates this agency problem. In the following,

we discuss ways how policy makers could reduce these ine¢ciencies and, thereby, optimally

induce a higher level of aggregate abatement at less ine¢ciency.

The derivation of the optimal nonlinear tax in Section 5 further clari�es the tension

between reducing externalities and redistributing resources, which in our case increases

agency costs in the aggregate. We show that the optimal such nonlinear tax would essen-

tially "dampen" the impact of the tax for "average polluters", namely through imposing

high marginal taxes for both relatively low and relatively high levels of pollution. As we
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show in a numerical example, however, the resulting e¢ciency gains may make it optimal

to, thereby, induce a strictly higher level of abatement for all agents.

Such a scheme of nonlinear taxes may, however, not always be feasible, in particular

when a supranational market of tradable pollution rights is in place. As we show, the

government could then still increase e¢ciency through introducing grants that are linked

to the amount of outside �nancing that each agent raises. As the agent�s type, namely the

true (opportunity) costs of higher abatement, is only privately known, these grants must

still be incentive compatible to forestall opportunistic behavior. As we argue, grants that

are linked directly to the amount of �nancing that is raised are also more e¢cient than

redistributing resources through taxes on �nal output. Still, for completeness we show in

the Appendix that without loan-based grants, taxes on output can be optimal.

5 Nonlinear Taxes

So far we have restricted our analysis to a linear tax on externalities and identi�ed the

ine¢ciencies such a scheme causes when �rms are �nancially constrained. First, the tax-

induced additional abatement costs increase the required amount of external �nancing,

thus exacerbating the agency problem vis-à-vis outside investors. Second, as �rms have

di¤erent (marginal) abatement costs, a tax-cum-transfer scheme leads to a redistribution

from high to low-cost types resulting in a further decline in average productive e¢ciency

again working through the same agency problem. As we show below it is this second

ine¢ciency, caused by the reallocation of resources, that can be mitigated by relaxing the

restriction to a linear tax on externalities. One way to counteract this resource reallocation,

which is studied in this section, is thus to allow the government to implement a general

(nonlinear) tax on externalities.

We thus depart from the assumption of a linear tax scheme or an equivalent choice

of pollution rights that are sold. Consider thus a general tax �(yi) as a function of the

respective externalities yi that agent i produces. Our approach is the following. Instead

of solving directly for the optimal nonlinear tax, we set up a general mechanism-design

problem. (This is then extended in the subsequent Sections to introduce other policy

instruments). Such a mechanism maps agents� truthful revelation of their type � into

both a prescribed level of externalities y(�) and a respective transfer T (�), which can be

positive or negative. Once we have derived the optimal mechanism, we obtain from this

13



the respective optimal tax scheme �(yi).

5.1 Control Problem

The mechanism must ensure truthtelling and thus incentive compatibility for each agent

type.10 That is, for all types � 2 � it must hold that

! (L(y(�); T (�); �)) � !
�
L(y(b�); T (b�); �)

�
for all b� 2 �, (15)

where

L(y(�); T (�); �) = I0 +K(y � y(�); �) + T (�);

L(y(b�); T (b�); �) = I0 +K(y � y(b�); �) + T (b�):

In words, type �must not strictly prefer to pretend to be any other type b�.
It is convenient to express the following optimization problem purely in terms of (per-

mitted) externalities y(�), rather than optimal abatement a(�). As is standard, we will

employ optimal control techniques in what follows, for which we restrict the mechanism

f(y(�); T (�))g to piecewise continuously di¤erentiable functions.11 The incentive constraint

(15) holds locally if "truthtelling", i.e., b� = �, solves the respective �rst-order condition:

d!
�
L(y(b�); T (b�); �)

�

db�

������
b�=�

= !0(�) (T 0(�)� y0(�)K1(y � y(�); �)) = 0: (16)

We presently assume that the "�rst-order approach" is valid, so that (16) is su¢cient to

ensure global incentive compatibility. As is immediate from the single-crossing property

(2), note that this requires also that the characterized function y(�) be nonincreasing.12

De�ne now (with some abuse of notation) the payo¤ function under truthtelling13

U(�) = ! (L(y(�); T (�); �)) :

10As is well-known, under the considered environment the restriction to direct, truthtelling mechanisms
follows without loss of generality from the "revelation principle".
11Note that incentive compatibility alone requires that y(�) has to be nonincreasing and, hence, di¤er-

entiable almost everywhere.
12Compare Appendix B for a more general solution ("second-order approach") allowing for the possibility

of "bunching".
13This still presumes that taxes and subsidies are fully "used" to increase or reduce the amount of funds

that must be raised externally (instead of being immediately consumed or saved for consumption in the
�nal period). As agents are not impatient and have risk neutral preferences, this restriction is without
loss of generality.
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We know that by incentive compatibility U(�) is nondecreasing and continuous and thus

a.e. continuously di¤erentiable with

dU(�)

d�
=
@!
�
L(y(b�); T (b�); �)

�

@�

������
b�=�

= !0(�)K2(y � y(�); �) > 0 (17)

when y(�) > 0:

To solve for the optimal menu we set up the government�s optimal control problem.

With some abuse of notation de�ne the �nancing requirement under truthtelling

L(�) = I0 +K(y � y(�); �) + T (�);

which we take as the state variable. As thus U(�) = !(L(�)), we have from (17) that

dL(�)

d�
= K2(y � y(�); �) < 0: (18)

Further, from

T (�) = L(�)� [I0 +K(y � y(�); �)] (19)

we can substitute pointwise for T (�), once the state variable L(�) as well as y(�) have been

determined. This leaves us with the single control variable y(�).

Summing up, the government�s objective is thus to maximize total utility over all agents
Z

�

[!(L(�))� �y(�)] dF (�) (20)

subject to the "law of motion" (18) and the budget balance condition
Z

�

[L(�)�K(y � y(�); �)� I0] dF (�) = 0; (21)

where we have substituted from (19).

5.2 Characterization

We now relegate to the Appendix the formulation of the respective Hamiltonian and the

solution of the control problem. There, we also translate the solution into the optimal

tax schedule. This is obtained from the characterized menu through substituting �(y) =

T (�(y)), where we use �(y) = y�1(y(�)).14 Denote now the lowest and highest realized

level of externalities by

yl = y(�) < yh = y(�):

14Note for this that presently we assume that the optimal mechanism prescribes a strictly decreasing
level of externalities, with y0(�) < 0. See Appendix B for the case with "bunching".
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Proposition 2 Under the optimal nonlinear tax �(y) the marginal tax rate is strictly

positive, but strictly less than �, and highest at the two extremes, yl and yh. This implies

that when the generated externality is already low (and abatement thus high), then the

marginal bene�ts from further reducing pollution are strictly increasing. Instead, when the

externality generated by the agent is still high (and abatement thus low), then the reduction

in taxes achieved by limiting pollution is strictly decreasing.

Proof. See Appendix.

While the ine¢ciency caused by the need to raise outside �nancing implies that � 0(y) <

� for all levels of externalities, it holds from Proposition 2 that the optimal nonlinear tax

rewards a reduction of externalities in particular at very high and very low realizations,

i.e., at the "�rst units" and the "last units". The intuition for this result is as follows:

At the heart is the attempt to restrict the redistribution that is made to high-type agents

as a consequence of the tax on externalities.15 Recall that redistribution is higher when

the marginal tax is higher. Obviously, at the lower boundary �, there is no need to

further distort the implemented choice of externalities, as there is "no one" contributing

to redistribution below �. At the other extreme, when � = �, there is also clearly no

longer a bene�t from further reducing the marginal tax since there is nobody bene�tting

from redistribution above �.16 These observations explain the derived properties of the

tax scheme �(y) at low and high levels of the externality.

One immediate implication of Proposition 2 is that a constant marginal tax and, there-

fore, also a system of tradable pollution rights alone is not optimal, at least not in our

model. The reason is that it implies too much redistribution of resources away from �rms

with high abatement costs, which in our model increases aggregated deadweight loss in the

economy. As discussed in the Introduction, if a system of tradable pollution rights is in

place, e.g., due to an international or supranational agreement, then Proposition 2 would

15The intuition behind this result is similar to �ndings in the optimal income taxation literature (cf.
Mirrlees (1971), Seade (1977, 1982)), according to which the optimal marginal income tax is zero at the
endpoints of the income scale (in the absence of bunching and with a bounded distribution of skills) and
strictly positive elsewhere. There, the tradeo¤ is between a redistributive gain and a negative incentive
e¤ect of a non-zero marginal tax.
16Recall that clearly also for the lowest and highest types the implemented choice of externalities will be

below the �rst-best benchmark (or similarly the marginal tax rate strictly below �) due to the ine¢ciency
caused by the need to raise external �nancing. However, as argued above, there is no need to further
distort the level of externalities in order to reduce redistribution.
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Figure 1: Example with high degree of heterogeneity

suggest that an additional, non-linear scheme of taxes and subsidies, depending on the

realized externality, would improve e¢ciency. To achieve the bene�ts of the optimal non-

linear tax, it should essentially dampen the impact on the "average polluter" but increase

the impact on high-level and low-level polluters.

5.3 Illustration

In order to gain more intuition about the characterization of the optimal nonlinear tax

scheme, suppose now that p(e) = e, c(e) = e2

2

, and K(a) = 1

�
a2

�
, with � distributed

uniformly on [�; �] (� > � > 0). It is straightforward to derive the agent�s optimal e¤ort

e� = 
 (x�R). We suppose that 
 is always su¢ciently small so as to ensure an interior

solution e� = p(e�) < 1 for the probability of success. Together with the investor�s break-

even condition, after solving for the equilibrium repayment requirement R, we obtain for

the "surplus function"

!(L) =



8

 
x+

�
x2 �

4



L

� 1

2

!2
;

which is, for L > 0, strictly decreasing with !0(L) < �1 and strictly concave. (The

restriction that x2 � 4L


� 0 ensures �nancial feasibility, for given L.) For this example,

the respective solutions for the linear and nonlinear taxes are derived numerically.
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Figure 2: Example with low degree of heterogeneity

Figure 1 shows the marginal tax rate under the nonlinear scheme, together with the

optimal linear tax rate (left panel) as well as the di¤erence in generated externalities under

the optimal linear tax and the optimal nonlinear tax scheme (right panel) for a particular

speci�cation: � = 8, � = 1, x = 10, � = 1, 
 = 0:1, I0 = 0:5, and � = 0:75. We refer to

this as a case with a (relatively) high degree of heterogeneity in types, as the di¤erence

� � � is large compared to the case that we characterize further below.

The optimal nonlinear tax rate is U-shaped and maximized at the lowest and highest

realized level of externalities, for which it is also strictly above the optimal linear rate.

In this example, the optimal marginal tax rate at intermediate levels of externalities is,

however, strictly below the optimal linear tax. As the second panel in Figure 1 shows, for

intermediate types the resulting level of externalities is also strictly lower under the optimal

linear tax than under the optimal nonlinear tax. This contrasts with our second example

(Figure 2), where the marginal tax rate is strictly higher for all levels of externalities and

where all types generate lower externalities compared to the case with the optimal linear

tax. Compared to Figure 1, for Figure 2 we only change the low boundary of types from

� = 1 to � = 4, thereby reducing the heterogeneity between agents.
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6 Loan-Based Grants

So far, policy intervention was restricted to a tax on externalities. As discussed in the

Introduction, governments frequently use also grants linked to loans as a way to steer �rm

behavior, in particular in the context of environmental policies.

We consider the following extension to our present model. We now allow government

policy to be made contingent on the amount of �nancing that is raised by each agent.

Importantly, note that the government can not directly verify the real cost of abatement

K(�). As noted above, even when a loan-based grant is tied to speci�c expenditures,

e.g., for particular equipment, the overall costs, including opportunity costs, could still

substantially di¤er between �rms. In essence, what we use in what follows is the restriction

that while the actual loan that a �rm raises is veri�able, its true �nancial needs are still

the �rm�s private information. Still, loan-based grants will prove e¤ective in improving

e¢ciency.

Suppose thus that agents are taxed on their externality according to a constant mar-

ginal rate � 1 or that, likewise, � 1 is the prevailing price for "pollution rights". As noted

above, our present restriction to such a linear tax is warranted in circumstances where

nonlinear taxes are not feasible due to the existence of a supranational system of tradable

pollution rights. Still, in Appendix C we also solve for the optimal mechanism when both

nonlinear taxes and loan-based grants can be used.

With a linear tax or a market for tradable pollution rights with �xed capacity, the

optimal level of abatement for each agent satis�es the �rst-order condition

K1(y � y
�(�); �) = � 1: (22)

That is, irrespective of the �rm�s overall �nancial needs, including other taxes or grants,

the �rm simply chooses y�(�) to minimize expenditures. Taking for now � 1 as given, an

additional instrument thus serves the purpose of reducing the redistribution of resources

that is generated by � 1 > 0. A loan-based grant (or tax) stipulates a positive (or nega-

tive) payment G(Li), given an agent�s loan volume Li. As previously, it proves, however,

convenient to �rst set up the problem in the language of mechanism design.

Truthful Mechanism Such a mechanism now speci�es for each agent a loan level L(�)

together with a payment made by each agent t(�). It is immediate that under the optimal
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mechanism, L(�) will just be su¢cient to cover the agent�s true expenditures. However,

when an agent deviates and mimics another type b� by raising a higher-than-necessary loan,
then his payo¤ becomes17

U(�;b�) = !(L(b�)) +
h
L(b�)� I0 �K(y � y�(�); �)� � 1y�(�)� t(b�)

i
: (23)

Here, the term in rectangular brackets captures the amount of �nancing that is raised above

the true �nancial needs, which are unobservable to the government.18 The mechanism is

locally incentive compatible if U(�;b�) is maximized at b� = �, so that the additional term
in (23) is zero: U(�) = !(L(�)).

When t(�) can not condition on �, as was the case in Section 4, then we have that

dU(�)

d�
= !0(L(�))L0(�) = !0(L(�))K2(y � y

�(�); �): (24)

This describes the slope of agents� utility and thus the extent to which a pure tax on

externalities leads to a redistribution of resources in the economy. (Clearly, when y�(�) = y

holds for all agents, then U(�) = !(I0) is constant.) We show now how by linking t(�)

to L(�), this slope can be reduced, so that resources are more evenly distributed across

agents.

We know from incentive compatibility that U(�) must always be non-decreasing (in

fact, it is strictly increasing when y(�) > 0). More precisely, this holds for any choice

of t(�) that is still incentive compatible. Therefore, the government wants to make the

derivative t0(�) > 0 for all � as steep as possible. (Recall that we frame t(�) as a payment

from agents, in analogy to our previous approach.) The upper boundary on t0(�) > 0 is

obtained from the �rst-order condition of the agent�s reporting problem.19 Making use of

(22), this yields for the slope of agents� payo¤

dU(�)

d�
= !0(L(�))L0(�) = t0(�)� L0(�) = �K2(y � y

�(�); �); (25)

which, for a given schedule y�(�) is clearly smaller than the slope in (24), showing the

bene�ts of linking transfers to the amount of �nancing raised. Similarly, one obtains for

17Note that we have dropped any �xed part �0 for the tax on externalities, as this can be subsumed
into t(�).
18Note again, that we assume here that, for a �rm of type �, y�(�) is �xed from (22) independent of the

report b�. Still, the results of this Section continue to hold if we, instead, assumed that a �rm of type �,
reporting b�, would have to implement y�(b�).
19More precisely, this only considers a feasible deviation to a type b� < �.
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the slope of the transfer t(�),20

t0(�) = L0(�) [1 + !0(L(�))] : (26)

Clearly, when !0 = �1, as in the case without an agency problem of external �nancing,

then t0(�) = 0. Otherwise, we have that t0(�) > 0. In fact, the strictly larger is !0(L(�)) <

�1 in absolute terms, the steeper can the loan-based grant be made, for the moment as a

function of �. (We translate this back into a function G(L) below.) Such a transfer back to

low-type agents, now linked to a loan, is made possible precisely as raising outside �nance

generates a deadweight loss. This holds also when more outside �nance is raised than

actually needed or, in a more general context, when a �rm would take out a subsidized

loan to fund abatement activities even though this would not be necessary, given the �rm�s

resources. The deadweight loss of raising (too much) external �nance prevents agents with

lower costs of abatement to claim a higher grant that is intended for agents with higher

marginal costs of abatement.

Optimal Loan-Based Grant Scheme. Under a grant scheme G(L), we must have

that

G(L(�)) = �t(�): (27)

Di¤erentiating (27) and substituting from (26), we have that

G0(L) = � [1 + !0(L(�))] > 0; (28)

which tells us how under the incentive compatible grant scheme the absolute subsidy G(L)

varies with the loan size L.

Proposition 3 Suppose that a constant marginal tax � 1 on externalities is in place. When

the loan size Li is veri�able, then the government can strictly increase e¢ciency by intro-

ducing, in addition, a loan-based grant. The optimal grant G(L) is strictly increasing in

loan size with G0(L) given by (28).

Proof. See Appendix.

E¢ciency can thus be improved by linking transfers to the outside �nancing that agents

raise to cover their abatement costs. By combining a tax on externalities with grants that

20An alternative way of expressing this is to substitute for L0 = K2 + t
0, so that t0 = �K2

1+!
0

!
0
.
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are linked to loans, the redistribution that is generated by the tax on externalities can be

mitigated. Agents with lower abatement costs �nd it less pro�table to mimic those with

higher abatement costs, so as to claim additional grants. This follows as raising more-than-

necessary outside �nance is costly as it exacerbates the agency problem vis-à-vis outside

investors. As a consequence, combining taxes on externalities with grants linked to loans

- as is frequently observed in practice - dominates, in our setting, pure linear taxes or

pollution permits.

In practice, even though economic instruments such as tradable permits or emission

taxes are used to regulate emissions, they are often applied in combination with other

interventions. Frequently used additional instruments of support are subsidies to envi-

ronmentally friendly investment. As noted in the Introduction, for instance, in Germany

a state-owned bank (KfW) provides on a large scale subsidized credit to businesses that

apply energy-saving technologies or invest to reduce CO2 output. The UK government,

in turn, is just about to set up a "Green Investment Bank" which will provide investment

subsidies and low-interest loans to accelerate private-sector investment in environmentally

friendly infrastructure.

Discussion: Taxes on Output. As noted above, we have throughout restricted po-

tential redistribution of resources to the initial stage. As we argue now, however, this is

without loss of generality once we allow for loan-based grants. Consider thus taxes on

output. The right to these taxes could then be sold ex-ante so as to alleviate (at least for

some types) the external �nancing constraint.21 At �rst, it may seem that this gives the

government an additional lever for redistribution, as agents with lower abatement costs

and thus lower �nancing needs end up with a higher equilibrium probability of success.

However, the link from the agent�s type to the likelihood of realizing high vs. low output

is only indirect, namely through the agency problem and, therefore, through the amount

of outside �nancing that is raised by the agent. A loan-based grant thus provides such

a redistribution more directly through linking transfers to �nancing.22 We show in the

21We discuss these options explicitly in Appendix D, where we consider the case of taxes on output
without a loan-based grant.
22In this sense, in the presence of loan-based grants, output does not provide an additional "tag" that

would be optimally used for transfers. Originally, the term "tagging" was coined by Akerlof (1978) to
describe the use of taxes contingent on personal characteristics in order to improve on a purely income-
based tax scheme (cf. also Mankiw and Weinzierl 2010 for a recent application).
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Appendix how a tax on output could, however, increase e¢ciency when we assume that

loan-based grants are not feasible.

7 Concluding Remarks

This paper analyzes the optimal policy towards externalities in the light of two constraints.

First, agents who generate such (negative) externalities must raise outside �nance when

they want to increase their abatement. This generates ine¢ciencies due to agency costs

vis-à-vis outside investors. Second, marginal abatement costs are private information, so

that policies must be incentive compatible. We generate three sets of results in a simple,

highly stylized model with these features. Our �rst result is that the optimal linear tax

is strictly smaller than the benchmark Pigou tax, which would be equal to the marginal

bene�ts from lowering externalities. In fact, we isolate two reasons for why this is the

case: �rst, raising the necessary �nance generates productive ine¢ciencies; second, with

heterogeneous agents a higher tax generates aggregate productive ine¢ciencies as it leads

to a redistribution of resources, thereby exacerbating aggregate �nancial frictions.

Our second result is that a nonlinear tax on externalities enhances e¢ciency, as it allows

to achieve a given aggregate level of abatement more e¢ciently. As we show, this is the

case as the nonlinear tax allows to limit redistribution of resources to higher-type agents

with lower marginal abatement costs. We further show that under the optimal nonlinear

tax the marginal bene�ts of abatement are highest for low and high levels of abatement

(the "�rst units" and the "last units"). Importantly, this can not be implemented by a

scheme of tradable "pollution rights".

Our third result is that the government can further improve e¢ciency by linking trans-

fers to the outside �nance that agents raise so as to (purportedly) reduce externalities.

In contrast to nonlinear taxes, it can also be used when there is a (supranational) sys-

tem of tradable pollution rights in place, which essentially implements a linear tax on

externalities. Though agents with lower abatement costs can still mimic those with higher

abatement costs, when additional grants are linked to credit, this becomes more costly,

simply as raising more-than-necessary outside �nance exacerbates the agency problem vis-

à-vis outside investors. As a consequence, using jointly taxes on externalities and grants

linked to loans - as is frequently observed in practice - may be an e¢cient instrument, as

it allows to improve aggregate productive e¢ciency.
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Appendix

A: Omitted Proofs

Proof of Lemma 2. We have

d!

dy
= (� 1 �K1(y � y; �))!

0 (L(y; �)) :

As the problem is strictly quasiconcave, this yields the optimality condition (8). From

implicit di¤erentiation and using (2) we have further that

da�(�)

d�
= �

K12(a
�(�); �)

K11(a�(�); �)
> 0;

da�(�)

� 1
=

1

K11(a�(�); �)
> 0:

Finally, expression (9) follows from substituting the �rst-order condition (8) into the total

derivative of L(�). Q.E.D.

Proof of Proposition 1. We can substitute from (11) to obtain for each type the

�nancing requirement

L(y�(�); �) = I0 +K(y � y
�(�); �) + � 1y

�(�)� � 1

Z

�

y�(�0)dF (�0);

so that dE[ui]
d�1

equals

Z

�

" ��
y�(�)�

R
�
y�(�0)dF (�0)

�
+
�
dy�(�)
d�1

(� 1 �K1(�))� � 1
R
�
dy�(�0)
d�1

dF (�0)
��
� !0(�)

��dy
�(�)
d�1

#
dF (�):

Substituting the �rst-order condition (8) for y�(�), � 1 = K1, this gives rise to the �rst-order

condition (12). From Z

�

dy�(�)

d� 1
dF (�) < 0;

given that y�(�) is strictly decreasing, it remains to prove that

Z

�

!0(�)

�
y�(�)�

Z

�

y�(�0)dF (�0)

�
dF (�) < 0: (29)

To see this, note �rst that, next to dy�(�)
d�1

< 0, we have from expression (9) and Lemma 1

that
d

d�
(!0 (L(y; �))) =

dL(�)

d�
!00 > 0: (30)
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De�ne now the unique type b� satisfying

y�(b�) = E[y�] =
Z

�

y�(�0)dF (�0);

while y�(�) > E[y�] holds for � < b� and y�(�) < E[y�(�)] holds for � > b�. We can now
rewrite the left-hand side of (29) as

LS =

Z

�<b�

!0(�) [y�(�)� E[y�]] dF (�) +

Z

�>b�

!0(�) [y�(�)� E[y�]] dF (�): (31)

There, the terms in the �rst integral are all strictly negative and the terms in the second

integral are all strictly positive. Given strict monotonicity of !0(�), we can thus derive the

upper bound

LS <

Z

�<b�

!0(L(y;b�)) [y�(�)� E[y�]] dF (�) +
Z

�<b�

!0(L(y;b�)) [y�(�)� E[y�]] dF (�)

= !0(L(y;b�))
�Z

�

�
y�(�)�

Z

�

y�(�0)dF (�0)

�
dF (�)

�
= 0.

This determines thus that the right-hand side of (12) is strictly smaller than �, so that

together with the preceding argument we have indeed that � 1 < �. Q.E.D.

Proof of Proposition 2. The Hamiltonian is given by

H = [!(L(�))� �y(�)] f(�) + � [L(�)�K(y � y(�); �)� I0] f(�) + �(�)K2(y � y(�); �);

an optimal solution must satisfy the �rst-order condition for y(�)

f(�) [��+ �K1(y � y(�); �)]� �(�)K12(y � y(�); �) = 0 (32)

and for the costate variable

@H

@L
= ��0(�) , f(�) [!0(L(�)) + �] + �0(�) = 0: (33)

There are no terminal conditions, and the transversality conditions are given by

�(�) = 0; (34)

�(�) = 0: (35)

Using (34) and (35), we thus obtain from integrating (33)

�(�) =

Z �

�

(!0(L(#)) + �) dF (#) = �

Z �

�

(!0(L(#)) + �) dF (#)
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and

� = �

Z �

�

!0(L(#))dF (#) > 1: (36)

Here, � expresses the marginal bene�ts when the economy�s resource constraint was mar-

ginally relaxed (e.g., by some initial endowment that could be allocated by the govern-

ment).

From (18) and the concavity of !(L(�)), we have that !0(L(�)) is increasing in �. Thus,

making use of (36),

�0(�) = f(�)

Z �

�

(!0(L(#))� !0(L(�))) dF (#)

is �rst positive and then negative, i.e., �(�) is �rst increasing and then decreasing. Clearly

the transversality conditions (34) and (35) then imply that �(�) � 0 holds everywhere,

which we use in what follows.

Rearranging now the �rst-order condition for the control y(�) in (32), we have

�K1(y � y(�); �) = �+
�(�)

f(�)
K12(y � y(�); �); (37)

which, using K12(�) < 0, �(�) � 0 and � > 1, implies �rst that

K1(y � y(�); �) < �:

That is, also with nonlinear taxes, externalities are for all types higher than under the

Pigou tax. Moreover, note that it holds only at the boundaries � and � (when they are

�nite) that �(�) = 0 and thus

�K1(y � y(�); �) = � and �K1(y � y(�); �) = �: (38)

Instead, for all other types we have the following:

�K1(y � y(�); �) < � for all � 2 (�; �): (39)

Hence, under the optimal mechanism the marginal abatement costs are highest at the

lowest and at the highest type, when evaluated at the respective choice y(�). We will

�nally analyze how this translates into the respective nonlinear tax scheme �(yi). For this

the following observation is also useful. We obtain

T 0(�) = L0(�)�K2(�) + y
0(�)K1(�)

= y0(�)K1(�) � 0:
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That is, the nonlinear tax on the externality still involves a transfer from low-type agents

to high-type agents, given that T 0(�) � 0 (and strictly so where y0(�) < 0).23

We now substitute �(y) = T (�(y)), where we use �(y) = y�1(y(�)). Note for this that

presently we assume that the optimal mechanism prescribes a strictly decreasing level of

externalities, with y0(�) < 0. That is, while y(�) must be non-increasing from incentive

compatibility, there is also no "bunching" (cf. also Appendix B). From substituting the

obtained characterization, we then have that

� 0(y) = T 0(�)
d�

dy
=
T 0(�)

y0(�)
= K1(y � y; �(y)) (40)

=
1

�

�
�+

�(�(y))

f(�(y))
K12(y � y; �(y))

�
;

such that the marginal tax is always (strictly) positive, but also strictly smaller than the

Pigouvian tax.

Here, as discussed above, the term � > 1 (cf. expression (36)) applies to all types

and creates a �rst wedge between the "Pigou tax" and the marginal tax with outside

�nancing and agency costs. Turn now to the second term in rectangular brackets. As

K12 < 0 (cf. the key "sorting condition" (2)) and as we obtained that �(�) � 0, this

term is negative and now captures the second rationale for why the optimal marginal tax

is strictly lower, namely the ine¢cient redistribution of resources that goes along with

the tax on externalities in our model. Note, however, that �(�) = �(�) = 0 holds at the

boundaries, where under the optimal non-linear tax this e¤ect no longer plays a role (cf.

(38)). However, for all � 2 (�; �) we have that �(�) > 0.

From further di¤erentiating, we obtain next

�� 00(y) = �
�(�)

f(�)
K112 +

d�

dy

�
�(�)

f(�)
K122 +K12

d

d�

�
�(�)

f(�)

��
: (41)

Expression (41) describes how the marginal tax changes. Recall once more from the

transversality conditions (34)-(35) that at the boundaries � and � (when they are �nite)

we have �(�) = 0. Recall that in the main text we have de�ned the lowest and highest

realized level of externalities by yl = y(�) < yh = y(�). Further, recall that �
0 > 0 for low

23In fact, incentive compatibility implies that in both cases, i.e., with linear and nonlinear taxes, the
marginal tax w.r.t. the agent�s type is given by y0(�)K1(�). (For the linear tax we can use that T

0(�) =
�1y

0(�) and that K1(�) = �1.)
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and �0 < 0 for high �, while d�
dy
< 0 (when there is no bunching). Using then

d

d�

�
�(�)

f(�)

�
=

1

f 2(�)
[f(�)�0(�)� f 0(�)�(�)]

we have at the "endpoints"

�� 00(yl) =
d�

dy
K12

�0(�)

f(�)
< 0;

�� 00(yh) =
d�

dy
K12

�0(�)

f(�)
> 0:

In words, under the optimal nonlinear tax �(y), at very high levels of y the marginal

tax � 0(y) > 0 becomes strictly decreasing, while at very low levels of y the marginal tax

is strictly increasing. This completes the characterization of the solution and the proof.

Q.E.D.

Proof of Proposition 3. What remains to be shown is that the characterized mechanism

is globally incentive compatible. Hence, we need to show that, for all � and b� with � > b�,
it holds that

U(�) � U(�;b�):

Using (23) we can rewrite this inequality to obtain

!(L(�))� !(L(b�)) � K(y � y�(b�);b�)�K(y � y�(�); �) + � 1y�(b�)� � 1y�(�):

From U(�) = !(L(�)) together with (25), we then can write equivalently

Z �

b�

dU(')

d'
d' =

Z �

b�

�K2(y � y
�('); ')d'

� �

Z �

b�

dK(y � y�('); ')

d'
d'� � 1

Z �

b�

dy�(')

d'
d';

which can be simpli�ed, using (22), to obtain

�

Z �

b�

K2(y � y
�('); ')d'

� �

Z �

b�

K2(y � y
�('); ')d'+

Z �

b�

(K1(y � y
�('); ')� � 1)| {z }
=0

dy�(')

'
d';

establishing global incentive compatibility. Q.E.D.
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B: Nonlinear Tax with Bunching
In the main text, we assume that the �rst-order approach applies and that y(�), as char-

acterized by (37), is nonincreasing. Di¤erentiating (37) w.r.t. � we obtain

� (K12(y � y(�); �)� y
0(�)K1(y � y(�); �))

=
d

d�

�
�(�)

f(�)

�
K12(y � y(�); �) +

�(�)

f(�)
(K122(y � y(�); �)� y

0(�)K112(y � y(�); �))

and thus

y0(�) =
1�

�(�)
f(�)
K112(�)� �K1(�)

� (42)

�

�
d

d�

�
�(�)

f(�)

�
K12(�) +

�(�)

f(�)
K122(�)� �K12(�)

�
:

If we have for all � 2 � that y0(�), as characterized by (42), is non-positive, then the

�rst-order approach characterizes the optimal nonlinear tax on externalities. If, however,

y0(�) > 0 for some � 2 �, then the �rst-order approach is not valid and the monotonicity

constraint on externalities (y0(�) � 0) has to be taken into account explicitly in the opti-

mization program ("second-order approach").24 This approach is shortly outlined in this

Appendix. The resulting optimal menu will feature "bunching" for some subsets of �.

The problem is to maximize (20), subject to (21), (18), and

w(�) :=
dy(�)

d�
� 0: (43)

In the optimal control problem, we now take w(�) as control and y(�) as (additional) state

variable. The Hamiltonian then reads

H = [!(L(�))� �y(�)] f(�) + � [L(�)�K(y � y(�); �)� I0] f(�)

+�(�)K2(y � y(�); �) + �(�)w(�)� �(�)w(�);

and an optimal solution must satisfy the �rst-order condition

@H

@w
= 0 = �(�)� �(�); (44)

as well as the costate equations

@H

@L
= ��0(�) = f(�) [!0(L(�)) + �] ; (45)

@H

@y
= �� 0(�) = f(�) [��+ �K1(y � y(�); �)]� �(�)K12(y � y(�); �): (46)

24Cf. Guesnerie and La¤ont (1984) or, in the context of optimal nonlinear income taxation, Ebert
(1992).
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The transversality conditions are given by

�(�) = �(�) = 0; (47)

�(�) = �(�) = 0; (48)

and we have the complementary slackness condition

�(�) � 0 (= 0; if w(�) < 0): (49)

Note �rst that (45) is exactly the same as (33), so that we can conclude that, again, � >

1, and �(�) � 0, with �0(�) �rst positive and then negative.25 Further, if the monotonicity

constraint is not binding on some interval, w(�) < 0, then we must have �(�) = 0 on this

interval, and, thus, y(�) is determined from

�K1(y � y(�); �) = �+
�(�)

f(�)
K12(y � y(�); �); (50)

which coincides with (37).

Now consider an interval [�0; �1] where the monotonicity constraint (43) is binding.
26

Then, y(�) is constant on this interval. Denote this value by ey. Integrating (46) and noting
that �(�0) = �(�1) = 0 by continuity, we obtain

Z �1

�0

[[��+ �K1(y � ey; �)] f(�)� �(�)K12(y � ey; �)] d� = 0:

This equation, together with the continuity requirement y(�0) = y(�1) = ey jointly deter-
mines �0; �1; and ey. Finally, observe that the optimal nonlinear tax function �(y) will then
have a kink at ey. Else, it is still determined from (40); and Proposition 2 remains valid as
long as there is no bunching at � or �.

25Note, however, that the exact values of � and �(�) will in general di¤er from those in the case of no
bunching.
26The extension to several possible intervals of bunching is straightforward.
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C: Non-linear Tax with Loan-Based Grant
As in Section 6, government policy can be made contingent on both the level of externalities

as well as the amount of �nancing that is raised by each agent. We stipulate now that the

government is no longer restricted to a constant marginal tax on externalities. Thus, the

mechanism prescribes, in addition to the transfer T (�), also (a general) y(�).27 Denote by

U(�;b�) the payo¤ of a �rm of type � reporting b� � �, which is given by

U(�;b�) = !
�
L(b�)

�
+K(y � y(b�);b�)�K(y � y(b�); �): (51)

Again, we only consider downwards incentive compatibility constraints for this relaxed

problem. (In equilibrium, deviating "upwards" by pretending to be a higher type will

indeed not be feasible, given the prescribed L(�).) There are no incentives to deviate

locally when28

dU(�)

d�
�
@U(�;b�)
@�

�����
b�=�

= �K2(y � y(�); �) > 0 when y(�) > 0. (52)

As the government will �nd it optimal to redistribute as much as possible to lower-type

agents, by optimality this will hold with equality.29 Comparing (52) with (17) clearly

shows the bene�ts from linking transfers to the amount of �nancing raised by agents, in

that, for any given schedule y(�), the function U(�) can be made �atter, thus, reducing

ine¢cient redistribution to higher types.

Again, it is convenient to take

L(�) = I0 +K(y � y(�); �) + T (�)

as the state variable. Then, from dU
d�
= �K2(�) and U

0(�) = !0(L(�))L0(�) we have the law

of motion

L0(�) = �
K2(y � y(�); �)

!0(L(�))
:

27Then, from L(�) = I0+K(y�y(�); �)+T (�), also the size of the loan is pinned down for any (truthfull)
report �. Note that, in contrast to Section 5, this also holds o¤ equilibrium, i.e., when reporting to be of
type b�, the loan that can be raised is the same, L(�;b�) = L(b�), independent of the true type �, as L(�) is
observable and can be prescribed by the government.
28We further require the optimal schedule y(�) to be nonincreasing, which is assumed throughout this

Appendix. We thus take a �rst-order approach.
29Formally, this can be shown by introducing an additional control that accounts for a possible slack in

(52).
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The Hamiltonian is given by

H = [!(L(�))� �y(�)] f(�) + � [L(�)�K(y � y(�); �)� I0] f(�)� �(�)
K2(y � y(�); �)

!0(L(�))
;

so that the optimality condition for y(�) is, in analogy to condition (37),

�K1(y � y(�); �) = ��
�(�)

f(�)

K12(y � y(�); �)

!0(L(�))
: (53)

A comparison of (53) with (37) again shows the di¤erence when transfers can be based

on the (minimum) loan that agents raise. Then, for a given schedule y(�) it is incentive

compatible to make the strictly decreasing schedule of loan volume L(�) �atter, namely

through an equally �atter T (�), thereby reducing redistribution to high-type agents.

To complete the characterization, we have

[!0(L(�)) + �] f(�) + �(�)
K2(y � y(�); �)!

00(L(�))

(!0(L(�)))2
= ��0(�)

next to the transversality conditions

�(�) = �(�) = 0:

Taken together, the resulting di¤erential equation in � can be integrated to obtain

�(�) =

Z �

�

�
exp

�Z #

�

K2(y � y(�); �)!
00(L(�))

(!0(L(�)))2
d�

�
[!0(L(#)) + �] f(#)

�
d#

= �

Z �

�

�
exp

�Z #

�

K2(y � y(�); �)!
00(L(�))

(!0(L(�)))2
d�

�
[!0(L(#)) + �] f(#)

�
d#;

which implies

Z �

�

�
exp

�Z #

�

K2(y � y(�); �)!
00(L(�))

(!0(L(�)))2
d�

�
[!0(L(#)) + �] f(#)

�
d# = 0;

and, hence, together with !0(�) < �1 that � > 1. Further �(�) is again hump-shaped.
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D: Taxes on Output
As we argued in the main text, when loan-based grants are feasible there is no role

for taxes on output. As we show now, however, in the absence of loan-based grants taxes

on output together with taxes on externalities can improve e¢ciency by compensating for

the redistribution that the latter tax induces in the �rst place. This reduces aggregate

ine¢ciency that arises from external �nancing due to the underlying agency problem.

Suppose thus that the government speci�es, in addition to a linear tax on externalities,

also a tax z � x on (high) output as well as a (potentially negative) tax z in case output

is low.30 More generally, a contract with an investor now stipulates repayments (one

potentially negative) in case of low or high output, R and R, where R � x � z and

R � �z. The agent then chooses e¤ort e to maximize

p(e)
�
x� z �R

�
� (1� p(e)) (z +R)� c(e);

giving rise to the �rst-order condition

p0(e�)
�
x� (z � z)�

�
R�R

��
� c0(e�) = 0:

Our argument below will be restricted to show that there will always be some re-

distribution through an output tax. Consequently, we only consider (arbitrarily) small

taxes. Then, as the total payo¤ from the enterprise is still almost completely distributed

between the agent and the outside investor, it follows from standard arguments that opti-

mally R = �z. Hence, with R as remaining contractual variable, an investor�s break-even

requirement is given by

p(e�)R� (1� p(e�)) z = L;

and we have the agent�s expected surplus given by

! = p(e�) (x� (z � z))� L� z � c(e�):

For notational simplicity de�ne z := (z � z) and note that z, which is used to reduce the

�nancing requirement L, can be subsumed into the constant part of the tax on externalities

� 0. The aggregate budget balancing transfer � 0 thus solvesZ

�

[� 0 + � 1y
�(�) + zp(e�(�)))] dF (�) = 0; (54)

with y�(�) still given by (8).

30Importantly, this can not condition on the subsequently agreed repayment R with the respective
investors, which would proxy for making the mechanism contingent on the size of external �nance (cf.,
however, Section 6).
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Optimal Output Taxation. Substituting for � 0 from (54), the government solves the

program

max
�1;z

Z

�

[p(e�(�)) (x� z)� L(�)� c(e�(�))� �y�(�)] dF (�)

with

L(�) = I0 +K(y � y
�(�); �) + � 1y

�(�)�

Z

�

[� 1y
�(�) + zp(e�(�))] dF (�):

The optimal tax rate on the externality and on output are then determined from

� 1

Z

�

[��(�)] dF (�) = ��
1

R
�

h
@y�(�)
@�1

i
dF (�)

Z

�

�
�(�)

�
y�(�)�

Z

�

y�(�)dF (�)

��
dF (�)

(55)

and Z

�

�
�(�)

�
p(e�(�))�

Z

�

p(e�(�))dF (�)

��
dF (�) = 0; (56)

respectively, where we have used

�(�) := �

0
B@1�

p0(e�(�))
p(e�(�))

(p0(e�(�))x� c0(e�(�)))

p00(e�(�))
�
x� L(�)

p(e�(�))

�
� c00(e�(�)) +

�
p0(e�(�))
p(e�(�))

�2
(L(�)� p(e�(�))z)

1
CA < �1:

We focus now on the optimal output tax. Further, as noted above, we restrict our-

selves to showing that - in the absence of loan-based grants - there will always be such

redistribution through output taxes.

Proposition. In the absence of loan-based grants, the optimal output tax, z, will always

be strictly positive.

Proof. Note �rst that, for z = 0, we have �(�) = !0(L(�)). Hence, (55) simpli�es to

(12) for z = 0. To prove the Proposition, we show the following result: The derivative

of utilitarian welfare with respect to z, as given by the left-hand-side of (56), is strictly

positive at z = 0.

To see this note �rst that d
d�
!0(L(�)) = !00(L(�))L0(�) > 0 while e�(�) is increasing in

�. Hence, there exists a type e� such that
Z

�

�
!0(L(�))

�
p(e�(�))�

Z

�

p(e�(�))dF (�)

��
dF (�)

=

Z

�<e�

[!0(L(�)) (p(e�(�))� E [p(e�(�))])] dF (�)

+

Z

�>e�

[!0(L(�)) (p(e�(�))� E [p(e�(�))])] dF (�);
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where the terms in the �rst integral are all strictly positive and the terms in the second

integral are all strictly negative. Therefore, we have �nally that indeed

Z

�<e�

[!0(L(�)) (p(e�(�))� E [p(e�(�))])] dF (�)

+

Z

�>e�

[!0(L(�)) (p(e�(�))� E [p(e�(�))])] dF (�)

>

Z

�<e�

h
!0(L(e�)) (p(e�(�))� E [p(e�(�))])

i
dF (�)

+

Z

�>e�

h
!0(L(e�)) (p(e�(�))� E [p(e�(�))])

i
dF (�)

= 0:

Q.E.D.
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