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Abstract

In this note, we explore the different implications of patent breadth and R&D
subsidies on economic growth and endogenous market structure in a Schumpeterian
growth model. We find that when the number of firms is fixed in the short run, patent
breadth and R&D subsidies serve to increase economic growth as in previous studies.
However, when market structure adjusts endogenously in the long run, R&D subsidies
increase economic growth but decrease the number of firms, whereas patent breadth
expands the number of firms but reduces economic growth. Therefore, in accordance
with empirical evidence, R&D subsidy is perhaps a more suitable policy instrument
than patent breadth for the purpose of stimulating long-run economic growth.
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1 Introduction

What are the different implications of patent breadth and R&D subsidies on economic growth
and market structure? To explore this question, we consider a second-generation R&D-based
growth model, pioneered by Peretto (1998), Young (1998), Howitt (1999) and Segerstrom
(2000). To our knowledge, this is the first study that analyzes patent breadth in a second-
generation R&D-based growth model. The model features two dimensions of technological
progress. In the vertical dimension, firms improve the quality of existing products. In
the horizontal dimension, firms invent new products. In this Schumpeterian growth model
with endogenous market structure (EMS) measured by the equilibrium number of firms, we
find some interesting differences between patent breadth and R&D subsidies. At the first
glance, these two policy instruments should have similar effects on innovation and economic
growth. Patent breadth improves incentives for innovation by increasing the private return
to R&D investment, whereas R&D subsidies improve incentives for innovation by reducing
the private cost of R&D investment. Previous studies, such as Grossman and Helpman
(1991), Segerstrom (1998), Li (2001), Zeng and Zhang (2007) and Iwaisako and Futagami
(2013), often find that these two policy instruments have positive effects on innovation in
R&D-based growth models. However, in a Schumpeterian growth model with EMS, we find
that patent breadth and R&D subsidies have drastically different implications on economic
growth and market structure. Specifically, when the number of firms is fixed in the short
run, patent breadth and R&D subsidies both have positive effects on economic growth as in
previous studies. Interestingly, when market structure adjusts endogenously in the long run,
patent breadth expands the number of firms but decreases economic growth, whereas R&D
subsidies increase economic growth but reduce the number of firms.
Intuitively, R&D subsidies decrease the cost of R&D investment and improve incentives

for R&D; therefore, a higher rate of R&D subsidies increases economic growth in the short
run and in the long run. As for an increase in patent breadth, it raises the profit margin of
monopolistic firms and provides more incentives for R&D in the short run. In the long run, it
encourages the entry of new firms, which in turn reduces the market size of each firm. Given
that the market size of a firm determines its incentives for innovation in the second-generation
R&D-based growth model,1 a larger patent breadth decreases long-run economic growth.
These contrasting long-run implications of patent breadth and R&D subsidies suggest that
R&D subsidy is perhaps a more suitable policy instrument than patent breadth for the
purpose of stimulating long-run economic growth. The negative effect of patent protection
on innovation is consistent with the evidence discussed in Jaffe and Lerner (2004), Bessen and
Meurer (2008) and Boldrin and Levine (2008). As for the positive effect of R&D subsidies
on innovation, it is also consistent with empirical evidence; see for example, Hall and Van
Reenen (2000) for a survey of empirical studies.
This study relates to the literature on R&D-driven economic growth; see Romer (1990),

Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992) for
seminal studies. Subsequent studies in this literature often apply variants of the R&D-based
growth model to analyze the effects of policy instruments, such as R&D subsidies and patent

1Laincz and Peretto (2006) provide empirical evidence for a positive relationship between average firm
size and economic growth. See also Ha and Howitt (2007) and Madsen (2008) for other empirical studies
that support the second-generation R&D-based growth model.
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breadth, on economic growth and innovation; see for example, Segerstrom (1998, 2000), Li
(2001), Goh and Olivier (2002), Lin (2002), Zeng and Zhang (2007), Chu (2011), Chu and
Furukawa (2011) and Iwaisako and Futagami (2013).2 However, these studies do not analyze
the effects of patent policy on market structure.3 Therefore, the present study contributes
to the literature with a novel analysis of patent breadth in a Schumpeterian growth model
in which market structure is endogenous. Furthermore, we compare the effects of patent
breadth and R&D subsidies and find that in a Schumpeterian growth model with EMS, the
long-run effects of patent breadth and R&D subsidies are drastically different suggesting the
importance of taking into consideration the endogeneity of market structure when performing
policy analysis in R&D-based growth models. O’Donoghue and Zweimuller (2004), Horii and
Iwaisako (2007), Furukawa (2007, 2010), Chu (2009), Chu et al. (2012) and Chu and Pan
(2013) also find that increasing the strength of other patent policy levers, such as blocking
patents and patentability requirement, could have a negative effect on economic growth. The
present study differs from these previous studies that mostly focus on the long-run effects
of patent policy and contributes to the literature by showing that EMS leads to different
short-run and long-run implications of patent protection on economic growth.
The rest of this note is organized as follows. Section 2 presents the Schumpeterian growth

model with EMS. Section 3 analyzes the effects of patent breadth and R&D subsidies. Section
4 concludes.

2 A Schumpeterian growth model with EMS

In summary, the growth-theoretic framework is based on the Schumpeterian model with in-
house R&D and EMS in Peretto (2007, 2011). In this model, labor is used as a factor input
for the production of final goods. Final goods are either consumed by the household or used
as a factor input for R&D, entry and the production of intermediate goods. We incorporate
patent breadth into the model and analyze its different implications from R&D subsidies on
economic growth and market structure. In our analysis, we provide a complete closed-form
solution for the balanced growth path and transition dynamics.

2.1 Household

In the economy, the population size is normalized to unity, and there is a representative
household who has the following lifetime utility function:

U =

∞∫

0

e−ρt lnCtdt, (1)

2For studies that explore the effects of patent length on economic growth, see for example Iwaisako and
Futagami (2003), Futagami and Iwaisako (2007), Lin (2014) and Zeng et al. (2014).

3See Peretto (1996, 1999) for seminal studies in the R&D-based growth model with EMS and Etro (2012)
for an excellent textbook treatment of this topic.
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where Ct denotes consumption of final goods (numeraire) at time t. The parameter ρ > 0
determines the rate of subjective discounting. The household maximizes (1) subject to the
following asset-accumulation equation:

Ȧt = rtAt + (1− τ)wtL− Ct. (2)

At is the real value of assets owned by the household, and rt is the real interest rate. The
household has a labor endowment of L units and supplies them inelastically to earn a real
wage rate wt. The household also pays a wage-income tax τwtL to the government. From
standard dynamic optimization, the familiar Euler equation is

Ċt
Ct
= rt − ρ. (3)

2.2 Final goods

We follow Aghion and Howitt (2005, 2008) and Peretto (2007, 2011) to assume that final
goods Yt are produced by competitive firms using the following production function:

4

Yt =

∫ Nt

0

Xθ
t (i)[Z

α
t (i)Z

1−α
t L/Nt]

1−θdi, (4)

where {θ, α} ∈ (0, 1) and Xt(i) denotes intermediate goods i ∈ [0, Nt]. The productivity
of intermediate good Xt(i) depends on its quality Zt(i) and also on the average quality

Zt ≡
1
Nt

∫ Nt
0
Zt(i)di of all intermediate goods capturing R&D spillovers. The degree of

technology spillovers is determined by 1 − α. From profit maximization, the equilibrium
wage rate is determined by

wt = (1− θ)Yt/L, (5)

and the conditional demand function for Xt(i) is

Xt(i) =

(
θ

pt(i)

)1/(1−θ)
Zαt (i)Z

1−α
t L/Nt, (6)

where pt(i) is the price ofXt(i) and the price of Yt is normalized to unity. Perfect competition

implies that final goods producers pay θYt =
∫ Nt
0
pt(i)Xt(i)di to intermediate goods firms.

4Peretto (2007, 2011) consider a slightly different production function that replaces L/Nt by lt(i), which
denotes labor that uses intermediate goods Xt(i). Given that lt(i) = L/Nt in equilibrium, we follow Aghion
and Howitt (2005, 2008) to consider the specification with L/Nt, which has the advantage of being general-
izable. Peretto (2013) considers a more general specification with L/Nσ

t
, where σ ∈ (0, 1) inversely measures

the social return to varieties. Our results are robust to this generalization because even under a positive
social return to varieties, increasing the number of varieties affects the level of output and its growth rate
only in the short run but has no effect on its long-run growth rate. Derivations are available upon request.
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2.3 Intermediate goods and in-house R&D

Existing intermediate goods firms produce differentiated goods with a technology that re-
quires one unit of final goods to produce one unit of intermediate goods Xt(i). Following
Peretto (2011), we assume that the firm in industry i incurs φZt units of final goods as a fixed
operating cost, where Zt is aggregate technology as defined above. This specification implies
that managing facilities are more expensive to operate in a technologically more advanced
economy. To improve the quality of its products, the firm invests Rt(i) units of final goods
in R&D. The innovation process is

Żt(i) = Rt(i). (7)

The value of the monopolistic firm in industry i is

Vt(i) =

∫
∞

t

exp

(
−

∫ u

t

rvdv

)
πu(i)du. (8)

The dividend flow πt(i) at time t is

πt(i) = [pt(i)− 1]Xt(i)− φZt − (1− s)Rt(i), (9)

where the parameter s ∈ (0, 1) is the rate of R&D subsidies. The monopolistic firmmaximizes
(8) subject to (6) and (7). The current-value Hamiltonian for this optimization problem is

Ht(i) = πt(i) + λt(i)Żt(i). (10)

We solve this optimization problem in the Appendix and find that the unconstrained profit-
maximizing markup ratio is 1/θ. To analyze the effects of patent breadth, we impose an
upper bound µ > 1 on the markup ratio.5 Therefore, the equilibrium price becomes

pt(i) = min {µ, 1/θ} . (11)

For the rest of this study, we assume that µ < 1/θ. In this case, a larger patent breadth µ
leads to a higher markup, and this implication is consistent with Gilbert and Shapiro’s (1990)
seminal insight on “breadth as the ability of the patentee to raise price”. Finally, the return
to in-house R&D is increasing in the market size of each firm measured by employment per
variety L/Nt.

Lemma 1 The return to in-house R&D is given by

rt =
α

1− s

[

(µ− 1)

(
θ

µ

)1/(1−θ)
L

Nt

]

. (12)

Proof. See the Appendix.

5Intuitively, the presence of monopolistic profits attracts potential imitators. However, stronger patent
protection increases the production cost of imitative products and allows monopolistic firms to charge a
higher markup without losing market share to these potential imitators; see also Li (2001), Goh and Olivier
(2002), Chu (2011), Chu and Furukawa (2011) and Iwaisako and Futagami (2013) for a similar formulation.
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2.4 Entrants

A firm that is active at time t must have been born at some earlier date. Following the
standard treatment in the literature, we consider a symmetric equilibrium in which Zt(i) = Zt
for i ∈ [0, Nt], by assuming that any new entry at time t has access to the level of aggregate
technology Zt.

6 A new firm pays a setup cost Xt(i)F , where F > 0 is a cost parameter, to
set up its operation and introduce a new variety of products to the market.7 We refer to this
process as entry. Suppose entry is positive (i.e., Ṅt > 0). The no-arbitrage condition is

8

Vt(i) = Xt(i)F . (13)

The familiar Bellman equation implies that the return to entry is

rt =
πt
Vt
+
V̇t
Vt
. (14)

2.5 Government

The government chooses an exogenous rate of R&D subsidies s ∈ (0, 1). The government
collects tax revenue Tt from the household, and the amount of tax revenue is

Tt = τwtL = τ(1− θ)Yt, (15)

where τ ∈ (0, 1) is an exogenous tax rate on wage income. The balanced-budget condition is

Tt = Gt + s

∫ Nt

0

Rt(i)di, (16)

where Gt is unproductive government consumption that changes endogenously to balance
the fiscal budget as in Peretto (2007).

2.6 General equilibrium

The equilibrium is a time path of allocations {At, Ct, Yt, Xt(i), Rt(i)} and prices {rt, wt, pt(i), Vt(i)}
such that the following conditions are satisfied:

• the household maximizes utility taking {rt, wt} as given;

6See Peretto (1998, 1999, 2007) for a discussion of the symmetric equilibrium being a reasonable equilib-
rium concept in this class of models.

7The setup cost is proportional to the new firm’s initial volume of output. This assumption captures
the idea that the setup cost depends on the amount of productive assets required to start production; see
Peretto (2007) for a discussion.

8We follow the standard approach in this class of models to treat entry and exit symmetrically (i.e., the
scrap value of exiting an industry is also Xt(i)F ); therefore, Vt(i) = Xt(i)F always holds. If Vt(i) > Xt(i)F
(Vt(i) < Xt(i)F ), then there would be an infinite number of entries (exits).
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• competitive final goods firms maximize profits taking {pt(i), wt} as given;

• incumbents in the intermediate goods sector choose {pt(i), Rt(i)} to maximize {Vt(i)}
taking {rt} as given;

• entrants make entry decisions taking {Vt(i)} as given;

• the value of all existing monopolistic firms adds up to the value of the household’s
assets such that At = NtVt; and

• the market-clearing condition of final goods holds.

The market-clearing condition of final goods is

Yt = Ct +Nt(Xt + φZt +Rt) + ṄtXtF +Gt. (17)

Substituting (6) into (4) and imposing symmetry yield the aggregate production function:9

Yt = (θ/µ)
θ/(1−θ) ZtL, (18)

which also uses markup pricing pt(i) = µ.
We now analyze the dynamics of the economy. In the Appendix, we show that the

consumption-output ratio Ct/Yt jumps to a unique and stable steady-state value. This
equilibrium property simplifies the analysis of transition dynamics.

Lemma 2 The consumption-output ratio jumps to a unique and stable steady-state value:

(C/Y )∗ = (1− τ)(1− θ) +
ρθF

µ
. (19)

Proof. See the Appendix.

Equations (18) and (19) imply that for any given µ and τ ,

Żt
Zt
=
Ẏt
Yt
=
Ċt
Ct
= rt − ρ, (20)

where the last equality uses the Euler equation in (3). Combining (12) and (20), we derive
the equilibrium growth rate given by

gt ≡
Żt
Zt
= max

{
α

1− s

[

(µ− 1)

(
θ

µ

)1/(1−θ)
L

Nt

]

− ρ, 0

}

, (21)

9As discussed in footnote 4, introducing a social return to varieties would not change our results.
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which is increasing in the market size of each firm measured by employment per variety
L/Nt.

10 From (21), the growth rate gt is strictly positive if and only if

Nt < N ≡
α(µ− 1) (θ/µ)1/(1−θ) L

(1− s)ρ
.

Intuitively, innovation requires each firm’s market size to be large enough so that it is prof-
itable for firms to do in-house R&D. A sufficient market size requires the number of firms to
be below a critical level N . If Nt > N , then there are too many firms diluting the return to
R&D. As a result, firms do not invest in R&D, and the growth rate of vertical innovation is
zero. In the Appendix, we provide the derivations of the dynamics of Nt, which is a state
variable.

Lemma 3 The dynamics of Nt is determined by a one-dimensional differential equation:
11

Ṅt
Nt
=






µ−1
F
−
[
φ+ (1− s) Żt

Zt

]
Nt/L

(θ/µ)1/(1−θ)F
− ρ if Nt < N

µ−1
F
− φ Nt/L

(θ/µ)1/(1−θ)F
− ρ if Nt > N





. (22)

Proof. See the Appendix.

The differential equation in (22) shows that given any initial value, Nt gradually converges
to its steady-state value denoted as N∗.12 On the transition path, the number of firms
determines each firm’s market size L/Nt and the equilibrium growth rate gt according to
(21). When Nt evolves toward the steady state, gt also gradually converges to its steady-
state value g∗. The following proposition derives the steady-state values {N∗, g∗}.

Proposition 1 Under the parameter restrictions ρ < min {φ/(1− s), (1− α)(µ− 1)/F},13

the economy is stable and has a positive and unique steady-state value of Nt. The steady-state
values {N∗, g∗} are given by

N∗(µ
+
, s
−

) =

[
(1− α)

µ− 1

µ1/(1−θ)
−

ρF

µ1/(1−θ)

]
θ1/(1−θ)

φ− (1− s)ρ
L > 0, (23)

g∗(µ
−

, s
+
) =

α(µ− 1)

(1− α)(µ− 1)− ρF

(
φ

1− s
− ρ

)
− ρ > 0. (24)

Proof. See the Appendix.

10Considering data on employment, R&D personnel, and the number of establishments in the US for the
period from 1964 to 2001, Laincz and Peretto (2006) provide empirical evidence that is consistent with the
theoretical prediction from this class of models that economic growth is increasing in average firm size.
11It is useful to note that Żt/Zt is a function of Nt given by (21).
12In this model, we have assumed zero population growth, so that Nt converges to a steady state. If we

assume positive population growth, it would be the number of firms per capita that converges to a steady
state instead, and our main results would be unchanged.
13These parameter restrictions would depend on a larger set of parameters if we parameterize R&D pro-

ductivity in (7) and the productivity in producing intermediate goods from final goods. For simplicity, we
have implicitly normalized these productivity parameters to unity.
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3 Patent breadth versus R&D subsidies

In this section, we analyze the effects of patent breadth and R&D subsidies. In Section 3.1,
we analyze the effects of patent breadth on the number of firms, the market size of each firm
and economic growth. In Section 3.2, we analyze the effects of R&D subsidies. In Section
3.3, we introduce a subsidy to entry and explore its effects.

3.1 Effects of patent breadth

In this subsection, we analyze the effects of patent breadth. Equation (21) shows that the
initial impact of a larger patent breadth µ on the equilibrium growth rate gt is positive be-
cause Nt is fixed in the short run. This result captures the standard positive effects of patent
breadth on monopolistic profits and innovation as in previous studies, such as Li (2001), Chu
(2011), Chu and Furukawa (2011) and Iwaisako and Futagami (2013). However, in the long
run, market structure is endogenous and the number of firms adjusts. In particular, the
higher profit margin attracts the entry of firms, which in turn reduces each firm’s market
size L/Nt and decreases incentives for innovation. This negative entry effect dominates the
positive profit-margin effect such that the steady-state equilibrium growth rate g∗ becomes
lower than the original steady-state level. Therefore, allowing for the endogeneity of market
structure, the present study extends previous studies in the literature by demonstrating the
contrasting short-run and long-run effects of patent breadth on economic growth. Proposi-
tion 2 summarizes the results. Figures 1 and 2 plot the transition paths of {gt, Nt} when µ
increases at time t.

Proposition 2 The initial effect of a larger patent breadth on economic growth is positive

as a result of increased monopolistic profits. In the long run, higher profit margin attracts the

entry of firms and reduces the market size of each firm. The smaller market size decreases

incentives for innovation and the steady-state growth rate.

Proof. Equation (21) shows that for a given Nt, ∂gt/∂µ > 0. Equations (23) and (24) show
that ∂N∗/∂µ > 0 and ∂g∗/∂µ < 0.

[Insert Figures 1 and 2 here]

3.2 Effects of R&D subsidies

In this subsection, we analyze the effects of R&D subsidies. Equation (21) shows that the
initial impact of a higher rate of R&D subsidies s on the equilibrium growth rate gt is positive
givenNt. On the transition path, the higher rate of R&D subsidies makes in-house R&Dmore
attractive relative to entry. As a result, resources reallocate from entry to in-house R&D,
and the number of firms decreases. The smaller number of firms increases each firm’s market
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size, which further improves incentives for in-house R&D. This positive market-size effect
strengthens the initial positive effect of R&D subsidies such that the steady-state equilibrium
growth rate g∗ increases further above the initial level. Therefore, the endogeneity of market
structure amplifies the positive effects of R&D subsidies on economic growth. Peretto (1998)
and Segerstrom (2000) also analyze the effects of R&D subsidies in a second-generation
Schumpeterian growth model. Segerstrom (2000) finds that R&D subsidies can have either
a positive or negative effect on economic growth, and this interesting result is driven by
the tradeoff between quality improvement and variety expansion on economic growth. In
contrast, economic growth is solely based on quality improvement in the present study and
in Peretto (1998), who also finds a positive effect of R&D subsidies on economic growth.
Peretto and Connolly (2007) provide a theoretical justification that quality improvement is
the only plausible engine of economic growth in the long run. Proposition 3 summarizes the
results. Figures 3 and 4 plot the transition paths of {gt, Nt} when s increases at time t.

Proposition 3 The initial effect of a higher rate of R&D subsidies on economic growth is

positive. In the long run, firms exit the market, and the market size of each firm increases.

The larger market size further strengthens incentives for innovation and increases the steady-

state growth rate.

Proof. Equation (21) shows that for a given Nt, ∂gt/∂s > 0. Equations (23) and (24) show
that ∂N∗/∂s < 0 and ∂g∗/∂s > 0.

[Insert Figures 3 and 4 here]

3.3 Extension: Effects of entry subsidies

In this subsection, we extend the baseline model by allowing for a subsidy to entry denoted
by e ∈ (0, 1). In this case, the entry condition in (13) becomes

Vt(i) = (1− e)Xt(i)F . (25)

Furthermore, the government’s balanced-budget condition is modified to

Tt = Gt + s

∫ Nt

0

Rt(i)di+ eṄtXtF . (26)

The rest of the model is the same as before. Following the same procedures as before,14 we
derive the same equilibrium growth rate in (21) and the steady-state equilibrium number of
varieties given by

N∗(e
+
) =

[
(1− α)

µ− 1

µ1/(1−θ)
−
(1− e)ρF

µ1/(1−θ)

]
θ1/(1−θ)

φ− (1− s)ρ
L > 0, (27)

14Derivations are available upon request.
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which is naturally increasing in the entry subsidy rate e. Given that the equilibrium growth
rate is given by (21) as before and does not directly depend on e, an increase in entry subsidies
does not affect economic growth initially. However, given that entry subsidies attract the
entry of firms and reduce the market size of each firm, the equilibrium growth rate gradually
decreases during the transition path and converges to a lower steady-state value.

[Insert Figure 5 here]

If we think of entry as horizontal R&D, then this analysis implies that horizontal R&D
subsidies can be harmful to economic growth, and this finding is consistent with Peretto
(2007). In other words, in order for R&D subsidies to have a positive effect on economic
growth, policymakers need to design a subsidy (or tax-deduction) system that distinguishes
between different types of R&D activities.
For the rest of this subsection, we consider symmetric R&D and entry subsidies by setting

e = s = s. Given that entry subsidies e have no effect on the initial growth rate, an increase
in s must have the same initial positive effect on the growth rate gt as R&D subsidies. As
for the long-run effect on the number of firms, (27) becomes

N∗(s) =

[
(1− α) (µ− 1)− (1− s)ρF

φ− (1− s)ρ

](
θ

µ

)1/(1−θ)
L > 0, (28)

which is decreasing (increasing) in s if the following inequality holds:

(1− α) (µ− 1) > (<) φF .

If N∗ is decreasing in s, then the long-run effect of s on g∗ must be positive, which we refer to
as case 1 in Figure 6. If N∗ is increasing in s, then a higher rate of subsidies s would have a
negative indirect effect on long-run growth through entry partly offsetting the positive direct
effect of s on growth. We refer to the case in which the positive direct effect dominates (is
dominated by) the negative indirect effect as case 2 (case 3) in Figure 6.

[Insert Figure 6 here]

Substituting (28) into (21) yields

g =
α(µ− 1)

1− s︸ ︷︷ ︸
direct effect of s

φ− (1− s)ρ

(1− α) (µ− 1)− (1− s)ρF︸ ︷︷ ︸
indirect effect of s

− ρ, (29)

which is increasing in s if and only if the following inequality holds:15

φ (1− α) (µ− 1)− (1− s)[2φ− (1− s)ρ]ρF > 0.

Given the parameter restriction φ/(1− s) > ρ in Proposition 1, this inequality holds if ρ is
sufficiently small. In other words, the overall long-run growth effect of symmetric R&D and
entry subsidies s is generally ambiguous. If the discount rate ρ is sufficiently small, then an
increase in s would have a positive effect on long-run growth.

15It can be shown that (1− α) (µ− 1) > φF is sufficient (but not necessary) for this inequality to hold.
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4 Conclusion

In this note, we have explored the different implications of two important policy instruments,
patent breadth and R&D subsidies, on economic growth and market structure in a scale-
invariant Schumpeterian growth model with EMS. We find that when the number of firms is
fixed in the short run, patent breadth and R&D subsidies serve to increase economic growth
as in previous studies. However, when market structure adjusts endogenously in the long
run, these two commonly discussed policy instruments have surprisingly opposing effects
on economic growth and market structure. Specifically, patent breadth decreases economic
growth but expands the number of firms, whereas R&D subsidies reduce the number of firms
but increase economic growth. These contrasting effects of patent breadth and R&D subsidies
suggest that R&D subsidy is perhaps a more suitable policy instrument than patent breadth
for the purpose of stimulating economic growth. This finding is consistent with evidence
from empirical studies and case studies discussed in the introduction. Given our result that
the endogeneity of market structure leads to different short-run and long-run effects of patent
breadth, it is important for policymakers to take into consideration the different implications
of patent policy reform across time horizons.
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Appendix

Proof of Lemma 1. Substituting (6), (9) and the constraint pt(i) ≤ µ into (10) yields

Ht(i) = [pt(i)−1]

(
θ

pt(i)

)1/(1−θ)
Zαt (i)Z

1−α
t L/Nt−φZt−(1−s)Rt(i)+λt(j)Rt(i)+ηt(j)[pt(i)−µ],

(A1)
where ηt(j) is the multiplier on pt(i) ≤ µ and ηt(j) = 0 if pt(i) < µ. The first-order conditions
include

∂Ht(i)

∂pt(i)
= 0⇔ pt(i) = min {µ, 1/θ} , (A2)

∂Ht(i)

∂Rt(i)
= 0⇔ λt(i) = 1− s, (A3)

∂Ht(i)

∂Zt(i)
= α[pt(i)− 1]

(
θ

pt(i)

)1/(1−θ)
Zα−1t (i)Z1−αt L/Nt = rtλt(i)− λ̇t(i). (A4)

Substituting (A3) and the constrained monopolistic price pt(i) = µ < 1/θ from (A2) into
(A4) yields

rt =
α

1− s

[

(µ− 1)

(
θ

µ

)1/(1−θ)
L

Nt

]

, (A5)

where we have also applied the symmetry condition Zt(j) = Zt.

Proof of Lemma 2. Substituting Vt = XtF from (13) into At = NtVt yields

At = NtXtF =
ptNtXt

pt
F =

θYt
µ
F , (A6)

where the last equality uses pt = µ and ptXtNt = θYt. Using (A6) and (2), we obtain

Ẏt
Yt
=
Ȧt
At
= rt + µ

(1− τ)wtL− Ct
θYtF

. (A7)

Substituting the Euler equation and wtL = (1− θ)Yt into (A7) yields

Ċt
Ct
−
Ẏt
Yt
= µ

Ct/Yt
θF

−

[
µ
(1− τ)(1− θ)

θF
+ ρ

]
. (A8)

Therefore, the dynamics of Ct/Yt is characterized by saddle-point stability such that Ct/Yt
must jump to its steady-state value in (19).

Proof of Lemma 3. Substituting (9), (13) and pt(i) = µ into (14) yields

rt =
µ− 1

F
−
φZt + (1− s)Rt

XtF
+
Ẋt

Xt

, (A9)
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where we have applied V̇t/Vt = Ẋt/Xt. Substituting pt(i) = µ into (6) yields

Xt =
Zt
Nt

(
θ

µ

)1/(1−θ)
L, (A10)

where we have applied Zt(i) = Zt. Substituting (7) and (A10) into (A9) yields

rt =
µ− 1

F
−

[

φ+ (1− s)
Żt
Zt

]
Nt/L

(θ/µ)1/(1−θ) F
+
Żt
Zt
−
Ṅt
Nt
, (A11)

where we have used Ẋt/Xt = Żt/Zt−Ṅt/Nt. Substituting (20) into (A11) yields the dynamics
of Nt given by

Ṅt
Nt
=
µ− 1

F
−

[

φ+ (1− s)
Żt
Zt

]
Nt/L

(θ/µ)1/(1−θ) F
− ρ. (A12)

Equation (A12) describes the dynamics of Nt when Nt < N . When Nt > N , Żt/Zt = 0 as
shown in (21).

Proof of Proposition 1. This proof proceeds as follows. First, we prove that under
ρ < min {φ/(1− s), (1− α)(µ− 1)/F}, there exists a stable, unique and positive steady-
state value of Nt. Substituting (21) into the first equation of (22) yields

Ṅt
Nt
=
(1− s)ρ− φ

(θ/µ)1/(1−θ) F

Nt
L
+
(1− α)(µ− 1)

F
− ρ. (A13)

Because Nt is a state variable, the dynamics of Nt is stable if and only if (1 − s)ρ < φ.
Solving Ṅt = 0, we obtain the steady-state value of Nt in an economy with positive in-house
R&D given by

N∗ =

[
(1− α)(µ− 1)

F
− ρ

]
(θ/µ)1/(1−θ) F

φ− (1− s)ρ
L. (A14)

Given (1−s)ρ < φ, (A14) shows that N∗ > 0 if and only if ρ < (1−α)(µ−1)/F . Combining
this inequality with (1− s)ρ < φ, we have

ρ < min

{
φ

1− s
,
(1− α)(µ− 1)

F

}
.

Finally, substituting (A14) into (21) yields

gt =
α(µ− 1)

(1− α)(µ− 1)− ρF

(
φ

1− s
− ρ

)
− ρ, (A15)

which is positive if and only if the following inequality holds:

(1− s)Fρ2 − (1− s)(µ− 1)ρ+ φα(µ− 1) > 0,

and this inequality holds if ρ is sufficiently small (or sufficiently large).
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