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Abstract:  The compressed air flow in the pneumatic networks is studied from thermodynamic point of 

view. Generally speaking, the flow issue is presented as next: knowing the characteristics p
1 

(pressure), v
1 

(specific volume), T
1 

(temperature) and the fluid speed w
1
, in the initial section (point 1), of a specific pipe 

section. It is asked the determination of the p, v, T and w characteristics in a certain section. Presuming the 

compressed air is a monophasic homogeneousness fluid, the conservation laws using allows the 

determination of the equations that rules the fluid evolution. On the basis of the Fanno flow analysis could 

be proposed a model for the characteristics p, v, T, w values calculation. The proposed model validation is 

made means the experimental data, obtained through “in situ” exploration of a pneumatic mining network.  
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1.INTRODUCTION 
 

The study of the gas flow in the long pipe 

networks needs, depending on the requested 

gasodynamic elements, two approaches: 

- admeasurements calculus, when 

knowing the necessary volumetric flow to be 

transported on a specific pressure regime, could 

be established the pipes crossed areas and the 

necessary loading; 

- verification calculus, when knowing the 

network geometric characteristics (diameters, 

lengths, roughness, elevation mark, 

configurations) and the available loading, could 

be verified the network transport capacity, that 

is for given p1, T1, v1 parameters and the w1 gas 

speed in the initial section of the pipes network, 

should be calculated the p, T, v and w 

parameters values, in some section and, 

particularly, p2, T2, v2 and w2, obtained at the 

network extremity. 

 
2. APPLICATION OF THE EQUATIONS 
OF BALANCE-SHEETS TO PNEUMATIC 

NETWORK 
 

A series of characteristics specific for the 

mining pneumatic networks allow the 

simplifying of the gasodyinamics’s system of 

equations. 

In the structure of the compressed air’s 

transport and distribution networks there are 

sections of finite length pipes and constant 

sections. Excepting the lines on the shafts, raises 

and inclined planes, the sections can be 

considered horizontal, (the slope on the main 

galleries being of 4 o/oo). As the flow takes place 

at temperatures close to the environment’s 

temperature, we can neglect the component in 

the energetic balance due to the calorific 

interaction of the system with the outside 

environment. 

The simplifications are refers to: 

dΩ = 0; Ω = constant; D = constant (1) 

dh = 0; h = constant   (2) 

δqext = 0     (3) 

In order to simplify the mathematical 

expressions, we shall re-write mass balance 

equation 
v
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By integration of the energetic equation: 

digdhqwdw ext     (5) 

between the initial section Ω1 and a certain 

section Ω, we shall obtain: 
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Eliminating directly δlfr between mechanical 

equations frlgdhvdpwdw   and specific 

friction work dx
w

D
l fr

2

2


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following relation: 
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In order to be able to complete the system, 

we must determine the fluid transformation law 

along the pipe. From the relations (4) and (5), 

we shall obtain: 
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Realizing this relation between its specific 

volume v and the enthalpy i, the evolution of the 

fluid takes place according to Fanno’s 

transformation. 

Fanno’s curve, represented in the dynamic 

diagram (p-v) or in the entropy diagrams  (T-s), 

(i-s), are the parametric equations (4) and (5) 

with w as parameter. 

There is a double infinity of Fanno’s curves, 

each being determined by the value of the 

constant c, on the one hand and by the sum 
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If the initial status is given, then i1 and w1 are 

known and Fanno’s curve only depends on the 

constant c. 

The simple infinity of Fanno’s curves 

passing through a point l (representing the initial 

status) can be easily constructed for a certain 

fluid on a thermo-dynamic diagram following 

the itinerary of the lines v = constant and i = 

constant. 

For each value of c, the equations (4) and (5) 

make for each value of w to correspond a line of 

equal interval v and a line of constant enthalpy i 

whose intersection is a point of the curve 

corresponding to the considered value of c. If 

the fluid is a perfect gas, it is possible to 

analytically explain Fanno’s equation of 

transformation according to p and v or according 

to i and s. Admitting that the specific isobar heat 

cp = constant, assuming the validity of Joule’s 

law, the relation (5) can be written as follows: 
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Therefore the transformation law is expressed 

by: 
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The following fact can be noticed: 
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From the relation (9) we can understand that, 

when the flow speed w is small compared to the 

sound speed in the fluid, the term 
p

bv
becomes 

negligible in comparison with the unit and the 
transformation slightly backs away from the 

isothermal line. 

For 
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3. THE CALCULUS CHARACTERISTIC 
PARAMETERS USING FANNO`S 
TRANSFORMATION 
 

As the transformation law is known, we 
resume the mechanical equation (6) under the 

form of: 
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w
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and we transform it in order to obtain a relation 

between v and x. 
From b’s expression of definition, we can 

extract: 

22

1

2
v

k

kb
w


 , where vdv

k

kbw
d

1

2

2

2


  

Based on equation (7), there can be written: 
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following relation: 
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Dividing by v2 in order to separate the 

variables v and x, we shall obtain: 
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Integrating this equation between sections 

1 and we shall obtain: 
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In the above-mentioned equality, we replace 

the ratio 

1v

v
with 

1w

w
, according to relation (4) 

and the fraction 
1

1

bv

p
with the expression (9), so 

that we obtain: 
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The ratio of pressures can be calculated 

using the transformation law (7) knowing the 

ratio 

1v

v
that can be calculated with the relation 

(11): 
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using equation (9): 
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For the temperatures’ report, assuming that 
compressed air is assimilated to a perfect gas we 

shall have: 

111 v
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T
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The relations (12), (13), and (14) allow the 

construction of the curves representing the 
variations of v, w, p and T, according to x and to 

the extreme conditions along the entire pipe 

network. 
 

4. THE INTERPOLATIONS OF FANNO`S 

TRANSFORMATION 
 

For a perfect gas, Fanno’s transformation 

can be easily represented in a T-s diagram. 

Considering as variables the temperature T and 

the specific volume v, the entropy’s variation of 

a perfect gas, starting with its initial l condition, 

is expressed in the considered temperature 

interval, assuming that cv= constant: 

s-s1=
11 v
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and in this case the specific entropy’s variation 
becomes: 
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According to this formula, a certain point of 
Fanno’s curve is obtained crossing the point 

characteristic for the l initial status and 

corresponding to a value given to constant b, 

adding to the right, starting from the curve v=v1 

whose equation is: 
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If it is traced in the coordinates T-s, starting 

out from point l representing the fluid’s initial 

status, Fanno’s curve corresponding to a given 

value of parameter c or b, it can be noticed that 

this curve is entirely comprised between a 

domain limited by an isothermal line ( 'TT 1 ), 

an isochore line( maxvv  ) and an isentropic line 

( maxss  ). 

From equation (7) we can notice that the 

maximum specific volume attained, when p=0 

and therefore T=0, has the value: 

b
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Fig. 1. The representation in coordinates T-s of 

Fanno’s transformation 

 



The relation (15) of the entropy’s variation 

highlights the fact that along Fanno’s curve the 

entropy tends towards - , when the 

temperature tends to T1 value, so that: 
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from where we can deduce the fluid’s (total) 

braking temperature’s expression when in status 

l: 
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where: T1 is the static temperature; 
pc

w

2

2
1  - 

dynamic temperature. 

Fanno’s curve asymptotically tends (to high 

temperatures) to the isothermal line T1 = T1. 

Taking into account the equality (9), the 

expression of 
'

1T can be written as follows: 
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There is an isentropic line s=smax tangent to 

Fanno’s curve in the actions inversion point. All 

isentropic lines for which I intersect the curve in 

two points, one for w<a and the other one for 

w>a. 

The point where the fluid’s speed is equal to 

the local isentropic line’s speed of the sound 

w=a is the contact point of the curve with the 

isentropic line s=smax. .The conditions 

0extq and 0frl involve ds > 0, namely 

the fluid evolves alongside the curve only in the 

direction of the increasing entropies. 

If initially w1 <a1 , the fluid evolves on the 

superior part of the curve, in the direction of the 

temperature’s decrease, the increase of velocity 

realizing through expansion. 

If initially w1 >a1, the fluid evolves on the 

inferior part of the curve, the decrease of 

velocity realizing through compression 

accompanied by the increase of temperature. 

Both evolutions lead to the same extreme status 

K characterized by s=smax, wk=ak, pk, vk and Tk. 
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Characterizing the analytical expression (18) 

of the actions inversion law for imposed 

conditions 0extq , 0d , dG = 0 and dh = 

0, we reach similar conclusions. 

Therefore, equation (18) becomes: 
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Based on the status equation for perfect 

gases and on the thermal equation, the equality 

(19) can also be written as follows: 

kwT
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dw

ds 22 
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The relations (19) and (20) show that as long 

as w < a, the derivative
dw

ds
 is positive, therefore 

the entropy of the gas increases. In the point 

where the flow speed reaches the local 

isentropic speed of sound w = a, the derivative 

dw

ds
 cancels, which means that the entropy 

reaches the maximum value. 

If the speed continues to increase beyond the 

local isentropic speed of sound, 0
dw

ds
would 

follow, which means that after reaching the 

maximum, the entropy should record a decrease. 

But this comes to contradict that fact that with 

friction the entropy increases, so that the 

hypothesis of speed increase over the sound 

speed does not stand. From the analysis of 

relation (18) results that in the case of an 

adiabatic flow with friction in a tube with a 

constant section, the fluid can be accelerated up 

to the velocity of sound, but it will not be able to 

exceed this value as this is conditioned by the 

release of heat, while friction heat is 

permanently supplied to the flowing fluid (both 

in the case of subsonic flow and supersonic 

flow). 

Experience shows that after reaching the 

critical velocity kk aw  , the flow, losing its 

stationary feature, transforms into a pulsatory 

flow characterized by the gas’s successive 

expansions and contractions. These phenomenon 

are accompanied by loses if energy and 

therefore the increase of entropy. 

If the amplitude of the oscillations is higher, 

there may occur breaks of the pipe. 

The critical condition is reached after the 

fluid has covered a certain pipe length – the 

critical length lk. 

Avoiding the pulsations that accompany the 

critical condition is accomplished either by 

ensuring a pipe length inferior to the critical 

length, or by setting up throttles on the pipe 

which would diminish the fluid’s speed to 

acceptable values. 

 

5. THE INTERPRETATION OF FANNO`S 

TRANSFORMATION 
 

The main characteristic measures that 

interest us in the case of limit status are: Tk, vk, 

pk,, wk and lk.. These characteristics of the limit 

status can be obtained in various ways: 



We equal the angular coefficients 

corresponding tot the isentropic line and to 

Fanno’s curve in the dynamic diagram (p-v). 
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From equation (21) we have: (k-1)pkvk 

= 22 kbv , and based on equation (22):  
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Applying the equation of perfect gases to the 

critical status, with the help of the braking 

temperature’s expression (16), we shall have: 
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We shall obtain a result expressing the fact 

that function (15), which describes Fanno’s 

transformation in the T-s diagram has a 

maximum for T = Tk. 
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By simple substitution operations from 

equations (21) and (22) we obtain: 

 
)k(b

k
bvvpvk

1

12
111

2




 or 

 
)k(b

k
bvvpvk

1

12
11 


   (24) 

)k(b

k
)bvvp(

k

b
v

k

b
p kk

1

1

1

2

1

2 2
111 








 (25) 

Based on the equation of debit conservation 

we deduce the following: 
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Most of the times, in practical calculations 

we are interested in the ratios: 
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Identification of equation (25) with equation 

(9) written for the conditions of the limit point K 

under the form: 
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leads us to the conclusion that wk= ak, namely 

during the critical status, the fluid’s speed is 

equal with the local isentropic speed of sound. 

For the calculation of the critical length, we 

shall use relation (12) put under the following 

form: 
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where from the following results: 
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6. EXAMPLE OF CALCULUS 
 

On the transoms of mining pneumatic 

network we were determined the characteristic 

parameters v, w p, T, using MathCad program 

and initial condition that were determined by 

measurements. 

The used-up equations are the equation of 

Fanno`s transformation (11), (12), (13), (14). 

In the annexes 1 and 2 is presented two 

examples of the calculus. 

We were calculated the critical parameters, 

for the verification of the relations (27) - (31). 

The results are presented in graphic mode in 

figures 2 and 3 for the selected transoms. 

Comparing the analytic results with the 



experimental determinations it was noticed 

differences of 2-3%.  

These differences come from the neglect of 

some phenomena: heat transfer, miss of pressure 

due to partially obstructing of section of flow by 

impurity, miss through leakiness, flange joints. 
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Fig. 3. The variation of characteristic parameters on a transom of 740 m 
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Fig. 4. The variation of characteristic parameters on a transom of 360 m 

 
7. CONCLUSIONS 
 

For the analytic description of the flow air 

through pneumatic networks we were used 

Fano`s transformation. This one is a useful 

instrument, obtaining good results for the 

exploration of main transport transoms. 

In the case transoms of distribution, the 

diameters, the flows and the pressures is changed 

depending on consuming. The precision of the  

 

 

calculus is growing down and the system of 

equations is complicated. 

Fanno`s transformation could be applied in 

particularly transoms and calculus volume is 

growing up significantly. 

 
Nomenclature 
 

a - velocity of sound in compressed air, ms-1 

cp – isobar specific heat of air, Jkg-1K-1
 



cv – isochore specific heat of air, Jkg-1K-1
 

d – derivation symbol 

D – diameter of pipe, m 

g - gravity acceleration, ms-2
 

G – mass flow, kgs-1 

h – elevation mark, m 

i – specific enthalpy, Jkg-1 

k – adiabatic exponent 

lfr – specific friction work, Jkg-1 

lt – specific technical work, Jkg-1 

lk – critical length of the transom, m 

M – Mach cipher 

p – air pressure, Nm-2 

R - characteristic constant of air, Jkg-1K-1 

qext - specific transfer of heat into environment, 

Jkg-1 

s – specific entropy, Jkg-1K-1 

T – absolute temperature, K 

v – specific volume, m3kg-1 

w - velocity of flow air, ms-1 

x – two characteristic points distance, m 

z – compressibility coefficient 

 - elementary variation symbol 

 - coefficient of fluid-dynamic resistant 

 - transversal surface of flow, m2 
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