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Abstract

In this paper I introduce a latent variable augmented version of the conditional

autoregressive range (CARR) model. The new model, called stochastic conditional-

range (SCR) can be estimated by Kalman filter or by efficient importance sampling

depending on the hypotheses on the distributional form of the innovations. A predic-

tive accuracy comparison with the CARR model shows that the new approach can

provide an interesting alternative.
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1 Introduction

It is a well known phenomenon that financial time series exhibit volatility clustering. A very

large literature on the dynamics of returns has developed since the seminal contributions

of Engle (1982), Bollerslev (1986) and Taylor (2007) on GARCH and stochastic volatility.

Most of this literature concentrates on the dynamics of closing prices of the reference period

as a means of describing the subtle concept of volatility.

Parkinson (1980) suggested that the use of extreme price values can provide a superior

estimate of volatility than returns. The potential advantages of using price range as an

alternative were also pointed out by Alizadeh, Brandt, and Diebold (2002), who claimed

to “show theoretically, numerically, and empirically that range-based volatility proxies are

not only highly efficient, but also approximately Gaussian and robust to microstructure

noise”, while Brandt and Diebold (2006) noticed that range “is a highly efficient volatility

proxy, distilling volatility information from the entire intraday price path, in contrast to

volatility proxies based on the daily return, such as the daily squared return, which use

only the opening and closing prices”.

Chou (2005) proposed a dynamic model, the conditional autoregressive range (CARR)

for the evolution of high/low range who mimics the structure of the ACD model of Engle

and Russell (1998) for inter trade durations. This line of modelling has desirable statistical

and empirical properties and the search for its refinements and extensions can draw from

the wide body of ACD literature.

In this article I introduce a latent variable augmented version of the CARR model:

the stochastic conditional range (SCR) model. The new formulation shares most of the

statistical characteristics of the stochastic conditional duration (SCD) model of Bauwens

and Veredas (2004). In section 2, I will present the model and discuss some of its properties.

In section 3 I will describe how the latent variable present in the the SCR model can filtered
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or integrated in order to obtain a likelihood that can be easily maximized. A comparison

on the predictive accuracy of CARR and SCR models is carried out for a large sample

of stocks in section 5. Results show that the SCR can provide a valid alternative to the

CARR specification.

2 The model

This section introduces a model for the conditional range with a latent variable. In anal-

ogy to the literature on financial durations, where a similar model is colled stochastic

conditional duration, SCD, this process will be called stochastic conditional range, SCR.

Let pτ the price of a financial asset sampled at frequent (e.g. minutes or seconds)

time intervals τ , and Pτ = ln(pτ ) its logarithm. We define as range the difference Rt =

max(Pt)−min(Pt), where t indicates a coarser set of time intervals (e.g. days, weeks) such

that

τ = t− 1, t− 1 +
1

n
, t− 1 +

2

n
, . . . , t, (1)

where n is the number of frequent intervals contained in one of the coarser intervals indexed

by t.

The stochastic conditional range (SCR) is a process described by the following equa-

tions:

Rt = eψtǫt (2)

ψt = ω + βψt−1 + σut (3)

where ut|It−1 has an iid standard normal distribution and ǫt|It−1 is iid and has a distribution

with density function p(ǫ), which has positive support, unit mean and variance σ2
ǫ . It

denotes the information set at time t− 1, and it includes the past values of Rt and ψt.

The expected value of the range conditional to the past of the process up to time t− 1
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is

E(Rt|It−1) = eψt

and the distribution of Rt results from the mixing of the lognormal distribution of eψt

and the distribution of ǫt. The condition |β| < 1 is necessary and sufficient to ensure

stationarity and ergodicity for the process ψt, and hence for Rt.

The theoretical first two moments and the s-th autocorrelation of Rt are the following

E(Rt) = E(ǫt)E(e
ψt) = E(ǫt)e

ω
1−β

+ σ2

1−β2 , (4)

var(Rt) = E(Rt)
2

(

E(ǫ2t )

E(ǫt)2
e

σ2

1−β2
−1

)

, (5)

ρs =
e

σ2βs

1−β2 − 1

E(ǫ2t )

E(ǫt)2
e

σ2

1−β2 − 1
(6)

for all s ≥ 1.1

Concerning the distribution of ǫt, any law with positive support can be a suitable

candidate. In this paper we will use two distributions: the Weibull and the log-normal.

The exponential distribution and the Weibull are commonly employed in duration analysis

thanks to the flexibility of their hazard function and the direct relationship between the

parameters of the density and the shape of the hazard (constant, increasing or decreasing).

Because of these features they are popular in the literature on ACD models and were

adopted by Chou (2005) in the CARR model. The justification for the use of the log-

normal distribution arises from the result by Alizadeh, Brandt, and Diebold (2002) on the

distribution of daily high and low prices, which appears to be approximately Gaussian.

Depending on the choice of the distribution for ǫt, the estimated models will be denoted

as W-SCR and L-SCR.

1This result is derived by analogy to the corresponding moments computed by Bauwens and Veredas
(2004) on SCD models and its proof is available in their paper.
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As it was noted above, we restrict the first moment of the baseline range ǫt to be equal

to one. This is necessary to avoid an identification problem between the expectations of

ǫt and ψt. The parameter of the exponential and the mean parameter of the log-normal

distributions will be therefore set to one, while the scale parameter of the Weibull will be

restricted to be equal to Γ(1 + 1/γ)−1, where γ is the shape parameter which will be let

free to vary.

The original specification of the SCR model can be extended to include exogenous

variables, denoted by xt,l, in the equation for the logarithm of the conditional mean. If

exogenous variables are included, equation (3) becomes

ψt = ω + βψt−1 +
L
∑

l=1

γlxt−1,l + σut. (7)

When augmented by exogenous variables, the model is denoted by SCRX(L). As choices

for variables to be included we will here consider the past values of trading volume, returns

and of the range itself.

3 Estimation

In this section I will describe how the estimation of the SCR model can be performed by

maximum likelihood (ML).2 In particular, I will detail the methods that can be followed in

order to deal with the problem of the presence of a latent variable. The results presented

here refer to the SCR case, but they apply also to the estimation of the SCRX model,

as the explanatory variable that are added in this model are observable and do not pose

particular problems.

2In the literature on SCD models, which share the same functional form with SCR, some alternative
approaches are explored. For example Knight and Ning (2008) compare two solutions based on GMM and
on empirical characteristic function and Strickland, Forbes, and Martin (2006) follow a Bayesian approach
based on MCMC integration of the latent variable.
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The distribution of the baseline range ǫt plays an important role in deciding how to

proceed in the computation of the likelihood function to be maximized.

If ǫt is log-normally distributed, that is in the L-SCR specification, the model can be

trasformed by taking the logarithms on both sides of equation (2). This yields the following

relationships

lnRt = ψt + ln ǫt, (8)

ψt = ω + βψt−1 + σut, (9)

that can be interpreted as the state and transition equations of a linear state-space model.

This model can be easily estimated by Kalman filter and the resulting likelihood can be

maximized by means of a numerical algorithm.

The reliance of the Kalman filter on the normality of both error components (ln ǫt

and ut) limits its use to the L-SCR case only. When the distribution of ǫt is exponential

or Weibull, the Kalman filter will not produce an exact computation of the likelihood

anymore. Therefore, it is necessary to resort to the numerical integration of the density of

the latent variable to compute an exact likelihood.

To do this, we start by denoting by R a sequence of n realizations of the range process.

R has a conditional density of g(R|ψ, θ1), where θ1 is a parameter vector indexing the

distribution and ψ a vector of latent variables of the same dimension of the sample R. The

joint density of ψ is h(ψ|θ2), with θ2 a vector of parameters, and the likelihood function

for R can be written as

L(θ, R) =

∫

g(R|ψ, θ1)h(ψ|θ2)dψ =

∫ n
∏

t=1

p(Rt|ψt, θ1)q(ψt|ψt−1, θ2)dψt (10)

the last term of the equation is the result of the sequential decomposition of the integrand

in the product of the density of ǫt conditional on ψt, p(Rt|ψt, θ1), that in our case will be
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exponential or Weibull, and the density of ψt conditional on its past, q(ψt|ψt−1, θ2), which

is normal with mean ω + βψt−1 and variance σ2.

This high dimensional integral is not analytically solvable and a numerical approach is

necessary. There is a very substantial literature on Monte Carlo integration methods, for

an interesting survey in the field of stochastic volatility see Broto and Ruiz (2004).

The method I will employ is a refinement of the widespread importance sampling tech-

nique, it is called efficient importance sampling (EIS) and was developed by Richard and

Zhang (2007). As the authors point out, this method is particularly convenient for an

accurate numerical solution of high dimensional ”relatively simple” integrals like the ones

we need to treat and has already been successfully applied to problems that are similar

(see Liesenfeld and Richard (2003) and Bauwens and Hautsch (2006)) or nearly identical

(see Bauwens and Galli (2009)) to ours.

For a detailed presentation of the algorithm, I refer the reader to Richard and Zhang

(2007). A description of its implementation in the contest of the SCD model, which share

the same functional form with the model proposed in this paper is available in Bauwens

and Galli (2009). In the appendix, I present a brief summary.

4 Empirical analysis

I carried out the empirical analysis by considering all Standard and Poor’s 500 components

at the date of February 15, 2014. Data on daily price maxima and minima were downloaded

from Yahoo! finance via the tseries package in R. The resulting series of ranges were

normalized to have a unit mean in order to speed up computation by reducing the search

for the intercept in the conditional range function. Out of the original 500 series, 22 of

them were composed by less than 1000 observations and were discarded. This choice was

somewhat arbitrary, but convergence issues for very limited sample sizes required to set a
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threshold. Table 1 provides some descriptive statistics of the range series for the remaining

478 stocks. Not all series have a full 10 years length of 2517 observations, but the average

sample size after pruning our database of particularly short sets is quite close to the

maximum value. It can be noted too that data have a rather low degree of overdispersion

(computed as the ratio of sample mean and sample standard deviation), yet maxima tend

to be several standard deviations away from the mean. Even visual inspection of some

charts revealed that this could be due to an issue of outliers rather than to a particularly

fat tail in the baseline distribution. Whether these outliers derive from quirks in recording

or from exceptional conditions in the markets is hard to tell. The use of an outlier detection

and removal algorithm could be an interesting extension to this analysis and I leave it for

further research.

The predictive accuracy of the different models was compared by an insample one-step-

ahead analysis. First the full sample is used to estimate the parameters of the models.

Then I predicted every observation at time t = 2, ..., n using estimated parameters and

observations at time t−1 = 1, ..., n−1. An outsample analysis was not performed because

splitting the sample in two parts in an already quite short set of data woud either lead to

more jittery parameter estimates or to too few forecasts.

The models used in the comparison were a CARR with a Weibull conditional range

distribution (W-CARR), an SCR with a lognormal distribution (L-SCR) and an SCR with

a Weibull conditional distribution (W-SCR). All models were specified with only one lag of

the range (and the conditional range for the CARR model) in the formula for conditional

range. The first model was estimated by conditional maximum likelihood. In the second

and the third model, likelihood was computed by respectively Kalman filter and EIS.

Estimation times runned from less than a second for the CARR model to an average of

half a minute the lognormal SCR model and to and average of 5 minutes for the Weibull

SCR.
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The forecasting accuracy of each estimator for each series has been measured by the

mean square (prediction) error, that is the average of the squared difference between pre-

dicted and observed values. The significance of the difference between forecast errors of

couples of estimators was verified by the Diebold and Mariano (2002) test with a bilateral

alternative and a quadratic loss function. Predictions are considered different if the p-value

is below 5%.

Table 2 displays the main results for the estimation of the three models. It appears to

be quite difficult to distinguish the W-CARR and the W-SCR on the basis of sheer MSE,

while the L-SCR seems to stand out both in terms of average than in terms of dispersion.

When MSE for individual stocks are compared, it turns out that on average SCR forecasts

have a lower MSE, but the number of stocks whose MSE is lower for the CARR model are

more than half (2/3 in the case of the L-SCR and almost 3/4 in the case of the W-SCR).

So the SCR seems to provide “winning” forecasts less often than the CARR, but when it

improves, it does it substantially.

When the significance of pairs of forecasts is tested, it turns out that they are only in

about one stock of three the CARR and the SCR model forecast in a significantly different

way. If finally we restrict our sample to significantly different forecasts only, we see that

the gain in terms of MSE is slightly reduced in the case of the W-SCR and reversed (but

with a very low mean) for the L-SCR.

I conclude by remarking that statistics on the comparisons between W-SCR and L-SCR,

that are nor reported in table 2, display a substantial similarity between the forecasts of

the two models (for example, only less than the 9% of the forecasts can be considered

different after testing).
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5 Conclusion

The stochastic conditional range can be considered a valid alternative to the CARR model

when the dynamics of daily price range are to be analyzed. In a forcasting comparison

with a large number of stocks, the SCR model improves on the CARR model in terms of

expected prediction error, though the percentage of stocks that are better predicted with a

CARR specification is higher. The fact that different baseline distribution (log normal and

Weibull here) give very similar results should not lead to think that their role is marginal. In

a forecasting exercise like the one of this paper, which is a de facto first moment analysis,

the parameters that are mostly involved are the ones of the conditional range. Other

moments of the distribution of the range, such as variance or autocorrelation coefficients,

are more sensitive to the shape of baseline and it is likely that a forecasting or prediction

comparison of these feature would highlight the importance of the iid distribution chosen

for the innovations of the process. We leave this analysis for further research.
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A Appendix: brief description of the EIS numerical

integration method

An importance sampling estimate for the integral

G(y) =

∫

Λ

g(y, λ)p(λ)dλ, (11)

where g is an integrable function with respect to a density p(λ) with support Λ and the

vector y denotes an observed data vector (which in our context corresponds to the observed

ranges) is provided by

ḠS,m(y, a) =
1

S

S
∑

i=1

g(y, λ̃i)
p(λ̃i)

m(λ̃i, a)
, (12)

where the λ̃i’s now denote draws from the IS density m.

The aim of efficient importance sampling (EIS) is to minimize the MC variance of

the estimator in (12) by selecting optimally the parameters a of the importance function

density m given a functional form for m (here, the Gaussian density).

A convenient choice for the auxiliary sampler m(ψt, at) is a parametric extension of the

natural sampler q(ψt|ψt−1, θ2), in order to obtain a good approximation of the integrand
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without too heavy a cost in terms of analytical complexity. Following Liesenfeld and

Richard (2003), we use by the following specification:

m(ψt, at) =
q(ψt|ψt−1, θ2)e

a1,tψt+a2,tψ2

t

∫

q(ψt|ψt−1, θ2)ea1,tψt+a2,tψ2

t dψt
, (13)

where at = (a1,t a2,t). This specification is rather straightforward and has the advantage

that the auxiliary sampler m(ψt, at) remains Gaussian.

The parameters at can be chose such that they minimize the sampling variance

ât(θ) = argmin
at

S
∑

j=1

{ln
[

f(Rt, ψ̃
(j)
t |ψ̃

(j)
t−1, Rt−1, θ)χ(ψ̃

(j)
t , ât+1)

]

− ct − ln(k(ψ̃
(j)
t , at))}

2, (14)

where ct is constant that must be estimated along with at. If the auxiliary samplerm(ψt, at)

belongs to the exponential family of distributions, the problem becomes linear in at, and

this greatly improves the speed of the algorithm, as a least squares formula can be employed

instead of an iterative routine. EIS-ML estimates are finally obtained by maximizing

L̃(θ;R, a) with respect to θ. The number of draws used (S in equation 12) can be quite

low and for all estimations in this article is equal to 50.
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mean std deviation
observations 2469.075 201.271
means 1 0
std deviations 0.721 0.159
minima 0.178 0.045
maxima 9.591 5.298

Table 1: Descriptive statistics of the 478 stocks used for the predictive accuracy analysis.
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mean sd max min

MSE W-CARR 0.278 0.124 0.155 1.161
MSE L-SCR 0.276 0.114 0.163 1.058
MSE W-SCR 0.278 0.122 0.164 1.030

stocks with smaller forecast MSE
with L-SCR than with W-CARR 33.8%
stocks with smaller forecast MSE
with W-SCR than with W-CARR 27.7%

% MSE reduction when forecasting
with L-SCR wrt W-CARR 0.002 0.049 -0.216 0.276
% MSE reduction when forecasting
with W-SCR wrt W-CARR 0.003 0.063 -0.292 0.347

significantly different L-SCR
and W-CARR forecasts 31.9%
significantly different W-SCR
and W-CARR forecasts 34.0%

% MSE reduction when forecasting
with L-SCR wrt W-CARR
(significantly different forecasts only) -0.001 0.052 -0.216 0.250
% MSE reduction when forecasting
with W-SCR wrt W-CARR
(significantly different forecasts only) 0.002 0.071 -0.292 0.347

Table 2: MSE comparison and Diebold and Mariano (2002) results for 478 stocks of the
Standard and Poor’s 500 used for the predictive accuracy analysis.
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