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Amplitude-Duration-Persistence Trade-off Relationship for Long Term Bear Stock 

Markets  

 

Abstract:  

We study the mechanism that controls the shape of the bear market through an 

information diffusion perspective, and establish a frontier of market decline, in terms of a 

trade-off between amplitude, duration and the rate of information diffusion. Empirical 

analysis using data from 15 stock markets confirms the existence of this trade-off relationship. 

An algorithm for generating the frontier using real data is proposed and applied in several 

market scenarios. The results suggest that the behaviour of international stock markets during 

the current US credit crunch is similar to that in previous bear markets in terms of the 

trivariate trade-off.  

 

JEL classification: G14; G15; G17.  

Keywords: Amplitude; Duration dependence; Volatility persistence; Bear markets; 

Information diffusion.  
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1. Introduction 

In this paper, we study the mechanism that controls the shape of bear markets and 

attempt to establish a trade-off relationship among amplitude, duration and volatility 

persistence in it. Here amplitude refers to the total loss for stock indices in a bear market; 

duration relates closely to the concept of duration dependence in business cycle analysis, and 

is defined as the length of time the stock market is in the bearish phase. This bearish phase is 

identified through using the standard turning points detection approach in business cycle 

analysis, developed by Bry and Boschan (1977).  

Amplitude, duration and volatility persistence are important risk characteristics for stock 

markets. Although the idea of a trivariate trade-off relationship, which we are about to 

establish in this article, has not been specified by scholars, amplitude, duration and volatility 

persistence have been regarded as important concepts in finance. Specifically, amplitude is 

related to the return-based risk measure, which has been conceptualised as the risk-return 

trade-off principle following landmark work by Markowitz (1952), Sharpe (1964) and 

Merton (1973). Duration dependence, although first identified in business cycle analysis, has 

been gaining prominence in stock market analysis, (see, for example, McQueen and Thorley 

1994; Lunde and Timmermann 2004; Maheu and McCurdy 2000; Chen and Shen 2007; and 

Chong et al., 2010). Moreover, empirical studies about aggregate stock markets (see, for 

example, Engle and Lee 1999; Cuñado et al., 2008; Cuñado et al., 2009) have suggested that 

linkages might exist between bear markets and volatility persistence. 

There are some mixed studies relevant to the trade-off relationship, which we are about 

to establish in this paper. Specifically, Woodward and Marisetty (2005)’s study implies that 

the length of time spent in bull and bear markets is a key determinant of the risk-return 

relationship of risky assets. Lunde and Timmermann (2004) found that the longer the 
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duration, the higher the volatility of a security’s return, if in a bear market, and the lower the 

volatility, if in a bull market. This trade-off between amplitude and duration in bear stock 

markets can also be illustrated through reference to recent movements in stock markets. For 

example, the Dow Jones Index (DJI) during the 2000 dot-com crisis was characterized by an 

ultimate decline of 44% and duration of up to 38 months; while the DJI during the 2007–08 

credit crunch exhibited a decline of 77%, but a much shorter duration of only 17 months. As 

Fisher (2007, pp. 76) observed, ―Big bear markets are a trade-off between magnitude and 

duration.‖ However, researchers have not been able to formally establish the trade-off 

relationship, with the exception of some descriptive analysis (see, for example, Edwards, 

Biscarri and de Gracia 2003).  

Our paper attempts to supplement the traditional amplitude-duration trade-off 

phenomenon (Fisher, 2007) by incorporating information diffusion/volatility persistence, and 

build a theoretical framework for trade-off between amplitude, duration and volatility 

persistence.  

The paper is structured as follows. In section two, the asset pricing model with 

information diffusion is proposed and the theoretical relationships between amplitude, 

duration and volatility persistence are discussed. In section three, we examine the trivariate 

trade-off relationship using data from 15 stock markets. Finally, in section four, we outline 

the main contributions of the paper and issues for future research. 

2. The Model 

In this section, an asset pricing model based on an information diffusion mechanism is 

presented. This information diffusion mechanism can also be regarded as an endogenous 

information generating process, as information is only public when it is available to the entire 

investors’ population. To understand why bear market persist a considerable length of time, 
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we need to recognise that the forces that can drive stock markets into bearish phases emerge 

from fundamental structural changes to the real economy or the financial sector, and that the 

information about these changes, even from the perspective of industry practitioners, could be 

vague and slowly digested (Black, 1986). This coincides with the framework developed by 

Hong and Stein (1999), who specified an information diffusion framework, in which 

information emerges gradually and circulates across investors’ population (see. Appendix 

A.1). However, Hong and Stein (1999) assumed a constant rate of information diffusion. Li, 

Sun, and Wang (2012) relaxed the assumption of a constant rate of information diffusion and 

allowed for it to vary as a function of time t. Here we further relax the assumptions of Hong 

and Stein (1999) and Li et al. (2012) and assume that each piece of information is infinitely 

small, and define the information diffusion process over a continuous time domain (see 

Appendix A.2). This setting is consistent with our finding that volatility decays as price 

approaches the trough (see Appendix E for the case of the fall of Lehman Brothers). 

Moreover, it also implies that volatility persistence coincides with the rate of information 

diffusion and can, therefore, be used as its proxy. 

 2.1. Basic Assumptions 

The key assumptions of the model are specified below:  

2.1.1. Asset payoff. 

A risky asset is issued at time 0 and pays a liquidating dividend at the end of the horizon

T , where T is sufficiently large. The ultimate value of the liquidating dividend at the end of 

period T  can be written as
TT

dDD  , where 
T

d ~N(0, 2 ), and D  is a constant term or the 

unconditional mean of 
T

D . The supply of the asset in the entire market is Q and is assumed 

to be fixed. 
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2.1.2. Homogenous investor population.  

There exists a continuum of investors x, ]1,0[Xx . Each investor has identical 

constant absolute risk aversion (CARA) utility functions:  

}{　max
)))((( )( tTr

Txt

xt

etPDN

xt
N

eE
 

,                                             (1) 

where  is the coefficient of absolute risk aversion, 
xt

N is the number of shares held by 

investor x at time t, r is the discount rate and P(t) is the stock price at time t. At every time t, 

each representative investor formulates his asset demands based on the static-optimization 

notion that he buys and holds until the liquidating dividend is paid out at the end of horizon 

T , as in Hong and Stein (1999).  

2.1.3. Continuous information diffusion. 

The information innovation 
T

d  is decomposed into a continuum of stochastic 

subinnovations: 





1

0

)(

s

s

T
ded , )()(

sdWde
s  ,                                            (2) 

where dW is a Wiener process; and )0()( WsW  ～ ),0( sN ; and s is a time sequence 

]1,0[Ss . Subinnovations spread symmetrically across the continuum of newswatchers X 

and over time sequence S. Hong and Stein’s (1999) assumption of a constant rate of 

information flow is relaxed to a more flexible version: at time t, )(tf  percentage of 
T

d  is 

revealed cumulatively to the investor. )(tf is a continuous increasing function defined on [0, 

T ], with 0)0( f  and 1)( Tf . )(' tf  can be considered as a proxy for information 

efficiency. Moreover, following Veldkamp (2005)’s endogenous information production 

framework, the rate of information diffusion rises/falls as the asset value increases/decreases.
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)(' tf  is, therefore, specified as monotonically decreasing in a bear market with 0)('' tf , 

which is also consistent with the findings in Cowan and Jonard (2004) and Hong, Hong and 

Ungureanu (2010).  At time t, when a proportion )(tf of information has been revealed, the 

residual uncertainty, as measured by variance, is decreased to 2)](1[ tf .  

2.2. The Pricing Equation 

From assumptions (i), (ii) and (iii), we can derive total optimal demand for the risky 

asset, which determines the pricing equation. They are summarised in Proposition 1.  

Proposition 1. At any time t, investor x’s optimal demand for the risky asset is given by 

)(var

))(( )(

Txt

tTr

Txt

xt
D

etPDE
N




  . The equilibrium price is set such that tN and asset supply Q are 

equal. From this we obtain the pricing equation:  

  )(-2 　)](1[)()( tTr

T
eQtfdtfDtP

  .                                          (3) 

See Appendix B for proof. 

Proposition 1 establishes the relationship between asset price and information diffusion. 

The price trajectory is determined by two components: The first component 
T

dtfD )( is a 

drift, represented by an innovation multiplied by the rate of information diffusion. The second 

component Qtf
2)(1(    is the price discount due to the representative investor’s 

expectation of the time varying uncertainty of future payoff.  

2.3. Characteristics of Price Trajectory in a Bear Market 

In this section, we explore the properties of the bottom of a downward market. For the 

stock price to attain its minimum value at time T , we must ensure that the first order 
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condition 0
)(


Ttdt

tdP
 and second order condition 0

)(
2

2


Tt

dt

tPd
 are satisfied. After some 

manipulation (see Appendix C for proof), we obtain Proposition 2, which formally 

characterizes the timing of the bottom of the price trajectory. 

Proposition 2. For a sufficiently large, negative shock 
T

d , and more specifically, Qd
T

 , 

ifT  satisfies  )( QD  )(
)('

Qd
r

Tf
T

 ))(( QdTf
T

 and 0)(')(''  rTfTf , then P(t) has 

a minimum value at time T 1
.  

2.4. The Trade-off among Amplitude, Duration and the Rate of Information Diffusion and 

Implications for ex ante Overvaluation 

In this section, we formally establish the trivariate trade-off relationship, as summarised 

in Proposition 3. (See Appendix D for its derivation.) 

Proposition 3.Under the conditions specified in Proposition 2, there exists a trade-off 

relationship among amplitude, duration and the rate of information diffusion. Moreover, the 

relationship below holds:   

)ln()
)('

ln(
QD

Qd

r

Tf
rTA T







                                            (4) 

where
)0(

)(
ln

P

TP
A   measures the amplitude of stock price decline, 

QD

Qd
T






  measures the 

degree of overvaluation or the gap between the correct price and the actual price at time 0, 

and )(' Tf is the rate of information diffusion.  

Note that
QD

d
T




 is the relative shock and can be decomposed into two components, 

                                                           
1 Similarly, we can also derive the conditions for P(t) to attain its maximum, which are available from the authors on request.  
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QD

Q





and
QD

Qd
T







. The former component is the relative risk premium, whilst the latter 

measures the dividend shock that is not covered by the risk premium. In other words, the 

initial price of the stock ( QD  ) is overvalued because the risk premium ( Q ) required by 

investors at time 0 is not large enough to cover the downside risk.  

Equation (4) establishes the trade-off relationship: amplitude is negatively related to 

duration and the rate of information release f'(T). This trade-off relation can be interpreted 

intuitively as follows. At the beginning, the stock price is set at an overvalued level since 

future negative news has not yet been made public and incorporated into price. As time 

passes, negative information diffuses slowly across the investors’ population. This decreases 

the expected dividend payoff and lowers the stock price. Uncertainty is also reduced as ―news‖ 

unavailable to investors declines. This reduces the risk premium and pushes up the stock 

price. If information diffuses quickly at the beginning, the main driving force of the stock 

price is, initially, the decreasing expected dividend payoff, which quickly switches to the 

decreasing risk premium. As a result, a sharp drop in stock prices and short duration is 

observed. If information diffuses slowly at the beginning, the bear market is characterized by 

weaker amplitude and longer duration.  

While amplitude and duration can be obtained from market data, the rate of information 

diffusion cannot be observed. This restricts the empirical application of the trade-off 

relationship specified in Proposition 3. Hence, a proxy variable for the rate of information 

diffusion is needed. A review of the literature suggests that information arrival is the cause of 

conditional expected volatility and its clustering behaviour. See, for example, Andersen 

(1996), Fleming et al. (2006) (common stocks); Andersen et al. (2003), Berger et al. (2009) 

(exchange rates); Flannery and Protopapadakis (2002), Rangel (2011) (aggregate stock 

markets). More noticeably, Peng and Xiong (2003) relate volatility persistence to the speed of 
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information digestion, while Li et al. (2012) associate volatility persistence with information 

diffusion. Our model is consistent with the existing literature, as the model setting implies 

that the process of information diffusion )(tf  coincides with the process of decaying 

conditional volatility 2)](1[ tf , thus the rate of information diffusion can be measured by 

the rate of volatility decay. Furthermore, the empirical modelling of volatility dynamics has 

been extensively studied in the literature. Volatility persistence, primarily defined by a 

GARCH model or one of its many derivatives, is a widely accepted parametric measure of 

the rate of volatility decay. It is used in this article as a proxy for the rate of information 

release f'(t) (see Section 3.2). From this basis, a modified trivariate trade-off relationship can 

be obtained in which amplitude is negatively related to duration and positively related to 

volatility persistence.  

Moreover, the points of possible market bottoms form a frontier. We term this frontier - 

the ―amplitude-duration-persistence frontier‖. An illustration of the pricing mechanism and 

the frontier is shown in Fig. 1. 

[Insert Fig. 1About Here] 

3. Empirical Evaluation  

3.1. Data Selection and Preliminary Analysis  

3.1.1. Data and their Turning Points 

We select three of the most significant recent financial/economic crises (big bear markets) 

as our estimation sample, specifically the 1997 Asian Financial Crisis, the burst of the dot-

com bubble in 2000 and the 2007–08 U.S. Sub-Prime Financial Crisis.  Each of the crises led 

to widespread waves of stock market decline. Data for 15 stock markets, consisting of four 

European market indices, one US index, seven Asia market indices, one Middle East index 
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and two Latin American indices, during these three crises, are used to test the trivariate trade-

off relationship.  

Before an empirical analysis can be undertaken, we must first identify the bearish and 

bullish phases. Traditionally, bear and bull markets are identified based on ex post assessment 

of peaks and troughs of the stock indices, which usually involves specifying dating 

algorithms. Noticeably, the methods adopted in Gonzalez et al. (2005) and Pagan and 

Sossounov (2003) are related to the standard business cycle detection technique developed by 

Bry and Boschan (BB) (1977). In this article, we follow Gonzalez et al. (2005) and Pagan 

and Sossounov (2003) and apply the BB algorithm. There are two main drawbacks of the BB 

algorithm. First, the lack of consensus regarding some of the bull/bear market turning points 

(Pagan and Sossounov, 2003). Second, that a turning point can only be identified through 

several observations after it occurs (Maheu et al., 2012).  Our article utilises data from three 

big bear markets; because there is common consensus regarding to the cause, the start and the 

end of them, the first criticism does not apply to our analysis. Moreover, three of these 

financial crises have ended, giving us enough observations to specify the trough, which 

means the second drawback would not have much impact on our analysis.  

The existing BB algorithm for bear and bull market detection are for monthly or 

quarterly observations
2
. Using the BB algorithm to measure daily fluctuations would magnify the 

number of turning points. Before applying the original BB algorithm, we, therefore, smooth the daily 

observations using the Hodrick-Prescot (HP) filter (Hodrick and Prescot, 1997). We find that the 

identified dates of peaks and troughs of these smoothed series roughly coincide with common 

knowledge. Then the exact peaks and troughs of the indices are obtained through locating the 

recorded daily highs and lows of the unsmoothed stock market indices around the start and 

                                                           

2 For any time series  ty .The heart of the BB algorithm is to define a local peak (trough) as occurring at time t. whenever

ktt yy


 , Kk ,...3,2,1 , where K is generally set to 5 for monthly data and 2 for quarterly data. 
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the end dates obtained through the BB algorithm.  Moreover, to retain as much information as 

possible, we use the unsmoothed series in our empirical analysis.   

However, we exercise some discretion in relation to the determination of these turning 

points. Specifically, the KS11 index exhibited a long term continuous downward trend before 

the 1997 Asia Financial Crisis, we identify the starting date according to the local recorded 

high during June–July, 1997, when most of the Asia indices peaked. Furthermore, the troughs 

of the developed markets were reached in approximately late 2002 and early 2003, while 

some developing markets exhibited a double dip with the first trough occurring in 

approximately 2001 with the second trough around the end of 2002, In addition, the BB 

algorithm cannot distinguish between the first and the second dip. We, therefore, manually 

select the second dip (see Fig. 1).  The dating of each trough is presented in Table 1.  

[Insert Table 1 About Here] 

3.1.1. Calculating Amplitude, Duration and Volatility Persistence  

Once the dating of bear market is completed, the calculation of amplitude and duration 

becomes straightforward. Namely, the amplitude of stock market decline is measured by 

percentage change from peak to trough, while duration is simply the number of trading days 

from peak to through. This section, therefore, focuses on volatility persistence, which is used 

as a proxy for the rate of information diffusion.   

Typically, volatility persistence is calculated as the sum of the parameters in GARCH 

models
3
. Among the existing GARCH models, the Component-GARCH (CGARCH) (Engle 

and Lee, 1999) model possesses an outstanding advantage because it automatically filters out 

both a slow moving volatility component and a short-term component. The low 
                                                           
3 Alternatives would be the stochastic volatility (SV) models; however the efficient estimation of these models is a non-

trivial task, especially when rolling window estimation is concerned, under a two-component volatility specification.  
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frequency/slow moving volatility component can be linked to economic fundamentals and is 

more often known as business cycle risks (see Engle and Rangel (2007), Adrian and 

Rosenberg (2008)), while the short term variations are usually determined by liquidity shocks 

and strategic trading (Peng and Xiong, 2003). Moreover, there is evidence suggesting that the 

CGARCH model might be better suited to describe recent decades’ world stock market data 

(McMillan and Ruiz, 2007)
4
.  

Thus in this paper, we use Engle and Lee’s (1999) CGARCH model to measure the 

persistence of the slow moving volatility component. Serial correlations are also considered, 

in light of the empirical findings from Claessens et al. (1995) on the significance of serial 

correlations in equity returns. Thus we use an ARMA (1, 1)-CGARCH (1, 1) to model the 

effect of the unexpected shocks on return and volatility. It is defined as follows:  
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.                                                            (5) 

Here the volatility dynamics can be decomposed into a transitory or short term component     

( 2

t ) which converges to 
t with power   ; and a long-run, trend or permanent 

component (
t ) which converges to   with power  .

5   is termed volatility persistence. It 

measures the rate of long run volatility decay. c and   are constants in the mean and variance 

                                                           
4 To support the validity of using the persistence of the slow moving volatility component in the CGARCH model in our 

empirical investigation, we have also undertaken a conventional GARCH estimation of volatility persistence and examined 

its explanatory power in the trade-off relationship examined. It can be shown that the long run volatility persistence 

estimator outperforms that from a conventional GARCH model, results are available upon request.  

 
5  is typically between 0.99 and 1 so that 

t  approaches   very slowly.   indicates the impact of unexpected shocks on 

the long-run component.  and   together reflect the dynamic features of the long-run component. 
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equations, respectively. AR, MA, ,  and  are coefficients. t-1 is a dummy variable. t-1=1 if 

the return shock t-1<0, otherwise t-1=0. t is an independent, identically distributed, random 

variable. The daily return is calculated using the equation )log()log( 1 ttt PPr , where Pt is 

the index value at time t.
6
 

The results are presented in Table 2.  

[Insert Table 2 About Here] 

3.3. The Empirical Model 

Assuming that ))('ln( Tf can be approximated by a function of volatility persistence ρ, 

we can derive our empirical model as follows. )'3()ln()2())('ln( CCTf   , where )2(C  

and )'3(C  are the coefficient and constant term respectively. Then (4) can be transformed into: 

)ln()'3()ln()ln()2(-
QD

Qd
CrCTrA T








                                           (6) 

Here )ln()'3()ln(
QD

Qd
Cr T







  is a measure of ex-ante overvaluation, it corresponds to 

the intercept of the frontier on the amplitude axis in the theoretical model. Substituting 

)ln()'3(
QD

Qd
C T







  by )3(C  and r by )1(C  yields our empirical model: 

Aik= C(1)×Tik+ C(2)×ln(ρik)+ln(-C(1))+C(3) +ik                                           (7) 

Where subscript i denotes country i, and subscript k (=1,2 or 3) indicates the financial crisis 

                                                           
6In the theoretical model and the following frontier algorithm, t is an indicator of the process of a bear market rather than real 

time. Here, we maintain this setting, t is to denote the time process after the peak, equivalently t=0 indicates the beginning of 

the bear market (the previous peak). The estimation sample is composed of the observations between the peak and trough of 

a bear market. 
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period. Equation(7) treats the discount rate and the extent of overvaluation as estimators. 

Based on our theoretical model, C(1), representing –r, should be negative and C(2) should be 

positive. ln(-C(1))+C(3)indicates the extent of overvaluation. 

3.4. Empirical Results 

To test our theory, four types of regression model were used to estimate (7). They 

comprise OLS panel regression, OLS panel regression with fixed period effect, OLS panel 

regression with fixed cross-sectional effect, and GLS (cross-sectional weights) panel 

regression with fixed cross-sectional effect. Table 3 reports the results. The estimation results 

confirm our theory. In terms of the signs of the estimates, the estimates for C(1) are negative 

and those for C(2) positive. They are also statistically significant. To be more precise, 

amplitude is negatively related to duration, positively related to volatility persistence and 

both relationships are statistically significant. According to R-squared, adjusted R-squared 

and Akaike information criterion, OLS panel regression with fixed cross-sectional effect and 

GLS regression outperform the other two specifications. This implies that the frontier is, to 

some extent, country specific and time independent.  

The GLS estimates for (7) with fixed cross-sectional effect and cross-sectional weight 

can be expressed as:   

Aik=C(1)×Tik+C(2)×ln(ρik)+ln(-C(1))+C(3) +crossi                                          (8) 

Where crossi is the cross-sectional effect of country i. Here the degree of ex ante 

overvaluation is measured by the estimated country specific factor plus a constant term 

crossi+C(3) (see also(6)). The model’s explanatory power (R-squared) is as high as 0.8658, 

indicating that duration, volatility persistence and country specific factors can explain a large 

part of the market decline. The estimate for -C(1) or r indicates a daily discount rate of 
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0.0002 approximately.  

An empirical implication of the trade-off relationship is that government intervention 

may not work in stock markets. Specifically, if government intervenes to limit the decline in 

stock prices then lower amplitude will potentially be compensated by a much longer duration. 

From a theoretical point of view, the trade-off relationship also suggests that the risk of ex 

ante overvaluation can be quantitatively measured by ex post observed amplitude, duration 

and volatility persistence of the bear market.  

[Insert Table 3 About Here] 

 

4. Algorithm for Generating the Frontier and its Application in Tracking the Market 

Bottom 

Our findings suggest that the ex ante market overvaluation will be corrected by the ex 

post downward market cycle, characterized by the cumulated negative returns and the time 

spent in the downturn. The shape of the bear market is accordingly determined by the trade-

off relationship between amplitude and duration as well as the rate of information diffusion. 

The trade-off relationship, shown by the amplitude-duration-persistence frontier, can be 

quantified by (4) and the empirical model (7), in which the constant term C(3) indicates the 

degree of the ex ante overvaluation and determines the distance of the frontier from the origin. 

In this section, the algorithm that generates the amplitude-duration-persistence frontier is 

proposed and its potential for real-time indication of the bottom of the bear market 

demonstrated. 
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4.1. Frontier Algorithm 

Following (8), we define 

)(tI i = C(1)×t +C(2)×ln(ρi(t))+ln(-C(1))+C(3) +crossi.                                           (9) 

Here the subscript k seen in (8) is omitted since the expression holds across all three crisis 

periods. Moreover, we use t to measure how further the market has progressed into a specific 

bear market. That is to say, at the beginning of each bear market, or equivalently the previous 

peak, t is set to be 0. This is also consistent with the definition of t in the theoretical model. 

)(tI i can be regarded as a real time indicator of the frontier amplitude with ex ante 

overvaluation level at C(3) +crossi . When t=Ti, Ai=I
_

i(Ti). In other words, if the stock price 

decline (Ai) reaches the frontier amplitude (I
_

i), this would signal the end of downward market 

cycle. If the trade-off relationship is stable throughout crisis periods, then the end of a 

downward cycle can be gauged by observing the dynamics of I
_

i(t) and Pi(t). 

The price, time coordinates of the frontier curve for market i are generated by the 

following algorithm: 

(i) Identification of the start of the bear market for country i.  

The dating of the previous market peak, denoted by it , is used as the start date of the bear 

market and the index value at that date )( ii
tP  is used as its baseline price 

(ii) Dynamic calculation of duration and volatility persistence.  

As t increases, duration which is denoted by tttD ii
 )( ; and volatility persistence which is 
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denoted by )( tt ii
 can be estimated from the model (5) for the time interval ( it , tt i  ). 

(iii) Calculation of the frontier stock price.  

Moreover, the frontier amplitude, which is denoted by )( ttI ii
 , can be formulated using 

a similar expression to (9):  

iiiii crossCCttCtCttI  )3())1(ln()](ln[)2()1()(                                       (10) 

The frontier stock price is denoted by )( ttP ii  , where )( ttP ii
 ))(ln()( iii tPttI

e
 , since amplitude 

is defined as the log return of price. The coordinates ( )( ttP ii  , tt i  ) define the frontier.  

4.2. Frontier and Market Bottom: Global Evidence 

The frontiers for the 15 stock market indices calculated using the above algorithm are 

shown in Fig. 2. Each frontier tilts upward, indicating a positive trade-off relationship 

between duration and amplitude. When stock index trajectories reach or cross the frontier, the 

downward trends quickly reverse. Our analysis of the frontier implies that the reaction of 

world stock markets during the US sub-prime crisis is similar to those during previous 

financial crisis in terms of the trivariate frontier. 

[Insert Fig. 2 About Here] 

 

4.3. Case Study of the Chinese Stock Market 

The Chinese stock market is a relatively new emerging market, and, largely due to 
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lacking of free float
7
, the price movement constraints

8
 and monetary policies

9
, its market 

cycles do not share the same cyclical phases as international stock markets. Some of the 

bearish periods of the Shanghai Composite Index, therefore, lie outside the sample period 

used in our empirical test. For example, the bear markets existing in China between 1993 and 

1996 do not appear to be related to the international stock market crashes of 1997 to 1998 and 

2000 to 2003. During 1996 to 2001, China’s stock market experienced a bullish trend and the 

East Asia financial crisis only had a limited impact on it. For the period 2003 to 2005, 

China’s stock market experienced severe decline, while international stock markets were 

more bullish (See table 4).   

[Insert Table 4 About Here] 

Assuming that the Shanghai Composite Index shares the same trade-off relation 

(measured by coefficients C(1) and C(2)) in terms of amplitude, duration and volatility 

persistence, as estimated from the 15 international stock indices, the only difference lies in 

the degree of ex ante overvaluation measured by (C(3)+Ci), these assumptions postulate that 

the trivariate trade-off relationship is a general phenomenon.  

Given the historical bear market statistics, the value of C(3)+Ci can be calibrated using 

(8). Using Ai, Ti and ρi from the 1993–96 bear market (see Table 4), C(3)+Ci is calculated to 

be 9.572 and is then used to produce the amplitude-duration-persistence based frontier. From 

this we can analyze China’s 2001–05 and 2007-08 bear markets. 

                                                           
7
 Prior to share structure reform in 2005, the share structure of China’s listed firms prohibited the trading of state shares of 

the listed firms, which resulted in only one third of the total shares being free floating.  

8 These mainly refer to the 5%  constraint on daily price changes since inception of the Shanghai Stock Exchange, its 

subsequently removal in 1992, and the reestablishment of a 10% price movement constraint in 1996.  

9 During 1996–2001, China’s macro economy entered into a period of deflation and slow growth. The central government 

adopted stimulatory monetary policies that saw capital move into the stock market rather than the real economy. 



 

 19 

As shown in Fig. 3, the frontier is an important support line for Shanghai Composite 

Index.  

[Insert Fig. 3 About Here] 

 

4. Conclusions 

In this article, we have introduced a general theoretical framework that is capable of 

capturing the dynamics of bear markets. Under this framework, the price of an asset is 

modelled in an environment where information about negative shocks relating to future asset 

payoffs leak in advance and diffuse slowly to the investing public. Our theory establishes a 

trivariate frontier, a trade-off relationship between amplitude, duration and rate of 

information diffusion as proxied by volatility persistence. The intercept of the frontier on the 

amplitude-axis measures the degree of investors’ ex ante overvaluation, which is incorporated 

into the asset pricing error and consequently corrected by the subsequent bear market.  

We also test the theory using data from three financial crises across 15 countries. The 

results confirm the existence of the trade-off relationship. Moreover, the frontier is found to 

be country specific and time independent. An algorithm for dynamically generating the 

frontier is proposed. We demonstrate that it can be applied successfully to trace the bottom of 

bear markets. An implication of our study is that the recent market crashes due to the US sub-

prime crisis are similar to previous crashes in terms of the amplitude-duration-persistence 

frontier. Empirical analysis based on analysis of the Chinese stock market also indicates that 

the trivariate trade-off relationship is a general phenomenon.  

Our analysis has also contributed to the literature on volatility persistence. Several 

studies have attempted to determine its cause, the core explanations being specified in terms 
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of either market structure (Kavajecz and Odders-White, 2001) or investors’ preferences 

(Barberis et al., 1998; McQueen and Vorkink, 2004). Our model offers a new view on the 

underlying mechanism of persistent volatility from the perspective of information diffusion. 

In addition, our analysis provides an insight about the mechanism through which volatility 

persistence affects stock prices, which has been empirically, but inconclusively, investigated 

by Engle and Lee (1999), Cuñado et al. (2008), Cuñado et al. (2009). 

For tractability, our study assumes a simple asset pricing mechanism that allows for a 

limited number of unobservable explanatory factors. Studies that include other important 

observable pricing factors (such as macroeconomic factors and sentiment factors) and 

consider more sophisticated transaction rules (for instance, the interaction between 

heterogeneous agents) are clearly required. Such factors are potentially correlated with 

information diffusion (Veldkamp, 2005) and may contribute to our understanding of the 

mechanisms of a bear market. With the increasing trend in global financialization, many 

other markets (for example, commodity market and artworks market) will come to share 

similar pricing characteristics as stock markets. Our amplitude-duration-persistence analysis 

can be extended to these areas for future research. 
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Appendix. 

A. Information Diffusion Process 

A.1 Hong and Stein’s (1999) Framework 

In Hong and Stein’s (1999) framework, information innovation 
T

d  can be decomposed 

into z i.i.d. subinnovations, each with identical variance
z

2
:  

z

T
eeed  ...21                                                                         (A.1)                               

When 
T

d  begins to diffuse, say at time sequence s=1, newswatcher 1 observes 1
e , 

newswatcher 2 observes 2
e  , and so on, through to newswatcher z, who observes z

e . At the 

next time sequence s=2, the newswatchers ―rotate,‖ so that newswatcher 1 now observes 2
e , 

newswatcher 2 observes 3
e , and so on, through to newswatcher z, who now observes 1

e . This 

rotation process continues until 
T

d  becomes totally public. The information diffusion 

mechanism can also be shown by the arranging the stream of subinnovations as a matrix: 

 

 

 

 

 

The subinnovations matrix ),( sxe (x denotes newswatcher x, and s denotes sequence) 

diffuses sequentially to the investment population one column at a time, such that for any x, 

T

z

s

dsxe 
1

),( . Moreover, each column contains all the subinnovations of 
T

d :
T

z

x

dsxe 
1

),( . 

Thus, on average, everyone is equally informed.  

Newswatcher1→ 

Newswatcher2→ 

Newswatcher3→ 

Newswatcher4→ 
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(A. 2) 
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Suppose at sequence s=m, and subinnovations column vector )1,( sxe , )2,( sxe ,…, 

),( msxe  , that a percentage 
z

m
 of 

T
d , has been released to newswatchers. Then 

T
d  can be 

decomposed into two parts: 


m

s

sxe
1

),( , which is what newswatcher x receives, and 


z

ms

sxe
1

),( , 

which is still unknown. His belief about 
T

d becomes： 



z

ms

m

s
T

sxesxed
11

),(),( , which is 

normally distributed with mean 


m

s

sxe
1

),(  and variance 2

1

)(
]),(var[ 

z

mz
sxe

z

ms






. Note that 




m

s

sxe
1

),( is the realization of the sum of subinnovations.  

A.2 A continuous Time Version 

The information diffusion structure of Appendix1.1 can be extended into continuous time: 

Here the information innovation 
T

d  is decomposed into a continuum of stochastic 

subinnovations )(se : 



z

s

s

T
ded

0

)(
 , where s is defined on (0, z) representing the time 

sequence of diffusion. )()( sdW
z

de s 
 where dW is a Wiener process. )0()( WsW  ～

),0( sN . For simplicity, we normalize 1z  to obtain: 





1

0

)(

s

s

T
ded , )()(

sdWde
s                                            (A.3) 

Subinnovations spread symmetrically across a continuum of newswatchers x, ]1,0[x , 

and over time sequence s . The information diffusion structure can be described by a two 

dimensional stochastic process ),( sxde . Similar to the above discrete time information 

structure, we specify a symmetrically continuous diffusion process, with features as listed 

below: 

(i) Each newswatcher x  receives a continuous innovation sequence, such that  
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1

0

1

0

)(),(
s

T

s

s
desxde .                                                               (A.4) 

(ii) For any sequence s, we have 



1

0

)(

1

0

),(
x

T

x

x

ddesxde . Everyone is equally informed. 

(iii) 
T

d begins to spread at t=0. At time t, a percentage )(tf of 
T

d  is revealed cumulatively 

to the investment population. Each newswatcher’s belief about 
T

d can then be decomposed 

into two parts:  newswatcher x receives 


)(

0

),(

tf

s

sxde  leaving 


1

)(

),(
tfs

sxde  unknown. The belief 

of newswatcher x about 
T

d becomes: 
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                                  (A.5)               

which is normally distributed with mean 


)(

0

),(

tf

s

sxde  and variance                        

))](()1(var[ tfWW   2)](1[ tf  

)(tf is a continuously increasing function defined on (0, T ), with 0)0( f  and 

1)( Tf . )(' tf can be considered as a proxy for information efficiency. A lower value of 

)(' tf  implies a lower rate of information revelation and less informational efficiency. 

 

B. Proof of Proposition 1 

Newswatchers choose their optimal holdings by maximizing the utility function 

}{max
)))((( )( tTr

Txt

xt

etPDN

xt
N

eE
 　 , 
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which implies              

.
)(var

))(( )(

Txt

tTr

Txt

xt
D

etPDE
N




                                           (B.1) 

(B.1) can be rearranged as  

.)(var)()( )(

xtTxtTxt

tTr
NDDEetP 

                                           (B.2) 

Due to the assumption of homogenous investors, (B.2) implies 

.)(var)()(

1

0

1

0

1

0

)(
dxDNdxDEdxetP

x

Txtxt

x

Txt

x

tTr 


                                             (B.3) 

For a terminal payoff 
T

d , the assumption that information about 
T

d  diffuses 

symmetrically across newswatchers implies that at time t，each newswatcher x faces a 

fraction )(1 tf  of residual subinnovations 


1

)(

),(
tfs

sxde , and his/her belief about the terminal 

payoff is: 

)),(()1(),(

)(

0

tfWWsxdeDdDD

tf

s

TT
  



                                          (B.4) 

which is normally distributed with mean 



)(

0

),(

tf

s

sxdeD and variance 2)](1[ tf .  

From (B.3) we can obtain:  

.)](1[)(
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                                          (B.5) 

 

C. Proof of Proposition 2.  

For the stock price to reach its extreme value, the first derivative 
dt

tdP )(
 must be equal to 0. 
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Differentiating (3) we obtain:  

)()(

)(

))(())(('

)(
)(

tTr

T

tTr

T

tTr

reQdtfeQdtf

reQD
dt

tdP












.                                          (C.1) 

 

The condition 0
)(


Ttdt

tdP
is equivalent to: 

 )( QD  )(
)('

Qd
r

Tf
T

 ))(( QdTf
T

 , TT  .                  (C.2) 

 

Since )(tf  is an increasing function of t, 0)(' tf . If QD  , then 0 Qd
T

 is 

required to ensure (C.2) holds. Furthermore, we know that for a bear market to exist, 
T

d  

should be sufficiently less than 0, i.e. Qd
T

 .  

Moreover, for a stock price to attain its minimum then, 0
)(

2

2


Tt

dt

tPd
  must also hold. 

])(')(''[)(
)()( )(

2

2

rtftfeQd
dt

tdP
r

dt

tPd tTr

T
  .                                          (C.3) 

Combining this with (C.2), we get: 

])(')(''[)(
)( )(

2

2

rTfTfeQd
dt

tPd TTr

T

Tt

 



 .                                  (C.4) 

If 0)(')(''  rTfTf , then 0
)(

2

2


Tt

dt

tPd , indicating that price reaches a minimum value at 

time T . This is the typical case observed in most large bear markets, in which the stock price 

hits its bottom before bad news is fully revealed to investors.  

 

D. Proof of Proposition 3.  

Based on (3) the price dynamic function of Proposition 1, we can obtain:  



 

 26 

))(1(
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  .                                                          (D.1) 

At time T , and by using the first order condition defined in (C.2), (D.1) can be rewritten 

as:  

)(
)('

)0(
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QD
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r

Tf
e

P

TP TrT







 .                                                           (D.2) 

Taking logarithms of both sides of (D.2), we obtain the trade-off relationship: 

)ln()
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ln(
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QD

Qd
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Tf
rT

P

TP T







 .                                        (D.3) 

where 
)0(

)(
ln

P

TP
 is the log return of the stock from time 0 to T . Its negative 

)0(

)(
ln

P

TP
 , 

denoted by A , would be a good measure of the amplitude of stock price decline. Simplifying, 

we obtain:  

)ln()
)('

ln(
QD

Qd

r

Tf
rTA T







  ,                                             (D.4) 

where Q  equals the risk premium at time 0; QD   is the initial stock price at time 0 and 

T
d  represents the magnitude of the negative dividend shock. Note that Dd

T
  is required 

to ensure that the ultimate stock value is positive. 

 

E. The DJI Index around the Fall of Lehman Brothers. 

[Insert Fig. E.1 About Here] 

 

F. Comparison of Stock Market Behaviours during Financial Crisis. 

From Fig. F.1, we can observe that the 1997 Asian Financial Crisis had little impact on the 

second group of markets. During the 1997 East Asia financial Crisis, the trend component of 

the DJI, AEX, CAC40, TEL and FTSE indices exhibited only slight falls, while their Asian 

and Latin American counterparties experienced severe declines. 

[Insert Fig. F.1 About Here] 
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TABLE 1 
 

Dating of the Trough across Stock Markets 

 

Market 
The 1997 Asian Financial 

Crisis 
Dot-com Crisis 

U.S. Sub-Prime Financial 

Crisis 

AEX —— 
09/04/2000–
03/12/2003 

07/16/2007–03/09/2009 

BSE 08/05/1997–10/20/1998 
02/11/2000–
10/28/2002 

01/08/2008–03/09/2009 

BVSP 07/29/1997–10/01/1998 
03/27/2000–
10/16/2002 

05/20/2008–10/27/2008 

CAC —— 
09/04/2000–
03/12/2003 

06/01/2007–03/09/2009 

DJI —— 
01/14/2000–
03/11/2003 

10/09/2007–03/09/2009 

FTSE —— 
09/04/2000–
03/12/2003 

06/15/2007–03/03/2009 

HSI 06/16/1997–08/13/1998 
03/28/2000–
04/25/2003 

12/05/2007–10/29/2008 

JKSE 07/08/1997–09/21/1998 
01/17/2000–
10/14/2002 

01/09/2008–10/29/2008 

KLSE 02/20/1997–09/01/1998 
02/18/2000–
05/21/2001 

01/08/2008–10/29/2008 

KS11 06/17/1997–06/16/1998 
01/04/2000–
09/17/2001 

10/31/2007–11/20/2008 

MERV 08/20/1997–09/10/1998 
03/03/2000–
06/14/2002 

10/31/2007–11/21/2008 

MMX 10/21/1997–09/10/1998 
03/09/2000–
11/19/2002 

10/18/2007–03/02/2009 

SMI —— 
08/23/2000–
03/12/2003 

06/01/2007–03/09/2009 

STI 01/20/1997–09/04/1998 
01/03/2000–
03/10/2003 

10/11/2007–03/09/2009 

TEL —— 
03/06/2000–
02/13/2003 

11/01/2007–12/29/2008 

Note: This table presents the sample periods for the three crises. The stock market indices 

under consideration comprise the SMI (Swiss Market Index); CAC 40 (Cotation Assistée en 

Continu 40 index, France); AEX (Amsterdam Exchange index, Netherland); FTSE (Financial 

Times Stock Exchange Index, UK); DJI (Dow Jones Industrial Average index, US); TEL (Tel 

Aviv 100 Index, Israel); STI (Straits Times Index, Singapore); HIS (Hang Seng Index, 

Hongkong); SET (Thailand composite index); JKSE (the Jakarta Index, Indonesia); KLSE 

(Kuala Lumpur Stock Exchange Index, Malaysia); BSE SENSEX (Bombay Stock Exchange 

Sensitive Index, India); KS11 (KOSPI Composite Index, South Korea); BVSP (Bovespa 

index, Brazil); MMX (Mexico); and MERV (Merval Buenos Aires Index, Argentina). In 

analysing the 1997 Asian financial crisis, the DJI, AEX, CAC40, TEL and FTSE indices were 

omitted from the estimation sample as this crisis had little impact on Western stock markets 

(see Appendix E).  
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TABLE 2 

 

Amplitude, Duration and Volatility Persistence for 15 Stock Market Indices during the Three Crisis Periods. 

 

 Amplitude Duration Volatility Persistence 

 

1997 Asian 

Financial 

Crisis 

Dot-com 

Crisis 

U.S. Sub-

Prime 

Financial 

Crisis 

1997 Asian 

Financial 

Crisis 

Dot-com 

Crisis 

U.S. Sub-

Prime 

Financial 

Crisis 

1997 Asian 

Financial 

Crisis 

Dot-com 

Crisis 

U.S. Sub-

Prime 

Financial 

Crisis 

AEX —— 1.1668 1.0368 —— 640 420 —— 0.9978 0.9949 

CAC —— 1.0580 0.8954 —— 648 452 —— 0.9732 0.9966 

DJI —— 0.4434 0.7717 —— 798 355 —— 0.9584 0.9724 

FTSE —— 0.7267 0.6507 —— 646 435 —— 0.9626 0.9824 

SMI —— 0.8238 0.7942 —— 657 443 —— 1.0010 0.9959 

HSI 0.7707 0.7777 0.8374 286 756 219 0.9872 0.9537 0.9512 

JKSE 1.0594 0.7345 0.9328 301 690 195 0.9777 0.9626 0.9629 

KLSE 1.5728 0.6031 0.5856 380 313 199 1.0363 0.5313 0.5017 

KS11 1.0401 0.8150 0.7777 293 418 262 0.9988 0.9405 0.9840 

STI 1.0375 0.7552 0.9784 407 805 341 0.9868 0.9232 0.9856 

BSE 0.4980 0.7388 0.9392 294 671 285 0.6061 0.9330 0.8949 

BVSP 0.7833 0.8171 0.9153 296 633 113 0.9954 0.7729 0.9976 

MERV 1.0549 0.8797 1.0426 262 545 262 0.9692 0.9992 0.9794 

MMX 0.6313 0.3884 0.6625 223 668 341 0.9330 0.9944 0.9849 

TEL —— 0.6442 0.7653 —— 574 268 —— 0.9025 0.9847 

Average —— 1.1668 1.0368 —— 640 420 —— 0.9978 0.9949 

Note: This table reports the values of amplitude, duration and volatility persistence for each sample outlined in Table 1. The amplitude of stock 

market decline is measured by the percentage change from peak to trough. Duration is calculated as the number of trading days between peak 

and trough. Bear stock market duration is much longer during the dot-com crisis than those of the 1997 East Asia Financial Crisis and the 2007 

U.S. Sub-Prime Financial Crisis. Volatility persistence is calculated using the CGARCH model. 
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TABLE 3 

Estimation Results 

Model (1)Panel regression 
(2)Panel regression with fixed 

period effect 

(3)Panel regression with fixed 

cross-sectional effect 

(4)Panel regression with fixed cross-

sectional effect (GLS cross sectional 

weight) 

 
Atk=C(1)×Tik+C(2)×ln(ρik) 

+ln(-C(1))+C(3)+ik 

Aik=C(1)×Tik+C(2)×ln(ρik) 

+ ln(-C(1))+C(3)+periodk+ik 

Aik=C(1)×Tik+C(2)×ln(ρik) 

+ ln(-C(1))+C(3)+crossi+ik 

Aik=C(1)×Tik +C(2)×ln(ρik) 

+ ln(-C(1))+C(3)+crossi+ik 

C(1) -0.0003* -0.0003 -0.0002* -0.0002** 

 (0.0778) (0.4310) (0.0590) (0.0100) 

C(2) 0.6050*** 0.5947** 1.1476*** 1.1452 *** 

 (0.0042) (0.0102) (0.0000) (0.0000) 

C(3) 9.1003*** 9.2032*** 9.3806*** 9.4004 *** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

R
2
 0.2349 0.2659 0.8159 0.8658 

2

R  0.1924 0.1795 0.6821 0.7682 

AIC -0.3472 -0.2859 -1.0539 —— 

Note: This table reports the estimation results from four panel regressions. periodk is the period effect, where k(=1, 2, 3) indicates the crisis 

period, and crossi represents the cross-sectional effect. We report both estimated coefficients and corresponding p-values. Coefficients that are 

significant at the 1%, 5%, and 10% levels are marked indicated by ***, ** and * respectively. R
2
, 

2

R and Akaike's information criterion (AIC) 

are also reported to aid assessment of the model performance. 
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TABLE 4 

 

Statistical Description of each Downward Market Cycle 

 

 First Downward Cycle 
Second Downward 

Cycle 
Third Downward Cycle 

Dating 04/28/1993–01/22/1996 06/13/2001–06/03/2005 10/16/2007–11/04/2008 

Amplitude 0.9774 0.7941 1.2623 

Duration 695 957 259 

Volatility 

Persistency(ρ) 
0.9545 0.9785 0.6572 

Note: This table reports the dating and the characteristics of each of the three bear markets. 

 

 

TABLE G.1 
 

Panel Regression Estimation Results, with ρ
_

 as an Explanatory Variable. 

M

odel 
(1)Panel regression 

(2)Panel regression 

with fixed period 

effect 

(3)Panel regression 

with fixed cross-

sectional effect 

(4)Panel regression 

with fixed cross-

sectional effect 

(GLS cross-sectional 

weights) 

 

Ait=C(1)×Tik+C(2) 

×ln(ρ
_

ik)+ln(-C(1))+C(3) 

+C(4)×ln(ρ
_

ik)+ ik 

Ait=C(1)×Tik 

+C(2)×ln(ρ
_

ik) 

+ln(-C(1)) +C(3) 

+C(4) 

×ln(ρ
_

ik)+periodk+ik 

Ait=C(1)×Tik 

+C(2)×ln(ρ
_

ik) 

+ ln(-C(1))+C(3) 

+C(4) 

×ln(ρ
_

ik)+crossi+ik 

Ait=C(1)×Tik 

+C(2)×ln(ρ
_

ik) 

+ln(-C(1)) 

+C(3)+C(4) 

×ln(ρ
_

ik)+crossi+ik 

C(1) -0.0003 -0.0003 -0.0002 -0.0002 

 (0.0832) (0.4417) (0.0741) (0.0741) 

C(2) 0.5797 0.5758 1.0068 1.0068 

 (0.0347) (0.0383) (0.0001) (0.0001) 

C(3) 9.1034 9.1507 9.4496 9.4496 

 (0.0000) (0.0000) (0.0000) (0.0000) 

C(4) 0.0327 0.0314 0.2043 0.2043 

 (0.8836) (0.8996) (0.1776) (0.1776) 
2

R  0.2354 0.2662 0.8315 0.8705 
2

R  0.1698 0.1550 0.6952 0.7656 

AIC -0.2965 -0.2351 -1.0913 —— 

Note: This table reports the estimation results from four panel regressions with ρ
_

as an 

explanatory variable. periodk is the period effect and crossi represents the cross-sectional effect. 

We report both the estimated coefficients and corresponding p-values. 2
R , 2

R and Akaike's 

information criterion (AIC) are also reported to aid the assessment of the model performance.  
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Fig. 1. The Amplitude-Duration-Persistence Frontier. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 presents the trivariate trade-off frontier between amplitude, duration and volatility 

persistence. The grey surface represents the amplitude-duration-persistence frontier for a bear 

market with an ex ante overvaluation. There is a projection of the surface onto each of the 

three planes: persistence-time, price-persistence and price-time. 
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Fig. 2. Index Frontiers for Each of the Financial Crises. 

 

Fig. 2 shows for each of the 15 stock markets analysed the closing value of the stock market 

index (labelled as CLOSE_X, where X is the index name) together with the frontier for the 3 

crisis periods (labelled by FRONTIER_1997, FRONTIER_2000 and FRONTIER_ 2008, 

respectively). The AEX, CAC40, DJT, FTSE and TEL were omitted from the analysis of the 

1997 Asian Financial Crisis as they were relatively unaffected by it.  
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Fig. 3.The Index Frontier for China’s 2001–05 Bear Market and 2007–08 Crash.  

 

Fig. 3 shows the Shanghai Composite Index and its frontiers for the 2001–05 bear market 

(Frontier 1) and 2007–08 crash (Frontier 2). It shows that when index came close to the 

frontiers, the market rebounded in both mid-2005 and late 2009. Thus the frontiers build 

important support lines for the index. 

 

Fig. E.1. Behaviour of the DJI Index during the Fall of Lehman Brothers.  

 

Fig. E.1 illustrates the volatility dynamics (dashed line, left hand scale) and DJI index (solid 

line, right hand scale) during the fall of Lehman Brothers in September 2008. It can be 

observed that the long run volatility level, derived from an ARMA(1,1)-CGARCH(1,1) 

model, increased dramatically on news of the bail out of Lehman Brothers, and the index 

value approached the trough with the decay of long run volatility.  
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Fig. F.1. Comparison of Stock Market Behaviour during Financial Crises. 

 

Fig. F.1 plots the trends of the 15 stock market indices using a HP filter (Hodrick and 

Prescott (1997)). The left hand panel shows the indices for the four developed markets and 

single Middle Eastern market (DJI, AEX, CAC40, TEL and FTSE).  The right hand panel 

shows the indices for the Asian markets and emerging markets in South America. The trends 

are plotted on a logarithm scale. The shaded areas denote the timescale of three financial 

crises. 
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