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Abstract

This paper considers forecast combination in a predictive regression. We construct

the point forecast by combining predictions from all possible linear regression models

given a set of potentially relevant predictors. We propose a frequentist model averag-

ing criterion, an asymptotically unbiased estimator of the mean squared forecast error

(MSFE), to select forecast weights. In contrast to the existing literature, we derive the

MSFE in a local asymptotic framework without the i.i.d. normal assumption. This re-

sult allows us to decompose the MSFE into the bias and variance components and also

to account for the correlations between candidate models. Monte Carlo simulations

show that our averaging estimator has much lower MSFE than alternative methods

such as weighted AIC, weighted BIC, Mallows model averaging, and jackknife model

averaging. We apply the proposed method to stock return predictions.

JEL Classification: C52, C53

Keywords: Forecast combination, Local asymptotic theory, Plug-in estimators.

∗We are grateful to Bruce Hansen and Jack Porter for constructive comments and suggestions. We
also grateful to Sheng-Kai Chang, Jau-er Chen, Serena Ng, Tatsushi Oka, Denis Tkachenko, Aman Ullah,
and conference participants of CFE-ERCIM 2013, EEA-ESEM 2013, AMES 2013, SETA 2013, Tsinghua
International Conference in Econometrics, and CMES 2013 for helpful comments and discussions. All errors
remain the authors’.

†Department of Economics, National University of Singapore. Email: ecslca@nus.edu.sg.
‡Department of International Business, National Chengchi University. Email: bsku@nccu.edu.tw.



1 Introduction

The challenge of empirical studies on forecasting practice is that one does not know exactly

what predictors should be included in the true model. In order to address the model uncer-

tainty, forecast combination has been widely used in economics and statistics; see Granger

(1989), Clemen (1989), Timmermann (2006), and Stock and Watson (2006) for literature

reviews. Although there is plenty of empirical evidence to support the success of forecast

combination, there is no unified view on selecting the forecast weights in a general framework.

This paper proposes a new frequentist model averaging criterion for forecast combination.

For a given set of potentially relevant predictors, we construct the point forecast by combining

predictions from all possible linear regression models. Building on the idea of the weighted

focused information criterion (wFIC) proposed by Claeskens and Hjort (2008), we introduce a

model averaging criterion to select the weights for candidate models and study its properties.1

The proposed model averaging criterion is an estimate of the mean squared forecast error

(MSFE). Therefore, the data-driven weights that minimize the model averaging criterion are

expected to close to the optimal weights that minimize the MSFE. In contrast to the existing

literature, we derive the MSFE of forecast combination in a local asymptotic framework

without the i.i.d. normal assumption. This result allows us to decompose the MSFE into the

bias and variance components. Hence, the proposed model averaging criterion can be used

to address the trade-off between bias and variance of forecast combination. Furthermore, the

criterion also accounts for the correlations between candidate models instead of assuming

perfect correlation in most existing methods.

To yield a good approximation to the finite sample behavior, we investigate forecast

combination in a local asymptotic framework where the regression coefficients of predictors

are in a local T−1/2 neighborhood of zero, which is similar to that used in weak instrument

theory (Staiger and Stock, 1997). This local-to-zero framework ensures the consistency of the

averaging estimator while in general presents an asymptotic bias. Since both squared model

1The idea of the focused information criterion proposed by Claeskens and Hjort (2003) has been extended
to several models, including the general semiparametric model (Claeskens and Carroll, 2007), the generalized
additive partial linear model (Zhang and Liang, 2011), the Tobin model with a nonzero threshold (Zhang,
Wan, and Zhou, 2012), the generalized empirical likelihood estimation (Sueishi, 2013), the generalized method
of moments estimation (DiTraglia, 2013), and the propensity score weighted estimation of the treatment
effects (Kitagawa and Muris, 2013).
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biases and estimator variances have the same stochastic order, the trade-off between omitted

variable bias and estimation variance remains in the asymptotic theory. Thus, the forecast

combination with optimal weights achieves the best trade-off between bias and variance in

this context.

We show that the optimal weights can be characterized by the local parameters and

the covariance matrix of the predictive regression. We then propose a plug-in estimator

of the infeasible optimal weights and use these estimated weights to construct the forecast

combination. Since the estimated weights depend on the covariance matrix, it is quite easy

to model the heteroskedasticity and serial correlation by the plug-in method.

To illustrate the plug-in forecast combination approach, we study the predictability of

U.S. stock returns. Following Welch and Goyal (2008) and Rapach, Strauss, and Zhou (2010),

we use U.S. quarterly data to investigate the out-of-sample equity premium. We find strong

evidence that the performance of the proposed approach is better than the historical average.

In particular, the plug-in forecast combination approach achieves lower cumulative squared

prediction error than those produced by other averaging methods. Our results support the

findings of Rapach, Strauss, and Zhou (2010) and Elliott, Gargano, and Timmermann (2013)

that forecast combinations consistently achieve significant gains on out-of-sample predictions.

There is a large body of literature on forecast combination, including both Bayesian

and frequentist model averaging. Since the seminal work of Bates and Granger (1969),

many alternative forecast combination methods are proposed by Granger and Ramanathan

(1984), Min and Zellner (1993), Raftery, Madigan, and Hoeting (1997), Buckland, Burnham,

and Augustin (1997), Yang (2004), Zou and Yang (2004), Hansen (2008), Hansen (2010),

Elliott, Gargano, and Timmermann (2013), and Cheng and Hansen (2013), among others.

In a recent paper, Hansen (2008) proposes to construct forecast combinations using the

weights by minimizing the Mallows model averaging (MMA) criterion introduced in Hansen

(2007). Under the homoskedasticity assumption, the MMA criterion is an asymptotically

unbiased estimator of the MSFE. The MMA criterion is based on the sum of squared errors

and a penalty term that estimates the difference between MSFE and the expectation of the

sum of squared errors. Hence, the MMA criterion addresses the trade-off between the model

fit and model complexity. Like the MMA criterion, our model averaging criterion is also
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an asymptotically unbiased estimator of the MSFE. We, however, employ a drifting asymp-

totic framework to approximate MSFE and address the trade-off between bias and variance.

Compared to the MMA estimator, we do not restrict model errors to be homoskedastic and

uncorrelated. Numerical comparisons show that our estimator achieves lower MSFE than

the MMA estimator in most simulations.

One popular model averaging approach is the simple equal-weighted average. The sim-

ple equal-weighted average makes sense if all the candidate models have similar prediction

powers. Recently, Elliott, Gargano, and Timmermann (2013) extend the idea of the simple

equal-weighted average to complete subset regressions. They construct the forecast com-

bination by using equal-weighted combination based on all possible models that keep the

number of predictors fixed.2 Instead of choosing the weights, the subset regression combi-

nations have to choose the number of predictors κ, and the data-driven method for κ still

needs further investigation. Monte Carlo shows that the performance of complete subset

regressions is sensitive to the choice of κ, while the performance of our model averaging

criterion is relatively robust in most simulations.

There is a large literature on the asymptotic optimality of model selection. Shibata

(1980) and Ing and Wei (2005) demonstrate that model selection estimators based on the

Akaike information criterion or the final prediction criterion asymptotically achieve the lowest

possible mean squared forecast error in homoskedastic autoregressive models. Li (1987)

shows the asymptotic optimality of the Mallows criterion in homoskedastic linear regression

models. Andrews (1991a) extends the asymptotic optimality to the heteroskedastic linear

regression models. Shao (1997) provides a general framework to discuss the asymptotic

optimality of various model selection procedures.

The existing literature on the asymptotic optimality of model averaging is comparatively

small. Hansen (2007) demonstrates the asymptotic optimality of the Mallows model averag-

ing estimator for nested and homoskedastic linear regression models. Wan, Zhang, and Zou

(2010) extend the asymptotic optimality of the Mallows model averaging estimator for contin-

uous weights and a non-nested setup. Hansen and Racine (2012) propose the jackknife model

2One limitation of subset regression combinations is that the approach is not suitable for the nested
models. Suppose we consider AR models up to order p. The goal is to average different AR models to
minimize the risk function. In this case, we are not able to apply complete subset regressions.
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averaging (JMA) estimator and demonstrate the asymptotic optimality in heteroskedastic

linear regression models. Liu and Okui (2013) propose the Heteroskedasticity-Robust Cp es-

timator and demonstrate its optimality in the linear regression models with heteroskedastic

errors. These asymptotic theories, however, are limited to the random sample and hence are

not directly applicable to forecast combination for dependent data.3

The outline of the paper is as follows. Section 2 introduces the model and forecast

combination. Section 3 shows that the weight vector that minimizes the MSFE is equivalent

to the weight vector that minimizes the MSE. Section 4 characterizes the optimal weights and

presents the plug-in estimator for forecast combination. Section 5 evaluates the finite sample

MSFE of the plug-in averaging estimator and other averaging estimators in two simulation

experiments. Section 6 applies the plug-in forecast combination to the predictability of U.S.

stock returns. Section 7 concludes. Proofs and figures are included in the Appendix.

2 Model and Forecast Combination

Suppose we have observations (yt,xt−1) for t = 1, ..., T . The goal is to construct a point

forecast of yT+1 given xT using the one-step-ahead forecasting model

yt = x′
t−1β + et, (2.1)

E(et|xt−1) = 0, (2.2)

E(e2t |xt−1) = σ2(xt−1), (2.3)

where yt is a scalar dependent variable, xt−1 is a k×1 vector of potentially relevant predictors,

β is a k × 1 vector of unknown parameters, and et is an unobservable error term. The

predictors could be lags of yt, deterministic terms, any nonlinear transformations of the

original predictors, or the interaction terms between the predictors. The error term is allowed

to be heteroskedastic and serially correlated, and there is no further assumption on the

distribution of the error term. We assume throughout that 1 ≤ k ≤ T − 1, and we do not

3In a recent paper, Zhang, Wan, and Zou (2013) show the asymptotic optimality of the JMA estimator in
the presence of lagged dependent variables. They assume that the dependent variable follows the stationary
AR(∞) process. A more general theory needs to be developed in the future study.
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let the number of predictors k increase with the sample size T .

We now consider a set of M approximating models indexed by m = 1, ...,M , where the

mth model includes a subset of predictors xt−1. The mth model has km predictors. We

do not place any restrictions on the model space. The set of models could be nested or

non-nested. If we consider a sequence of nested models, then M = k + 1. If we consider all

possible combinations of the predictor variables, then M = 2k. Let Πm be a km×k selection

matrix that selects the included predictors in the mth model. For example, suppose that

k = 5 and the mth model has three predictors, x1t, x2t, and x4t. Then

Πm =




1 0 0 0 0

0 1 0 0 0

0 0 0 1 0


 .

In matrix notation, we write the model as y = Xβ+e, where y = (y1, y2, ..., yT ) is T ×1,

X = (x′
0,x

′
1, ...,x

′
T−1)

′ is T × k, and e = (e1, e2, ..., eT ) is T × 1. The least squares estimator

of β in the mth model is β̂m = (X′
mXm)

−1X′
my, where Xm = (XΠ′

m). The predicted value

is ŷ(m) = Xmβ̂m = XΠ′
mβ̂m. Thus, the one-step-ahead forecast given information up to

period T from this mth model is

ŷT+1|T (m) = x′
TΠ

′
mβ̂m. (2.4)

Let w = (w1, ..., wM)′ be a weight vector with wm ≥ 0 and
∑M

m=1
wm = 1. That is, the

weight vector lies in the unit simplex in R
M : HM =

{
w ∈ [0, 1]M :

∑M
m=1

wm = 1
}
. The

sum of the weight vector is required to be one. Otherwise, the averaging estimator of β is

not consistent. The one-step-ahead combination forecast is

ȳT+1|T (w) =

M∑

m=1

wmŷT+1|T (m) =

M∑

m=1

wmx
′
TΠ

′
mβ̂m = x′

T β̄(w), (2.5)

where β̄(w) =
∑M

m=1
wmΠ

′
mβ̂m is an averaging estimator of β.
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3 MSE and MSFE

The previous section defines the one-step-ahead combination forecast with fixed weights.

Our goal is to select weights to minimize the one-step-ahead mean squared forecast error

(MSFE) over the set of all possible forecast combinations. In this section, we show that

the one-step-ahead MSFE is approximately the in-sample mean squared error (MSE) plus a

constant term when the observations are strictly stationary.4 As a result, the weight vector

that minimizes the in-sample MSE is equivalent to the weight vector that minimizes the

one-step-ahead MSFE.

We first write the conditional mean in (2.1) as µt−1 so that the equation is yt = µt−1+ et.

Similarly for any weight vector, we write µ̄t−1(w) = x′
t−1β̄(w). We consider the quadratic

loss function and define the in-sample mean squared error (risk) as

MSE(w) = E

(
1

T

T∑

t=1

(µt−1 − µ̄t−1(w))2
)

= E

(
(
β̄(w)− β

)′
(
1

T

T∑

t=1

xt−1x
′
t−1

)
(
β̄(w)− β

)
)
. (3.1)

The in-sample MSE measures the global fit of the averaging estimator since it is constructed

using the entire sample.

For any weight vector, the one-step-ahead mean squared forecast error is MSFE(w) =

E
(
yT+1 − ȳT+1|T (w)

)2
. Let σ2 = E(e2t ). Expanding the square, we find

MSFE(w) = E
(
eT+1 + x′

T

(
β̄(w)− β

))2

= σ2 + E
((

β̄(w)− β
)′
xTx

′
T

(
β̄(w)− β

))

≃ σ2 + E
((

β̄(w)− β
)′
xt−1x

′
t−1

(
β̄(w)− β

))

= σ2 +MSE(w). (3.2)

Note that xt−1 and β̄(w) are independent in large samples when (xt−1, et) are strictly

4Hansen (2008) shows that the MSFE approximately equals MSE for stationary time series data with
homoskedastic errors. Elliott, Gargano, and Timmermann (2013) also have a similar argument for complete
subset regressions.
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stationary and ergodic. A similar argument can apply to the independence of xT and β̄(w).

As a result, the approximation in the third line is valid.

Let the optimal weight vector be the value that minimizes MSFE(w) over w ∈ HM .

Since σ2 is a constant and not related to the weight vector w, we have

argmin
w∈HM

MSE(w) = argmin
w∈HM

MSFE(w). (3.3)

Equation (3.3) means the optimal weight vector that minimizes the MSE also minimizes the

MSFE.

One straightforward way to compute the MSE defined in (3.1) is to use the limiting dis-

tribution of
(
β̄(w)− β

)
to approximate the MSE. In order to obtain a good approximation

to the finite sample behavior, we study the MSE in a local asymptotic framework, which we

will describe in the following section.

Another method to approximate the MSE is to use the information from the sum of

squared errors, which is the idea behind the Mallows criterion. Let ê(w) = y −Xβ̄(w) be

the averaging residual vector. Define P(w) =
∑M

m=1
wmXm(X

′
mXm)

−1X′
m. Expanding the

sum of squared errors we have

ê(w)′ê(w) =
(
β̄(w)− β

)′
X′X

(
β̄(w)− β

)
+ e′e+ 2e′(I−P(w))Xβ − 2e′P(w)e. (3.4)

Under the homoskedasticity assumption, we take expectation on both sides and obtain

E(ê(w)′ê(w)) = MSE(w) + Tσ2 − 2E(e′P(w)e). (3.5)

The Mallows model averaging (MMA) criterion proposed by Hansen (2007) is

CT (w) = ê(w)′ê(w) + 2σ2k′w, (3.6)

where k = (k1, ..., kM)′ and 2σ2k′w is an estimate of the final term in (3.5). The second

term of (3.6) serves as a penalty term of the criterion function since k′w measures the effec-

tive number of parameters. Therefore, we can interpret the MMA criterion as a measure of
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model fit and model complexity. Hansen (2008) shows that the MMA criterion is an unbiased

estimate of the in-sample mean squared error plus a constant for stationary dependent ob-

servations. Our approach uses the asymptotic mean squared error (AMSE) to approximate

the MSE, which is different from the MMA estimator.

4 Weight Selection

This section characterizes the optimal weights of forecast combinations and presents a plug-in

method to estimate the infeasible optimal weights.

4.1 Optimal Weights

We first investigate the in-sample MSE of the averaging estimator. In finite samples, the

least squares estimator for all models except the model including all predictors has omitted

variable bias. For nonzero and fixed values of β, the risk of these models tends to infinity

with the sample size, and hence the asymptotic approximations break down. We therefore

follow Hjort and Claeskens (2003) and Claeskens and Hjort (2003), and use a local-to-zero

asymptotic framework similar to weak instrument theory to approximate the in-sample MSE.

More precisely, the parameters β are modeled as being in a local T−1/2 neighborhood of zero.

We first establish the asymptotic distribution of the averaging estimator with fixed weights.

Define Q = E
(
xt−1x

′
t−1

)
and Ω = limT→∞ T−1

∑T
s=1

∑T
t=1

E
(
xs−1x

′
t−1eset

)
.5

Assumption 1. β = βT = δ/
√
T , where δ ia a fixed vector.

Assumption 2. As T → ∞, T−1X′X
p−→ Q and T−1/2X′e

d−→ Z ∼ N(0,Ω).

Assumption 1 assumes that β is local to zero. This assumption ensures that the asymp-

totic mean squared error of the averaging estimator remains finite. It is a common technique

to analyze the finite sample properties of the model selection and averaging estimator, for

example, Leeb and Pötscher (2005), Pötscher (2006), Elliott, Gargano, and Timmermann

5If the error term et is serially uncorrelated and identically distributed, Ω can be simplified as Ω =
E
(
xt−1x

′
t−1e

2
t

)
, and if the error term is i.i.d. and homoskedastic, then Ω = σ2Q.
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(2013), and Hansen (2013). This assumption implies that as the sample size increases, all

of the candidate models are close to each other. Under this framework, it is informative to

know if we can improve by forecast combinations instead of relying on one single prediction

model. Also note that the O(T−1/2) framework gives squared model biases of the same order

O(T−1) as estimator variances. Hence, in this context the optimal forecast combination is

the one that achieves the best trade-off between bias and variance.

Assumption 2 is a high-level condition that permits the application of cross-section, panel,

and time series data. This condition holds under appropriate primitive assumptions. For

example, if yt is a stationary and ergodic martingale difference sequence with finite fourth

moments, then the condition follows from the weak law of large numbers and the central

limit theorem for martingale difference sequences. Since the selection matrix Πm is non-

random with elements either 0 or 1, for the mth model we have T−1X′
mXm

p−→ Qm where

Qm = ΠmQΠ′
m is nonsingular. Let Ik be a k × k identity matrix.

Theorem 1. Suppose Assumptions 1-2 hold. As T → ∞, we have

√
T
(
β̄(w)− β

) d−→ N (A(w)δ,V(w))

A(w) =
M∑

m=1

wmAm

V(w) =

M∑

m=1

w2

mBmΩBm + 2
∑∑

m6=ℓ

wmwℓBmΩBℓ

where Am = Π′
mQ

−1
m ΠmQ− Ik and Bm = Π′

mQ
−1
m Πm.

If we assign the whole weight to the full model, i.e., all predictors are included in the

model, it is easy to see that we have a conventional asymptotic distribution with mean

zero (zero bias) and sandwich form variance Q−1ΩQ−1. Note that A(w)δ represents the

asymptotic bias term of the averaging estimator β̄(w). The magnitude of the asymptotic

bias is determined by the covariance matrix Q and the local parameter δ. The asymptotic

variance of the averaging estimator V(w) has two components. The first component is the

weighted average of the variance of each model, and the second component is the weighted

average of the covariance between any two models.
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Theorem 1 shows the asymptotic normality of the averaging estimator with non-random

weights. We use this result to compute the in-sample mean squared error of the averaging

estimator in the next theorem. The distribution result is also useful for inference.

Theorem 2. Suppose Assumptions 1-2 hold. We have

MSE(w) =
1

T
w′CMw +O(T−3/2)

where CM is an M ×M matrix with the (m, ℓ)th element

cm,ℓ = tr (QAmδδ
′A′

ℓ) + tr (QBmΩBℓ)

where Am and Bm are defined in Theorem 1.

Theorem 2 presents the risk of the averaging estimator in the local asymptotic framework.

The mth diagonal element of CM characterizes the bias and variance of the mth model while

the off-diagonal elements measure the product of biases and covariance between different

models. Let w0
m be an M × 1 vector in which the mth element is one and the others are

zeros. Then we obtain the risk of the mth model, i.e., MSE(w0
m) = T−1 tr (QAmδδ

′A′
m) +

T−1 tr (QBmΩBm) + O(T−3/2). Claeskens and Hjort (2008) propose to use the estimate of

MSE(w0
m) for model selection. Here we generalize their results from model selection to

model averaging.6

Theorem 2 is also a more general statement than Theorem 2 of Elliott, Gargano, and

Timmermann (2013). First, we do not restrict the setup to i.i.d. data. Second, we allow any

arbitrary combination between models. Third, we do not restrict the weights to be equal.

Following Theorem 2, we define the optimal weight vector as the value that minimizes

the leading term of MSE(w) over w ∈ HM :

wo = argmin
w∈HM

w′CMw. (4.1)

6Claeskens and Hjort (2008) propose a smoothed wFIC averaging estimator, which assigns the weights
of each candidate model by using the exponential wFIC. The simulations show that the performance of the
smoothed wFIC averaging estimator is sensitive to the choice of the nuisance parameter. Furthermore, there
is no data-driven method available for the nuisance parameter.
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Combining Theorem 2 with (3.3), we deduce that wo is also the optimal weight vector that

minimizes the MSFE. Note that the objection function is linear-quadratic in w, which means

the optimal weight vector can be computed numerically via quadratic programming.

4.2 Plug-In Weights

The optimal weights, however, are infeasible, since they depend on the unknown parameters,

δ, Q, Ω, Am, and Bm. Similar to Liu (2013), we propose a plug-in estimator to estimate the

optimal weights for the forecasting model. We estimate the leading term of the MSE(w)

given in Theorem 2 by plugging in an asymptotically unbiased estimator and choose the data-

driven weights by minimizing the sample analog of the MSE. We then use these estimated

weights to construct the one-step-ahead forecast combination.

We first consider the estimate of the second term of cm,ℓ. It is not problematic since the

unknown parameters Q, Ω, and Bm can be consistently estimated by the sample analogue.

Let β̂f = (X′X)−1X′y and êt = yt −x′
t−1β̂f be the least squares estimator and the residuals

for the full model. The covariance matrix Q and Ω can be consistently estimated by the

method of moments estimator and the heteroskedasticity and autocorrelation consistent

covariance matrix estimator, i.e.,

Q̂ =
1

T

T∑

t=1

xt−1x
′
t−1 and Ω̂ =

T∑

j=−T

K

(
j

ST

)
Γ̂(j),

where K(·) is a kernel function, ST is the bandwidth, Γ̂(j) = T−1
∑T−j

t=1
xt−1x

′
t−1+j êtêt+j

for j ≥ 0, and Γ̂(j) = Γ̂(−j)′ for j < 0.7 Note that both Âm and B̂m are functions of

Q and selection matrix Πm, which can also be consistently estimated under Assumption 2.

Therefore, we have tr
(
B̂mQ̂B̂ℓΩ̂

) p−→ tr (QBmΩBℓ).

We next consider the estimate of the first term of cm,ℓ. Unlike other unknown parameters,

the consistent estimator for the local parameter δ is not available due to the local asymptotic

framework. We can, however, construct an asymptotically unbiased estimator of δ by using

7Note that Q̂
p−→ Q under Assumption 2. Also, Ω̂

p−→ Ω under some regularity conditions, see Newey and
West (1987) and Andrews (1991b). If the error term is serially uncorrelated and identically distributed, then

Ω can be consistently estimated by Ω̂ = T−1
∑T

t=1 xt−1x
′
t−1ê

2
t , the heteroskedasticity-consistent covariance

matrix estimator proposed by White (1980).
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the estimator from the full model. That is, δ̂ =
√
T β̂f . In the proof of Theorem 1, we show

that

δ̂ =
√
T β̂f

d−→ Zδ = δ +Q−1Z ∼ N(δ,Q−1ΩQ−1).

As shown above, δ̂ is an asymptotically unbiased estimator for δ. Since the mean of ZδZ
′
δ

is δδ′ +Q−1ΩQ−1, we construct the asymptotically unbiased estimator of δδ′ as

δ̂δ′ = δ̂ δ̂′ − Q̂−1Ω̂Q̂−1.

Thus, the weight vector of the plug-in estimator is defined as

ŵ = argmin
w∈HM

w′ĈMw, (4.2)

where ĈM is a sample analog of CM with the (m, ℓ)th element

ĉm,ℓ = tr
(
Q̂Âmδ̂δ′Â′

ℓ

)
+ tr

(
B̂mQ̂B̂ℓΩ̂

)
, (4.3)

and T−1w′ĈMw is an asymptotically unbiased estimator of MSE(w).8 The plug-in one-

step-ahead combination forecast is

ȳT+1|T (ŵ) = x′
T β̄(ŵ). (4.4)

As mentioned by Hjort and Claeskens (2003), we can also estimate MSE(w) by inserting

δ̂ for δ. The alternative estimator of cm,ℓ is

c̃m,ℓ = tr
(
Q̂Âmδ̂ δ̂

′Â′
ℓ

)
+ tr

(
B̂mQ̂B̂ℓΩ̂

)
. (4.5)

Although c̃m,ℓ is not an asymptotically unbiased estimator, the simulation shows that the

8Claeskens and Hjort (2008) suggest estimating the first term of cm,ℓ by max
{
0, tr

(
Q̂Âmδ̂δ′Â′

ℓ

)}
to

avoid the negative estimate for the squared bias term. However, our simulations show that this modified
estimator has less performance than the estimator (4.3). Therefore, we focus on the estimator (4.3) in this
paper.
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estimator (4.5) has better finite sample performance than the estimator (4.3) in most ranges

of the parameter space.

Since the estimated weights depend on the covariance matrix estimator Ω̂, it is quite

easy to model the heteroskedasticity and serial correlation by the plug-in method. Another

advantage of the plug-in method is that the correlations between different models are taken

into account in the data-driven weights.

5 Finite Sample Investigation

We now evaluate the finite sample performance of the plug-in forecast combination method

in comparison with other forecast combination approaches in two simulation setups. The

first design is the linear regression model, and we consider all possible models; that is,

the candidate models are nonnested. The second design is a moving average model with

exogenous inputs, and we consider a sequence of nested candidate models.

5.1 Six Forecast Combination Methods

In the simulations, we consider the following forecast combination approaches: (1) smoothed

Akaike information criterion model averaging estimator (labeled S-AIC), (2) smoothed Bayesian

information criterion model averaging estimator (labeled S-BIC), (3) Mallows model averag-

ing estimator (labeled MMA), (4) jackknife model averaging estimator (labeled JMA), (5)

the complete subset regressions approach, (6) the plug-in averaging estimator based on (4.3)

(labeled PIA(1)), and the plug-in averaging estimator based on (4.5) (labeled PIA(2)). We

briefly discuss each method below.

The S-AIC estimator is proposed by Buckland, Burnham, and Augustin (1997), and

suggests assigning the weights of each candidate model by using the exponential Akaike

information criterion. The weight is proportional to the log-likelihood of the model and

is defined as ŵm = exp(−1

2
AICm)/

∑M
j=1

exp(−1

2
AICj) where AICm = T log(σ̂2

m) + 2km,

σ̂2
m = T−1

∑T
t=1

ê2m,t, and êm,t are the least squares residuals from the model m. The S-BIC

estimator is a simplified form of Bayesian model averaging (BMA). By assuming diffuse pri-

ors, the BMA weights approximately equal ŵm = exp(−1

2
BICm)/

∑M
j=1

exp(−1

2
BICj) where

13



BICm = T log(σ̂2
m) + log(T )km.

The Mallows model averaging estimator is proposed by Hansen (2007), and the weight

selection criterion is defined in (3.6). One restriction of the MMA estimator is that it is

limited to the homoskedastic model. The homoskedasticity restriction is relaxed by the

jackknife model averaging estimator proposed by Hansen and Racine (2012). The weights

of the JMA estimator are chosen by minimizing a leave-one-out cross-validation criterion

CVT (w) =
1

T
w′ẽ′ẽw, (5.1)

where ẽ = (ẽ1, ..., ẽM) is the T × M matrix of leave-one-out least squares residuals and

ẽm are the residuals of the model m obtained by least squares estimation without the tth

observation. The MMA and JMA estimators are asymptotically optimal in the sense of

achieving the lowest possible expected squared error in homoskedastic and heteroskedastic

settings, respectively. The optimality, however, is limited to the random sample and hence

is not directly applicable to forecast combination for time series data.

The one-step-ahead combination forecast based on the above four estimators and the

plug-in forecast combination is
∑M

m=1
ŵmŷT+1|T (m) where ŵm is determined by S-AIC, S-

BIC, MMA, JMA, PIA(1), or PIA(2).

Unlike previous methods, the complete subset regression method proposed by Elliott,

Gargano, and Timmermann (2013) assigns equal weights to a set of models. Let κ be the

number of predictors used in all subset regressions. For a given set of potential predictors,

the complete subset regression method constructs the forecast combination by using equal-

weighted combination based on all possible models that include κ predictors. Let nκ,k =

k!/((k − κ)!κ!) be the number of models considered based on κ subset regressions. The

one-step-ahead combination forecast based on complete subset regression method is

ȳT+1|T (κ) =
1

nκ,k

nκ,k∑

m=1

x′
TΠ

′
mβ̂m s.t. tr(Π′

mΠm) = κ. (5.2)

Instead of choosing the weights w, the complete subset regression method has to choose the

number of predictors κ for all models.
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We follow Ng (2013) and compare these estimators based on the relative risk. Let

ŷT+1|T (m) be the prediction based on the model m, where m = 1, ...,M . Let ȳT+1|T (ŵ)

be the prediction based on the S-AIC, S-BIC, MMA, JMA, complete subset regressions, and

plug-in averaging estimators. The relative risk is computed as the ratio of the risk based on

the forecast combination method relative to the lowest risk among the candidate models:

1

S

∑S
s=1

(
ys,T+1|T − ȳs,T+1|T (ŵ)

)2

min
m∈{1,...,M}

1

S

∑S
s=1

(
ys,T+1|T − ŷs,T+1|T (m)

)2

where S is the number of simulations. We set S = 5000 for all experiments. The lower

relative risk means better performance on predictions.

5.2 Linear Regression Models

The data generation process for the first design is

yt =

k∑

j=1

βjxjt−1 + et, (5.3)

xjt = ρxxjt−1 + ujt, for j ≥ 2. (5.4)

We set x1t = 1 to be the intercept and remaining xjt are AR(1) processes with ρx = 0.5

and 0.9. The predictors xjt are correlated. We generate (u2t, ..., ukt)
′ from a joint normal

distribution N(0,Qu) where the diagonal elements of Qu are 1, and off-diagonal elements

are ρu. We set ρu = 0.25, 0.5, 0.75, and 0.9. The error term et has mean zero and variance

one. For the homoskedastic simulation, the error term is generated from a standard normal

distribution. For the heteroskedastic simulation, we first generate an AR(1) process ǫt =

0.5ǫt−1 + ηt where ηt ∼ N(0, 0.75). Then, the error term is constructed by et = 3−1/2(1 −
ρ2x)x

2
ktǫt.

The regression coefficients are determined by the rule

β =
c√
T

(
1,

k − 1

k
, ...,

1

k

)′

,
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and the local parameters are determined by δj =
√
Tβj = c(k − j + 1)/k for j ≥ 2. The

parameter c is selected to control the population R2 = β̃′Qxβ̃/(1 + β̃′Qxβ̃) where β̃ =

(β2, ..., βk)
′ and Qx = (1− ρ2x)

−1Qu. The population R2 varies on a grid between 0 and 0.9.

We set the sample size to T = 200 and set k = 5. We consider all possible models, and hence

the number of models is M = 32.

Figures 1–8 show the relative risk for the first simulation setup. In each figure, the relative

risk is displayed for ρu = 0.25, 0.5, 0.75, and 0.9 for linear regression models, respectively.

We first compare the relative risk when the AR(1) coefficient of the predictor equals

0.5. Figures 1 and 2 show that both plug-in averaging estimators perform well and PIA(2)

dominates other estimators in most ranges of the population R2. The relative risk of MMA

and JMA estimators is indistinguishable in the homoskedastic simulation, but JMA has lower

relative risk than MMA for ρu = 0.25 and 0.5 in the heteroskedastic simulation. The S-AIC

and MMA estimators have quite similar relative risk for the homoskedastic simulation, but

S-AIC has much larger relative risk than MMA for the heteroskedastic simulation. The S-

BIC estimator has poor performance in both homoskedastic and heteroskedastic simulations.

One interesting observation is that all estimators have decreasing relative risk as R2 increases

or ρu increases.

Figures 3 and 4 display the relative risk for the large AR(1) coefficient. The relative

performance of six estimators depends strongly on R2 and ρu. Overall, the ranking of

estimators is quite similar to that for ρx = 0.5. However, PIA(1) performs slightly better

than PIA(2) for the heteroskedastic simulation when R2 is small.

Figures 5 and 6 show the relative risk when R2 varies between 0 and 0.1. It is clear that

PIA(1) achieves lower relative risk than PIA(2) when R2 is small in both homoskedastic and

heteroskedastic simulations. For the homoskedastic simulation, after passing the transition

point where S-BIC and PIA(2) have equal risk, the relative risk of S-BIC is decreasing while

the relative risk of other estimators is increasing sharply. The transition point is getting

close to zero as ρu decreases. Similar results for the AIC and BIC model selection estimators

are also found in Yang (2007) and Ng (2013). However, the advantage of S-BIC for small

R2 value does not exist in the heteroskedastic simulation.

Figures 7 and 8 compare the relative risk between the plug-in averaging estimator and the
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complete subset regressions. The performance of the subset regression approach is sensitive

to the choice of κ, the number of the predictors included in the model. As R2 increases,

the optimal value of κ tends to be greater. Unlike the complete subset regressions, the

performance of the plug-in averaging estimator is quite robust to different values of R2. In

most cases, the plug-in averaging estimator has much lower relative risk than the complete

subset regressions with different κ.

5.3 Moving Average Model with Exogenous Inputs

The second design is similar to that of Ng (2013). The data generation process is a moving

average model with exogenous inputs

yt = xt + 0.5xt−1 + et + βet−1, (5.5)

xt = 0.5xt−1 + ut. (5.6)

The exogenous regressor xt is an AR(1) process, and ut is generated from a standard normal

distribution. The error term et is generated from a normal distribution N(0, σ2
t ) where

σ2
t = 0.5 for the homoskedastic simulation and σ2

t = 1+x2
t for the heteroskedastic simulation.

The parameter β is varied on a grid from −0.5 to 0.5. The sample size is varied between

T = 100, 200, 500, and 1000.

We consider a sequence of nested models based on regressors

{1, yt−1, xt, yt−2, xt−1, yt−3, xt−2}.

The number of models is M = 7. For β 6= 0, the true model is infinite dimensional, and

there is no true model among these seven candidate models. For β = 0, the true model

size, or the number of regressors of the data generation process, is two. However, all seven

models are wrong. In this setup, we do not compute the complete subset regression because

it cannot be applied when the candidate models are nested.

Figures 9–12 show the results for the second simulation setup. In each figure, the relative

risk and model size is displayed for T = 100, 200, 500, and 1000 for MAX(1, 1) models,
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respectively.

Figures 9 and 10 display the relative risk when the moving average coefficient β varies

between −0.5 and 0.5. We analyze the behavior of the estimators in two regions, small |β|
and large |β|. The S-BIC estimator has the lowest relative risk when |β| is small, and PIA(2)

performs better than other estimators when |β| is large. However, when the sample size is

small, S-BIC has poor performance in both regions. These findings from MAX(1, 1) models

are consistent with those of regression models with small R2 values in Figures 5 and 6.

Figures 11 and 12 compare the model size of six estimators. The model size is defined as

the average number of predictors selected by each combination method across 5000 simulation

draws. As we expected, the model size of S-BIC is smaller than those of other estimators. S-

AIC and PIA(2) have similar model sizes, and they tend to select the larger models compared

to MMA, JMA, and PIA(1). An interesting observation is that all estimators have smaller

model sizes when β is large, but the model size is not monotone in β.

6 Empirical Application

In this section, we apply the forecast combination method to stock return predictions. The

challenge of empirical research on equity premium prediction is that one does not know

exactly what variables are the good predictors of the stock return. Different studies sug-

gest different economic variables and models for the equity premium prediction; see Rapach

and Zhou (2012) for a literature review. Results from some studies contradict the find-

ings of others. In a recent article, Welch and Goyal (2008) argue that numerous economic

variables have poor out-of-sample predictions and these forecasting models are unstable to

consistently provide forecasting gain relative to the historical average. In order to take into

account the model uncertainty, Rapach, Strauss, and Zhou (2010) and Elliott, Gargano, and

Timmermann (2013) propose an equal-weighted forecast combination approach to the subset

predictive regression. They find that forecast combinations achieve significant gains on out-

of-sample predictions relative to the historical average. We apply the forecast combination

with data-driven weights instead of equal weights to U.S. stock market.

18



6.1 Data

We estimate the following predictive regression rt = α + x′
t−1β + et where rt is the equity

premium, xt−1 are the economic variables, and et is an unobservable disturbance term. The

goal is to select weights to achieve the lowest cumulative squared prediction error.

The quarterly data are taken from Welch and Goyal (2008) and are up to date through

2011.9 The total sample size is 260 over the period 1947–2011. The stock returns are

measured as the difference between the continuously compounded return on the S&P 500

index including dividends and the Treasury bill rate. We consider 10 economic variables and

a total of 1025 possible models, including a null model.10 The 10 economic variables are

as follows: dividend price ratio, dividend yield, earnings price ratio, book-to-market ratio,

net equity expansion, Treasure bill, long-term return, default yield spread, default return

spread, and inflation; see Welch and Goyal (2008) for a detailed description of the data and

their source.

We follow Welch and Goyal (2008) and calculate the out-of-sample forecast of the equity

premium using a recursively expanding estimation window. We first divide the total sample

into an in-sample period (1947:1–1964:4) and an out-of-sample evaluation period (1965:1–

2011:4). The first out-of-sample forecast is for 1965:1, while the last out-of-sample forecast

is for 2011:4. For each out-of-sample forecast, we estimate the predictive regression based

on all available samples up to that point. For example, the out-of-sample forecast for 1965:2

is generated by the sample from 1947:1–1965:1.

6.2 Out-Of-Sample Forecasting Results

We follow Welch and Goyal (2008) and use the historical average of the equity premium as

a benchmark. As shown in Welch and Goyal (2008) and Rapach, Strauss, and Zhou (2010),

none of the forecast based on the individual economics variable consistently outperforms the

forecast based on the historical average.

9The data are available at http://www.hec.unil.ch/agoyal/.
10Elliott, Gargano, and Timmermann (2013) consider 12 variables, which are slightly different from the

variables used in Rapach, Strauss, and Zhou (2010). We use the variables that are both considered in two
articles. All the models except the null model include the constant term. The null model does not include
any predictor.
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Figure 13 presents the time series plots of the differences between the cumulative squared

prediction error of the historical average benchmark forecast and the cumulative squared pre-

diction error of the forecast combinations based on different model averaging approaches.

When the curve in each panel is greater than zero, the forecast combination method outper-

forms the historical average.

The upper panel of Figure 13 shows that MMA, JMA, PIA(1), and PIA(2) consistently

beat the historical average in terms of MSFE, while S-AIC and S-BIC have worse performance

than the historical average after 1997. It is clear to see that both PIA(2) and MMA have

smaller cumulative squared prediction error than other estimators. The out-of-sample R2

value of PIA(2) is 2.7257 with the associated p-value 0.0173, which means PIA(2) has a

significantly lower MSFE than the historical average benchmark forecast.11 Therefore, our

results support the findings of Rapach, Strauss, and Zhou (2010) and Elliott, Gargano, and

Timmermann (2013) that forecast combinations provide significant gains on equity premium

predictions relative to the historical average.

The two lower panels of Figure 13 compare the cumulative squared prediction error of

PIA(2) to those of the complete subset regressions. As we can see from the results, complete

subset regressions that use κ = 4 or 5 predictors produce the lowest cumulative squared

prediction error, whihc is similar to that of PIA(2). However, the choice of κ has a great

influence on the performance of the complete subset regressions, and in practice the optimal

choice of κ is unknown. Examining these three panels in Figure 13, there is no one forecast

combination method that uniformly dominates the others.

7 Conclusion

This paper studies the weight selection for forecast combination in a predictive regression

when the goal is minimizing the MSFE. In contrast to the existing literature, we derive the

MSFE in a local asymptotic framework without the i.i.d. normal assumption. We show that

11The out-of-sample R2 value is computed as R2
OOS = 1−

∑
T−1

τ=τ0
(rτ+1−r̄τ+1|τ (ŵ))

2

∑
T−1
τ=τ0

(rτ+1−r̄τ+1|τ)
2 where r̄τ+1|τ =

∑τ

t=1 ri

is the historical average and r̄T+1|T (ŵ) is the equity premium forecast based on forecast combination. The
associated p-value is based on Clark and West (2007) to test the null hypothesis that R2

OOS ≤ 0.
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the optimal model weights that minimize the MSFE depend on the local parameters and

the covariance matrix of the predictive regression. We then propose a frequentist model av-

eraging criterion, an asymptotically unbiased estimator of MSFE, to select forecast weights.

Simulations show that the proposed estimator achieves much lower MSFE than other exist-

ing model averaging methods.

Appendix

A Proofs

Proof of Theorem 1: Note that β̄(w) =
∑M

m=1
wmΠ

′
mβ̂m. In order to derive the asymp-

totic distribution of the averaging estimator β̄(w), we first derive the asymptotic distribution

of
√
T
(
Π′

mβ̂m − β
)
and then show that there is joint convergence in distribution of all β̂m.

Let β̂f be the least squares estimator of β for the full model, i.e., β̂f = (X′X)−1X′y. By

Assumptions 1 and 2 and the application of the continuous mapping theorem, it follows that

√
T β̂f =

√
Tβ +

√
T
(
β̂f − β

)
= δ +

(
1

T
X′X

)−1(
1√
T
X′e

)
d−→ δ +Q−1Z. (A.1)

Note that

β̂m = (X′
mXm)

−1X′
my = (X′

mXm)
−1ΠmX

′y = (X′
mXm)

−1ΠmX
′Xβ̂f .

Therefore, we have

√
T
(
Π′

mβ̂m − β
)
= Π′

m

(
1

T
X′

mXm

)−1

Πm

(
1

T
X′X

)√
T β̂f −

√
Tβ

d−→ Π′
mQ

−1

m ΠmQ
(
δ +Q−1Z

)
− δ

=
(
Π′

mQ
−1

m ΠmQ− Ik
)
δ +Π′

mQ
−1

m ΠmZ

= Amδ +BmZ ≡ Λm (A.2)

21



where Am = Π′
mQ

−1
m ΠmQ − Ik and Bm = Π′

mQ
−1
m Πm. Note that (A.2) implies joint

convergence in distribution of all
√
T
(
Π′

mβ̂m − β
)
to Λm, since all of Λm can be expressed

in terms of the same normal vector Z.

Because the weights are non-random, it follows that

√
T
(
β̄(w)− β

)
=

M∑

m=1

wm

√
T
(
Π′

mβ̂m − β
)

d−→
M∑

m=1

wmΛm ≡ Λ.

By (A.2) and standard algebra, we can show the mean vector of Λ as

E

(
M∑

m=1

wmΛm

)
=

M∑

m=1

wmE (Λm) =

M∑

m=1

wm

(
Π′

mQ
−1

m ΠmQ− Ik
)
δ = A(w)δ

where A(w) =
∑M

m=1
wm (Π′

mQ
−1
m ΠmQ− Ik) =

∑M
m=1

wmAm.

Next we want to show the covariance matrix of Λ. For any two models, we have

Cov(Λm,Λℓ) = E
(
(Amδ +BmZ− E(Amδ +BmZ)) (Aℓδ +BℓZ− E(Aℓδ +BℓZ))

′)

= E (BmZZ
′B′

ℓ)

= BmE (ZZ′)B′
ℓ

= BmΩBℓ

where the second equality holds by the fact that Am, Bm, and δ are constant vectors and

Z ∼ N(0,Ω). Therefore, the covariance matrix of Λ is

V ar

(
M∑

m=1

wmΛm

)
=

M∑

m=1

w2

mV ar(Λm) + 2
∑∑

m6=ℓ

wmwℓCov(Λm,Λℓ)

=

M∑

m=1

w2

mBmΩBm + 2
∑∑

m6=ℓ

wmwℓBmΩBℓ ≡ V(w).

This completes the proof. �
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Proof of Theorem 2: Note that

MSE(w) = E

(
(
β̄(w)− β

)′
(

1

T

T∑

t=1

xt−1x
′
t−1

)
(
β̄(w)− β

)
)

=
1

T
E (ξT )

where

ξT =

(
√
T
(
β̄(w)− β

)′
(
1

T

T∑

t=1

xt−1x
′
t−1

)
√
T
(
β̄(w)− β

)
)
.

Define B(w) =
∑M

m=1
wmBm. We can rewrite the asymptotic distribution of the averag-

ing estimator β̄(w) as

√
T
(
β̄(w)− β

)
=

M∑

m=1

wm

√
T
(
Π′

mβ̂m − β
)

d−→
M∑

m=1

wm (Amδ +BmZ) = A(w)δ +B(w)Z. (A.3)

By (A.3) and the application of the continuous mapping theorem, it follows that

ξT
d−→ (A(w)δ +B(w)Z)′Q (A(w)δ +B(w)Z) .

Suppose ξT is uniformly integrable, then we have

E (ξT )
d−→ E

(
(A(w)δ +B(w)Z)′ Q (A(w)δ +B(w)Z)

)

= E (δ′A(w)′QA(w)δ + Z′B(w)′QB(w)Z+ 2δ′A(w)′QB(w)Z)

= δ′A(w)′QA(w)δ + E (Z′B(w)′QB(w)Z)

= tr (QA(w)δδ′A(w)′) + tr (B(w)′QB(w)Ω)

= w′CMw

whereCM is anM×M matrix with the (m, ℓ)th element cm,ℓ = tr (QAmδδ
′A′

ℓ)+tr (BmQBℓΩ).

Therefore, we have E (ξT ) = w′CMw + O(T−1/2) and MSE(w) = T−1w′CMw +O(T−3/2).

This completes the proof. �
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Figure 1: Relative risk for linear regression models with homoskedastic errors when ρx = 0.5
and R2 varies between 0.1 and 0.9.
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Figure 2: Relative risk for linear regression models with heteroskedastic errors when ρx = 0.5
and R2 varies between 0.1 and 0.9.
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Figure 3: Relative risk for linear regression models with homoskedastic errors when ρx = 0.9
and R2 varies between 0.1 and 0.9.
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Figure 4: Relative risk for linear regression models with heteroskedastic errors when ρx = 0.9
and R2 varies between 0.1 and 0.9.

25



0 0.02 0.04 0.06 0.08 0.1

1

1.2

1.4

1.6

1.8

2

ρ
u
 = 0.25

R
2

Re
la

tiv
e 

Ri
sk

0 0.02 0.04 0.06 0.08 0.1

1

1.2

1.4

1.6

1.8

2

ρ
u
 = 0.5

R
2

Re
la

tiv
e 

Ri
sk

 

 

S−AIC

S−BIC

MMA

JMA

PIA(1)

PIA(2)

0 0.02 0.04 0.06 0.08 0.1

1

1.2

1.4

1.6

1.8

2

ρ
u
 = 0.75

R
2

Re
la

tiv
e 

Ri
sk

0 0.02 0.04 0.06 0.08 0.1

1

1.2

1.4

1.6

1.8

2

ρ
u
 = 0.9

R
2

Re
la

tiv
e 

Ri
sk

Figure 5: Relative risk for linear regression models with homoskedastic errors when ρx = 0.5
and R2 varies between 0 and 0.1.
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Figure 6: Relative risk for linear regression models with heteroskedastic errors when ρx = 0.5
and R2 varies between 0 and 0.1.
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Figure 7: Relative risk for linear regression models with homoskedastic errors when ρx = 0.5
and R2 varies between 0.1 and 0.9.
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Figure 8: Relative risk for linear regression models with heteroskedastic errors when ρx = 0.5
and R2 varies between 0.1 and 0.9.
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Figure 9: Relative risk for MAX(1, 1) models with homoskedastic errors when β varies
between -0.5 and 0.5.
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Figure 10: Relative risk for MAX(1, 1) models with heteroskedastic errors when β varies
between -0.5 and 0.5.
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Figure 11: Model size for MAX(1, 1) models with homoskedastic errors when β varies between
-0.5 and 0.5.
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Figure 12: Model size for MAX(1, 1) models with heteroskedastic errors when β varies
between -0.5 and 0.5.
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Figure 13: The differences between the cumulative squared prediction error of the historical average
forecasting model and the cumulative squared prediction error of the forecast combination model for 1965:1–
2011:4.

30



References

Andrews, D. W. K. (1991a): “Asymptotic Optimality of Generalized CL, Cross-Validation, and

Generalized Cross-Validation in Regression with Heteroskedastic Errors,” Journal of Economet-

rics, 47, 359–377.

——— (1991b): “Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estima-

tion,” Econometrica, 59, 817–858.

Bates, J. and C. Granger (1969): “The Combination of Forecasts,” Operational Research

Quarterly, 20, 451–468.

Buckland, S., K. Burnham, and N. Augustin (1997): “Model Selection: An Integral Part of

Inference,” Biometrics, 53, 603–618.

Cheng, X. and B. E. Hansen (2013): “Forecasting with Factor-Augmented Regression: A

Frequentist Model Averaging Approach,” Forthcoming. Journal of Econometrics.

Claeskens, G. and R. J. Carroll (2007): “An Asymptotic Theory for Model Selection Inference

in General Semiparametric Problems,” Biometrika, 94, 249–265.

Claeskens, G. and N. L. Hjort (2003): “The Focused Information Criterion,” Journal of the

American Statistical Association, 98, 900–916.

——— (2008): “Minimizing Average Risk in Regression Models,” Econometric Theory, 24, 493–

527.

Clark, T. and K. West (2007): “Approximately Normal Tests for Equal Predictive Accuracy

in Nested Models,” Journal of Econometrics, 138, 291–311.

Clemen, R. (1989): “Combining Forecasts: A Review and Annotated Bibliography,” International

Journal of Forecasting, 5, 559–583.

DiTraglia, F. (2013): “Using Invalid Instruments on Purpose: Focused Moment Selection and

Averaging for GMM,” Working Paper, University of Pennsylvania.

Elliott, G., A. Gargano, and A. Timmermann (2013): “Complete Subset Regressions,”

Journal of Econometrics, 177, 357–373.

Granger, C. (1989): “Combining Forecasts–Twenty Years Later,” Journal of Forecasting, 8,

167–173.

Granger, C. and R. Ramanathan (1984): “Improved Methods of Combining Forecasts,” Jour-

nal of Forecasting, 3, 197–204.

Hansen, B. E. (2007): “Least Squares Model Averaging,” Econometrica, 75, 1175–1189.

31



——— (2008): “Least-Squares Forecast Averaging,” Journal of Econometrics, 146, 342–350.

——— (2010): “Multi-Step Forecast Model Selection,” Working Paper, University of Wisconsin.

——— (2013): “Model Averaging, Asymptotic Risk, and Regressor Groups,” Forthcoming. Quan-

titative Economics.

Hansen, B. E. and J. Racine (2012): “Jackknife Model Averaging,” Journal of Econometrics,

167, 38–46.

Hjort, N. L. and G. Claeskens (2003): “Frequentist Model Average Estimators,” Journal of

the American Statistical Association, 98, 879–899.

Ing, C.-K. and C.-Z. Wei (2005): “Order Selection for Same-Realization Predictions in Autore-

gressive Processes,” The Annals of Statistics, 33, 2423–2474.

Kitagawa, T. and C. Muris (2013): “Covariate Selection and Model Averaging in Semipara-

metric Estimation of Treatment Effects,” Cemmap Working Paper.

Leeb, H. and B. Pötscher (2005): “Model Selection and Inference: Facts and Fiction,” Econo-

metric Theory, 21, 21–59.

Li, K.-C. (1987): “Asymptotic Optimality for Cp, CL, Cross-Validation and Generalized Cross-

Validation: Discrete Index Set,” The Annals of Statistics, 15, 958–975.

Liu, C.-A. (2013): “Distribution Theory of the Least Squares Averaging Estimator,” Working

Paper, National University of Singapore.

Liu, Q. and R. Okui (2013): “Heteroskedasticity-Robust Cp Model Averaging,” The Economet-

rics Journal, 16, 463–472.

Min, C.-K. and A. Zellner (1993): “Bayesian and Non-Bayesian Methods for Combining Mod-

els and Forecasts with Applications to Forecasting International Growth Rates,” Journal of

Econometrics, 56, 89–118.

Newey, W. and K. West (1987): “A Simple, Positive Semi-Definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703–708.

Ng, S. (2013): “Variable Selection in Predictive Regressions,” in Handbook of Economic Forecast-

ing, ed. by G. Elliott and A. Timmermann, Elsevier, vol. 2, chap. 14, 752–789.

Pötscher, B. (2006): “The Distribution of Model Averaging Estimators and an Impossibility

Result Regarding its Estimation,” Lecture Notes-Monograph Series, 52, 113–129.

Raftery, A., D. Madigan, and J. Hoeting (1997): “Bayesian Model Averaging for Linear

Regression Models,” Journal of the American Statistical Association, 92, 179–191.

32



Rapach, D., J. Strauss, and G. Zhou (2010): “Out-of-Sample Equity Premium Prediction:

Combination Forecasts and Links to the Real Economy,” Review of Financial Studies, 23, 821–

862.

Rapach, D. and G. Zhou (2012): “Forecasting Stock Returns,” in Handbook of Economic Fore-

casting, Elsevier, vol. 2.

Shao, J. (1997): “An Asymptotic Theory for Linear Model Selection,” Statistica Sinica, 7, 221–

242.

Shibata, R. (1980): “Asymptotically Efficient Selection of the Order of the model for Estimating

Parameters of a Linear Process,” The Annals of Statistics, 8, 147–164.

Staiger, D. and J. Stock (1997): “Instrumental Variables Regression with Weak Instruments,”

Econometrica, 65, 557–586.

Stock, J. H. and M. W. Watson (2006): “Forecasting with Many Predictors,” in Handbook

of Economic Forecasting, ed. by G. Elliott, C. Granger, and A. Timmermann, Elsevier, vol. 1,

515–554.

Sueishi, N. (2013): “Generalized Empirical Likelihood-Based Focused Information Criterion and

Model Averaging,” Econometrics, 1, 141–156.

Timmermann, A. (2006): “Forecast Combinations,” in Handbook of Economic Forecasting, ed. by

G. Elliott, C. Granger, and A. Timmermann, Elsevier, vol. 1, 135–196.

Wan, A., X. Zhang, and G. Zou (2010): “Least Squares Model Averaging by Mallows Criterion,”

Journal of Econometrics, 156, 277–283.

Welch, I. and A. Goyal (2008): “A Comprehensive Look at the Empirical Performance of

Equity Premium Prediction,” Review of Financial Studies, 21, 1455–1508.

White, H. (1980): “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct

Test for Heteroskedasticity,” Econometrica, 48, 817–838.

Yang, Y. (2004): “Combining Forecasting Procedures: Some Theoretical Results,” Econometric

Theory, 20, 176–222.

——— (2007): “Prediction/Estimation with Simple Linear Models: Is it Really that Simple?”

Econometric Theory, 23, 1–36.

Zhang, X. and H. Liang (2011): “Focused Information Criterion and Model Averaging for

Generalized Additive Partial Linear Models,” The Annals of Statistics, 39, 174–200.

Zhang, X., A. T. Wan, and S. Z. Zhou (2012): “Focused Information Criteria, Model Selection,

and Model Averaging in a Tobit Model with a Nonzero Threshold,” Journal of Business &

Economic Statistics, 30, 132–142.

33



Zhang, X., A. T. Wan, and G. Zou (2013): “Model Averaging by Jackknife Criterion in Models

with Dependent Data,” Journal of Econometrics, 174, 82–94.

Zou, H. and Y. Yang (2004): “Combining Time Series Models for Forecasting,” International

Journal of Forecasting, 20, 69–84.

34


