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1. Introduction

Over the last decade econometric inference based on simulation techniques has become increasingly common,

particularly for latent variable models.  The reason is that such models often generate econometric objective

functions that embed high-order integrals, and which, consequently, can be most easily evaluated using simulation

techniques.1  There are several well known classical techniques for inference by simulation.  Perhaps most common

are the Method of Simulated Moments (McFadden (1989)) and Simulated Maximum Likelihood or SML (Lerman

and Manski, (1981)).  In practice, both methods require that reasonably accurate simulators be used to evaluate the

integrals that enter the objective function (see Geweke, et. al., (1994)).  Bayesian techniques are also becoming quite

popular.  These techniques typically entail Markov Chain – Monte Carlo (MCMC) simulation to evaluate the

integrals that define the posterior densities of a model’s parameters (see Geweke and Keane (1999b) for an overview

of MCMC methods).

Our goal in this chapter is to explain concretely how to implement simulation methods in a very general

class of models that are extremely useful in applied work:  dynamic discrete choice models where one has available

a panel of multinomial choice histories and partially observed payoffs.  Many general surveys of simulation methods

are now available (see Geweke (1996), Monfort, et. al., (1995), and Gilks, et. al., (1996)), so in our view a detailed

illustration of how to implement such methods in a specific case has greater marginal value than an additional broad

survey.  Moreover, the techniques we describe are directly applicable to a general class of models that includes static

discrete choice models, the Heckman (1976) selection model, and all of the Heckman (1981) models (such as static

and dynamic Bernoulli models, Markov models, and renewal processes.)  The particular procedure that we describe

derives from a suggestion by Geweke and Keane (1999a), and has the advantages that it does not require the

econometrician to solve the agents’ dynamic optimization problem, or to make strong assumptions about the way

individuals form expectations.

This chapter focuses on Bayesian inference for dynamic multinomial choice models via the MCMC

method.  Originally, we also hoped to discuss classical estimation of such models, so that readers could compare the

two approaches.  But, when we attempted to estimate the model developed below using SML it proved infeasible.

The high dimension of the parameter vector caused iterative search for the maximum of the simulated likelihood

function via standard gradient based methods to fail rather dismally.  In fact, unless the initial parameter values were

set very close to the true values, the search algorithm would quickly stall.  In contrast, the MCMC procedure was

computationally feasible and robust to initial conditions.  We concluded that Bayesian inference via MCMC has an

important advantage over SML for high dimensional problems because it does not require search for the optimum of

the likelihood.

                                                          
1 Currently, approaches to numerical integration such as quadrature and series expansion are not useful if the
dimension of the integration is greater than four.
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We consider dynamic, stochastic, parametric models with intertemporally additively separable preferences

and a finite time horizon.  Suppose that in each period 1,...,   ( )t T T= < ∞  each agent chooses among a finite set tA

of mutually exclusive alternatives.  Let tkℜ  be the date-t state space, where tk  is a positive integer.  Choosing

alternative t ta A∈ in state tk
tI ∈ ℜ leads to period payoff ( , ; )R I a

t t
θ , where θ  is a finite-vector denoting the

model’s structural parameters.

The value to choosing alternative ta in state ,tI  denoted by ,( , )V I a
t t t

 depends on the period payoff and

on the way agents expect that choice to affect future payoffs.  For instance, in the familiar case when agents have

rational expectations, alternative specific values can be expressed:

( , ) ( , ; ) max ( , | , )  ( 1,..., )
1 1 1

1 1
V I a R I a E V I a I a t T
t t t t t t a A t t t t t

t t
θ δ= + =∈ + + ++ +

(1.1)

( ) 0
1

V
T

⋅ ≡+ (1.2)

( , ; )
1

I H I a
t t t

θ=+ (1.3)

where δ  is the constant rate of time preference, ( , ; )H I a
t t

θ  is a stochastic law of motion that provides an

intertemporal link between choices and states, and E
t
 is the date-t mathematical expectations operator so that

expectations are taken with respect to the true distribution of the state-variables 1( | , ; )H t t tP I I a θ+  as generated

by ( ).H ⋅   Individuals choose alternative *a
t

 if and only if * *( , ) ( , ) , .V I a V I a a A a a
t t t t t t t t t t

> ∀ ∈ ≠   See Eckstein

and Wolpin (1989) for a description of many alternative structural models that fit into this framework.

The econometrician is interested in drawing inferences about ,θ  the vector of structural parameters.  One

econometric procedure to accomplish this (see Rust (1987) or Wolpin (1984)) requires using dynamic programming

to solve system (1.1)-(1.3) at many trial parameter vectors.  At each parameter vector, the solution to the system is

used as input to evaluate a prespecified econometric objective function.  The parameter space is systematically

searched until a vector that “optimizes” the objective function is found.  A potential drawback of this procedure is

that, in general, solving system (1.1)-(1.3) with dynamic programming is extremely computationally burdensome.

The reason is that the mathematical expectations that appear on the right-hand side of (1.1) are often impossible to

compute analytically, and very time-consuming to approximate well numerically.  Hence, as a practical matter, this

estimation procedure is useful only under very special circumstances (for instance, when there is a small number of

state-variables.)  Consequently, a literature has arisen that suggests alternative approaches to inference in dynamic

multinomial choice models.

Some recently developed techniques for estimation of the system (1.1) – (1.3) focus on circumventing the

need for dynamic programming.  Several good surveys of this literature already exist, and we will not attempt one
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here (see Rust (1994)).  Instead, we simply note that the idea underlying the more well-known of these approaches,

i.e., Hotz and Miller (1993) and Manski (1993), is to use choice and payoff data to draw inferences about the values

of the expectations on the right-hand side of (1.1).  A key limitation of these procedures is that, in order to learn

about expectations, each requires the data to satisfy a strict form of stationarity in order to rule out cohort effects.

The technique proposed by Geweke and Keane (1999a) for structural inference in dynamic multinomial

choice models also circumvents the need for dynamic programming.  A unique advantage of their method is that it

does not require the econometrician to make strong assumptions about the way people form expectations.

Moreover, their procedure is not hampered by strong data requirements.  It can be implemented when the data

includes only partially observed payoffs from a single cohort of agents observed over only part of their life cycle.

To develop the Geweke-Keane approach, it is useful to express the value function (1.1) as:

( , ) ( , ; ) ( , )H
t t t t t t tV I a R I a F I aθ= + (1.4)

where 
1 1 1 1( , ) max ( , ( , ))

t t

H
t t t a A t t t tF I a E V a H I aδ

+ +∈ + +≡ .  Geweke and Keane (1999a) observed that the definition of

( )HF ⋅ , henceforth referred to as the ‘future component’, makes sense independent of the meaning of .tE   If, as

assumed above, tE  is the mathematical expectations operator then ( )HF ⋅  is the rational expectations future

component.  On the other hand, if tE  is the zero operator, then future payoffs do not enter the individuals’ decision

rules, and ( )HF ⋅  is identically zero.  In general, the functional form of the future component ( )HF ⋅  will vary with

the way people form expectations.  Unfortunately, in most circumstances the way people form expectations is

unknown.  Accordingly, the correct specification of the future component ( )HF ⋅  is also unknown.

There are, therefore, two important reasons an econometrician may prefer not to impose strong assumptions

about the way people form expectations, or, equivalently, on the admissible forms of the future component.  First,

such assumptions may lead to an intractable econometric model.  Second, the econometrician may see some

advantage to taking a less dogmatic stance with respect to behaviors about which very little, if any, a-priori

information is available.

When the econometrician is either unwilling or unable to make strong assumptions about the way people

form expectations, Geweke and Keane (1999a) suggest that the future component ( )HF ⋅  be represented by a

parameterized flexible functional form such as a high-order polynomial.  The resulting value function can be written

( , ) ( , ; ) ( , | )H
t t t t t t tV I a R I a F I aθ π= + (1.5)

where π  is a vector of polynomial coefficients that characterize expectation formation.  Given functional forms for

the contemporaneous payoff functions, and under the condition that θ  and π  are jointly identified, it is possible to

draw inferences both about the parameters of the payoff functions and the structure of expectations.
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This chapter focuses on an important case in which key structural and expectations parameters are jointly

identified.  We consider a model where an alternative’s payoff is partially observed if and only if that alternative is

chosen.  In this case, after substitution of a flexible polynomial function for the future component as in (1.5), the

model takes on a form similar to a static Roy (1951) model augmented to include influences on choice other than the

current payoffs, as in Heckman and Sedlacek (1986).  The key difference is that ( )HF ⋅  incorporates overidentifying

restrictions on the non-payoff component of the value function that are implied by (1.1)-(1.3) and that are not

typically invoked in the estimation of static selection models.  Specifically, the parameters of the non-payoff

component of the value function are constant across alternatives, and the arguments of the non-payoff component

vary in a systematic way across alternatives that is determined by the law of motion ( )H ⋅ for the state variables.

The structural model (1.1)-(1.3) also implies restrictions on the nature of the future component’s

arguments.  For instance, if ( )H ⋅  and ( )R ⋅  jointly imply that the model’s payoffs are path-independent, then the

future component should be specified so that path-dependent expectation formation is ruled out.2  Similarly,

contemporaneous realizations of serially independent stochastic variables contain no information relevant for

forecasting future outcomes, so they should not enter the arguments of the flexible functional form.  Without such

coherency conditions one might obtain results inconsistent with the logic of the model’s specification.

A finite order polynomial will in general provide only an approximation to the true future component.

Hence, it is important to investigate the extent to which misspecification of the future component may affect

inference for the model’s structural parameters.  Below we report the outcome of some Monte Carlo experiments

that shed light on this issue.  The experiments are conducted under both correctly and incorrectly specified future

components. We find that the Geweke-Keane approach performs extremely well when ( )HF ⋅  is correctly specified,

and still very well under a misspecified future component.  In particular, we find that assuming the future

component is a polynomial when it is actually generated by rational expectations leads to only “second order”

difficulties in two senses.  First, it has a small effect on inferences with regard to the structural parameters of the

payoff functions.3  Second, the decision rules inferred from the data in the misspecified model are very close to the

optimal rule in the sense that agents using the suboptimal rule incur ‘small’ lifetime payoff losses.

                                                          
2 Restrictions of this type can be tested easily by estimating versions of the model with different but nested future
components.
3 These findings are related to those of Lancaster (1996), who considered Bayesian inference in the stationary job
search model.  He found that if the future component is treated as a free parameter (rather than being set “optimally”
as dictated by the offer wage function, offer arrival rate, unemployment benefit and discount rate) there is little loss
of information about the structural parameters of the offer wage functions.  (As in our example, however,
identification of the discount factor is lost.)  The stationary job search model considered by Lancaster (1996) has the
feature that the future component is a constant (i.e. it is not a function of state variables).  Our procedure of treating
the future component as a polynomial in state variables can be viewed as extending Lancaster’s approach to a much
more general class of models.
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The remainder of this chapter is organized as follows.  Section two describes the application, and section

three details the Gibbs sampling algorithm.  Section four reviews our experimental design and results, and section

five concludes.

2.  The Dynamic Multinomial Choice Model

In this section we present an example of Bayesian inference for dynamic discrete choice models using the Geweke-

Keane method of replacing the future component of the value function with a flexible polynomial function.  The

discussion is based on a model that is very similar to ones analyzed by Keane and Wolpin (1994, 1997).

In the model we consider, 1,...,i N=  agents choose among 1,...,4j =  mutually exclusive alternatives in

each of 1,...,40t =  periods.  One can think of the first two alternatives as work in one of two occupations, the third

as attending school and the fourth alternative as remaining home.  One component of the current period payoff in

each of the two occupational alternatives is the associated wage, ( 1,2).ijtw j =   The log-wage equation is:

2
0 1 1 2 2 3 4

’

ln   ( 1,2)

( 1,2)

ijt j j i t j i t j it j ijt ijt

ijt j ijt

w X X S X j

Y j

β β β β β ε

β ε

= + + + + + =

= + =
  (2.1)

where ijtY  is the obvious vector, ( )0 4,..., ’,j j jβ β β=  itS  is the periods of school completed, 1,2( )ijt jX = is the periods

of experience in each occupation j, and the ijtε  are serially independent productivity shocks, with

1 2( , ) ’~ (0, ).i t i t N εε ε Σ  Each occupational alternative also has a stochastic nonpecuniary payoff, ,ijtv  so the complete

current period payoffs are

, ( 1,2).ijt ijt ijtu w v j= + = (2.2)

The schooling payoffs include tuition costs.  Agents begin with a tenth-grade education, and may complete

two additional grades without cost.  We assume there is a fixed undergraduate tuition rate 1α  for attending grades 13

through 16, and a fixed graduate tuition rate 2α  for each year of schooling beyond 16.  We assume a “return to

school” cost 3α  that agents face if they did not choose school the previous period.  Finally, school has a

nonstochastic, nonpecuniary benefit 0α  and a mean zero stochastic nonpecuniary payoff 3 .i tv   Thus we have

’
3 0 1 2 3 , 1 3 3(12 15) ( 16) ( 3)i t it it i t i t it i tu S S dα α χ α χ α χ ν α ν−= + ≤ ≤ + ≥ + ≠ + ≡ Λ +  (2.3)

where χ  is an indicator function that takes value one if the stated condition is true and is zero otherwise, itΛ  is a

vector of zeros and ones corresponding to the values of the indicator functions, ( )0 3,..., ’,α α α=  {1,2,3,4}itd ∈

denotes the choice of i  at t.  Lastly, we assume that option four, home, has both a nonstochastic nonpecuniary

payoff φ  and a stochastic nonpecuniary payoff ,ijtv  so
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4 4 .i t i tu vφ= + (2.4)

We will set , ( 1,..., 4).ijt ijt ijtu u v j= + =   The nonpecuniary payoffs ( )
1,4ijt j

v
=

 are assumed serially independent. 

The state of the agent at the time of each decision is

1,2 , 1 1,2 1,..4{( ) , , , , ( ) , ( ) }.it ijt j it i t ijt j ijt jI X S t d ε ν= − = == (2.5)

We assume 0 3.id =  The laws of motion for experience in the occupational alternatives and school are:

, 1 , 1( ), 1,2, ( 3).ij t ijt it i t it itX X d j j S S dχ χ+ += + = = = + =   The number of ‘home’ choices is excluded from the state-

space as it is linearly dependent on the level of education, the period, and experience in the two occupations.

It is convenient to have notation for the elements of the state vector whose value in period t+1 depends

nontrivially on their value in period t or on the current choice.  The reason, as we note below, is that these elements

are the natural arguments of the future component.  We define

*
1,2 , 1{( ) , , , }.it ijt j it i tI X S t d= −=

The value of each alternative is the sum of its current period payoff, the stochastic non-pecuniary payoff

and the future component:

1 2

*

( ) ( )

( ( 1), ( 2), + ( 3),t+1, ( 3))

( ) ( , )

ijt it ijt it ijt

i t i t it

ijt it ijt it

V I u I

F X j X j S j j

u I F I j

ν
χ χ χ χ
ν

= +

+ + = + = = =

≡ + +

 (j=1,…4) (t=1,…,40)   (2.6)

The function F represents agents’ forecasts about the effects of their current state and choice on their future payoff

stream.  The function is fixed across alternatives, implying that forecasts vary across alternatives only because

different choices lead to different future states, and it depends only on the choice and the state variables in *
1.tI +

4

Since choices depend only on relative alternative values, rather than their levels, we define for {1,2,3}j ∈ :

4

* *
4 4

*

( , ) ( ,4)

( , )

ijt ijt i t

ijt ijt it i t i t it

ijt it ijt

Z V V

u F I j u F I

u f I j

ν ν

η

≡ −

= + + − − −

= + +%

(2.7)

where 4 ,ijt ijt i tu u u≡ −% 1,2,3 4 1,2,3{ } ( ) ~ (0, )ijt j ijt i t j N ηη ν ν= =≡ − Σ  and * * *( , ) ( , ) ( ,4).it it itf I j F I j F I= −   Importantly, after

differencing, the value φ  of the home payoff is subsumed in f  the relative future component.  Clearly, if an

alternative’s future component has an intercept (as each of ours does) then it and the period return to home cannot be

separately identified.

                                                          
4 As noted earlier, the future component’s arguments reflect restrictions implied by the model.  For

instance, because the productivity and preference shocks are serially independent, they contain no information
useful for forecasting future payoffs and do not appear in the future component’s arguments.  Also, given total
experience in each occupation, the order in which occupations one and two were chosen in the past does not bear on
current or future payoffs.  Accordingly, only total experience in each occupation enters the future component.
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The value function differences itZ  are latent variables unobserved by the econometrician.  The

econometrician only observes the agents’ choices { }itd  for t=1,…,40, and, in the periods when the agent works, the

wage for the chosen alternative.  Thus, payoffs are never completely observed, both because wages are censored and

because the nonpecuniary components of the payoffs ( )ijtν  are never observed.  Nevertheless, given observed

choices and partially observed wages, along with the functional form assumptions about the payoff functions, it is

possible to learn both about the future component ( )F ⋅  and the structural parameters of the payoff functions without

making strong assumptions about how agents form expectations.  Rather, we simply assume that the future

component lies along a fourth-order polynomial in the state variables.  After differencing to obtain *
1,2,3{ ( , )}it jf I j = ,

the polynomial contained 53 terms of order three and lower (see Appendix A.)  We express the future component as

* ’( , ) ( 1,2,3)it ijtf I j jψ π= = (2.8)

where ijtψ  is a vector of functions of state-variables that appear in the equation for *( , )itf I j  and π  is a vector of

coefficients common to each choice.  Cross-equation restrictions of this type are a consequence of using the same

future component function F for each alternative and reflect the consistency restrictions discussed earlier.

3. Implementing the Gibbs Sampling Algorithm

Bayesian analysis of this model entails deriving the joint posterior distribution of the model’s parameters and

unobserved variables.  Recall that the value function differences { }1,2,3; 1, ; 1,40( )ijt j i N tZ = = ==Z  are never observed, and

that wages { }1,2,3; 1, ; 1,40( )ijt j i N tw = = ==W  are only partially observed.  Let 1W  and 2W  denote the set of observed and

unobserved wages, respectively, and let { }
1, ; 1,2; 1,40ijt i N j t

Y y
= = =

=  denote the log wage equation regressors.  Then the

joint posterior density is 1 1
2 1 2 1( , , , , , , , | , , ).p Yε ηβ β α π − −Σ Σ ΛW Z W  By Bayes’ law, this density is proportional to

1 1 1 1
1 2 1 2( , | , , , , , , , ) ( , , , , , )p Y pε η ε ηβ β α π β β α π− − − −Λ Σ Σ ⋅ Σ ΣW Z (3.1)

The first term in (3.1) is the so-called “complete data” likelihood function.  It is the likelihood function that

could be formed in the hypothetical case that we had data on N individuals observed over 40 periods each, and we

observed all of the value function differences Z  and the complete set of wages W  for all alternatives.  This is:

’’ ’
1 1 1 1 1 11 1 1 1/ 2 1 1

1 2 1 2 ’ ’
, 2 2 2 2 2 2

ln ln1
( | , , , , , , , ) | | ( ) exp

2 ln ln

                                                   

i t i t i t i t
i t i t

i t i t i t i t i t

w Y w Y
p Y w w

w Y w Y
ε η ε ε

β β
β β α π

β β
− − − − −

    − − Λ Σ Σ ∝ Σ − Σ       − −     
∏W,Z

’’ ’
1 1 1 1 1 1

1 1/ 2 ’ 1 ’
2 2 2 2 2 2

’ ’ ’ ’
3 3 3 3

1
            | | exp

2

                               

i t i t i t i t i t i t

i t i t i t i t i t i t

i t it i t i t it i t

Z w Z w

Z w Z w

Z Z

η η

π π
π π

α π α π

− −

    − − Ψ − − Ψ     ⋅ Σ − − − Ψ Σ − − Ψ    
       − Λ − Ψ − Λ − Ψ     

{ } 1,2,3                          ( 0, ( ) if and 1,2,3 , { } 0 otherwise)ijt ikt it ijt jZ Z k j d j j Zχ =⋅ > ≠ = ∈ <

(3.2)
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The second term in (3.1) is the joint prior distribution.  We assume flat priors on all parameters except the two

precision matrices, for which we assume the standard noninformative priors (see Zellner, (1971), section 8.1):

1 1 3/ 2 1 1 2( ) | | , ( ) | |p pε ε η η
− − − − − −Σ ∝ Σ Σ ∝ Σ (3.3)

The Gibbs sampler draws from a density that is proportional to the product of (3.2) and the two densities in (3.3).

The Gibbs sampling algorithm is used to form numerical approximations of the parameters’ marginal

posterior distributions.  It is not feasible to construct these marginal posteriors analytically, since doing so requires

high dimensional integrations over unobserved wages and value function differences.  Implementing the Gibbs

sampling algorithm requires us to factor the joint posterior defined by (3.1)-(3.3) into a set of conditional posterior

densities, in such a way that each can be drawn from easily.  Then, we cycle through these conditionals, drawing a

block of parameters from each in turn.  As the number of cycles grows large, the parameter draws so obtained

converge in distribution to their respective marginal posteriors, given certain mild regularity conditions (see Tierney

(1994) for a discussion of these conditions).  An important condition is that the posterior distribution be finitely

integrable, which we verify for this model in Appendix B.  Given the posterior distribution of the parameters,

conditional on the data, the investigator can draw exact finite sample inferences.

Our Gibbs sampling-data augmentation algorithm consists of six steps or ‘blocks.’  These steps, which we

now briefly describe, are cycled through repeatedly until convergence is achieved.

Step 1. Draw value function differences { }, 1, ; 1,3; 1,40ijtZ i N j t= = =

Step 2. Draw unobserved wages { } when , ( 1,2)ijt itw d j j≠ =

Step 3. Draw the log-wage equation coefficients .jβ

Step 4. Draw the log-wage equation error-covariance matrix .εΣ

Step 5. Draw the parameters of the future component π  and school payoff parameters .α

Step 6. Draw the nonpecuniary payoff covariance matrix .ηΣ

Step 1:  We chose to draw the { }, 1, ; 1,3; 1,40ijtZ i N j t= = =  one-by-one.  Taking everything else in the model as

given, it is evident from (3.1)-(3.3) that the conditional distribution of a single ijtZ  is truncated Gaussian.  Dealing

with the truncation is straightforward.  There are three ways in which the Gaussian distribution might be truncated.

Case 1: ijtZ  is the value function difference for the chosen alternative.  Thus, we draw {1,2,3}max 0,( ) .ijt ikt k
k j

Z Z ∈
≠

 >  
 

Case 2:  ijtZ  is not associated with the chosen alternative, and ‘home’ was not chosen.  Thus, we draw .
itijt id tZ Z<

Case 3: ‘Home’ was chosen.  In this case, we draw 0.ijtZ <

We draw from the appropriate univariate, truncated Gaussian distributions using standard inverse CDF methods.
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Step 2:  We chose to draw the unobserved wages { } when , ( 1,2,3)ijt itw d j j≠ =  one-by-one.  Suppose1i tw  is

unobserved.  Its density, conditional on every other wage, future component difference and parameter being known,

is from (3.1), (3.2) and (3.3) evidently given by:

’’ ’
’ 1 1 1 1 1 1’ ’

1 1 1 1 1 11 ’ 1
1 2 2 2 2’ ’

1 2 2 2 2 2 2 ’ ’
3 3

ln ln1 1 1
( | ) exp exp

2 2ln ln

i t i t i t i t i t i t

i t i t i t i t
i t i t i t i t i

i t i t i t i t i t
i t it i t

Z w Z w
w Y w Y

g w Z w Z
w w Y w Y

Z

ε η

π π
β β

π
β β

α π

− −

 − − Ψ − − Ψ      − − ⋅ ∝ − Σ − − − Ψ Σ         − −          − Λ − Ψ 
%

’
2 2

’ ’
3 3

t i t i t

i t it i t

w

Z

π
α π

  
   − − Ψ  

   − Λ − Ψ   

(3.4)

This distribution is nonstandard as wages enter in both logs and levels.  Nevertheless, it is straightforward to sample

from this distribution using rejection methods (see Geweke (1995) for a discussion of efficient rejection sampling).

In brief, we first drew a candidate wage cw  from the distribution implied by the first exponential of (3.4), so that

’ 2
1 1 *ln ~ ( , )c
i t itw N Y β λ σ+ , where 2(1,2) / (2,2)it i tελ ε≡ Σ Σ  and 2 2

* (1,1)(1 ( (1,2) /( (1,1) (2,2)).ε ε ε εσ ≡ Σ − Σ Σ Σ   This

draw is easily accomplished, and cw  is found by exponentiating.  The probability with which this draw is accepted

is found by dividing the second exponential in (3.4) by its conditional maximum over 1i tw  and evaluating the

resulting expression at 1 .c
i tw w=   If the draw is accepted then the unobserved 1i tw  is set to .cw   Otherwise, the

process is repeated until a draw is accepted.

Step 3:  Given all wages, value function differences, and other parameters, the density of 1 2( , )β β is:

’’ ’
1 1 1 1 1 11

1 2 ’ ’
2 2 2 2 2 2

ln ln1
( , ) exp

2 ln ln

i t i t i t i t

i t i t i t i t

w Y w Y
g

w Y w Y
ε

β β
β β

β β
−

    − − ∝ − Σ       − −     
(3.5)

So that 1 2( , )β β is distributed according to a multivariate normal.  In particular, it is easy to show that

1 1 1 1 1~ [( ’ ) ’ ln , ( ’ ) ]Nβ − − − − −Σ Σ ΣY Y Y W Y Y

where / / /
1 2( , ) ,β β β≡  ,NTIεΣ = Σ ⊗  1

2

0

0

 
=  

 

Y
Y

Y
 and / / /

1 2ln [ln , ln ]=W W W , where 1Y  is the regressor matrix for

the first log-wage equation naturally ordered through all individuals and periods, and similarly for 2 1 2,  and .Y W W

It is straightforward to drawβ  from this multivariate normal density.

Step 4:  With everything else known 1ε
−Σ  has a Wishart distribution.  Specifically, it is immediate from the joint

posterior that 
3

1 1 12
1

( ) | | exp ( ( ) ) ,
2

NT

p tr Sε ε εβ
−

− − − Σ ∝ Σ − Σ 
 

 so that

1
1 1 1 2 2 2 1 1 1 2 2 2~ ( ( ), ), where ( ) (ln , ln ) ’(ln , ln ).W S NT Sε β β β β β β−Σ = − − − −W Y W Y W Y W Y (3.6)

It is easy to draw from the Wishart and then invert the 2 X 2 matrix to obtain .εΣ

Step 5:  It is convenient to draw both the future component π  parameters and the parameters α  of the school payoff

jointly.  Since the future component for school contains an intercept, it and the constant in Λ  cannot be separately
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identified.  Hence, we omit 0α  as well as the first row from each .itΛ   Define the vector * [ ’, ’] ’π π α≡ , where

1 2 3( , , ) ’.α α α α=  and define * ’ ’ * ’ ’
3 3 3[ ,0 ]’ ( 1,2), and [ , ]’.ijt ijt i t i t itjΨ ≡ Ψ = Ψ = Ψ Λ   Note that *π and the *

ijtΨ  are 56-

vectors.  Then define * * * *
1 1 1 2 , 1[ ... ],k k k Nk T NkT−Ψ = Ψ Ψ Ψ Ψ  and set /

1 2 3[ ] ,Ψ = Ψ Ψ Ψ  so that Ψ  is a (3⋅ NT x 56)

stacked-regressor matrix.  Similarly, define the corresponding 3⋅ NT-vector Γ  by

’ ’ ’
1 1 , 2 2 , 3 ,({ } ,{ } ,{ } ) ’.i t i t i t i t i t i t i t i tZ w Z w ZΓ = − −   It is immediate from (3.2), in which *π  enters only through the second

exponential expressions that, conditional on everything else known,*π has a multivariate normal density given by:

* 1 1 1 1 1~ [( ’ ) ’ , ( ’ ) ]Nπ − − − − −Ψ Ω Ψ Ψ Ω Γ Ψ Ω Ψ (3.7)

where .NTIηΩ = Σ ⊗   We draw from this using a standard, multivariate normal random number generator.

Step 6:  With everything else known the distribution of 1η
−Σ  is Wishart; 1 ~ ( , ),W SST NTη η

−Σ  where

1 2 3 1 2 3
,

( ) ’( ),i t i t i t i t i t i t
i t

SSTη η η η η η η= ∑  and with the ijtη  defined by (2.7).  It is easy to draw from this distribution and

then invert the 3 X 3 matrix to obtain .ηΣ

4.  Experimental Design and Results

This section details the design and results of a Monte Carlo experiment that we conducted to shed light on the

performance of the Gibbs sampling algorithm discussed in section two.  We generated data according to equations

(2.1) – (2.7), using the true parameter values that are listed in column two of Table 3.  The table does not list the

discount rate and the intercepts in the school and home payoff functions, which were set to 0.95, 11000 and 17000

respectively, since these are not identified.  In all of our experiments we set the number of people, N, to 2000.

Data from this model were generated using two different assumptions about the way people formed

expectations.  First, we assumed that people had rational expectations.  This required us to solve the resulting

dynamic optimization problem once to generate the optimal decision rules.  Since the choice set includes only four

discrete alternatives it is feasible to do this.  Then, to simulate choice and wage paths requires only that we generate

realizations of the appropriate stochastic variables.  It is important to note that the polynomial future component

used in the estimation procedure does not provide a perfect fit to the rational expectations future component.  Hence,

analysis of this data sheds light on the effect that misspecification of the future component may have on inference.

Next, we assumed that agents used a future component that was actually a polynomial in the state variables

to form decisions.  Analysis of this data set sheds light on how the algorithm performs when the model is correctly

specified.  To ensure close comparability with the rational expectations case, we constructed this polynomial by

regressing the rational expectations future components on a fourth-order polynomial in the state-variables,
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constructed as described in the discussion preceding (2.8).  We used the point estimates from this regression as the

coefficients of our polynomial future component (see Appendix A for the specific form of the polynomial).

We found that a fourth order polynomial provided a good approximation to the future component in the

sense that if agents used the approximate instead of optimal decision rule they suffered rather small lifetime earnings

losses.  Evidence of this is given in Table 1, where we report the results of simulations under optimal and

suboptimal decision rules.  The simulations were conducted as follows.  First, for N=2000 people we drew five sets

of lifetime (T=40) realizations of the model’s stochastic components { }1 2 1,4, , ( ) .i t i t ijt jε ε η =   In Table 1 these are

referred to as error sets one to five.  For each of the five error sets we simulated lifetime choice histories for each of

the 2000 people under the optimal and approximate decision rules.  We refer to the 10 data sets constructed in this

way as 1-EMAX through 5-EMAX and 1-POLY through 5-POLY, respectively.  We then calculated the mean of the

present value of lifetime payoffs (pecuniary plus nonpecuniary) for each of the 2000 people under the optimal and

approximate decision rules, respectively, for each of the five error sets.  These are reported in the second and third

rows of Table 1.  Holding the error set fixed, the source of any difference in the mean present value of lifetime

payoffs lies in the use of different decision rules.  The mean present values of dollar equivalent losses from using the

suboptimal polynomial rules are small, ranging from 287 to 491.  The percentage loss ranges from 8 hundredths of

one percent to 14 hundredths of one percent.  These findings are similar to those reported by Geweke and Keane

(1999a) and Krusell and Smith (1995).

Table 2 reports the mean accepted wages and choice frequencies for the data generated from error-set two.

The first set of columns report statistics for data generated according to the polynomial approximation (data set 2-

POLY) while the second set of columns report results from the optimal decision rule (data set 2-EMAX).  Under our

parameterization, occupation one can be thought of “unskilled” labor, while occupation two can be understood as

“skilled” labor.  The reason is the mean of the wage offer distribution is lower in occupation two early in life, but it

rises more quickly with experience.  The choice patterns and mean accepted wages are similar under the two

decision rules.  School is chosen somewhat more often under the optimal decision rule, which helps to generate

slightly higher lifetime earnings.  Finally, note that selection effects leave the mean accepted wage in occupation

two higher than that in occupation one throughout the life-cycle under both decision rules.

Next, we ran the Gibbs algorithm described in section two for 40,000 cycles on each data set.  We achieved

about three cycles per minute on a Sun ultra-2 workstation.5  Thus, while time requirements were substantial, they

                                                          
5 To begin the Gibbs algorithm we needed an initial guess for the model’s parameters (although the asymptotic
behavior of the Gibbs sampler as the number of cycles grows large is independent of starting values).  We chose to
set the log-wage equation ’sβ  equal to the value from an OLS regression on observed wages.  The diagonal

elements of εΣ  were set to the variance of observed log-wages, while the off-diagonal elements were set to zero.

The school payoff parameters were all initialized at zero.  All of the future component’s π  values were also started
at zero, with the exception of the alternative-specific intercepts.  The intercepts for alternatives one, two and three
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were minor compared to what estimation of such a model using a full solution of the dynamic programming problem

would entail.  Visual inspection of graphs of the draw sequences, as well as application of the split sequence

diagnostic suggested by Gelman (1996)-which compares variability of the draws across subsequences-suggests that

the algorithm converged for all ten artificial data sets.  In all cases, the final 15,000 draws from each run were used

to simulate the parameters’ marginal posterior distributions.

Table 3 reports the results of the Gibbs sampling algorithm when applied to the data generated with a

polynomial future component.  In this case, the econometric model is correctly specified.  The first column of Table

3 is the parameter label, the second column is the true value, and the remaining columns report the structural

parameters’ posterior means and standard deviations for each of the five data sets.6  The results are extremely

encouraging.  Across all runs, there was only one instance in which the posterior mean of a parameter for the first

wage equation was more than two posterior standard deviations away from its true value: the intercept in data set

one.  In data sets four and five, all of the structural parameters’ posterior means are within two posterior standard

deviations of their true values.  In the second data set, only the second wage equation’s own experience term is

slightly more than two posterior standard deviations from its true value.  In the third data set the mean of the wage

equation’s error correlation is slightly more than two posterior standard deviations from the true value, as are a few

of the second wage equation’s parameters.

Careful examination of Table 3 reveals that the standard deviation of the nonpecuniary payoff was the most

difficult parameter to pin down.  In particular, the first two moments of the marginal posteriors of these parameters

vary considerably across experiments, in relation to the variability of the other structural parameters’ marginal

posteriors.  This result reflects earlier findings reported by Geweke and Keane (1999a).  In the earlier work they

found that relatively large changes in the value of the nonpecuniary component’s standard deviation had only a

small effect on choices.  It appears that this is the case in the current experiment as well.

It is interesting to note that an OLS regression of accepted (observed) log-wages on the log-wage

equation’s regressors yields point estimates that differ sharply from the results of the Gibbs sampling algorithm.

Table 4 contains point estimates and standard errors from such an accepted wage regression.  Selection bias is

apparent in the estimates of the log-wage equation’s parameters in all data sets.  This highlights that the Bayesian

simulation algorithm is doing an impressive job of implementing the appropriate dynamic selection correction.

Perhaps more interesting is the performance of the algorithm when taken to data that was generated using

optimal decision rules.  Table 5 reports the results of this analysis on data sets 1-EMAX to 5-EMAX.  Again, the

                                                                                                                                                                                          
were initialized at –5,000, 10,000, and 20,000, respectively.  These values were chosen with an eye towards
matching aggregate choice frequencies in each alternative.  We initialized the ηΣ  covariance matrix by setting all

off-diagonal elements to zero, and each diagonal element to 5X108.  We used large initial variances because doing
so increases the size of the initial Gibbs steps, and seems to improve the rate of convergence of the algorithm.
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first column labels the parameter, and the second contains its data generating value.  The performance of the

algorithm is quite impressive.  In almost all cases, the posterior means of the wage function parameters deviate only

slightly from the true values in percentage terms.  Also, the posterior standard deviations are in most cases quite

small, suggesting that the data contain a great deal of information about these structural parameters – even without

imposing the assumption that agents form the future component “optimally.”  Finally, despite the fact that the

posterior standard deviations are quite small, the posterior means are rarely more than two posterior deviations away

from the true values.7  As with the polynomial data, the standard deviation of the nonpecuniary component seems

difficult to pin down.  Unlike the polynomial data, the school payoff parameters are not pinned down as well as the

wage equation parameters.  This is perhaps not surprising since school payoffs are never observed.

Figure 1 contains the simulated posterior densities for a subset of the structural parameters based on data

set 3-EMAX.  Each figure includes three triangles on its horizontal axis.  The middle triangle defines the posterior

mean, and the two flanking triangles mark the points two posterior standard deviations above and below the mean.

A vertical line is positioned at the parameters’ data generating (true) value.  These distributions emphasize the

quality of the algorithm’s performance in that the true parameter values are typically close to the posterior means.

The figures also make clear that not all the parameters have approximately normal distributions.  For instance, the

posterior density of the wage equations’ error correlation is multi-modal.

The results of Table 5 indicate that in a case where agents form the future component optimally, we can

still obtain reliable and precise inferences about structural parameters of the current payoff functions using a

simplified and misspecified model that says the future component is a simple fourth-order polynomial in the state

variables.  But we are also interested in how well our method approximates the decision rule used by the agents.  In

Table 6 we consider an experiment in which we use the posterior means for the parameters π  that characterize how

agents form expectations to form an estimate of agents’ decision rules.  We then simulate five new artificial data

sets, using the exact same draws for the current period payoffs as were used to generate the original five artificial

data sets.  The only difference is that the estimated future component is substituted for the true future component in

forming the decision rule.  The results in Table 6 indicate that the mean wealth losses from using the estimated

decision rule range from five-hundredths to three-tenths of one percent.  The percentage of choices that agree

between agents who use the optimal versus the approximate rules ranges from 89.8% to 93.5%.  These results

suggest that our estimated polynomial approximations to the optimal decision rules are reasonably accurate.

                                                                                                                                                                                          
6 Space considerations prevent us from reporting results for individual expectations parameters.  Instead, below we
will graphically compare the form of the estimated future component to that which was used to generate the data.
7 We also ran OLS accepted log-wage regressions for the 1-EMAX through 5-EMAX data sets.  The results are very
similar to those in Table 4, so we do not report them here.  The estimates again show substantial biases for all the
wage equation parameters.  Thus, the Gibbs sampling algorithm continues to do an impressive job of implementing
a dynamic selection correction despite the fact that the agents’ decision rules are misspecified.
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Figure 2 provides an alternative way to examine the quality of the polynomial approximation to the future

component.  This figure plots the value of the approximate and the true EMAX future components when evaluated

at the mean of each period’s state-vector.8   Each vertical axis corresponds to the value of the future component, and

the horizontal axis is the period. Clearly, the approximation reflects the true EMAX future component’s main

features.  The fit of the polynomial seems relatively strong for each occupational alternative throughout the life-

cycle.  The fit is good for school in early periods, but begins to deteriorate later.  One reason is that school is chosen

very infrequently after the first five periods, so there is increasingly less information about its future component.  A

second reason is that the contemporaneous return begins to dominate the future component in alternative valuations.

Consequently, each data point in latter periods contains relatively less information about the future component’s

value.  Overall, however, these figures furnish additional evidence that the polynomial approximation does a

reasonable job of capturing the key characteristics of the true future component.

5.  Conclusion

This chapter described how to implement a simulation based method for inference that is applicable to a wide class

of dynamic multinomial choice models.  The results of a Monte Carlo analysis demonstrated that the method works

very well in relatively large state-space models with only partially-observed payoffs where very high dimensional

integrations are required.  Although our discussion focused on models with discrete choices and independent and

identically distributed stochastic terms, the method can also be applied to models with mixed continuous/discrete

choice sets and serially correlated shocks (see Houser, (1999)).

Appendix A.  The future component

The future component we used was a fourth-order polynomial in the state variables.  Below, in the interest of space
and clarity, we will develop that polynomial only up to its third order terms.  The extension to the higher order terms
is obvious.  From equation (2.6), the future component is the flexible functional form

1 2( ( 1), ( 2), + ( 3), t+1, ( 3))i t i t itF X j X j S j jχ χ χ χ+ = + = = =
Define ( ).k j kι χ≡ =   Then, to third order terms, we used the following polynomial to represent this function.

1 1 2 2 3 3 1 2 1 1 3 2 2 4 3 5

2 2 2 2 3 3 3 3
6 1 1 7 2 2 8 3 9 10 1 1 11 2 2 12 3 13

2 2
14 1 1 2 2 15 1 1 3 16 1 1

( , , + , t+1, )= ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( ) ( )

F X X S P P X P X P S P t

P X P X P S P t P X P X P S P t

P X X P X S P X

ι ι ι ι ι ι ι
ι ι ι ι ι ι
ι ι ι ι ι

+ + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + 2 2
17 2 2 1 1

2 2 2 2 2
18 2 2 3 19 2 2 20 3 1 1 21 3 2 2 22 3

2 2 2
23 1 1 24 2 2 25 3 26 3 27 3 1 1 28 3 2 2

29 3

( 1) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( 1)

( 1) ( ) ( 1) ( ) ( 1) ( ) ( ) ( )

t P X X

P X S P X t P S X P S X P S t

P t X P t X P t S P P X P X

P

ι ι
ι ι ι ι ι ι ι ι

ι ι ι ι ι ι ι ι
ι

+ + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ 2 2 2 2
3 30 3 31 3 1 1 32 3 2 2 33 3 3 34 3( ) ( 1) ( ) ( ) ( ) ( 1)S P t P X P X P S P tι ι ι ι ι ι ι ι ι+ + + + + + + + + + +

                                                          
8 The mean state vectors were derived from the choices in data set 5-EMAX, and the coefficients of the polynomial
were valued at the posterior means derived from the analysis of data set 5-EMAX.
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The differenced future components used above are defined by * * *( , ) ( , ) ( ,4).it it itf I j F I j F I= −   Several of the

parameters of the level future component drop out due to differencing.  For instance, the intercept 1P and all

coefficients of terms involving only (t+1) vanish.  Simple algebra reveals the differenced future components have
the following forms.

* 2 2 2
1 2 1 3 1 4 2 1 5 1 6 1 7 2 8 2 9

* 2 2 2
4 1 7 1 2 10 11 2 12 2 13 2 14 2 15 16

* 2
5 1 8 1 13 2

( ,1) ( ) ( ) ( ) ( ) ( 1) ( ) ( 1) .

( , 2) ( ) ( ) ( ) ( ) ( 1) ( ) ( 1) .

( ,3) ( )

it

it

it

f I g X h X X g X Sg X t g X X S t

f I X X g X g X h X Sg X t g X S t

f I X X g S X

π π π π π π π π π
π π π π π π π π π
π π π

= + + + + + + + + + +

= + + + + + + + + + +

= + + 2 2 2
15 2 17 18 19 20 1 21 2 22

2
23 24 1 25 2 26

( ) ( ) ( ) ( 1) ( )

( 1) ( 1).

X g S g S h S X X t g S

t X X t

π π π π π π π
π π π π

+ + + + + + + +

+ + + + + +
where 2( ) 2 1,  and ( ) 3 3 1.g x x h x x x= + = + +   Several of the parameters appear in multiple equations.  Such cross

equation restrictions reflect the specification’s logical consistency.  The future components’ asymmetry arises since
choosing school both augments school experience and removes the cost of returning to school that one would
otherwise face.  In contrast, choosing alternative one or two only augments experience within that alternative.

Appendix B.  Existence of joint posterior distribution

Let ω  denote the number of missing wage observations, and let [ , ]A B ω ω
Ω Ω ++Ω ≡ ∈ ℜ  be the domain  of unobserved

wages, where 0 .A BΩ Ω< < < ∞   Also, let 3 3[ , ] NT NTA B∆ ∆∆ ≡ ∈ ℜ  be the domain of latent relative utilities,

where .A B∆ ∆−∞ < < < ∞   We want to show that:

1 1

1 1 1
1 2

,, , , , ,

( ) ( , , ) ( , , , ) .i t i t
i t

w w g V h Z W
ε η

ε η
β π

β π
− −

− − −

Ω ∆ Σ Σ

 
Σ Σ < ∞ 

 
∏∫  (B1)

Here, we have subsumed α  and Λ  into π  and ,Ψ  respectively (as we did in step 5 of section 3) and defined

( ) ( )
3

’1 1 12
1

( , , ) | | exp ( )
2

NT

NTg V V Y I V Yε ε εβ β β
−

− − − Σ = Σ − − Σ ⊗ − 
 

(B2)

where

1 1
1 1 1

2 2 2

ln
0

, ,   and .
0

ln

i

i

NiT

w
V Y

V V Y
V Y

w

β
β

β

 
      = = = =             

M (B3)

We have also defined

( ) ( )

{ }

4
’1 1 12

1,2,3

1
( , , , ) | | exp ( )

2

( 0, ( ) if and 1,2,3 , { } 0 otherwise)

NT

NT

ijt ikt it ijt j

h Z W Z W I Z W

I Z Z k j d j j Z

η η ηπ π π
−

− − −

=

 Σ = Σ − − − Ψ Σ ⊗ − − Ψ 
 

⋅ > ≠ = ∈ <
(B4)

Where

        ( )
1 1 1 11 1

2 2 3

3 3

, , , ( 1,2), and 0 .
i i

i i

NiT NiT

Z wZ W

Z Z Z W W W i W

Z wZ W

      
      = = = = = =      

            

M M

Since the only arguments common to both g and h are those that include functions of wages, we can express (B1) as

1 1

1 1 1
1 2

, , , ,

( ) ( , , ) ( , , , ) .i t i t
i t

w w g V h Z W
ε η

ε η
β π

β π
− −

− − −

Ω Σ ∆ Σ

   Σ Σ  
   
∏∫ ∫ ∫ (B5)

We first observe that for any configuration of unobserved wages in ,Ω

1

1

,

( ) ( , , ) .g V g V
ε

ε
β

β
−

−

Σ

≡ Σ < ∞∫   (B6)

To see this, note that we can express 1( , , )g V εβ −Σ  as
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( )
3

1 1 12
1 1ˆ ˆ ˆ( , , ) | | exp ( ( ) ) ( ) ’ ’( )
2 2

NT

NTg V tr S Y I Yε ε ε εβ β β β β β
−

− − − Σ = Σ − Σ − − Σ ⊗ − 
 

(B7)

where
1 1 1

1 1 1 2 2 2 1 1 1 2 2 2

ˆ ( '( ) ) '( )

ˆ ˆ ˆ ˆ ˆ( ) ( , ) '( , )

NT NTY I Y Y I V

S V Y V Y V Y V Y

ε εβ

β β β β β

− − −= Σ ⊗ Σ ⊗

= − − − −
(B8)

Hence, ( , , )g V εβ Σ  is proportional to a normal-Wishart density (Bernardo and Smith, (1994), p. 140), hence finitely

integrable to a value ( )g V  that, in general, will depend on the configuration of unobserved wages.  Since ( )g V  is

finite over the compact set ,Ω  it follows that ( )g V  is bounded over .Ω
Turn next to 1( , , , ).h Z W ηπ −Σ   Since (B4) has the same form as (B2), just as (B7) we can write:

( )

{ }

4
1 1 1 12

1,2,3

1 1
ˆ ˆ ˆ( , , , ) | | exp ( ( ) ) ( ) ' '( )

2 2

( 0, ( ) if and 1,2,3 , { } 0 otherwise)

NT

NT

ijt ikt it ijt j

h Z W tr S I

I Z Z k j d j j Z

η η η ηπ π π π π π
−

− − − −

=

 Σ = Σ − Σ − − Ψ Σ ⊗ Ψ − 
 

⋅ > ≠ = ∈ <
(B9)

where π̂  and ˆ( )S π  are defined in a way that is exactly analogous to (B8).

Hence,

1

1

, ,

( , ) ( , , , )h Z W h Z W
η

η
π

π
−

−

∆ Σ

≡ Σ < ∞∫ (B10)

for any configuration of unobserved wages in Ω  and latent utilities in .∆   It follows that ( , )h Z W  is bounded over

.Ω×∆   Thus, the integral (B1) reduces to

1
1 2

,,

( ) ( ) ( , )i t i t
i t

w w g V h Z W−

Ω ∆

   
  
   

∏∫ (B11)

 which is finite since each element of the integrand is bounded over the compact domain of integration.  //

References

Bernardo, Jose and Smith, Adrian F. M.  1994.  Bayesian Theory.  John Wiley and Sons, Ltd., New York.

Eckstein, Z. and K. Wolpin.  (1989): The specification and estimation of dynamic stochastic discrete choice
models.  Journal of Human Resources, 24, 562-598.

Gelman, A.  1996: Inference and monitoring convergence. In W. R. Gilks, S. Richardson and D. J.
Spiegelhalter (eds), Markov Chain Monte Carlo in Practice, Chapman & Hall, London. 131-143

Geweke, J.  1995: Priors for macroeconomic time series and their application.  Working paper, Federal
Reserve Bank of Minneapolis.

Geweke, J.  1996: Monte Carlo simulation and numerical integration.  In H. M. Amman, D. A. Kendrick and J. Rust
(eds), Handbook of Computational Economics, Vol. 1, 731-800.

Geweke, J. and M. Keane.  1999a: Bayesian inference for dynamic discrete choice models without the need for
dynamic programming.  In Mariano, Schuermann and Weeks, (eds), Simulation Based Inference and Econometrics:
Methods and Applications.  Cambridge University Press.  (Also available as Federal Reserve Bank of Minneapolis
working paper #564, January, 1996.)

Geweke, J. and M. Keane.  1999b: Computationally intensive methods for integration in econometrics.  In J.
Heckman and E. Leamer (eds), Handbook of Econometrics, Vol. 5.  North Holland.

Geweke, J., M. Keane and D. Runkle.  1994: Alternative computational approaches to inference in the
multinomial probit model.  The Review of Economics and Statistics, 76, 609-32.

Gilks, W. R., S. Richardson and D. J. Spiegelhalter.  1996: Introducing Markov chain Monte Carlo.  In W. R.



17

Gilks, S. Richardson and D. J. Spiegelhalter (eds), Markov Chain Monte Carlo in Practice, Chapman & Hall,
London.  1-20.

Heckman, J.  1976: The common structure of statistical models of truncation, sample selection and limited
dependent variables and a simple estimator for such models.  The Annals of Economic and Social Measurement, 5,
475-92.

Heckman, J.  1981: Statistical models for discrete panel data.  In Manski, C. and D. McFadden (eds),
Structural Analysis of Discrete Data with Econometric Applications, MIT Press, Cambridge, MA. 115-178

Heckman, J. and G. Sedlacek.  1985: Heterogeneity, aggregation and market wage functions:  an empirical
model of self-selection in the labor market.  Journal of Political Economy, 93, 1077-1125.

Hotz, V.J. and R.A. Miller 1993: Conditional choice probabilities and the estimation of dynamic
programming models.  Review of Economic Studies, 60, 497-530.

Houser, D. 1999: Bayesian analysis of a dynamic, stochastic model of labor supply and saving.  Manuscript,
University of Arizona.

Keane, M. and K. Wolpin 1994: Solution and estimation of discrete choice dynamic programming models by
simulation and interpolation:  Monte Carlo Evidence.  Review of Economics and Statistics, 76, 648-672.

Keane, M. and K. Wolpin 1997: The career decisions of young men.  Journal of Political Economy, 105, 473-522.

Krusell, P. and A. A. Smith.  1995: Rules of thumb in macroeconomic equilibrium:  a quantitative analysis.
Journal of Economic Dynamics and Control, 20, 527-58.

Lancaster, T.  1997: Exact structural inference in optimal job search models.  Journal of Business and
Economic Statistics, 15, 165-179.

Lerman, S. and C. Manski.  1981: On the use of simulated frequencies to approximate choice probabilities.  In  C.
Manski and D. McFadden (eds), Structural Analysis of Discrete Data with Econometric Applications, MIT Press,
Cambridge, MA.  305-319.

Manski, C.  1993: Dynamic choice in social settings.  Journal of Econometrics, 58, 121-136.

McFadden, D.  1989: A method of simulated moments for estimation of discrete response models without
numerical integration’, Econometrica, 57, 995-1026.

Monfort, A., Van Dijk, H. and Brown, B. (eds)  1995: Econometric Inference Using Simulation Techniques.  New
York: John Wiley and Sons, Ltd.

Roy, A.D.  1951: Some thoughts on the distribution of earnings.  Oxford Economics Papers, 3, 135-146.

Rust, J.  1987: Optimal replacement of GMC bus engines:  an empirical model of Harold Zurcher.
Econometrica, 55, 999-1033.

Rust, J.  1994: Estimation of dynamic structural models, problems and prospects: discrete decision processes.  In C.
Sims (ed.), Advances in Econometrics, Sixth World Congress Vol. II.  Cambridge University Press, 119-170.

Tierney, L.  1994: Markov chains for exploring posterior distributions.  The Annals of Statistics, 22, 1701-32.

Wolpin, K.  1984: An estimable dynamic stochastic model of fertility and child mortality.  Journal of Political
Economy, 92, 852-74.

Zellner, A.  1971.  An introduction to Bayesian inference in econometrics.  New York.  John Wiley and Sons.



Table 1

Quality of the Polynomial Approximation
to the True Future Component

Error Set 1 2 3 4 5
Mean present value of 

payoffs with true 
future component*

356796 356327 355797 355803 355661

Mean present value of 
payoffs with 
polynomial 

approximation*

356306 355978 355337 355515 355263

Mean dollar 
equivalent loss*

491 349 460 287 398

Mean percent loss* 0.14% 0.10% 0.13% 0.08% 0.11%

Aggregate 91.81% 91.71% 91.66% 92.30% 91.80%

By Period
1 95.80% 95.55% 96.30% 96.10% 96.15%
2 95.35% 94.90% 95.85% 95.95% 95.30%
3 91.30% 90.45% 90.25% 91.15% 89.90%
4 88.00% 87.75% 89.00% 88.90% 88.45%
5 87.00% 88.30% 87.00% 89.20% 87.60%

10 92.70% 92.60% 92.70% 92.30% 92.30%
20 92.20% 93.00% 92.70% 93.05% 93.10%
30 91.55% 90.90% 90.55% 91.85% 90.85%
40 92.80% 92.15% 91.70% 92.75% 92.10%

*The mean present value of payoffs is the equally-weighted average discounted 
sum of ex-post lifetime payoffs over 2000, 40 period lived agents.  The values are 
dollar equivalents.

Percent choice 
agreement



Table 2

Choice Distributions and Mean Accepted Wages in the Data Generated with True and OLS Polynomial Future Components 

Data Set 2 - POLY Data Set 2 - EMAX

Mean Accepted Wage Mean Accepted Wage
Percent Percent Percent Percent Percent Percent Percent Percent

Period in Occ. 1 in Occ. 2 in School at Home Occ. 1 Occ. 2 in Occ. 1 in Occ. 2 in School at Home Occ. 1 Occ. 2
1 0.10 0.00 0.75 0.15 13762.19 17971.88 0.09 0.00 0.79 0.12 13837.93 19955.02
2 0.23 0.01 0.58 0.17 11822.16 19032.16 0.23 0.01 0.60 0.15 11941.31 18502.51
3 0.41 0.04 0.34 0.21 11249.67 16521.61 0.39 0.03 0.39 0.18 11275.37 16786.46
4 0.52 0.06 0.20 0.22 11167.03 16209.88 0.50 0.04 0.27 0.19 11208.15 17778.61
5 0.60 0.06 0.14 0.20 11417.94 16141.39 0.57 0.05 0.20 0.18 11598.75 16965.70
6 0.63 0.08 0.10 0.19 11802.61 16427.58 0.63 0.06 0.14 0.16 11897.28 17100.50
7 0.65 0.09 0.07 0.18 12257.30 16987.46 0.68 0.08 0.08 0.16 12286.26 17634.68
8 0.69 0.10 0.05 0.16 12701.01 17067.03 0.72 0.09 0.05 0.13 12751.92 17300.99
9 0.69 0.10 0.05 0.16 13167.06 18442.74 0.72 0.10 0.05 0.13 13159.23 19498.18
10 0.70 0.11 0.05 0.14 13709.21 18274.23 0.74 0.09 0.05 0.12 13790.83 19125.16
11 0.72 0.12 0.05 0.11 14409.81 19391.23 0.75 0.11 0.04 0.10 14546.63 19867.95
12 0.71 0.14 0.04 0.12 14511.54 19730.21 0.74 0.12 0.04 0.10 14650.45 20320.53
13 0.72 0.14 0.05 0.10 15216.89 21641.41 0.75 0.14 0.03 0.08 15439.04 21723.49
14 0.74 0.13 0.03 0.09 15943.12 21866.44 0.76 0.14 0.02 0.08 16150.59 22096.07
15 0.73 0.16 0.03 0.07 16507.05 22177.61 0.75 0.16 0.03 0.06 16773.15 22764.69
16 0.74 0.16 0.03 0.07 17129.96 22624.51 0.75 0.16 0.03 0.06 17437.26 22786.18
17 0.75 0.17 0.02 0.06 17886.20 24194.23 0.75 0.18 0.02 0.05 18276.74 24804.59
18 0.73 0.17 0.02 0.07 18408.75 24318.34 0.74 0.18 0.01 0.06 18786.43 24476.18
19 0.72 0.19 0.02 0.06 19590.88 25385.99 0.73 0.20 0.01 0.05 19961.17 25719.67
20 0.74 0.19 0.02 0.05 20186.07 25161.39 0.75 0.20 0.01 0.04 20571.89 25422.50
21 0.71 0.23 0.01 0.05 21113.74 26409.20 0.71 0.24 0.01 0.04 21613.91 26613.20
22 0.70 0.25 0.01 0.04 22002.82 26935.39 0.70 0.25 0.00 0.04 22488.94 27566.90
23 0.67 0.29 0.01 0.03 23259.72 28191.41 0.67 0.29 0.01 0.03 23655.61 28952.46
24 0.66 0.30 0.00 0.03 23119.46 28634.21 0.66 0.31 0.00 0.03 23706.23 29491.67
25 0.66 0.30 0.00 0.04 24085.78 30826.10 0.66 0.31 0.00 0.03 24535.54 31403.33
26 0.62 0.34 0.01 0.04 25399.34 30707.99 0.63 0.34 0.00 0.03 26003.31 31157.72
27 0.62 0.34 0.00 0.04 26971.71 32251.61 0.62 0.35 0.00 0.03 27482.83 33112.86
28 0.60 0.37 0.00 0.03 27074.62 32024.07 0.60 0.37 0.00 0.02 27805.46 32743.79
29 0.57 0.40 0.00 0.03 29049.11 32411.14 0.58 0.39 0.00 0.03 29596.82 33872.97
30 0.55 0.42 0.00 0.04 30492.25 34513.76 0.56 0.41 0.00 0.03 31216.48 35462.35
31 0.52 0.45 0.00 0.03 30745.54 35672.21 0.52 0.45 0.00 0.03 31744.63 36763.93
32 0.50 0.48 0.00 0.03 32078.16 36076.17 0.51 0.47 0.00 0.03 33016.52 37028.17
33 0.46 0.50 0.00 0.04 34202.82 37460.57 0.47 0.51 0.00 0.03 34905.34 38435.23
34 0.43 0.54 0.00 0.02 34578.60 38293.38 0.44 0.54 0.00 0.02 35656.54 39212.14
35 0.42 0.55 0.00 0.04 37084.91 39690.50 0.43 0.54 0.00 0.03 38195.57 40767.33
36 0.39 0.58 0.00 0.03 37580.47 40970.75 0.40 0.57 0.00 0.03 39119.51 41740.41
37 0.36 0.60 0.00 0.04 40129.34 41885.28 0.37 0.60 0.00 0.03 41228.89 42901.62
38 0.33 0.64 0.00 0.03 40101.57 43929.61 0.34 0.63 0.00 0.03 41477.02 45076.14
39 0.28 0.67 0.00 0.05 43282.44 44724.22 0.30 0.66 0.00 0.04 44266.27 46039.50
40 0.26 0.70 0.00 0.03 44462.69 45703.45 0.28 0.69 0.00 0.03 45668.36 46847.68



Table 3

Descriptive Statistics for Posterior Distributions of the Model’s Structural Parameters for Several
Different Data Sets Generated Using Polynomial Future Component

Data Set 1-POLY Data Set 2-POLY Data Set 3-POLY Data Set 4-POLY Data Set 5-POLY

Parameter True Mean SD Mean SD Mean SD Mean SD Mean SD

Occ. 1 Intercept 9.00000 9.01300 0.00643 9.00125 0.00797 9.00845 0.00600 9.00256 0.00661 9.00309 0.00598
Occ. 1 Own Experience 0.05500 0.05440 0.00080 0.05540 0.00086 0.05429 0.00076 0.05462 0.00080 0.05496 0.00060

Occ. 2 Experience 0.00000 0.00093 0.00095 -0.00121 0.00103 -0.00084 0.00092 0.00114 0.00112 -0.00129 0.00115
Education 0.05000 0.04806 0.00130 0.04881 0.00132 0.04850 0.00137 0.04938 0.00140 0.04924 0.00139

Occ. 1 Exp. Squared -0.00025 -0.00024 0.00003 -0.00026 0.00003 -0.00025 0.00003 -0.00024 0.00003 -0.00026 0.00002
Occ. 1 Error SD 0.40000 0.398 0.002 0.402 0.002 0.401 0.002 0.400 0.002 0.400 0.002

Occ. 2 Intercept 8.95000 8.91712 0.01625 8.97693 0.01582 8.91699 0.01583 8.96316 0.01551 8.92501 0.01590
Occ. 2 Own Experience 0.04000 0.04049 0.00039 0.03918 0.00034 0.03946 0.00037 0.03968 0.00037 0.04055 0.00042

Occ. 2 Experience 0.06000 0.06103 0.00175 0.06016 0.00178 0.06461 0.00173 0.05946 0.00180 0.06009 0.00178
Education 0.07500 0.07730 0.00187 0.07245 0.00161 0.07782 0.00178 0.07619 0.00167 0.07650 0.00171

Occ. 2 Exp. Squared -0.00090 -0.00088 0.00008 -0.00093 0.00008 -0.00109 0.00008 -0.00092 0.00008 -0.00087 0.00008
Occ. 2 Error SD 0.40000 0.409 0.003 0.399 0.003 0.407 0.003 0.397 0.003 0.399 0.003

Error Correlation 0.50000 0.481 0.031 0.512 0.025 0.420 0.033 0.528 0.037 0.438 0.042

Undergraduate Tuition -5000 -4629 363 -5212 464 -5514 404 -4908 464 -4512 399
Graduate Tuition -15000 -18006 2085 -16711 1829 -16973 1610 -16817 1692 -15091 1972

Return Cost -15000 -14063 531 -16235 894 -15809 554 -14895 822 -15448 679

Preference Shock SD
Occ. 1 9082.95 10121.05 255.49 9397.38 577.26 10578.31 537.01 9253.22 615.27 9494.74 354.07
Occ. 2 9082.95 8686.12 456.77 11613.38 346.03 10807.31 519.13 9610.23 457.45 9158.09 228.32
Occ. 3 11821.59 11569.93 281.18 12683.67 803.09 13418.79 358.98 12019.38 417.75 12247.80 401.15

Preference Shock Corr.
Occ. 1 with Occ. 2 0.89 0.90 0.01 0.96 0.01 0.93 0.01 0.91 0.01 0.90 0.02
Occ. 1 with Occ. 3 0.88 0.89 0.01 0.88 0.01 0.90 0.01 0.88 0.01 0.88 0.01
Occ. 2 with Occ. 3 0.88 0.89 0.01 0.89 0.01 0.89 0.01 0.89 0.01 0.89 0.01



Table 4

Log Wage Equation Estimates from OLS on Observed Wages Generated Under the Polynomial Future Component*

Occupation One Occupation Two Wage Error SDs

Occ. 1 Occ. 2 Occ. 1 Occ. 1 Occ. 2 Occ. 2
Data Set Intercept Experience Experience Education Exp. Squared Intercept Experience Experience Education Exp. Squared Occ. 1 Occ. 2

TRUE 9.00000 0.05500 0.00000 0.05000 -0.00025 8.95000 0.04000 0.06000 0.07500 -0.00090 0.40000 0.40000

1-POLY 9.15261 0.04236 0.01708 0.04247 0.00012 9.46735 0.03516 0.01953 0.05589 0.00038 0.38845 0.36574
0.00520 0.00076 0.00074 0.00133 0.00003 0.00906 0.00037 0.00146 0.00179 0.00008

2-POLY 9.14715 0.04320 0.01586 0.04309 0.00010 9.47924 0.03446 0.02261 0.05311 0.00017 0.38940 0.36300
0.00528 0.00076 0.00073 0.00134 0.00003 0.00888 0.00036 0.00136 0.00170 0.00007

3-POLY 9.14895 0.04230 0.01732 0.04420 0.00011 9.45851 0.03482 0.02335 0.05665 0.00016 0.38935 0.36495
0.00528 0.00076 0.00072 0.00135 0.00003 0.00914 0.00036 0.00140 0.00177 0.00007

4-POLY 9.15157 0.04220 0.01734 0.04261 0.00012 9.46413 0.03480 0.02346 0.05469 0.00015 0.38900 0.36217
0.00527 0.00076 0.00074 0.00136 0.00003 0.00896 0.00037 0.00138 0.00174 0.00007

5-POLY 9.14838 0.04274 0.01695 0.04408 0.00011 9.45131 0.03570 0.02021 0.05671 0.00035 0.38772 0.35781
0.00521 0.00076 0.00073 0.00135 0.00003 0.00880 0.00036 0.00139 0.00173 0.00007

*Standard errors in italics.



Table 5

Descriptive Statistics for Final 15,000 Gibbs Sampler Parameter Draws for Several
Different Data Sets Generated Using True Future Component

Data Set 1-EMAX Data Set 2-EMAX Data Set 3-EMAX Data Set 4-EMAX Data Set 5-EMAX

Parameter True Mean SD Mean SD Mean SD Mean SD Mean SD

Occ. 1 Intercept 9.00000 9.01342 0.00602 9.00471 0.00527 9.01436 0.00584 9.01028 0.00593 9.00929 0.00550
Occ. 1 Own Experience 0.05500 0.05427 0.00073 0.05489 0.00071 0.05384 0.00072 0.05394 0.00072 0.05410 0.00071

Occ. 2 Experience 0.00000 0.00111 0.00093 0.00092 0.00114 0.00078 0.00126 0.00107 0.00100 0.00051 0.00093
Education 0.05000 0.04881 0.00118 0.05173 0.00126 0.04869 0.00129 0.04961 0.00123 0.05067 0.00124

Occ. 1 Exp. Squared -0.00025 -0.00023 0.00002 -0.00025 0.00002 -0.00023 0.00002 -0.00022 0.00002 -0.00023 0.00002
Occ. 1 Error SD 0.40000 0.397 0.002 0.399 0.002 0.399 0.002 0.397 0.002 0.397 0.002

Occ. 2 Intercept 8.95000 8.90720 0.01704 8.98989 0.01970 8.93943 0.01850 8.93174 0.01649 8.94097 0.01410
Occ. 2 Own Experience 0.04000 0.04093 0.00037 0.03967 0.00037 0.03955 0.00038 0.04001 0.00037 0.04060 0.00039

Occ. 2 Experience 0.06000 0.06087 0.00178 0.05716 0.00190 0.06200 0.00201 0.06211 0.00179 0.05880 0.00157
Education 0.07500 0.07822 0.00166 0.07338 0.00171 0.07579 0.00165 0.07743 0.00167 0.07613 0.00159

Occ. 2 Exp. Squared -0.00090 -0.00087 0.00008 -0.00081 0.00008 -0.00098 0.00008 -0.00101 0.00008 -0.00084 0.00007
Occ. 2 Error SD 0.40000 0.409 0.003 0.397 0.003 0.404 0.003 0.402 0.003 0.397 0.003

Error Correlation 0.50000 0.517 0.023 0.607 0.029 0.484 0.044 0.521 0.035 0.488 0.028

Undergraduate Tuition -5000 -2261 313 -2937 358 -3407 371 -3851 426 -3286 448
Graduate Tuition -15000 -10092 1046 -10788 1141 -11983 1188 -10119 1380 -11958 1823

Return Cost -15000 -14032 482 -16014 431 -16577 500 -16168 662 -18863 1065

Preference Shock SD
Occ. 1 9082.95 10634.90 423.85 10177.24 165.11 11438.63 438.72 9973.32 371.64 9071.29 509.80
Occ. 2 9082.95 9436.10 372.86 12741.02 405.25 11432.19 287.69 9310.37 718.15 7770.66 555.39
Occ. 3 11821.59 11450.65 338.28 12470.12 259.81 13999.95 351.33 13183.33 471.47 13897.62 533.67

Preference Shock Corr.
Occ. 1 with Occ. 2 0.89 0.93 0.01 0.98 0.00 0.94 0.01 0.91 0.02 0.86 0.03
Occ. 1 with Occ. 3 0.88 0.89 0.01 0.88 0.01 0.90 0.01 0.88 0.01 0.88 0.01
Occ. 2 with Occ. 3 0.88 0.87 0.01 0.90 0.01 0.90 0.01 0.89 0.02 0.89 0.02



Table 6

Wealth Loss when Posterior Polynomial
Approximation is used in Place of True Future Component*

Using Using
True EMAX** Posterior EMAX**

Mean Mean Mean Dollar Mean Aggregate Percent with Percent with Percent
Data Present Value Present Value Equivalent Percent Choice 0-35 36-39 Choosing
Set of Payoffs*** of Payoffs*** Loss Loss Agreement Agreements Agreeements Same Path

1-EMAX 356796 356134 663 0.19% 90.80% 34.25% 42.65% 23.10%

2-EMAX 356327 355836 491 0.14% 91.34% 33.00% 44.00% 23.00%

3-EMAX 355797 354746 1051 0.30% 89.79% 39.00% 38.95% 22.05%

4-EMAX 355803 355450 353 0.10% 93.48% 24.60% 38.45% 36.95%

5-EMAX 355661 355485 176 0.05% 93.18% 24.95% 30.50% 44.55%

*   Polynomial parameter values are set to the mean of their respective empirical posterior distributions.

**  Each simulation includes 2000 agents that live for exactly 40 periods.

*** The mean present value of payoffs is the equal-weight sample average of the discounted streams of ex-post lifetime payoffs.



Figure 1

Marginal Posterior Densities of First Log-Wage Equation’s Parameters from Data 
Set 3-Emax*

*On each graph, the vertical line indicates the data  
generating parameter value. The middle triangle indicates
the empirical mean, and the two flanking triangles are 
located two standard deviations from the mean.
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Figure 2
EMAX and Polynomial Future Components Evaluated at Mean Values 

of State Variables at Each Period
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