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1. Introduction

Over the last decade econometric inference based on simulation techniques has become increasingly common,
particularly for latent variable models. The reason is that such models often generate econometric objective
functions that embed high-order integrals, and which, consequently, can be most easilydeualogtsimulation
techniques. There are several well known classical techniques for inference by simulation. Perhaps most common
are the Method of Simulated Moments (McFadden (1989)) and Simulated Maximum Likelihood_di &ivhan

and Manski, (1981)). In practice, both methods require that reasonably accurate simulators be used to evaluate the
integrals that enter the objective function (see Geweke, et. al., (1994)). Bayesian techniques are also becoming quite
popular. These techniques typically entail Markov Chain — Monte Carlo (MCMC) sinmulati@valuate the

integrals that define the posterior densities of a model's parameters (see Geweke and Keanfof E908t¢rview

of MCMC methods).

Our goal in this chapter is to explain concretely how to implement simulation methods in a very general
class of models that are extremely useful in applied work: dynamic discrete choice models where one has available
a panel of multinomial choice histories and partially observed payoffs. Many genesglssafsimulation methods
are now available (see Geweke (1996), Monfort, et. al., (1995), and Gilks, et. al., (1996)), so in our videda detai
illustration of how to implement such methods in a specific case has greater marginal value than an additional broa
survey. Moreover, the techniques we describe are directly applicable to a general class of models that includes static
discrete choice models, the Heckman (1976) selection model, and all of the Heckman (1981) models ich as st
and dynamic Bernoulli models, Markov models, and renewal processes.) The particular procedure thatoere descri
derives from a suggestion by Geweke and Keane (1999a), and has the advantages that it does noe require th
econometrician to solve the agents’ dynamic optimization problem, or to make strong assumptions ateyut the
individuals form expectations.

This chapter focuses on Bayesian inference for dynamic multinomial choice models via the MCMC
method. Originally, we also hoped to discuss classical estimation of such models, so that readers could compare the
two approaches. But, when we attempted to estimate the model developed below using $Midiirgeasible.

The high dimension of the parameter vector caused iterative search for the maximum of the simulated likelihood
function via standard gradient based methods to fail rather dismally. In fact, unless the initial parameter values were
set very close to the true values, the search algorithm would quickly stall. In contrast, the MCMC procedure was
computationally feasible and robust to initial conditions. We concluded that Bayesian inference via MCMC has an

important advantage over SML for high dimensional problems because it does not require search for the optimum of

the likelihood.

! Currently, approaches to numerical integration such as quadrature and series expansion are not useful if the
dimension of the integration is greater than four.



We consider dynamic, stochastic, parametric models with intertemporally additively separable preferences

and a finite time horizon. Suppose that in each perfed,....,T T <o ) each agent chooses among a finite Aet
of mutually exclusive alternatives. Lét“ be the daté-state space, wherk is a positive integer. Choosing
alternative a, 0 Ain state |, M “leads to period payofiR( It,at;H), where 8 is a finite-vector denoting the

model’s structural parameters.

The value to choosing alternativain state|l,, denoted bWt(lt’at)' depends on the period payoff and

on the way agents expect that choice to affect future payoffs. For instance, in the familiar case whémawagents

rational expectations, alternative specific values can be expressed:

Vt(lt,at):R(It,at;9)+6E[ maxat+1DAt+1\4l_ 1(|t+1’at+1||t ,at) t=1,...T) (1.2)
VT+1([I|EO (1.2)
I,H_l:H(It,at;H) (1.3)

where 0 is the constant rate of time preferendé(lt,a

t;H) is a stochastic law of motion that provides an

intertemporal link between choices and states, Epdis the datet mathematical expectations operator so that

expectations are taken with respect to the true distribution of the state-vaiilfles|l1,.a,;8) as generated
byH()l Individuals choose alternat|vat if and only if V,[(I,[,at ) >Vt(|t’at) Da& O % F a. See Eckstein

and Wolpin (1989) for a description of many alternative structural models that fit into this framework.

The econometrician is interested in drawing inferences aBptie vector of structural parameters. One
econometric procedure to accomplish this (see Rust (1987) or Wolpin (1984)) requires using dynamic programming
to solve system (1.1)-(1.3) at many trial parameter vectors. At each parameter vector, the solution to the system is
used as input to evaluate a prespecified econometric objective function. The parameter space is systematically
searched until a vector that “optimizes” the objective function is found. A potential drawback of this procedure is
that, in general, solving system (1.1)-(1.3) with dynamic programming is eXreomputationally burdensome.

The reason is that the mathematical expectations that appear on the right-hand side of (1.1) are often impossible to
compute analytically, and very time-consuming to approximate well numerically. Hence, as a practical matter, this
estimation procedure is useful only under very special circumstances (for instance, when there is a small number of
state-variables.) Consequently, a literature has arisen that suggests alternative approaches to inference in dynamic
multinomial choice models.

Some recently developed techniques for estimation of the system (1.1) — (1.3) focus on circumventing the

need for dynamic programming. Several good surveys of this literature alrealyedisve will not attempt one



here (see Rust (1994)). Instead, we simply note that the idea underlying the more well-ktioese afpproaches,
i.e., Hotz and Miller (1993) and Manski (1993), is to use choice and payoff data to draw inferences about the values
of the expectations on the right-hand side of (1.1). A key limitation of these procedures is that, in order to learn
about expectations, each requires the data to satisfy a strict form of stationarity in order to rule out cohort effects.
The technique proposed by Geweke and Keane (1999a) for structural inference in dynamic multinomial
choice models also circumvents the need for dynamic programming. A unique advantage of their method is that it
does not require the econometrician to make strong assumptions about the way people form expectations.
Moreover, their procedure is not hampered by strong data requirements. It can be implemented when the data
includes only partially observed payoffs from a single cohort of agents observed over only partité theilel.

To develop the Geweke-Keane approach, it is useful to express the value function (1.1) as:
Vi(l,a)=R(l,8:0)+ F"(l.4) (1.4)
where F" (I,,a,) = JE, max, oa. Ve: @,,H(l,,a)). Geweke and Keane (1999a) observed that the definition of
F" (I, henceforth referred to as the ‘future component’, makes sense independent of the me&indfofis
assumed aboveF, is the mathematical expectations operator tiieh(] is the rational expectations future
component. On the other hand,Bf is the zero operator, then future payoffs do not enter the individuals’ decision

rules, andF" (I} is identically zero. In general, the functional form of the future compoR&rf) will vary with
the way people form expectations. Unfortunately, in most circumstances the way people form expectations is
unknown. Accordingly, the correct specification of the future compofReér(t) is also unknown.

There are, therefore, two important reasons an econometrician may prefer not to impose strong assumptions
about the way people form expectations, or, equivalently, on the admissible forms of the future component. First,
such assumptions may lead to an intractable econometric model. Second, the econometrician may see some
advantage to taking a less dogmatic stance with respect to behaviors about which very little, if any, a-priori
information is available.

When the econometrician is either unwilling or unable to make strong assumptions about the way people
form expectations, Geweke and Keane (199%ajgsst that the future componeft” ()] be represented by a
parameterized flexible functional form such as a high-order polynomial. The resulting value function can be written

V.(l,a)=R(L,a:0)+ F' (I, |m) (1.5)
where 77 is a vector of polynomial coefficients that characterize expectation formation. Given functional forms for
the contemporaneous payoff functions, and under the conditio@thatl 77 are jointly identified, it is possible to

draw inferences both about the parameters of the payoff functions and the structure ofienpectat



This chapter focuses on an important case in which key structural and expectations parameters are jointly
identified. We consider a model where an alternative’s payoff is partially observed if and only if that alternative is
chosen. In this case, after substitution of a flexible polynomial function for the future component as in (1.5), the
model takes on a form similar to a static Roy (1951) model augmented to include infloermtesce other than the

current payoffs, as in Heckman and Sedlacek (1986). The key difference B"t{iatincorporates overidentifying

restrictions on the non-payoff component of the value function that are implied by (1.1)-(1.3) and that are not
typically invoked in the estimation of static selection models. Specifically, the parameters of the non-payoff
component of the value function are constant across alternatives, and the arguments of the non-payoff component
vary in a systematic way across alternatives that is determined by the law of id¢fidor the state variables.

The structural model (1.1)-(1.3) also implies restrictions on the nature of the future component's

arguments. For instance, H(Q)] and R() jointly imply that the model's payoffs are path-independent, then the

future component should be specified so that path-dependent expectation formation is raleimniarly,
contemporaneous realizations of serially independent stochastic leariadntain no information relevant for
forecasting future outcomes, so they should not enter the arguments of the flexible functional fthhaut $ich
coherency conditions one might obtain results inconsistent with the logic of the model’s specification.

A finite order polynomial will in general provide only an approximation to the true future component.
Hence, it is important to investigate the extent to which misspecification of the future component may affect
inference for the model’s structural parameters. Below we report the outcome of some Monte Carlo experiments

that shed light on this issue. The experiments are conducted under both correctly and incorrectly specified future
components. We find that the Geweke-Keane approach performs extremely welFRIi@nis correctly specified,

and still very well under a misspecified future component. In particular, we find that assumingutiee fut
component is a polynomial when it is actually generated by rational expectations leads to only “seadnd orde
difficulties in two senses. First, it has a small effect on inferences with regard to the structural paranteters of
payoff functions’ Second, the decision rules inferred from the data in the misspecified model are very close to the

optimal rule in the sense that agents using the suboptimal rule incur ‘smaslihéfpayoff losses.

2 Restrictions of this type can be tested easily by estimating versions of the model with different but nested futu
components.

® These findings are related to those of Lancaster (1996), who considered Bayesian inference in thg jtationar
search model. He found that if the future component is treated as a free parameter (rather than being set “optimally”
as dictated by the offer wage function, offer arrival rate, unemployment benefit and discount rate) there is little loss
of information about the structural parameters of the offer wage functions. (As inxaomple, however,
identification of the discount factor is lost.) The stationary job search model emtbioy Lancaster (1996) has the

feature that the future component is a constant (i.e. it is not a function of state variables). Our procedure of treating
the future component as a polynomial in state variables can be viewed as extending Lancaster’s approach to a much
more general class of models.



The remainder of this chapter is organized as follows. Section two describes the application, and section
three details the Gibbs sampling algorithm. Section four reviews our experimental aedigesults, and section

five concludes.

2. The Dynamic Multinomial Choice M odéel

In this section we present an example of Bayesian inference for dynamic discrete choice models using the Geweke-
Keane method of replacing the future component of the value function with a flexible polynomial function. The
discussion is based on a model that is very similar to ones analyzed by Keane and Wolpin (1994, 1997).

In the model we considei,=1,....N agents choose amonpg=1,...,4 mutually exclusive alternatives in
each oft =1,...,40 periods. One can think of the first two alternatives as work in one of two occupations, the third

as attending school and the fourth alternative as remaining home. One component of the current period payoff in

each of the two occupational alternatives is the associated waggj =1,2). The log-wage equation is:

Inwg =By +B; Xy +B; Xe +By B +By ¥ +f (i=12) 2.1)
=Y, B +& (i=12)
whereY,, is the obvious vectorp, :(,Boj vees By ) , S Is the periods of school completéd,, ), , ,is the periods
of experience in each occupation and the g, are serially independent productivity shocks, with
(&x,&2)'~ N(0,Z,). Each occupational alternative also has a stochastic nonpecuniary paycsh the complete
current period payoffs are
Up =W, +¥, (1=12). (2.2)
The schooling payoffs include tuition costs. Agents begin with a tenth-grade education, and may complete

two additional grades without cost. We assume there is a fixed undergraduate tuitipnfoatattending grades 13
through 16, and a fixed graduate tuition rate for each year of schooling beyond 16. We assume a “return to
school” costa, that agents face if they did not choose school the previous period. Finally, school has a
nonstochastic, nonpecuniary benefjf and a mean zero stochastic nonpecuniary paypff Thus we have

Uy =0, +a X(12<§ <15)+a,x & 2 16)0+ax 6, % 3V, =\ a + (2.3)
where y is an indicator function that takes value one if the stated condition is true and is zero oth&pwise
vector of zeros and ones corresponding to the values of the indicator funaigr(sr,o,...a3)’, d, 0{1,2,3,4}

denotes the choice df att. Lastly, we assume that option four, home, has both a nonstochastic nongecuniar

payoff ¢ and a stochastic nonpecuniary paygff so



Uy =@+ V4. (2.4)

We will setu, =Y, +V,, (j=1...,4). The nonpecuniary payofI(S/ijt) , are assumed serially independent.

j=
The state of the agent at the time of each decision is
e ={(Xi) 22 R0 800 (§ ) 212 (4 ) -0k (2.5)
We assumed, =3. The laws of motion for experience in the occupational alternatives and school are:
Xign =X +X(d = 1), =12, §;,, =9 +x( @ =3). The number of ‘home’ choices is excluded from the state-
space as it is linearly dependent on the level of education, the period, and experience in the two occupations.

It is convenient to have notation for the elements of the state vector whose value intfkritgbends
nontrivially on their value in periotlor on the current choice. The reason, as we note below, is that these elements
are the natural arguments of the future component. We define

I; :{(Xijt)j=1,2v S th—]}'
The value of each alternative is the sum of its current period payoff, the stochastic noargeuaynff
and the future component:
Vi () =T () +,
+F(Xiy +X(J =D, X5, +x(j =2),S, +x (j =3),t+1x (j = 3))(=1,...4) (t=1,...,40) (2.6)
=0, (1) +v +F (1)
The functionF represents agents’ forecasts about the effects of their current state and choice on their future payoff
stream. The function is fixed across alternatives, implying that forecasts vary across alternatives only because
different choices lead to different future states, and it depends only on the choice and the state vakigbles in
Since choices depend only on relative alternative values, rather than their levels, we dgfin@,f2r3} :
Vi =Va
=0+ +F( 1) -G, Y, —F(4) (2.7)
=0 + Tl 1)+

Zijt

where Gijt qut _rilzt ’ {nijt} j=1,2,3 E( Vijt -y u)j =123 I\KO, Z,]) and f(li: ,j):F (I n :j )_F Qn -4)- |mp0rtantly- after
differencing, the valuep of the home payoff is subsumed finthe relative future component. Clearly, if an

alternative’s future component has an intercept (as each of ours does) then it and the period return to home cannot be

separately identified.

* As noted earlier, the future component’s arguments reflect restrictions implied by the model. For
instance, because the productivity and preference shocks are serially independent, they contain no information
useful for forecasting future payoffs and do not appear in the future component’s arguments. Atsttgive
experience in each occupation, the order in which occupations one and two were chosen in the past does not bear on
current or future payoffs. Accordingly, only total experience in each occupation enters the future component.



The value function differencesZ, are latent variables unobserved by the econometrician. The
econometrician only observes the agents’ chofeks for t=1,...,40, and, in the periods when the agent works, the
wage for the chosen alternative. Thus, payoffs are never completely observed, both because wages are censored and
because the nonpecuniary components of the payeff$ are never observed. Nevertheless, given observed
choices and partially observed wages, along with the functional form asswsngltiont the payoff functions, it is
possible to learn both about the future comportefif and the structural parameters of the payoff functions without
making strong assumptions about how agents form expectations. Rather, we simply assuime filtare
component lies along a fourth-order polynomial in the state variables. After differencing to {oftginj)} i=1.2.3)
the polynomial contained 53 terms of order three and lower (see Appendix A.) We express the future component as

f0n)=¢m (=123 (2.8)

where ¢, is a vector of functions of state-variables that appear in the equatidi(ifprj) and 77 is a vector of

ijt
coefficients common to each choice. Cross-equation restrictions of this type are a consequence of using the same

future component functioh for each alternative and reflect the consistency restrictions discussed earlier.

3. Implementing the Gibbs Sampling Algorithm

Bayesian analysis of this model entails deriving the joint posterior distribution of ddel’'sn parameters and

unobserved variables. Recall that the value function differeﬁceé(zijt)1:1,2‘3.::],“ ::1,4[} are never observed, and
that wagesw :{(vv”.t)j:l,z‘a.::]N :=1,4c} are only partially observed. L&V, and W, denote the set of observed and

unobserved wages, respectively, and\rret{ Y

; }i=1,N;j:1,21:1,40 denote the log wage equation regressors. Then the

joint posterior density i9(W,,Z, 8,, 3,0 JT,%." ,Z,;l W, Y A).By Bayes’ law, this density is proportional to

PW.ZIYNAB By a2 2 pB .6 a e ") (3.1
The first term in (3.1) is the so-called “complete data” likelihood function. leidikklihood function that
could be formed in the hypothetical case that we had data on N individuals observed over 40 periods each, and we

observed all of the value function differencgsand the complete set of wageésé for all alternatives. This is:

e -y
PW.Z YA BBy 5 2,0 [ B 17 G )1exr§r M A gt T IA %

Onw, s
ﬁnwizt _Yi’zuBz : nw, - Yzﬁ
o Eziili Wy _lpi’ln D DZL Wy _qijun
4y, F 10 S ,
DE” 1( GX%T'E[ZQ, W, _quz”D; DZ: ~—Wp _LPQT[ (3-2)
B %ia_/\iyta_wiyaﬂ% EZ: _Alza_q?sn%
' 111 > G Kz j )b =] anﬂ]{ 2,,3 -{th }j 2125 0 otherwise)

N~



The second term in (3.1) is the joint prior distribution. We assume flat priors on all parameters except the two
precision matrices, for which we assume the standard noninformative priors (see Z&971), section 8.1):
P Ok T2, ot )| ) TP (3.3)

The Gibbs sampler draws from a density that is proportional to the product of (3.2) and the two densities in (3.3).
The Gibbs sampling algorithm is used to form numerical approximations of the paramedegial
posterior distributions. It is not feasible to construct these marginal posteriors analytically, since doing so requires

high dimensional integrations over unobserved wages and value function differelmplementing the Gibbs
sampling algorithm requires us to factor the joint posterior defined by (3.1)-(3.3) into a set of conditional posterior
densities, in such a way that each can be drawn from easily. Then, we cycle through these conditivingiss dra
block of parameters from each in turn. As the number of cycles grows large, the parametesadabtained
converge in distribution to their respective marginal posteriors, given certain mild regularity conditions (see Tierney
(1994) for a discussion of these conditions). An important condition is that the posterior distribution be finitely
integrable, which we verify for this model in Appendix B. Given the posterior distribution of the parameters,
conditional on the data, the investigator can draw exact finite sample inferences.

Our Gibbs sampling-data augmentation algorithm consists of six steps or ‘blocks.” These steps, which we

now briefly describe, are cycled through repeatedly until convergence is achieved.

Step 1. Draw value function differenc{azijt,i =1,N;j=13t =1, 4§$)
Step 2. Draw unobserved Wag@iqjt whend, # j, (= 1, 2})

Step 3. Draw the log-wage equation coefficief{s

Step 4. Draw the log-wage equation error-covariance mafrix
Step 5. Draw the parameters of the future comporeand school payoff parametess

Step 6. Draw the nonpecuniary payoff covariance mayix
Step 1: We chose to draw tlﬁzm,i =1,N;j=13t =1, 4@) one-by-one. Taking everything else in the model as
given, it is evident from (3.1)-(3.3) that the conditional distribution of a sidgleis truncated Gaussian. Dealing

with the truncation is straightforward. There are three ways in which the Gaussian distribution might be truncated.

O

Case 1 Z, is the value function difference for the chosen alternative. Thus, weZ*rawnaxEO,(Zk‘ Yoz -
O kej [

ijt

Case 2. Z,

i IS not associated with the chosen alternative, and ‘home’ was not chidees) we drawZ;, < Z,,.
Case 3:'Home’ was chosenin this case, we draw; <O0.

We draw from the appropriate univariate, truncated Gaussian distributions using standard inverssHo0s.



Step 2: We chose to draw the unobserved wégﬂg?fswheno[t £j,(= 1,2,:}) one-by-one. Suppose, is
unobserved. Its density, conditional on every other wage, future component difference and paraméteo\wwring

is from (3.1), (3.2) and (3.3) evidently given by:

, 0 w,-w,-W,70 O \ %
: , Wy it7l Zl Wy —
1 10nw, —-Y 0 . On - 10
9(Wy |D|D~eXp§ Eﬁ Y Yli;ﬁ elﬁ s Ylﬁl% eXF@ —Eiy~ W~ LIJIZ”[E DZa Wiy LPIZIT (3.4)
Wy = X2 P2

Wiy nw; =Y. EZ%K{ -Na - LIJialTﬁ EZ ~Aa - quan

This distribution is nonstandard as wages enter in both logs and levels. Nevertheless, it is straightforward to sample

from this distribution using rejection methods (see Geweke (1995) for a discussioriehefijection sampling).

In brief, we first drew a candidate wagé from the distribution implied by the first exponential of (3.4), so that
INW* ~ N(Y, B, +A,,02), where A, =%_(1,2)k,, /2(2,2) and 07 =2, (1,1)(1- €, (L 2§ /€ (L1E (2,2)). This
draw is easily accomplished, and is found by exponentiating. The probability with which this draw is accepted
is found by dividing the second exponential in (3.4) by its conditional maximum wyerand evaluating the
resulting expression at, =w. If the draw is accepted then the unobserved is set tow’. Otherwise, the

process is repeated until a draw is accepted.

Step 3: Given all wages, value function differences, and other parameters, theade(f$, 5,) is:

(3.5)

. 0 -y
06 5,) 0 exon zﬁ R .nm%

—Ymﬁﬁ “Bnw, -V, 5,
So that(S,, B,) is distributed according to a multivariate normal. In particular, it is easy to show that
B~N[(Y'ZY)Y' S In W (Y =) 1
where 3= (B/,B)), £=32, Oly, Y = Eg 3( @ andInW =[In W/, InW.]’, whereY, is the regressor matrix for
2
the first log-wage equation naturally ordered through all individuals and periods, and simila¥ly \Wéy andw, .
It is straightforward to dray8 from this multivariate normal density.

Step 4: With everything else knowi]' has a Wishart distribution. Specifically, it is immediate from the joint

NT-3

posterior thatp(Z*) OF | 2 exp% %tr 6 (B3 ;' , so that

. ~W(S(B), NT), where SB = (InWW, =Y, B, , INN, =Y ,B, )W =Y B,, InW =Y S ,). (3.6)
It is easy to draw from the Wishart and then invert the 2 X 2 matrix to obfain

Step 5: Itis convenient to draw both the future compomeparameters and the parameter®f the school payoff

jointly. Since the future component for school contains an intercept, it and the constarmainnot be separately



identified. Hence, we omitr, as well as the first row from each,. Define the vectorrr =[ 7, d’ , where
a=(@,.a,a,)". and defineV =[W¥,,0,]' (j =1,2),and¥, =[W, ,A ] Note that 77 and theV; are 56-
vectors. Then defingp, =[W,, Wy, ... Pyr1 Yol and seW =[W, W, W]’ so thatW is a (INT x 56)

stacked-regressor matrix. Similarly, define the corresponding[NT3vector I by

Fr=(Zy-wWitip{ Z, -wi},{ Z,). Itisimmediate from (3.2), in whictr’ enters only through the second

exponential expressions that, conditional on everything else kmdwas a multivariate normal density given by:
T ~N[(WQW'Ww Q'L (W Q'Y ] (3.7
whereQ =% 01,. We draw from this using a standard, multivariate normal random number generato

Step 6: With everything else known the distribution 51;1 is Wishart; Z;1~W(SS;}', N7, where
SST = Z(n”I Mialhi3) Qs o 6), @nd with then, defined by (2.7). It is easy to draw from this distribution and
[

then invert the 3 X 3 matrix to obtaiik.

4. Experimental Design and Results

This section details the design and results of a Monte Carlo experiment that we conalwgtted tight on the
performance of the Gibbs sampling algorithm discussed in section two. We generated data according to equations
(2.1) — (2.7), using the true parameter values that are listed in column two of Table 3. The table does not list the
discount rate and the intercepts in the school and home payoff functions,wehglset to 0.95, 11000 and 17000
respectively, since these are not identified. In all of our experiments we set the number of people, N, to 2000.

Data from this model were generated using two different assumptions about theeoagg formed
expectations. First, we assumed that people had rational expectations. This required us to solve the resulting
dynamic optimization problem once to generate the optimal decision rules. Since the choice set includes only four
discrete alternatives it is feasible to do this. Then, to simulate choice and wage paths requires only that we generate
realizations of the appropriate stochastic variables. It is important to note that the polynomial future componen
used in the estimation procedure does not provide a perfect fit to the rational expectations future component. Hence,
analysis of this data sheds light on the effect that misspecification of the future component may havenoa.infere

Next, we assumed that agents used a future component that was actually a polynomial in the state variables
to form decisions. Analysis of this data set sheds light on how the algorithm performs when the model is correctly
specified. To ensure close comparability with the rational expectations case, we constructed this polynomial by

regressing the rational expectations future components on a fourth-order polynomial in the state-variables,

10



constructed as described in the discussion preceding (2.8). We used the point estimates from this regression as the
coefficients of our polynomial future component (see Appendix A for the specific form of the padyynom

We found that a fourth order polynomial provided a good approximation to the future component in the
sense that if agents used the approximate instead of optimal decision rule they suffered rather small lifetime earnings
losses. Evidence of this is given in Table 1, where we report the results of simulations under optimal and

suboptimal decision rules. The simulations were conducted as follows. fétilst;2000 people we drew five sets
of lifetime (T=40) realizations of the model’s stochastic compon@qgs,fi2t (), :1,4}. In Table 1 these are

referred to as error sets one to five. For each of the five error sets we simulated lifetime choice histories for each of
the 2000 people under the optimal and approximate decision rules. We refer to the 10 data seteddmgtrisct
way as 1-EMAX through 5-EMAX and 1-POLY through 5-POLY, respectively. We then calculated the mean of the
present value of lifetime payoffs (pecuniary plus nonpecuniary) for each of the 2000 people under #ieangtim
approximate decision rules, respectively, for each of the five error sets. These are reported in the second and third
rows of Table 1. Holding the error set fixed, the source of any difference in the mean present value of lifetime
payoffs lies in the use of different decision rules. The mean present values of dollar equivalent losssiadrtme
suboptimal polynomial rules are small, ranging from 287 to 491. The percentage loss @mggéhémdredths of
one percent to 14 hundredths of one percent. These findings are similar to tlootss lep Geweke and Keane
(1999a) and Krusell and Smith (1995).

Table 2 reports the mean accepted wages and choice frequencies for the data generated from error-set two.
The first set of columns report statistics for data generated according to the polynomial approximation (data set 2-
POLY) while the second set of columns report results from the optimal decision rule (data set 2-EMAX). Under our
parameterization, occupation one can be thought of “unskilled” labor, while occupation two can be understood as
“skilled” labor. The reason is the mean of the wage offer distribution is lowercupation two early in life, but it
rises more quickly with experience. The choice patterns and mean accepted wages are similar under the two
decision rules. School is chosen somewhat more often under the optimal decision rule, which helps to generate
slightly higher lifetime earnings. Finally, note that selection effects leave the mean accepted wage in occupation
two higher than that in occupation one throughout the life-cycle under both decision rules.

Next, we ran the Gibbs algorithm described in section two for 40,000 cycles on each data set. \&@ achiev

about three cycles per minute on a Sun ultra-2 workstatidhus, while time requirements were substantial, they

® To begin the Gibbs algorithm we needed an initial guess for the model's parameters (although the asymptotic
behavior of the Gibbs sampler as the number of cycles grows large is independeningf\alrés). We chose to
set the log-wage equatiogs equal to the value from an OLS regression on observed wages. The diagonal

elements ofZ, were set to the variance of observed log-wages, while the off-diagonal elements were set to zero.

The school payoff parameters were all initialized at zero. All of the future compomemidues were also started
at zero, with the exception of the alternative-specific intercepts. The intercepts for alternatives one, two and three
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were minor compared to what estimation of such a model using a full solutiondyfrtaimic programming problem

would entail. Visual inspection of graphs of the draw sequences, as well as application of the split sequence
diagnostic suggested by Gelman (1996)-which compares variability of the draws across subsequencediatiggests t
the algorithm converged for all ten artificial data sets. In all cases, the final 15,000 draveaftonun were used

to simulate the parameters’ marginal posterior distributions.

Table 3 reports the results of the Gibbs sampling algorithm when applied to the dataedewérat
polynomial future component. In this case, the econometric model is correctly specified. The first column of Table
3 is the parameter label, the second column is the true value, and the remaining columns report the structural
parameters’ posterior means and standard deviations for each of the five dataTsetsesults are extremely
encouraging. Across all runs, there was only one instance in which the posterior mean of a parameter for the first
wage equation was more than two posterior standard deviations away from its true value: the intdeteptdan
one. In data sets four and five, all of the structural parameters’ posterior means aremeithosterior standard
deviations of their true values. In the second data set, only the second watenexjown experience term is
slightly more than two posterior standard deviations from its true value. In the third data set the ineamaget
equation’s error correlation is slightly more than two posterior standard deviations from the true value, as are a few
of the second wage equation’s parameters.

Careful examination of Table 3 reveals that the standard deviation of the nonpecuniary payoff was the most
difficult parameter to pin down. In particular, the first two moments of thegimal posteriors of these parameters
vary considerably across experiments, in relation to the variability of the other structural parameters’ marginal
posteriors. This result reflects earlier findings reported by Geweke and Keane (1999a). In the eérlieeywo
found that relatively large changes in the value of the nonpecuniary component’s standard deviation had only
small effect on choices. It appears that this is the case in the current experiment as well.

It is interesting to note that an OLS regression of accepted (observed) log-wages on the log-wage
equation’s regressors yields point estimates that differ sharply from the results of thes&iigdmg algorithm.

Table 4 contains point estimates and standard errors from such an accepted wage regression. Selection bias is
apparent in the estimates of the log-wage equation’s parameters in all data sets. This highlights that the Bayesian
simulation algorithm is doing an impressive job of implementing the appropriate dynamicosetectection.

Perhaps more interesting is the performance of the algorithm when taken to data that was generated using

optimal decision rules. Table 5 reports the results of this analysis on data sets 1-EMAX to 5-EMAX. hkgain, t

were initialized at —5,000, 10,000, and 20,000, respectively. These values were chosen with an eye towards
matching aggregate choice frequencies in each alternative. We initializeg tb@variance matrix by setting all

off-diagonal elements to zero, and each diagonal element ta>5X16 used large initial variances because doing
so increases the size of the initial Gibbs steps, and seems to improve the rate of convergence of the algorithm.
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first column labels the parameter, and the second contains its data generating value. The performance of the
algorithm is quite impressive. In almost all cases, the posterior means of the wage function parameters deviate only
slightly from the true values in percentage terms. Also, the posterior standard deviations are in most cases quite
small, suggesting that the data contain a great deal of information about these structural parameters — even without
imposing the assumption that agents form the future component “optimally.” Finally, despite the fact that the
posterior standard deviations are quite small, the posterior means are rarely more than two posterios devagtio

from the true value$. As with the polynomial data, the standard deviation of the nonpecuniary component seems
difficult to pin down. Unlike the polynomial data, the school payoff parameters arennedpidown as well as the

wage equation parameters. This is perhaps not surprising since school payoffs avbseved.

Figure 1 contains the simulated posterior densities for a subset of the structural parameters based on data

set 3-EMAX. Each figure includes three triangles on its horizontal axis. The middle triangle defines the posterior
mean, and the two flanking triangles mark the points two posterior standard deviations abovevaiidebelean.
A vertical line is positioned at the parameters’ data generating (true) value. These distributions emphasize the
quality of the algorithm’s performance in that the true parameter values are typically close to the posterior means.
The figures also make clear that not all the parameters have approximately normal distributions. For instance, the
posterior density of the wage equations’ error correlation is multi-modal.

The results of Table 5 indicate that in a case where agents form the future component optimally, we can
still obtain reliable and precise inferences about structural parameters of the current payoff functions using a
simplified and misspecified model that says the future component is a simple fourth-order polyndheastate
variables. But we are also interested in how well our method approximates the decision rule used by the agents. In
Table 6 we consider an experiment in which we use the posterior means for thegrarantbat characterize how
agents form expectations to form an estimate of agents’ decision rules. We then simulate five ingl daté
sets, using the exact same draws for the current period payoffs as were used to generate the original five artificial
data sets. The only difference is that the estimated future component is substituted for the true future component in
forming the decision rule. The results in Table 6 indicate that the mean wealth losses from using the estimated
decision rule range from five-hundredths to three-tenths of one percent. The percentage of choices that agree
between agents who use the optimal versus the approximate rules ranges from 89.8% to 93.5%. These results

suggest that our estimated polynomial approximations to the optimal decision rules are reasonably accurate.

® Space considerations prevent us from reporting results for individual expectations parameters. Instead, below we
will graphically compare the form of the estimated future component to that which was used to generate the data.

" We also ran OLS accepted log-wage regressions for the 1-EMAX through 5-EMAX data sets. The results are very
similar to those in Table 4, so we do not report them here. The estimates again show substantial alages fo

wage equation parameters. Thus, the Gibbs sampling algorithm continues to deessiiagob of implementing

a dynamic selection correction despite the fact that the agents’ decision rules are misspecified.
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Figure 2 provides an alternative way to examine the quality of the polynomial approximation to the future
component. This figure plots the value of the approximate and the true EMAX future components wiatadevalu
at the mean of each period’s state-veftoEach vertical axis corresponds to the value of the future component, and
the horizontal axis is the period. Clearly, the approximation reflects the true EMAX future component’s main
features. The fit of the polynomial seems relatively strong for each occupational alternative throughiéer th
cycle. The fit is good for school in early periods, but begins to deteriorate later. One reaabscdisabl is chosen
very infrequently after the first five periods, so there is increasingly less information about its future component. A
second reason is that the contemporaneous return begins to dominate the future component in alternative valuations.
Consequently, each data point in latter periods contains relatively less information about the future component’s
value. Overall, however, these figures furnish additional evidence that the polynomial approximation does a

reasonable job of capturing the key characteristics of the true future component.

5. Conclusion

This chapter described how to implement a simulation based method for inference that is applecabtetolass

of dynamic multinomial choice models. The results of a Monte Carlo analysis demonstrated that the method works
very well in relatively large state-space models with only partially-observed payoffs where very high dimensional
integrations are required. Although our discussion focused on models with disaietss@dnd independent and
identically distributed stochastic terms, the method can also be applied to models with mixed continuous/discrete

choice sets and serially correlated shocks (see Houser, (1999)).

Appendix A. The future component

The future component we used was a fourth-order polynomial in the state variables. Below, in the interest of space
and clarity, we will develop that polynomial only up to its third order terms. The extension to the higher order terms
is obvious. From equation (2.6), the future component is the flexible functional form

F(Xig *X(1=1), Xiz +x(j =2),§ & (j =3),t+1x ( = 3))
Define s, =x(j =k). Then, to third order terms, we used the following polynomial to represent this function.

F(X +1, Xy+i,, SH,t+17 )= R+ B( X+ )+ H X+ )+ H 3 )+ P #)

HR(X +1)* +P(X, 4 )" + R(S# )* + B t)” + B( X#)° + R X#,)° + R 8r)° +0 #)°
+P, (X, +1)2 (X, + ) + P X4 )2(S+ ) + B{ X Y (t+1)+P, (X, +1,)* (X, +H )

+Re(X, +1,)°(SH ) + B Xt J*(t+D) + B S )*( X ) + B & }°( X+ )L+ B /S )( 1)
+P, (t+1)7 (X, +1,) + P, (1 +17 (X, # ,) + Pu(t+17 (S+ ) + By o+ P { X, # ) + By X,# ),
+Pola(S+is) + By o(1+D) + By { X+ )* + By { Xy )2 + Py 8+ )7 +1R,( t#)*

® The mean state vectors were derived from the choices in data set 5-EMAX, and the coefficients of the polynomial
were valued at the posterior means derived from the analysis of data set 5-EMAX.
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The differenced future components used above are definddlyj)=F (1;,j )-F ( ,4). Several of the
parameters of the level future component drop out due to differencing. For instance, the iRenme il

coefficients of terms involving onlft+1) vanish. Simple algebra reveals the differenced future components have
the following forms.

f(lD) =7 +mg (X)) + (X)) + 7X, A X) + gSG X) + # #1) ¢ Y+ X+ gS+ 1),
(13, 2)=mX] + X, 9(X,)+ 75+ Y(X)+ FHX)+ FS¢ X) + M #1) § X) + g5+ 7 1.
f(15,3)= EXT + BX,9(S) + 730G+ 05X ,9(9) + 70, + g §+ 70 0 B+ 700 X477, K11 4 41) ©)S
+ﬂ23(t +1)2 + 7‘64X1+7T25X 2-'-77-24t +1)
where g(x) =2x+1, andh (x)= 3¢ + 3+ 1.Several of the parameters appear in multiple equations. Such cross

equation restrictions reflect the specification’s logical consistency. The future components’ asymmetry arises since
choosing school both augments school experience and removes the cost of returning to schealvthation
otherwise face. In contrast, choosing alternative one or two only augments experience within that alternative.

Appendix B. Existence of joint posterior distribution

Let w denote the number of missing wage observations, ar@d #fA,, B,]“ U ¢, be the domain of unobserved
wages, where0< A, <B, <w. Also, let A=[A,B,]*"" M *"" be the domain of latent relative utilities,
where—o <A <B, < We want to show that:

[ A1) DoV AT Z Wi T <en ®1)
Q.A,B, nz b
Here, we have subsumed and A into 77 and W, respectively (as we did in step 5 of section 3) and defined
NT-3
oV, ENAZ 7 exero(V-Y8) & 0L (v B (82)
where
Onwy, O
AAR O . 0O oY, 00 0p0
V= oV=pg D,Y:E)l 0 adg=].0. (B3)
o0 Onw o Y[ 0B85
NIiT

We have also defined
NT-4

h(Z W, ) =5t [ 7 expj— (z W-wn) GO, |2 an)%

0(Z, >0.Z,(k# j) it d, = jandj I{ 1,28 &, }.,< O otherwise)

(B4)

Where
¥, 0 Dzm owWgd D\N:IilD
z= E,ZZD,Z -0 D,W—DV\E wa B (i=1,2), andw =( P .
. BZN.TH H VW]

Since the onIy arguments common to bg)ﬁmdh are those that include functions of wages, we can express (B1) as

?[D]ﬂ (WyWz)™ 0 j V.82 [ HZWr Zgl)%. (BS)
Ops ams B
We first observe that for any configuration of unobserved wages in
av)= | oV, 8,Z.") <. (B6)
Bz

To see this, note that we can expreg¥, 5,2.") as
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NT-3

4T 01 ~ oy 1 - -
9V B2 T P exou 8GR )5 G-F)Y (R DI & ﬁﬁ (B7)

where

B=(Y'(Z OL)Y)YE (O 1)V

S(B) = (Y ~YBy Vo= Y,B) (=Y B, V,-Yf)
Hence,g(V, 3,%,) is proportional to a normal-Wishart density (Bernardo and Smith, (1994), p. 140), hence finitely
integrable to a valugy(V) that, in general, will depend on the configuration of unobserved wages. @geis
finite over the compact s, it follows that g(V) is bounded ovef.

(B8)

Turn next toh(Z, W, n,Z,;l). Since (B4) has the same form as (B2), just as (B7) we can write:
Nt 1 E
hZ,W,mZ )=z 2 expr=t( AT -—=(m=-x W' O 7’
( ) =2 PES (7)) 2( ¥ WSO ( u (B9)
0(Zy >0,Z(k# ) ifd, = jandj0{12,3 ,{Z;},.,, < O otherwise)
where 7t and S(77) are defined in a way that is exactly analogous to (B8).

Hence,
h(Z,W) = I HZ W5 )<w (B10)

Az
for any configuration of unobserved wages@nand latent utilities imA. It follows that h(Z, W) is bounded over
QxA. Thus, the integral (B1) reduces to

N 0
i CABREULE: W (B11)
o Hi a ]
which is finite since each element of the integrand is bounded over the compact domain of integration. //
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Tablel

Quality of the Polynomial Approximation
to the True Future Component

Error Set 1 2 3 4 5

M ean present value of
payoffswith true 356796 356327 355797 355803 355661

future component*

Mean present value of

payoffswith 356306 355078 355337 355515 355263
polynomial
approximation*
Mean dollar
equivalent |oss* 491 9 70 ad .

Mean per cent loss* 0.14% 0.10% 0.13% 0.08% 0.11%

Percent choice
agreement

Aggregate 91.81%  91.71%  91.66%  92.30%  91.80%

By Period
1 95.80% 95.55%  96.30% 96.10%  96.15%
2 95.35% 94.90%  95.85% 95.95%  95.30%
3 91.30% 90.45%  90.25% 91.15%  89.90%
4 88.00% 87.75%  89.00% 88.90%  88.45%
5 87.00% 88.30%  87.00% 89.20%  87.60%

10 92.70% 92.60% 92.70% 92.30% 92.30%
20 92.20% 93.00% 92.70% 93.05% 93.10%
30 91.55% 90.90% 90.55% 91.85% 90.85%
40 92.80% 92.15% 91.70% 92.75% 92.10%

*The mean present value of payoffsisthe equally-weighted aver age discounted
sum of ex-post lifetime payoffs over 2000, 40 period lived agents. Thevaluesare
dollar equivalents.



Table2

Choice Distributions and Mean Accepted Wages in the Data Generated with True and OL S Polynomial Future Components

Data Set 2- POLY

Data Set 2- EMAX

M ean Accepted Wage

Per cent Per cent Per cent Per cent
Period inOcc. 1 in Occ. 2 in School at Home Occ. 1 Occ. 2

1 0.10 0.00 0.75 0.15 13762.19 17971.88
2 0.23 0.01 0.58 0.17 11822.16 19032.16
3 0.41 0.04 0.34 0.21 11249.67 16521.61
4 0.52 0.06 0.20 0.22 11167.03 16209.88
5 0.60 0.06 0.14 0.20 11417.94 16141.39
6 0.63 0.08 0.10 0.19 11802.61 16427.58
7 0.65 0.09 0.07 0.18 12257.30 16987.46
8 0.69 0.10 0.05 0.16 12701.01 17067.03
9 0.69 0.10 0.05 0.16 13167.06 18442.74
10 0.70 0.11 0.05 0.14 13709.21 18274.23
11 0.72 0.12 0.05 0.11 14409.81 19391.23
12 0.71 0.14 0.04 0.12 14511.54 19730.21
13 0.72 0.14 0.05 0.10 15216.89 21641.41
14 0.74 0.13 0.03 0.09 15943.12 21866.44
15 0.73 0.16 0.03 0.07 16507.05 22177.61
16 0.74 0.16 0.03 0.07 17129.96 22624.51
17 0.75 0.17 0.02 0.06 17886.20 24194.23
18 0.73 0.17 0.02 0.07 18408.75 24318.34
19 0.72 0.19 0.02 0.06 19590.88 25385.99
20 0.74 0.19 0.02 0.05 20186.07 25161.39
21 0.71 0.23 0.01 0.05 21113.74 26409.20
22 0.70 0.25 0.01 0.04 22002.82 26935.39
23 0.67 0.29 0.01 0.03 23259.72 28191.41
24 0.66 0.30 0.00 0.03 23119.46 28634.21
25 0.66 0.30 0.00 0.04 24085.78 30826.10
26 0.62 0.34 0.01 0.04 25399.34 30707.99
27 0.62 0.34 0.00 0.04 26971.71 32251.61
28 0.60 0.37 0.00 0.03 27074.62 32024.07
29 0.57 0.40 0.00 0.03 29049.11 32411.14
30 0.55 0.42 0.00 0.04 30492.25 34513.76
31 0.52 0.45 0.00 0.03 30745.54 35672.21
32 0.50 0.48 0.00 0.03 32078.16 36076.17
33 0.46 0.50 0.00 0.04 34202.82 37460.57
34 0.43 054 0.00 0.02 34578.60 38293.38
35 0.42 0.55 0.00 0.04 37084.91 39690.50
36 0.39 0.58 0.00 0.03 37580.47 40970.75
37 0.36 0.60 0.00 0.04 40129.34 41885.28
38 0.33 0.64 0.00 0.03 40101.57 43929.61
39 0.28 0.67 0.00 0.05 43282.44 44724.22
40 0.26 0.70 0.00 0.03 44462.69 45703.45

M ean Accepted Wage

Per cent Per cent Per cent Per cent
inOcc. 1 in Occ. 2 in School at Home Occ. 1 Occ. 2
0.09 0.00 0.79 0.12 13837.93 19955.02
0.23 0.01 0.60 0.15 11941.31 18502.51
0.39 0.03 0.39 0.18 11275.37 16786.46
0.50 0.04 0.27 0.19 11208.15 17778.61
0.57 0.05 0.20 0.18 11598.75 16965.70
0.63 0.06 0.14 0.16 11897.28 17100.50
0.68 0.08 0.08 0.16 12286.26 17634.68
0.72 0.09 0.05 0.13 12751.92 17300.99
0.72 0.10 0.05 0.13 13159.23 19498.18
0.74 0.09 0.05 0.12 13790.83 19125.16
0.75 0.11 0.04 0.10 14546.63 19867.95
0.74 0.12 0.04 0.10 14650.45 20320.53
0.75 0.14 0.03 0.08 15439.04 21723.49
0.76 0.14 0.02 0.08 16150.59 22096.07
0.75 0.16 0.03 0.06 16773.15 22764.69
0.75 0.16 0.03 0.06 17437.26 22786.18
0.75 0.18 0.02 0.05 18276.74 24804.59
0.74 0.18 0.01 0.06 18786.43 24476.18
0.73 0.20 0.01 0.05 19961.17 25719.67
0.75 0.20 0.01 0.04 20571.89 25422.50
0.71 0.24 0.01 0.04 21613.91 26613.20
0.70 0.25 0.00 0.04 22488.94 27566.90
0.67 0.29 0.01 0.03 23655.61 28952.46
0.66 0.31 0.00 0.03 23706.23 29491.67
0.66 0.31 0.00 0.03 24535.54 31403.33
0.63 0.34 0.00 0.03 26003.31 31157.72
0.62 0.35 0.00 0.03 27482.83 33112.86
0.60 0.37 0.00 0.02 27805.46 32743.79
0.58 0.39 0.00 0.03 29596.82 33872.97
0.56 0.41 0.00 0.03 31216.48 35462.35
0.52 0.45 0.00 0.03 31744.63 36763.93
051 0.47 0.00 0.03 33016.52 37028.17
0.47 0.51 0.00 0.03 34905.34 38435.23
0.44 0.54 0.00 0.02 35656.54 39212.14
0.43 0.54 0.00 0.03 38195.57 40767.33
0.40 0.57 0.00 0.03 39119.51 41740.41
0.37 0.60 0.00 0.03 41228.89 42901.62
0.34 0.63 0.00 0.03 41477.02 45076.14
0.30 0.66 0.00 0.04 44266.27 46039.50
0.28 0.69 0.00 0.03 45668.36 46847.68




Descriptive Statistics for Posterior Distributions of the M odel’s Structural Parametersfor Several
Different Data Sets Generated Using Polynomial Future Component

Table3

Par ameter

Occ. 1 Intercept

Occ. 1 Own Experience
Occ. 2 Experience
Education

Occ. 1 Exp. Squared
Occ. 1 Error SD

Occ. 2 Inter cept

Occ. 2 Own Experience
Occ. 2 Experience
Education

Occ. 2 Exp. Squared
Occ. 2 Error SD

Error Correlation

Under graduate Tuition
Graduate Tuition
Return Cost

Preference Shock SD
Occ. 1

Occ. 2

Occ. 3

Preference Shock Corr.
Occ. 1 with Occ. 2

Occ. 1 with Occ. 3

Occ. 2with Occ. 3

9.00000
0.05500
0.00000
0.05000
-0.00025
0.40000

8.95000
0.04000
0.06000
0.07500
-0.00090
0.40000

0.50000

-5000
-15000
-15000

9082.95
9082.95
11821.59

0.89
0.88
0.88

Data Set 1-POLY

Data Set 2-POLY

Data Set 3-POLY

Data Set 4-POLY

Data Set 5-POLY

Mean

9.01300
0.05440
0.00093
0.04806
-0.00024
0.398

891712
0.04049
0.06103
0.07730
-0.00088
0.409

0.481

-4629
-18006
-14063

10121.05
8686.12
11569.93

0.90
0.89
0.89

SD

0.00643
0.00080
0.00095
0.00130
0.00003

0.002

0.01625
0.00039
0.00175
0.00187
0.00008

0.003

0.031

363
2085
531

255.49
456.77
281.18

0.01
0.01
0.01

Mean

9.00125
0.05540
-0.00121
0.04881
-0.00026
0.402

8.97693
0.03918
0.06016
0.07245
-0.00093
0.399

0.512

-5212
-16711
-16235

9397.38
11613.38
12683.67

0.96
0.88
0.89

SD

0.00797
0.00086
0.00103
0.00132
0.00003

0.002

0.01582
0.00034
0.00178
0.00161
0.00008

0.003

0.025

464
1829
894

577.26
346.03
803.09

0.01
0.01
0.01

Mean

9.00845
0.05429
-0.00084
0.04850
-0.00025
0.401

8.91699
0.03946
0.06461
0.07782
-0.00109
0.407

0.420

-5514
-16973
-15809

10578.31
10807.31
13418.79

0.93
0.90
0.89

SD

0.00600
0.00076
0.00092
0.00137
0.00003

0.002

0.01583
0.00037
0.00173
0.00178
0.00008

0.003

0.033

404
1610
554

537.01
519.13
358.98

0.01
0.01
0.01

Mean

9.00256
0.05462
0.00114
0.04938
-0.00024
0.400

8.96316
0.03968
0.05946
0.07619
-0.00092
0.397

0.528

-4908
-16817
-14895

9253.22
9610.23
12019.38

091
0.88
0.89

)

0.00661
0.00080
0.00112
0.00140
0.00003

0.002

0.01551
0.00037
0.00180
0.00167
0.00008

0.003

0.037

464
1692
822

615.27
457.45
417.75

0.01
0.01
0.01

Mean

9.00309
0.05496
-0.00129
0.04924
-0.00026
0.400

8.92501
0.04055
0.06009
0.07650
-0.00087
0.399

0.438

-4512
-15091
-15448

9494.74
9158.09
12247.80

0.90
0.88
0.89

SD

0.00598
0.00060
0.00115
0.00139
0.00002

0.002

0.01590
0.00042
0.00178
0.00171
0.00008

0.003

0.042

399
1972
679

354.07
228.32
401.15

0.02
0.01
0.01




Table4

L og Wage Equation Estimates from OL S on Observed Wages Generated Under the Polynomial Future Component*

TRUE

1-POLY

2-POLY

3-POLY

4-POLY

5-POLY

Occupation One

Occupation Two

WageError SDs

Occ. 1 Occ. 2

Inter cept Experience Experience
9.00000 0.05500 0.00000
9.15261 0.04236 0.01708
0.00520 0.00076 0.00074
9.14715 0.04320 0.01586
0.00528 0.00076 0.00073
9.14895 0.04230 0.01732
0.00528 0.00076 0.00072
9.15157 0.04220 0.01734
0.00527 0.00076 0.00074
9.14838 0.04274 0.01695
0.00521 0.00076 0.00073

Education

0.05000

0.04247
0.00133

0.04309
0.00134

0.04420
0.00135

0.04261
0.00136

0.04408
0.00135

Occ. 1
Exp. Squared

-0.00025

0.00012
0.00003

0.00010
0.00003

0.00011
0.00003

0.00012
0.00003

0.00011
0.00003

Occ. 1 Occ. 2

Inter cept Experience Experience
8.95000 0.04000 0.06000
9.46735 0.03516 0.01953
0.00906 0.00037 0.00146
9.47924 0.03446 0.02261
0.00888 0.00036 0.00136
9.45851 0.03482 0.02335
0.00914 0.00036 0.00140
9.46413 0.03480 0.02346
0.00896 0.00037 0.00138
9.45131 0.03570 0.02021
0.00880 0.00036 0.00139

Education

0.07500

0.05589
0.00179

0.05311
0.00170

0.05665
0.00177

0.05469
0.00174

0.05671
0.00173

Occ. 2
Exp. Squared

-0.00090

0.00038
0.00008

0.00017
0.00007

0.00016
0.00007

0.00015
0.00007

0.00035
0.00007

O
-

0.40000

0.38845

0.38940

0.38935

0.38900

0.38772

Occ. 2

0.40000

0.36574

0.36300

0.36495

0.36217

0.35781

*Standard errorsin italics.



Tableb

Descriptive Statistics for Final 15,000 Gibbs Sampler Parameter Draws for Several
Different Data Sets Generated Using True Future Component

Par ameter

Occ. 1 Intercept

Occ. 1 Own Experience
Occ. 2 Experience
Education

Occ. 1 Exp. Squared
Occ. 1 Error SD

Occ. 2 Inter cept

Occ. 2 Own Experience
Occ. 2 Experience
Education

Occ. 2 Exp. Squared
Occ. 2 Error SD

Error Correlation

Under graduate Tuition
Graduate Tuition
Return Cost

Preference Shock SD
Occ. 1

Occ. 2

Occ. 3

Preference Shock Corr.
Occ. 1 with Occ. 2

Occ. 1 with Occ. 3

Occ. 2with Occ. 3

9.00000
0.05500
0.00000
0.05000
-0.00025
0.40000

8.95000
0.04000
0.06000
0.07500
-0.00090
0.40000

0.50000

-5000
-15000
-15000

9082.95
9082.95
11821.59

0.89
0.88
0.88

Data Set 1-EMAX

Data Set 2-EMAX

Data Set 3-EMAX

Data Set 4-EMAX

Data Set 5-EMAX

Mean

9.01342
0.05427
0.00111
0.04881
-0.00023
0.397

8.90720
0.04093
0.06087
0.07822
-0.00087
0.409

0.517

-2261
-10092
-14032

10634.90
9436.10
11450.65

0.93
0.89
0.87

SD

0.00602
0.00073
0.00093
0.00118
0.00002

0.002

0.01704
0.00037
0.00178
0.00166
0.00008

0.003

0.023

313
1046
482

423.85
372.86
338.28

0.01
0.01
0.01

Mean

9.00471
0.05489
0.00092
0.05173
-0.00025
0.399

8.98989
0.03967
0.05716
0.07338
-0.00081
0.397

0.607

-2937
-10788
-16014

10177.24
12741.02
12470.12

0.98
0.88
0.90

SD

0.00527
0.00071
0.00114
0.00126
0.00002

0.002

0.01970
0.00037
0.00190
0.00171
0.00008

0.003

0.029

358
1141
431

165.11
405.25
259.81

0.00
0.01
0.01

Mean

9.01436
0.05384
0.00078
0.04869
-0.00023
0.399

8.93943
0.03955
0.06200
0.07579
-0.00098
0.404

0.484

-3407
-11983
-16577

11438.63
11432.19
13999.95

0.94
0.90
0.90

SD

0.00584
0.00072
0.00126
0.00129
0.00002

0.002

0.01850
0.00038
0.00201
0.00165
0.00008

0.003

0.044

371
1188
500

438.72
287.69
351.33

0.01
0.01
0.01

Mean

9.01028
0.05394
0.00107
0.04961
-0.00022
0.397

893174
0.04001
0.06211
0.07743
-0.00101
0.402

0.521

-3851
-10119
-16168

9973.32
9310.37
13183.33

091
0.88
0.89

)

0.00593
0.00072
0.00100
0.00123
0.00002

0.002

0.01649
0.00037
0.00179
0.00167
0.00008

0.003

0.035

426
1380
662

371.64
718.15
471.47

0.02
0.01
0.02

Mean

9.00929
0.05410
0.00051
0.05067
-0.00023
0.397

8.94097
0.04060
0.05880
0.07613
-0.00084
0.397

0.488

-3286
-11958
-18863

9071.29
7770.66
13897.62

0.86
0.88
0.89

SD

0.00550
0.00071
0.00093
0.00124
0.00002

0.002

0.01410
0.00039
0.00157
0.00159
0.00007

0.003

0.028

448
1823
1065

509.80
555.39
533.67

0.03
0.01
0.02




Table6

Wealth L oss when Posterior Polynomial
Approximation isused in Place of True Future Component*

Using Using
True EMAX** Posterior EMAX**
Mean Mean Mean Dollar Mean Aggregate Percent with Percent with Per cent
Data Present Value Present Value Equivalent Per cent Choice 0-35 36-39 Choosing
Set of Payoffs*** of Payoffs*** L oss L oss Agreement Agreements Agreeements Same Path
1-EMAX 356796 356134 663 0.19% 90.80% 34.25% 42.65% 23.10%
2-EMAX 356327 355836 491 0.14% 91.34% 33.00% 44.00% 23.00%
3-EMAX 355797 354746 1051 0.30% 89.79% 39.00% 38.95% 22.05%
4-EMAX 355803 355450 353 0.10% 93.48% 24.60% 38.45% 36.95%
5-EMAX 355661 355485 176 0.05% 93.18% 24.95% 30.50% 44.55%

*  Polynomial parameter values are set to the mean of their respective empirical posterior distributions.

** Each simulation includes 2000 agentsthat live for exactly 40 periods.

*** The mean present value of payoffsisthe equal-weight sample aver age of the discounted streams of ex-post lifetime payoffs.



Figure 1

Marginal Posterior Densities of First Log-Wage Equation’s Parameters from Data

Set 3-Emax*
Intercept Education
2 400 True=9. > 600
& = True=0.05
400 rue=0.
()
3 200 o
o] T 200
LL 0 —
A I o A
9.002 9.014 9.026
.0461 .0487 .051
Own Experience Own Experience Squared
? 600 2 500 -
@ 400 o True=-.00025
=] True=0.055 S
o 200 o
o o
L 0 A £ O T
-.00028 . .00018
0524 0538 0553 00023
Experience in Occupation Two Error’s Standard Deviation

é‘ 400 True=0.0 2 500
) c True=.40
S 200 o
5 o
8 ()
I o A r O

-.00175 .00078 .00331 -395 -399 402

Errors’ Correlation
400
300
200
100

True=.50

Frequency

.397 484 571

*On each graph, the vertical line indicates the data

generating parameter value. The middle triangle indicates
the empirical mean, and the two flanking triangles are
located two standard deviations from the mean.




Figure 2
EMAX and Polynomial Future Components Evaluated at Mean Values
of State Variables at Each Period
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