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Abstract: This paper reconsiders the path of the growth of American cities since 

1790 (when the first census was published) in light of new theories of urban 

growth. Our null hypothesis for long-term growth is random growth, but the 

alternative is not only mean reversion as is usual. We obtain evidence supporting 

random growth against the alternative of mean reversion (convergence) in city 

sizes by using panel unit root tests, but we also examine mobility within the size 

distribution of cities to try to extract growth patterns different from the general 

unit root trend detected. We find evidence of high mobility when we model 

growth as a first-order Markov process. Finally, by using a cluster procedure, we 

find strong evidence in favour of conditional convergence in city growth rates 

within convergence clubs, which we interpret as “local” mean-reverting 

behaviours. We interpret the high mobility and the results of the clustering 

analysis as signs of a sequential city growth pattern toward a random growth 

steady state. 
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1. Introduction 

Several theories have been proposed in the literature to try to explain urban growth. 

Davis and Weinstein (2002) group traditional theoretical explanations into three main 

groups of theories: the existence of increasing returns to scale, the importance of 

locational fundamentals and random growth. Random growth theory is especially 

important from a long-term perspective, because the influence of other factors such as 

locational fundamentals and increasing returns may change (or even disappear) over 

time. Locational fundamentals are exogenous factors linked to the physical landscape, 

such as temperature, rainfall, access to the sea, the presence of natural resources and the 

availability of arable land. Random growth models usually assume that these 

characteristics are randomly distributed across space, but actually they are not. In terms 

of physical geography, factors such as mineral resources and nice weather are clearly 

concentrated in particular regions. For example, the nearby deposits of coal, iron ore 

and limestone as well as the extensive network of natural waterways and deep water sea 

and river ports contributed to the development of the United States manufacturing belt 

in the Upper Midwest and North-east regions (Berry and Kasarda, 1977).
1
 However, 

while locational fundamentals may have played a crucial role in early settlements, one 

would expect their influence on urbanisation to decrease over time because of advances 

in transportation and communication technology.
2
 By contrast, urban increasing returns, 

also known as agglomeration economies, appeared later as a consequence of industrial 

development. The empirical literature on agglomeration economies and their positive 

effects on urban growth is wide, although there is a great deal of variability in the 

results reported (see the meta-analysis by Melo et al. (2009)). 

Nevertheless, there is some consensus in recent papers that empirically random growth 

can only hold as a long-run average; Gabaix and Ioannides (2004) indicate that “the 

casual impression of the authors is that in some decades, large cities grow faster than 

small cities, but in other decades, small cities grow faster.” Recently, new theories of 

urban growth have been developed to accommodate the observed different growth 

patterns over time. Cuberes (2011) concludes, by using a comprehensive cross-country 

dataset, that historically city growth may have been sequential. Sequential city growth 

means that cities have early periods of fast growth (from their date of entry as a city) 

followed by slow growth and/or stagnation. The idea is that during some periods, the 

largest cities that entered the distribution first are the ones that grow the fastest. Later, 
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their growth slows, and the smaller cities that entered later are the ones that grow the 

fastest. When these reach a certain size, their growth rates slow again and other smaller 

cities are the ones that grow fastest, and so on. It should be noted that the result is 

convergence among cities. This convergence is not in size, as final city size is 

determined by other factors such as amenities, city productivity, land availability, etc., 

but in the growth rates at the steady state. Thus, random growth (similar growth rates 

independent of city size) appears as the steady state after the entry of new cities stops, 

while sequential city growth theory helps explain different growth patterns during the 

transition to the steady state and the effect of the entry of new cities. 

To our knowledge, only two papers model sequential city growth: Henderson and 

Venables (2009) and Cuberes (2009).
3
 The model developed by Henderson and 

Venables (2009) examines city formation in a country whose urban population is 

growing steadily over time, with new cities required to accommodate this growth. It 

yields the sequential formation of cities, where new cities grow from scratch to a 

stationary size. The basic assumptions of their model are that city formation requires 

investment in fixed capital in the form of housing and urban infrastructure and that 

agents are forward-looking. Cuberes (2009) presents another model of sequential city 

growth. In this model, increasing returns to scale constitute the force that favours the 

agglomeration of resources in a city, while the convex costs associated with the stock of 

installed capital represent the congestion force that limits city size. The key factor to 

generating sequential growth is the assumption of irreversible investment in physical 

capital. 

This paper reconsiders the path of the growth of American cities since 1790, paying 

special attention to random growth and new sequential city growth theories. The urban 

system of the US has often been studied because of its special characteristics. First, it is 

a relatively young system compared with the European countries (the first census by the 

US Census Bureau dates from 1790) characterised by the entry of new cities (Dobkins 

and Ioannides, 2000). In addition, its inhabitants present very high geographic mobility; 

Cheshire and Magrini (2006) estimate that population mobility in the US is 15 times 

higher than that in Europe. Both characteristics, high migration flows and the entry of 

new cities, should reduce the time transition to spatial equilibrium between cities. In 

line with this, González-Val (2010) finds that the final decades of the twentieth century 

were characterised by stability in the number of cities and the percentage of the US total 
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population they represent, indicating a shift to a more stable and less concentrated city 

size distribution. Finally, industry cycles have an important effect on the growth rates of 

American cities (Duranton, 2007). Consistent with this finding, in the second half of the 

nineteenth century and the early twentieth century, the growing urban population was 

concentrated in the North-eastern region known as the manufacturing belt, while in the 

second half of the twentieth century the rise of the Sun Belt (a phenomenon known as 

regional inversion; Lanaspa-Santolaria et al., 2002) attracted population to the West 

Coast area. The rise of the Sun Belt also included the growth of the South-eastern 

region of the US. Many Americans, foreign- and native-born, moved to Southern states 

(Texas, Florida and, more recently, Georgia, North Carolina and Virginia) in the latter 

part of the twentieth century, but the reason for these migration flows seems to be nice 

weather rather than industry cycles (Rappaport, 2007). In addition, the South-western 

states of Arizona and Nevada have also been growing rapidly because of both domestic 

and international migration (Massey, 2008; Iceland, 2009). 

Many papers study the long-term path of American urban growth. These include 

Dobkins and Ioannides (2000, 2001), Kim (2000), Beeson et al. (2001), Overman and 

Ioannides (2001), Black and Henderson (2003), Ioannides and Overman (2003), Kim 

and Margo (2004), González-Val (2010) and Michaels et al. (2012). The spatial units 

(states, counties, minor civil divisions, metropolitan areas, incorporated places, etc.) and 

time periods studied and statistical and econometric methods used in the literature vary 

widely. Our study differs from previous studies in two main points. First, we analyse the 

path of the largest American cities from the beginning of the urban system in 1790, 

while most studies only consider the twentieth century. Such a wide time horizon 

enables us to consider the effect of the entry of new cities (most of them during the 

nineteenth century) and to look for different patterns of city growth. Second, we 

consider random growth as the long-run average, but the alternative is not only mean 

reversion as is usual: we use different methodologies to capture possible different 

growth patterns from the overall random growth behaviour. 

The next section presents the data used. Our basic hypothesis for long-term growth is 

random growth. We use random growth as a benchmark because the effect of other 

factors (locational fundamentals or increasing returns) may change over time when such 

a long period is considered, for instance, owing to the decrease in transport costs (Davis 

and Weinstein, 2002). Moreover, among others, Ioannides and Overman (2003) and 
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González-Val (2010) find that random growth is a good description of city size growth 

in the US during the twentieth century. Therefore, in Section 3 we test random growth 

versus mean reversion (convergence) in US cities by using panel unit root tests. We 

obtain evidence supporting random growth against the alternative of mean reversion in 

city sizes. In Section 4, we examine intra-distribution mobility to try to extract growth 

patterns that are different from the general unit root trend. We use two techniques. First 

(Section 4.1), we calculate transition matrices, which tell us the degree of mobility in 

terms of probability, by applying a generalised equation to enable cities to enter and 

leave the sample. We interpret mobility in terms of transition probabilities within the 

distribution of the relative positions of cities, modelling growth as a first-order Markov 

process. Second (Section 4.2), we apply a cluster algorithm to identify different groups 

of cities that converge with each other. The results point to a certain type of sequential 

growth, at least within groups. We discuss the different empirical results and conclude 

in Section 5. 

2. Data 

There are various ways of defining a “city.” The path of the American urban structure 

has been analysed using different geographical units: counties (Beeson et al., 2001; 

Desmet and Rappaport, 2013), minor civil divisions (Michaels et al., 2012), 

metropolitan areas (Dobkins and Ioannides, 2000, 2001; Black and Henderson, 2003; 

Ioannides and Overman, 2003), urbanised areas (Garmestani et al., 2005) and the 

economic areas recently defined by Rozenfeld et al. (2011) using the city clustering 

algorithm. However, since our aim is to study the path of the urban system from its 

origin, we find it more appropriate to use data from “legal” cities, which are those 

reported since the first census in 1790.
4
 Units such as metropolitan areas were 

introduced later.
5
 Thus, we identify cities as what the US Census Bureau denominates 

incorporated places. These incorporated places have also been used recently in the 

empirical analyses of American city size distribution (Eeckhout, 2004, 2009; Levy, 

2009; Giesen et al., 2010; González-Val, 2010). 

The US Census Bureau uses the generic term “incorporated place” to refer to a type of 

governmental unit incorporated under state law, such as a city, town (except in New 

England states, New York and Wisconsin), borough (except in Alaska and New York) 

or village, with legally established limits, powers and functions. We take our data from 
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the US Census Bureau (2004);
6
 the sample consists of all the incorporated places with 

100,000 inhabitants or more in 2000.
7
 

Unincorporated places (concentrations of population that cannot be considered as part 

of an incorporated place but that are locally identified with a name) are excluded 

because they began to be counted after 1950 (they were renamed census designated 

places (CDPs) in 1980). Although some of them are consolidated as incorporated places 

and are reported in the 2000 census as cities, we also exclude them. The only exception 

is Honolulu CDP, because in Hawaiian state law there are no incorporated places. 

Therefore, our final sample in 2000 consists of the 190 largest cities. This sample size is 

similar to that of other studies using metropolitan statistical areas (MSAs). Black and 

Henderson (2003) use data from 194 (1900) to 282 (1990) MSAs, while the sample of 

Ioannides and Overman (2003) ranges from 112 (1900) to 334 (1990). Their samples 

are slightly larger because in the US to qualify as an MSA a central city of 50,000 or 

more inhabitants is needed (a lower minimum population threshold than ours). In fact, 

most of these incorporated places are the central city of an MSA. 

Table 1 shows the sample sizes for each decade and the descriptive statistics. The 

increase in the number of cities and the average growth rate of the cities by year are 

plotted in Figure 1, for the US and by region. For the first decades and until the mid-

nineteenth century, the number of cities is low and grows very slowly; however, these 

few cities represent about two-thirds of the total urban population of the period. Many 

historians have documented the history of the US urban system (Hawley, 1981; Glaab 

and Brown, 1983; Chudacoff et al., 2010). Quoting Hawley (1981): 

“At the conclusion of the Revolutionary War the westward movement of settlement 

began in earnest. Outposts had already been established at Detroit, Louisville, St. 

Louis, and New Orleans. With the accession of the Louisiana Territory, in 1803, these 

became rallying points for land-hungry settlers. New town sites soon appeared at Erie, 

Pittsburgh, Cincinnati, and elsewhere along the Ohio, Mississippi and Missouri Rivers. 

In every instance the new towns served as points of departure from which settlement 

fanned out over surrounding lands.” 

Several historical events (Hawley, 1981) facilitated the growth in the number of cities. 

These include the opening of the Erie Canal in 1825, which permitted a return flow of 

raw materials to Eastern centres from the West, the appearance of lake ports (Rochester, 
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Toledo, Chicago or Milwaukee) and river ports (Pittsburgh, St. Louis, Cincinnati or 

Louisville) and the laying of railway lines across the mountains allowing access to 

Western raw materials and fostering Trans-Appalachian commerce at the time that new 

population centres were developed at division points along the routes (Columbus, 

Dayton, Indianapolis, Grand Rapids, Peoria, etc.). 

From 1850 to 1900, the number of cities doubles (from 73 to 157). The last major entry 

of new cities takes place from 1900 to 1930, and from that date the number of cities 

remains stable. Figure 1 shows some regional differences: a marked increase in the 

number of cities in the West and South, while the number of cities in the Midwest and 

Northeastern regions remains stable. There is also a change in the average growth rates 

of the cities over time. Although growth rates decrease over time, growth in Western 

and Southern cities tends to be higher than the average after 1860. According to Hawley 

(1981): 

“By 1860 the principal outlines of the urban pattern east of the Mississippi had been 

completed. All but a few of the present centers of 100,000 or more population in that 

section of the country had been founded. After the Civil War cities sprang up west of the 

Mississippi in rapid sequence along the newly completed transcontinental railways. 

Within a scant twenty years, by 1880, the urban network of the nation was virtually 

completed. The land ward drift of the population passed its peak in 1890. From that 

date to the present the prevailing trend in population redistribution has been cityward.” 

Finally, in 2000 the percentage of the urban population represented by this upper-tail 

distribution is much lower (31%) because of the appearance of many small and mid-

sized cities (there were 19,296 incorporated places in the 2000 census, with an average 

population of 8,968.44 inhabitants) and because a change had taken place to a more 

stable and less concentrated city size distribution. 

The relatively small size of our sample is not a problem for our methodology because 

the techniques we apply are especially designed for small samples. However, the sample 

is defined according to the largest cities in the latest period, which might imply a bias 

because these are the “winning” cities, namely those that have presented the highest 

growth rates over time. We deal with this potential problem in Sections 3 and 4.2 where 

this possible bias could have an influence, considering different sample sizes. Thus, 

although we have information on up to 190 cities, we always consider a lower sample 
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size, namely the top 10, 75, 100 or 150 cities, defined according to years of reference 

different from the last period. 

3. Testing long-term trends: random growth versus mean reversion 

Description 

Our basic hypothesis for long-term growth is random growth. Random growth theories 

are based on stochastic growth processes and probabilistic models. The traditional 

models are those of Champernowne (1953), Simon (1955) and more recently Gabaix 

(1999) and Córdoba (2008). When applied to population growth, these models are able 

to reproduce two empirical regularities that are well known in urban economics: Zipf’s 

and Gibrat’s laws (or the rank-size rule and the law of proportionate growth
8
, 

respectively). 

We follow the methodology proposed by Clark and Stabler (1991), who suggest that 

testing for random growth is equivalent to testing for the presence of a unit root. They 

build on the Vining model of city growth with autocorrelated errors (Vining, 1976). Let 

itS  be the size (population) of city i  at time t . Starting from a simple autoregressive 

(AR) growth model, they assume that the relationship between the size of a city in time 

period t  and 1−t  is 1−= ititit SS ρ , where itρ  is the growth rate of city i  over the period 

1−t  to t . This growth rate can be decomposed into two (Clark and Stabler, 1991) or 

three components (Bosker et al., 2008): a random component, a non-stochastic 

component relating the current growth rate to a (possibly time-varying) constant and 

past growth rates, and initial city size. Then, after some algebra, Clark and Stabler 

(1991) get the following expression: 

it

n

j

jitijitiiit uSScS +Δ+Θ+=Δ ∑
=

−−
1

1 lnlnln β ,  (1) 

where ic  is a constant, ijβ  is a parameter measuring the influence of past growth rates 

on current city growth and itu  is a random error term. iΘ  is the key parameter that 

captures the effect of initial city size on growth. Random growth would imply 0=Θ i , 

meaning that the growth of a particular city does not depend on the initial city size. This 

shows that testing for random growth (Gibrat’s law) is equivalent to testing for a unit 

root in city sizes. Evidence supporting a unit root (if iΘ  is not significantly different 

from zero) means that city i ’s growth rate is independent of initial size. By contrast, 
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when 0<Θ i  the path of city i  will be a stationary process (mean reversion).
9
 By using 

Eq. (1), Clark and Stabler (1991) apply the standard Dickey–Fuller (1979) t-statistic, 

failing to reject random growth for the seven largest cities in Canada from 1975 to 

1984. 

Results 

Gabaix and Ioannides (2004) emphasise “that the next generation of city evolution 

empirics could draw from the sophisticated econometric literature on unit roots.” 

Following up on this suggestion, most of the recent studies apply unit root tests: Black 

and Henderson (2003), Sharma (2003), Resende (2004), Henderson and Wang (2007) 

and Bosker et al. (2008). 

Some authors (Black and Henderson, 2003; Henderson and Wang, 2007; Soo, 2007) 

propose a growth equation to test the presence of a unit root, which they estimate by 

using panel data. However, there are problems with this methodology (Gabaix and 

Ioannides, 2004; Bosker et al., 2008; González-Val et al., 2014). First, data availability; 

our panel includes only 22 temporal observations as the periodicity of our data is by 

decades (decade-by-decade city sizes over a total period of 210 years), when the ideal 

would be to have at least annual data (see Clark and Stabler, 1991; Bosker et al., 2008). 

Most studies use data from the decennial census, so this limitation is a common problem 

in the literature. Second, an econometric issue; the presence of cross-sectional 

dependence across the cities in the panel can give rise to estimations that are not very 

robust. Cross-sectional dependence means that the cities are interdependent. The causes 

of cross-sectional dependence in the errors can be the presence of common shocks and 

unobserved components that ultimately become part of the error term, spatial 

dependence and idiosyncratic pair-wise dependence in the disturbances with no 

particular pattern of common components or spatial dependence. The econometric 

literature clearly establishes that panel unit root and stationarity tests that do not 

explicitly allow for this feature among individuals present size distortions that can lead 

to misleading inference (Banerjee et al., 2005). 

For this reason, as in González-Val et al. (2014), we use one of the most recent tests 

especially created to deal with this question, namely Pesaran’s (2007) test for unit roots 

in heterogeneous panels with cross-section dependence. The test of the unit root 
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hypothesis is based on the t-ratio of the OLS estimate of ib  in the following cross-

sectional augmented Dickey–Fuller (denoted by CADF) regression: 

ittititiiiit eydycybay +Δ+++=Δ −− 11, ,    (2) 

where itit Sy ln= , ia  is the individual city-specific average growth rate and ty  is the 

cross-section mean of ity , ∑ =
−=

N

j jtt yNy
1

1 . To eliminate cross-dependence, standard 

Dickey–Fuller (or augmented Dickey–Fuller) regressions are augmented with the cross-

section averages of lagged levels and first differences of the individual series, such that 

the influence of the unobservable common factor is asymptotically filtered. The null 

hypothesis assumes that all series are non-stationary, and Pesaran’s CADF is consistent 

under the alternative that only a fraction of the series is stationary. 

Another advantage of Pesaran’s CADF test over other recently developed unit root tests 

(Levin et al., 2002) is that it is suitable for unbalanced panels, as is the case with our 

city sample.
10

 New cities appear over time, from 16 in 1790 to 190 in 2000. However, 

owing to limitations in the data (the CADF test works with unbalanced panels but if we 

consider the complete sample it is a strongly unbalanced panel; there is an excessive 

amount of missing data because in the first period the population was only reported for 

16 cities), we must restrict our analysis to a maximum of 150 cities. These 150 cities are 

a fixed sample for the entire period, and they correspond to the largest cities (upper-tail 

distribution) in the year of reference. We consider three periods: 1790–1900, 1900–

2000 and 1790–2000. Obviously, the number of cities in each panel is fixed but some of 

the cities did not exist in all periods (in earlier periods there are a lot of missing data, 

which is why the panels of 1790–1900 and 1790–2000 are unbalanced). In the 1790–

1900 period, the year of reference is 1860, while in 1900–2000 and 1790–2000, it is 

1900 (we cannot always use the same year of reference owing to data limitations). In 

this way, we can control for the possible bias mentioned in Section 2, because not all 

the largest cities of 1860 or 1900 would have maintained their positions a century later. 

Therefore, the samples defined according to 1860 or 1900 ranks contain “winning” and 

“losing” cities. 

Table 2 shows the results of the standardised Z t-bar statistic of the CADF test, [ ]tZ , 

and the corresponding p-value for four sample groups (top 10, 75, 100 and 150 largest 

cities in the year of reference), different models, namely ( )pAR  with 3,2,1=p  

including a constant or constant and trend, and three different periods.
11

 In Panel A 
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(1790–1900), we must restrict the analysis to the top 10 and top 75 cities owing to data 

limitations; the results show that we cannot reject the unit root in any case. Support for 

the unit root hypothesis is also strong in Panel B (1900–2000), as we can only reject the 

null hypothesis in one case: the model with one lag and no trend for the top 150 cities. 

Finally, Panel C, which considers the entire period 1790–2000, shows less conclusive 

evidence. In this panel, the results are similar for the four sample sizes. When only one 

lag is included, the null hypothesis of a unit root is rejected for any specification. 

However, as the number of lags in the model increases, we soon find evidence in favour 

of our null hypothesis: in the model with two lags when a trend is included and in the 

model with three lags with any specification. This last result is especially relevant, as 

Said and Dickey’s (1984) 31
T  rule would establish the lag choice 3=p  in that case 

( )8.222 31 = .
12

 This evidence in favour of a unit root indicates that overall city growth 

during the 1790–2000 period was independent of initial size, supporting our hypothesis 

of random growth. The evidence is even stronger when we consider the subperiods 

(1790–1900 and 1900–2000).
13

 

4. What lies beneath random growth? Intra-distribution mobility 

In Section 3, we found evidence supporting random growth against the alternative of 

mean reversion (convergence) in American cities from 1790 to 2000. In this section, we 

take a different perspective. Our intention is to examine mobility within the distribution 

in order to extract growth patterns different from the general unit root trend detected in 

the previous section. To do this, we use two techniques. First, we calculate transition 

matrices, which tell us the degree of mobility in terms of probability. Second, we apply 

a cluster algorithm to identify different groups of cities that converge with each other. 

Both approaches are complementary; while the transition matrices define some groups 

in relative terms and the movements of cities between these groups are examined, with 

the second method we use the algorithm to endogenously identify the groups of cities 

that converge over time, looking for evidence of some type of “local” mean-reverting 

behaviour. 

4.1 Transition matrices 

Description 

Eaton and Eckstein (1997) were the first to apply Quah’s (1993) transition matrices to 

study trends in city sizes. Let tF  be the vector representing the city size distribution at 
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time t  relative to the average size. We can say that this distribution follows a stochastic 

process defined by a Markov chain if the transition from one period to the next is given 

by 

     tt MFF =+1      (3) 

where M  is the movement matrix or transition matrix defining the law of movement 

from one period to the next, assuming we have a stationary process, and M  is time-

invariant. A Markov chain requires discrete time and a finite space of states E , which 

represents a discrete approximation to the population distribution. Implicit in (3) is also 

what is known as the Markov property, i.e., that the future of the process depends only 

on its most immediate past (a homogeneous first-order stationary Markov process). The 

element ijp  of the matrix M  represents the probability that a city in state i  in t  moves 

to state j  in 1+t , Eji ∈, . It is evident that 0≥ijp  and that Eip
Ej

ij ∈∀=∑
∈

,1 . 

The elements of the matrix M  can be estimated by maximum likelihood (Hamilton, 

1994; Bosker et al., 2008), applying 

    

∑

∑
−

=

−

=
+

=
1

1

1

1

1,

ˆ
T

t

it

T

t

jtit

ij

n

n

p ,      (4) 

where 1, +jtitn  is the number of cities moving from state i  in year t  to state j  in year 

1+t  and itn  the number of cities in state i  in year t . 

The general expression (3) is valid for the case in which no cities enter or leave the 

sample from one year to the next. This is not our case, and thus we need to apply an 

extended equation, which describes the path of a distribution that allows cities to enter 

or leave. 

In the case of a sample that grows over time, in which from one period to the next cities 

only enter and never leave the sample, Dobkins and Ioannides (2000) and Black and 

Henderson (2003) show that the correct equation is 

( ) ttttt ZiMFiF +−=+ 11     (5) 

where ti  is a scalar denoting the percentage of new cities in 1+t  over the total existing 

cities in 1+t  and tZ  is the vector of relative frequencies of the cities that enter. It 

makes sense to consider only the possibility of entry, because in their samples once a 

metropolitan area reaches the minimum population threshold it never falls below it. 
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However, in our city (incorporated places) data, new cities can easily grow fast, 

surpassing other cities in size. Thus, there is a flow of new cities in the group of largest 

cities, while others drop down. In our case, where cities enter and leave the sample from 

one period to the next, Lanaspa et al. (2011) propose the next equation: 

    tttttt ZnMXnMFF +−=+1 ,    (6)  

where 
N

N
n t

t =  with N  denoting the constant number of cities in each period and tN  

representing the number of cities entering or leaving from t  to 1+t . tZ ( tX ) is the 

vector of the relative frequencies of the cities that enter (leave) the sample and M  is the 

transition matrix from t  to 1+t but only of the tNN −  cities that are in the sample both 

in t  and in 1+t . The difference between Eq. (6) and Black and Henderson’s (2003) 

expression (Eq. 5) is the term tt MXn , which represents the distribution of cities that 

leave the sample. 

Results 

Table 3 shows the M  matrices for three periods (again 1790–1900, 1900–2000 and 

1790–2000) and three sample sizes (75, 100 and 150 cities). This methodology always 

takes into account the largest cities at each moment in time, allowing these largest cities 

to change, enter or leave the sample, or remain in it from one period to the next.
14

 Five 

states are considered; a larger number would increase mobility artificially and a smaller 

number would provide little information on intra-distribution mobility. The upper limits 

for each state are 0.4, 0.7, 1, 2 and ∞  times the average for each year.
15

 The thresholds 

of the different categories are not exactly the same, but they are very similar to those 

used by Eaton and Eckstein (1997), Dobkins and Ioannides (2000) and Bosker et al. 

(2008). In any case, one of the criteria used to define them is that the number of cities in 

each of the categories should be equal. As is already known, the major problem with 

this approach is that any choice of states inevitably involves a certain amount of 

arbitrariness. We explored alternative cut-off points, although these are not very 

different from the states finally chosen, and the qualitative results remain the same. The 

relative frequencies are also shown of the cities that enter ( tZ ) and leave the sample 

( tX ) throughout the period, as defined above. 

Several conclusions emerge from Table 3. The first and most important is that we find 

intense mobility in the distribution of cities; persistence is not high. This is especially 
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true for Panel A (1790–1900), which captures the creation of cities in the nineteenth 

century, and Panel C (1790–2000), which represents the aggregate period. In fact, many 

of the elements in the diagonal of the matrices in Panel A, which correspond to the 

cities that belong to the same state for two consecutive periods, are below 0.7, thus 

indicating high mobility in that period. Panel B shows less mobility, as most of the 

elements in the diagonal of the matrices are greater than 0.8. These results highlight the 

difference between the nineteenth (high mobility) and twentieth century (a more stable 

urban system). The matrices in Panel B are consistent with those of Black and 

Henderson (2003), as the period they consider is similar (1900–1990). Focusing on the 

aggregate period 1790–2000 (Panel C), of the fifteen elements in the diagonals, only 

three are higher than 0.9, while six values are between 0.7 and 0.8, and one is below 

0.7. All of them are significantly different from one (the value one represents no 

transitions to any other states and thus absolute persistence).
16

 

It is usual in the literature to find little mobility, as detected for the US by Black and 

Henderson (1999, 2003) and by Beeson et al. (2001), but those samples cover a 

considerably shorter time horizon than the one we consider. Our sample covers more 

than two centuries. By studying the urban structure from its beginning, the conclusions 

may be different because over these centuries, the late eighteenth, the nineteenth and the 

twentieth, the American urban structure was formed and built through demographic and 

territorial expansions. 

The demographic expansion was related to waves of immigration throughout the 

nineteenth century. Immigrants from Britain continued to flow into American cities 

after independence. Furthermore, in addition to internal migration pressures because of 

changes in agricultural and industrial activities, rural people in Ireland, Germany and 

other parts of Europe suffered a severe blow from the mid-nineteenth-century potato 

blight. Chudacoff et al. (2010) provide impressive statistics and examples of the huge 

immigration received in the US: 

“During the Great Famine of the late 1840s and early 1850s, 1.7 million Irish fled to 

the United States. (…) By the 1850s more than half residents of Boston and New York 

City were foreign born, and in Philadelphia 30 percent of household heads were born in 

Europe. (…) Southern cities in this era also received newcomers from abroad. By 1860, 

40 percent of New Orleans’s population was foreign born. (…) Between 1840 and 1890, 

7.5 million Irish and German immigrants arrived in America. (…) 
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When the second wave began in the 1880s, more than 5.2 million immigrants arrived 

(…). Although large numbers of English, Irish, Germans, and Scandinavians continued 

to come, they were outnumbered by four new groups: Catholics from Eastern Europe, 

Catholics from Italy, Jews from Russia and Eastern Europe, and Catholics from 

Canada (…). Immigrants from both waves settled in cities, particularly in older, inner 

districts where they were close to job opportunities.” 

The territorial expansion was linked to the improving railway network. Manufacturing 

and commerce boosted urban growth, but railroads were essential to both commercial 

and industrial growth.
17

 In the South, the expansion of the region’s previously 

underdeveloped railroad system fostered wider commercial and industrial possibilities. 

Four transcontinental railroads pushed westward to the Pacific in the 1860s and 1870s, 

triggering urban growth along their routes (Chudacoff et al., 2010). These railroads 

helped complete the national urban network. Between 1860 and 1910, a long list of 

prominent new cities (nearly the entire urban West) were boosted by the railroads: 

Albuquerque, Dallas, El Paso, Fort Worth, Los Angeles, Minneapolis, Portland, Reno, 

Salt Lake City, San Antonio, San Diego, San Francisco, etc. 

Other works that consider the same time horizon (1790–2000) also find evidence of 

high mobility within the distribution (Batty, 2006; Cuberes, 2011). Batty (2006) 

develops rank-clocks, where rank orders are plotted for each city in a temporal 

clockwise direction with the highest rank at the centre and the lowest on the 

circumference. Thus, he shows for the US, with the exception of New York, that the 

cities of the original 13 colonies gradually lost their positions through the entrance of 

new cities. Our data show the same behaviour as a consequence of the mobility noted 

above and the entry of new cities. If we rank the cities in 2000, only New York, 

Philadelphia, Boston and Baltimore of all the cities that existed in the first period (1790) 

are still among the top 20 cities (and only New York and Philadelphia remain in the top 

10 cities), while the rest have lost their positions by being overtaken by other cities that 

entered the system later. 

Cuberes (2011) finds that the average-rank of the fastest-growing cities (not just 

American cities, as his sample includes data for cities in other countries) tends to 

increase over time, a result that he interprets as evidence in favour of sequential urban 

growth. If cities grow sequentially, the cities that are initially the largest must represent 

a large share of the total urban population of the country in the initial periods and a 

relatively smaller one later on (although this is a necessary but not sufficient 
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condition).
18

 As Table 1 shows, the behaviour of our sample of cities is consistent with 

this affirmation. 

The second conclusion refers to the cities that enter and leave the sample ( tZ  and tX  

measure the relative frequencies of the cities that enter and leave, respectively). In the 

three panels, those cities that leave the sample do so almost exclusively from the fifth 

state, that of the smallest cities. It makes sense that large cities do not disappear 

suddenly. The explanation given by Cuberes (2009) and Henderson and Venables 

(2009) is that there is irreversible investment; Glaeser and Gyourko (2005) argue that 

housing is a durable good that depreciates slowly over time. This fact is not the same for 

cities entering the sample; in Panels A and C, they enter in all the states, except for that 

of the largest cities. Nevertheless, in Panel B, which we claim represents a more stable 

urban structure, cities only enter the last two states (the smallest cities in the samples). 

From a long-term perspective (Panel C), this result indicates that cities enter the sample 

with a considerable size (most of them cities created in the West) and grow very quickly 

until they reach the sizes of pre-existing cities (leapfrogging). 

4.2 Convergence clubs 

Description 

In the previous section, we find evidence of high mobility when we model growth as a 

first-order Markov process. That approach explains how cities move between the 

different population thresholds we defined; however, more or less movement does not 

automatically imply convergence or divergence. Therefore, in this section we apply a 

cluster algorithm to try to identify different groups of cities that converge with each 

other, looking for evidence of some type of “local” mean-reverting behaviour. Our 

convergence clubs are the groups of cities that converge in growth rates identified by 

the cluster procedure. Cluster analysis has previously been used to study clusters of 

cities within city size distribution (Garmestani et al., 2005), but here we look for 

clusters in city growth rates rather than clusters in city sizes. 

The cluster procedure is based on the log −t test (Phillips and Sul, 2007, 2009), which 

focuses on the evolution over time of the idiosyncratic transitions in relation to the 

common growth component. Therefore, while in Section 3 we analysed the path of the 

common growth component by using panel unit root tests, we now focus on the possible 

differences in the idiosyncratic transitions across cities relative to the common growth 
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component. This new approach is different from that of previous empirical studies of 

growth convergence clubs, such as the regression tree analysis used by Durlauf and 

Johnson (1995) and the predictive density of the data used by Canova (2004) to identify 

different clusters of countries or regions. The procedure by Phillips and Sul focuses on 

city growth relative to the average rather than on individual city growth. Thus, their 

methodology enables us to identify the relative transitions that occur within subgroups 

and to measure these transitions against the correlative of a common growth trend 

(Phillips and Sul, 2009). The regression model of the log −t test is 
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 (again itS  is the size (population) of city i  at time t .). These 

relative transition coefficients exclude the common growth component ( )tμ  by scaling, 

measuring city i ’s transition element relative to the cross-section average. This means 

that ith  traces out city i ’s individual trajectory relative to the average, so Phillips and 

Sul (2009) call ith  the “relative transition path.” Moreover, ith  also measures for each 

city i  the departure from the common growth path tμ  in relative terms. Eq. (7) is 

obtained from a neoclassical growth model (see Phillips and Sul, 2007). Note that the 

hypothesis of random growth in the common growth component tμ  was tested in 

Section 3; thus, this cluster analysis is complementary to the unit root analysis 

performed previously. In Section 3, we tested random growth and the alternative was 

mean reversion for the entire sample, while here the cluster analysis focuses on local (or 

club) convergence relative to the overall growth component. 

Thus, Eq. (7) simply represents a time series regression; the null hypothesis is growth 

convergence across all cities and the alternatives include no convergence and partial 

convergence among subgroups of cities. As the t-statistic of the test refers to the 

coefficient 1β  of the tlog  regressor in Eq. (7), the test is called the ‘ tlog ’ convergence 

test. It is important that not only the sign of the coefficient 1β  of tlog  but also its 
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magnitude measure the speed of convergence. The interpretation of the results may 

change depending on whether the estimated parameter is 20 1 <≤ β  or 21 ≥β . In the 

case that 21 ≥β  and the common growth component tμ  follows a random walk with 

drift or a trend stationary process,
19

 then large values of 1β  will imply convergence in 

level city populations (cities end up with the same population). However, if 20 1 <≤ β , 

this speed of convergence corresponds to conditional convergence, in which population 

growth rates converge over time across the cities within the club.
20

 

The cluster procedure performs the tlog  test for each of the groups and stops when the 

group of remaining cities does not satisfy the convergence test. First, it defines an initial 

core primary group, and other groups are then formed according to certain criteria that 

maximise the value of the t-statistic. A much more detailed explanation of the 

constructive steps of the procedure can be found in Phillips and Sul (2007, 2009). 

Results 

Table 4 shows the results of applying the cluster algorithm to our sample of cities.
21

 We 

only consider the whole period (1790–2000); owing to data limitations, we cannot 

analyse subperiods as we did in the previous sections. Again, the results are reported for 

three sample sizes: the top 75, 100 and 150 largest cities in 1900.
22

 In this case, the 

choice of the reference period is relevant, because the largest cities in 2000 are a sample 

of “winning” cities, those that since they first appeared have presented the highest 

growth rates.
23

 However, some of the cities that were among the largest in 1900 have 

lost their positions in the ranking and have been overtaken by other cities. Therefore, if 

we consider this sample of cities, we capture more heterogeneous behaviours.
24

 

The “club” column shows the number of cities that are members of each convergence 

group. The results are consistent for the three sample sizes, because despite enlarging 

the sample, the cities do not usually change groups. Only in the top 150 sample is there 

a small redistribution of cities, because one less convergence club is detected. The 

distribution of cities within groups can be found in the Appendix. 

Given that the city distribution is fairly consistent regardless of the sample size, for 

clarity we show only the graphs for the top 75. Figure 2 shows the path over time of the 

log-population of the cities in each convergence club (we show the log-population 

because by definition the test is performed with log-variables). Our analysis focuses on 

these results. The first graph shows the path of the top 75 cities and demonstrates that it 
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is difficult to infer any specific type of pattern. However, some of the groups 

represented in the remainder of the graphs show a sequential pattern, especially in the 

entry of new cities. These new cities appear later in the sample, but grow at a faster rate 

than do the rest of the cities in their club until they reach similar growth rates to the pre-

existing cities.
25

 It is remarkable that in almost all convergence clubs the cities do not 

appear in the sample at the same time, but rather sequentially. This behaviour is 

consistent with a pattern of sequential city growth, at least within groups, and is 

especially noticeable in the nineteenth century (when the entry of new cities is 

particularly intense), while in the twentieth century the city sizes are more stable in all 

groups (and the entry of new cities is much lower). 

The algorithm classifies cities into 12 groups (convergence clubs). Four remaining cities 

are not classified into any club, and for these the convergence hypothesis is rejected. In 

each group, the estimated coefficient 1β̂  is significantly positive, strongly supporting 

the club classification. Furthermore, only one of the estimated coefficients is 

significantly greater than two (club 2), indicating that the evidence in favour of level 

convergence is small, while support for conditional convergence within each of the 

other clubs is stronger because 2ˆ
1 <β . Of the four cities belonging to club 2, three are 

in the South region, although the geographical distribution of cities shows no specific 

spatial pattern in any of the groups. Only club 11 consists of cities belonging to the 

same region (North-east), although another common characteristic of these cities is that 

they are among the oldest. The cities that have existed since 1790 are classified into 

groups 10 to 12, indicating that while they present a different growth pattern from the 

cities that appeared later, they also differ from each other. 

It should be noted that of the 12 clubs, only clubs 1 and 2 correspond to cities that rise 

in the ranking (on average) from 1900 to 2000. The cities in the other clubs lose 

positions in the ranking (on average), especially those in clubs 7, 9 and 12, confirming 

our idea that our sample captures more heterogeneous behaviours than does the sample 

of “winning” cities in 2000, especially because we also include “failing” cities that 

performed poorly in terms of growth over the entire time interval. Furthermore, this 

result points to the presence of leapfrogging among cities in our sample, because some 

initially small cities are able to surpass some of the large ones in size. 

5. Conclusion and discussion 
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In this paper, we study the growth pattern of the system of cities in the US during the 

1790–2000 period. We find mixed evidence regarding city growth in the long-term. 

First, we cannot reject the random growth (unit root) hypothesis for most of the 

proposed specifications, against the alternative hypothesis of convergence (mean 

reversion), indicating that the growth rate does not depend on initial size. Previous 

studies also identify a random growth pattern (or Gibrat’s law) for the case of the US, 

whether at the city level or with metropolitan areas, but focusing on shorter time periods 

(usually the twentieth century). Eeckhout (2004) considers the entire sample of places 

with no size restriction from 1990 to 2000 and finds evidence supporting random 

growth; González-Val (2010) generalises this analysis for all of the twentieth century, 

reaching the same conclusion from a long-term perspective. Ioannides and Overman 

(2003) use a metro areas database for the 1900–1990 period and cannot reject that 

growth was independent of city size, while for the same period Black and Henderson 

(2003) reject Gibrat’s law for any sample section by using a different database of 

MSAs. 

However, we also find evidence of high mobility when we model growth as a first-order 

Markov process. This mobility is consistent with the results of other studies that 

consider the same 1790–2000 period (Batty, 2006; Cuberes, 2011). Finally, by using a 

cluster procedure, we find strong evidence supporting conditional convergence in city 

growth rates within convergence clubs, which we can interpret as “local” mean-

reverting behaviours. Other studies also find evidence of some degree of convergence 

when a time horizon longer than the twentieth century is considered. For example, 

Michaels et al. (2012) regress population growth on a full set of fixed effects for initial 

population density by using a dataset of minor civil divisions from 1880 to 2000, 

finding an increasing relationship between population growth and initial population 

density in intermediate densities. Beeson et al. (2001) use county-level census data from 

1840 and 1990 and find evidence of population convergence only when the most 

heavily populated counties in 1840 are excluded from the sample. Therefore, the time 

period considered seems to be crucial. Kim (2000) and Kim and Margo (2004) explain 

that since the middle of the twentieth century, the pattern of urban development has 

differed in nature and scope from the industrial period because the overall pace of 

urbanisation has slowed and there has been a dispersal of the population out of central 

cities into suburban areas. 
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We interpret the high mobility and the results of the clustering analysis as signs of a 

sequential city growth pattern. Furthermore, both the transition matrices and the cluster 

analysis show that city sizes were more stable in the twentieth than in the nineteenth 

century, so sequential growth was mostly concentrated in the nineteenth century when 

many new cities appeared. However, are these different empirical results compatible? 

This question arises of whether a random growth result is compatible with a degree of 

convergence in the path of city growth rates. There is indeed a new mainstream in the 

literature that argues that random growth (or Gibrat’s law) corresponds to the steady 

state, but that to reach that situation temporal episodes of different growth patterns 

across some cities are possible (including sequential city growth). Although the 

approach in these papers is different from ours because they track the behaviour of new 

cities since they enter the distribution by focusing on city age as a key variable, the 

general conclusion is similar, as they also find evidence of different growth patterns 

across cities (depending on city age) followed by an overall random growth pattern. 

Desmet and Rappaport (2013) use data from US counties and MSAs from 1800 to 2000 

to conclude that in earlier periods smaller counties converge and larger ones diverge but 

both convergence and divergence dissipate and Gibrat’s law gradually emerges. 

Sánchez-Vidal et al. (2014) obtain a similar conclusion by using un-truncated US 

incorporated places data, but considering only the twentieth century. They find that 

young small cities tend to grow at higher rates but, as the decades pass, their growth 

stabilises or even declines; after the first years of existence, Gibrat’s law tends to hold 

better. Finally, Giesen and Südekum (2013) develop a theoretical model of urban 

growth with the entry of new cities, obtaining a pattern where Gibrat’s law holds in the 

long run but where young cities (which tend to be relatively small) initially grow faster. 

This model is tested by using data on the exact foundation dates of 7,000 American 

cities for the period 1790 to 2000, confirming that the distribution of city sizes is 

systematically related to the country’s city age distribution.  

Our results are consistent with this literature and thereby lend support to recent theories 

of sequential city growth. Sequential growth theories should not be considered to be a 

rebuttal of the traditional theories; on the contrary, they provide a unifying framework 

including random growth (at the steady state) and temporal episodes of different growth 

patterns or mean reversion. However, these new theories open new interesting research 

issues. We need to know more about the factors driving the length of the transition to 
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the steady state or the spatial dimension of this process, not explored in any study yet. 

Finally, it would be desirable to find empirical evidence from other countries. All of 

these questions deserve further research. 

Endnotes 

                                                 
1 We acknowledge one anonymous referee for suggesting this point. 
2 However, empirical studies demonstrate that in some cases their influence on determining 

agglomeration remains important; see Ellison and Glaeser (1999), Davis and Weinstein (2002) and 

Bleakley and Lin (2012). 
3 Many models in the literature explain spatial agglomeration in a dynamic context. Some of them can 

generate a growth pattern in the number of cities similar to sequential city growth, although they do not 

label it like that. For example, Henderson and Ioannides (1981) develop a theoretical framework in which 

cities are built at intervals that become shorter very rapidly. 
4 We talk about the “origin” of the urban system because the 1790 census was the first census that was 

published, and it provides data on the first 16 cities. However, these cities existed earlier. Kim (2000) 

provides data for four and five cities in 1690 and 1720, respectively. His data come from Bridenbaugh 

(1938) and the Historical Statistics of the United States. However, we prefer to use a single source of 

data, the US Census Bureau, to avoid differences between samples. In addition, the periodicity of these 

data would not be the same as the rest of the sample (decennial census). 
5 The standard definitions of metropolitan areas were first issued in 1949 by the then Bureau of the 

Budget, the predecessor of the present Office of Management and Budget. 
6 Source: Table 32. Only 16 of all the cities (8.42%) show a significant change in their boundaries (the 

case of annexed areas). Information about entities whose names and/or boundaries have changed, entities 

that no longer exist, newly established entities (both legal and statistical) and changes in geographic 

relationships is given in the “geographic change notes” section. 
7 Imposing a minimum population threshold is relevant for the analysis of city size distribution 

(Eeckhout, 2004). However, it seems to be less decisive in the study of city growth. González-Val (2010) 

obtains the same conclusion by using data from all incorporated places without any size restriction, as do 

Ioannides and Overman (2003) with their sample of MSAs: the validity of random growth in US city 

growth during the twentieth century. Cuberes (2011) carries out several robustness checks and his results 

for sequential city growth do not vary much with different cut-offs for selected cities. 
8 According to Gabaix and Ioannides (2004), “Gibrat’s Law states that the growth rate of an economic 

entity (firm, mutual fund, city) of size S  has a distribution function with mean and variance that are 

independent of S .” 
9 A consequence of an estimated 0<Θ i  is that any shock will dissipate over time; see Davis and 

Weinstein (2002). 
10 Another panel test that deals with cross-section dependence and that is suitable for unbalanced panels is 

the Im et al. (2003) test (IPS test). We also calculated this test and the results lead to more rejections of 

the unit root null hypothesis than when using Pesaran (2007). However, we do not show these results 

because as Baltagi (2008, p. 280) points out, the IPS test has size distortions when, as in our sample, N  

is large relative to T . Another problem is highlighted by Breitung (2000), who finds that the IPS test 

suffers from a dramatic loss of power if individual specific trends are included. 
11 The estimations were carried out by using the pescadf Stata package, developed by Piotr Lewandowski. 

The number of elements (cities) in each panel in Table 2 is fixed but the number of observations by 

period can change (missing values because some of the cities did not exist in all periods). Thus, Panels A 

and C are unbalanced panels. 
12 Following the suggestion by Ng and Perron (1995), we also calculated the optimal number of lags for 

each individual city by using a ‘general-to-specific procedure’ based on the t-statistic. The average 

optimum number of lags is 2.5 for the top 75 cities, 2.4 for the top 10 and top 100 cities and 2.1 for the 

top 150. 
13 We carried out several robustness checks with the Panel C sample (the whole 1790–2000 period); the 

specific values of these tests are available from the authors on request. We defined the sample according 

to the largest cities in 2000, the latest period for which we have data, and the results are similar. We also 

tried to select the cities in the sample randomly and again we obtained the result that the null hypothesis 



 22

                                                                                                                                               
of a unit root could not be rejected. Finally, we estimated separately a panel for the sample of 16 cities 

that are present in all periods and the results for this group of the oldest cities are also similar. 
14 However, to define the largest cities in each period, entry and exit, we use all the cities available each 

year. Although our database is constructed by using an absolute cutoff (100,000 inhabitants or more in 

2000), the minimum population needed to be within the largest 75, 100 and 150 cities in each period 

changes over time. 
15 The average is not calculated for all the cities, but for those that remain in the sample for two 

consecutive periods (see the definition of the matrix M ). 
16 Standard errors, not shown, are available from the authors on request. 
17 Nevertheless, the effect on economic growth is not so clear. Fogel (1964) argues that the railway 

construction gave the American economy a boost, but of perhaps only a few percentage points of GDP. 
18 Cuberes (2011) explains that this pattern could also be consistent with non-sequential growth, 

providing the following example. Suppose that the initially largest city grows alone for a few years. After 

that, all cities grow at a rate equal to or higher than the first city. Therefore, the largest city would 

represent an increasing share of the total population in the initial years and this share would decline as the 

rest of the cities grow faster. Nevertheless, growth would not be sequential in the sense that the second 

city would not grow faster than the third one for a few decades, and so on. 
19 Note that the hypothesis of random growth in the common growth component was tested in Section 3. 
20 Note that this terminology is slightly different from the classical definition of conditional convergence, 

which depends on individuals’ structural characteristics and initial conditions (Galor, 1996). An analysis 

of the general characteristics of the various convergence clubs as well as the many possible determining 

factors and initial conditions in each case is beyond the scope of this paper. 
21 The estimations were performed with the Gauss code kindly provided by Donggyu Sul on his webpage. 

As Phillips and Sul (2007) recommend, we set 3.0=r  ( r  is the initiating sample fraction). 
22 To apply the algorithm, we must have a balanced panel dataset. Given that most of the cities appear in 

the sample after 1790, we must carry out a little data transformation, assigning a population of 1 to the 

cities that did not exist in each period. This transformation means that these cities have a zero log-

population in the periods in which they did not exist. If this change affected the cluster procedure, the 

cities that appear in the same period would be grouped in the same club; however, Figure 1 shows how 

the groups are formed by cities that appear in different periods. 
23 In fact, with the largest cities in 2000, we find only four convergence clubs, because all of them are 

cities characterised by high growth rates. The results are available from the authors on request. 
24Altogether, 31 (20.7%) of the top 150 cities in 2000 are not in the top 150 cities in 1900. The 

differences are greater still in the top 75 and 100 cities, because there are 36 different cities (48% and 

36% of the sample, respectively). 
25 Some of the graphs are similar to Figure 4 (a) in Henderson and Venables (2009), obtained from 

simulations of their theoretical model of city formation. However, these graphs should be taken with 

caution as they show log-population and the log-scale smoothes cross-city differences in levels. 

Moreover, because a city’s log population is zero before it enters the sample, graphically most (but not 

all) of the catch-up is the steep segment for the single decade in which the city appears. 
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Figure 1. Change in the number of cities and average growth rates, 1790–2000 
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Table 1. Number of Cities and Descriptive Statistics by Year 

 

Year Cities Mean 
Standard 

deviation Minimum Maximum 
US urban 

population (UP) 

Percentage 

of UP in 

our sample

1790 16 8,746.50 13,313.13 200 49,401 201,655 69.40% 

1800 22 10,255.00 18,565.84 81 79,216 322,371 69.98% 

1810 25 14,278.04 26,052.55 383 119,734 525,459 67.93% 

1820 28 16,832.07 31,499.38 606 152,056 693,255 67.98% 

1830 36 20,631.19 43,079.73 877 242,278 1,127,247 65.89% 

1840 50 24,502.46 58,753.40 1,222 391,114 1,845,055 66.40% 

1850 73 30,220.67 85,663.40 415 696,115 3,574,496 61.72% 

1860 94 44,193.24 136,697.40 175 1,174,779 6,216,518 66.82% 

1870 110 55,417.75 160,729.66 155 1,478,103 9,902,361 61.56% 

1880 125 65,037.17 197,482.93 556 1,911,698 14,129,735 57.54% 

1890 149 77,799.07 232,080.75 273 2,507,414 22,106,265 52.44% 

1900 157 108,432.39 329,863.51 202 3,437,202 30,214,832 56.34% 

1910 165 142,935.56 433,335.63 297 4,766,883 42,064,001 56.07% 

1920 171 176,340.04 509,938.16 326 5,620,048 54,253,282 55.58% 

1930 179 211,572.36 614,701.55 515 6,930,446 69,160,599 54.76% 

1940 179 224,762.88 651,013.99 582 7,454,995 74,705,338 53.85% 

1950 179 260,994.59 695,986.21 727 7,891,957 96,846,817 48.24% 

1960 182 290,794.10 683,649.24 3,695 7,781,984 125,268,750 42.25% 

1970 187 308,875.27 679,828.20 14,089 7,895,563 149,646,617 38.60% 

1980 188 311,706.85 617,176.35 62,134 7,071,639 167,050,992 35.08% 

1990 190 332,701.32 635,704.55 95,802 7,322,564 187,053,487 33.79% 

2000 190 364,890.56 690,433.95 100,565 8,008,278 222,360,539 31.18% 

 

Note: US urban population data are taken from the US Census Bureau. Source: 

http://www.census.gov/population/censusdata/table-4.pdf.  
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Table 2. Panel unit root tests, Pesaran’s CADF statistic 

 

Panel A: 1790–1900. Year of reference for Top cities: 1860       

 Augmenting lag (1) Augmenting lags (2) Augmenting lags (3) 

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend 

Top 10 4.448 (1.000) 4.522 (1.000) 10.877 (1.000) 8.882 (1.000) 10.877 (1.000) 8.882 (1.000) 

Top 75 18.021 (1.000) 15.331 (1.000)     

Panel B: 1900–2000. Year of reference for Top cities: 1900       

 Augmenting lag (1) Augmenting lags (2) Augmenting lags (3) 

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend 

Top 10 2.673 (0.996) 0.374 (0.646) 12.533 (1.000) 11.253 (1.000) 12.533 (1.000) 11.253 (1.000) 

Top 75 5.152 (1.000) 1.049 (0.853) 34.011 (1.000) 30.349 (1.000) 34.011 (1.000) 30.349 (1.000) 

Top 100 -0.799 (0.212) 2.250 (0.988) 39.273 (1.000) 35.044 (1.000) 39.273 (1.000) 35.044 (1.000) 

Top 150 -5.100 (0.000) 2.612 (0.995) 48.540 (1.000) 43.583 (1.000) 48.540 (1.000) 43.583 (1.000) 

Panel C: 1790–2000. Year of reference for Top cities: 1900       

 Augmenting lag (1) Augmenting lags (2) Augmenting lags (3) 

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend 

Top 10 -4.110 (0.000) -1.593 (0.056) -1.394 (0.082)  -1.626 (0.052) -3.212 (0.001) -1.752 (0.040) 

Top 75 -8.251 (0.000) -8.067 (0.000) -3.507 (0.000)  -0.805 (0.210) 4.165 (1.000) 12.598 (1.000) 

Top 100 -5.489 (0.000) -5.468 (0.000) -0.071 (0.472) 1.575 (0.942) 10.535 (1.000) 18.987 (1.000) 

Top 150 -7.645 (0.000) -1.397 (0.081) -2.471 (0.007) 9.946 (1.000) 20.622 (1.000) 28.679 (1.000) 

 

Note: Pesaran’s (2007) [ ]tZ  test-statistic (p-value). Sample may not contain gaps; therefore, the eight gaps in the sample were filled using values 

calculated by linear interpolation. 
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Table 3. Average 10-year transition matrices 

Panel A: 1790–1900          Panel B: 1900–2000          Panel C: 1790–2000         

Sample Size: 75          Sample Size: 75          Sample Size: 75         

 ∞ 2 1 0.7 0.4  ∞ 2 1 0.7 0.4  ∞ 2 1 0.7 0.4 

∞ 0.933 0.067 0 0 0 ∞ 0.922 0.078 0 0 0 ∞ 0.928 0.072 0 0 0 

2 0.082 0.755 0.163 0 0 2 0.033 0.856 0.111 0 0 2 0.050 0.820 0.130 0 0 

1 0 0.279 0.512 0.209 0 1 0 0.112 0.747 0.141 0 1 0 0.162 0.676 0.162 0 

0.7 0 0.011 0.080 0.670 0.239 0.7 0 0.005 0.076 0.839 0.080 0.7 0 0.006 0.077 0.792 0.125 

0.4 0 0.004 0.010 0.086 0.900 0.4 0 0 0.013 0.134 0.853 0.4 0 0.002 0.012 0.106 0.880 

Xt 0 0 0 0 0.05751 Xt 0 0 0 0.00135 0.07143 Xt 0 0 0 0.00073 0.06506 

Zt 0 0.00160 0.00160 0.00320 0.14537 Zt 0 0 0 0.00674 0.06604 Zt 0 0.00073 0.00073 0.00512 0.10234 

                    

Sample Size: 100          Sample Size: 100          Sample Size: 100         

 ∞ 2 1 0.7 0.4   ∞ 2 1 0.7 0.4   ∞ 2 1 0.7 0.4 

∞ 0.918 0.082 0 0 0 ∞ 0.913 0.087 0 0 0 ∞ 0.915 0.085 0 0 0 

2 0.102 0.780 0.102 0.016 0 2 0.056 0.839 0.105 0 0 2 0.071 0.820 0.104 0.005 0 

1 0 0.102 0.592 0.306 0 1 0 0.118 0.756 0.126 0 1 0 0.114 0.710 0.176 0 

0.7 0 0.041 0.082 0.653 0.224 0.7 0 0.009 0.101 0.780 0.110 0.7 0 0.018 0.095 0.742 0.145 

0.4 0 0.003 0.003 0.087 0.907 0.4 0 0 0.011 0.122 0.867 0.4 0 0.001 0.007 0.105 0.887 

Xt 0 0 0 0 0.02307 Xt 0 0 0 0 0.06949 Xt 0 0 0 0 0.04971 

Zt 0 0.00136 0.00136 0.00407 0.13026 Zt 0 0 0 0.00302 0.06647 Zt 0 0.00058 0.00058 0.00347 0.09364 

                    

Sample Size: 150          Sample Size: 150          Sample Size: 150         

 ∞ 2 1 0.7 0.4   ∞ 2 1 0.7 0.4   ∞ 2 1 0.7 0.4 

∞ 0.921 0.079 0 0 0 ∞ 0.898 0.102 0 0 0 ∞ 0.908 0.092 0 0 0 

2 0.143 0.661 0.196 0 0 2 0.068 0.837 0.095 0 0 2 0.085 0.797 0.118 0 0 

1 0 0.141 0.684 0.175 0 1 0.006 0.116 0.749 0.129 0 1 0.005 0.123 0.731 0.141 0 

0.7 0 0.037 0.111 0.667 0.185 0.7 0 0.018 0.078 0.806 0.098 0.7 0 0.023 0.086 0.771 0.120 

0.4 0 0 0.002 0.084 0.914 0.4 0 0.002 0.003 0.125 0.870 0.4 0 0.001 0.003 0.109 0.887 

Xt 0 0 0 0 0.00407 Xt 0 0 0 0 0.03928 Xt 0 0 0 0 0.02608 

Zt 0 0.00114 0.00114 0.00457 0.14400 Zt 0 0 0 0.00333 0.03595 Zt 0 0.00042 0.00042 0.00379 0.07783 
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Table 4. Convergence clubs, 1790–2000 

 

Club 1β̂  (t-statistic)  Club 1β̂  (t-statistic) Club 1β̂  (t-statistic) 

1 [7] 0.105 (0.146)  1 [12] 0.744 (2.386) 1 [26] 1.217 (6.979) 

2 [4] 2.507 (3.844)  2 [7] 0.671 (4.686)  2 [17] 0.254 (3.720) 

3 [6] 0.893 (2.326)  3 [6] 0.893 (2.326) 3 [9] 0.225 (2.674) 

4 [5] 0.256 (3.225)  4 [7] 0.142 (0.910) 4 [15] 0.141 (1.634) 

5 [6] 0.294 (1.885)  5 [12] 0.560 (2.119) 5 [20] 0.400 (1.462) 

6 [8] 0.435 (5.784)  6 [12] 0.010 (0.087) 6 [23] 0.064 (0.502) 

7 [14] 0.224 (2.389)  7 [18] 0.370 (4.367) 7 [21] 0.539 (4.215) 

8 [6] 1.970 (1.188)   8 [6] 1.970 (1.188) 8 [3] 2.405 (2.303) 

9 [4] 0.353 (0.985)  9 [5] 0.700 (2.794) 9 [6] 0.011 (0.396) 

10 [5] 0.224 (4.673)  10 [5] 0.224 (4.673) 10 [3] 0.842 (6.385) 

11 [3] 0.842 (6.385)  11 [3] 0.842 (6.385) 11 [3] 0.347 (0.711) 

12 [3] 0.347 (0.711)  12 [3] 0.347 (0.711) Sample Size: Top 150 

Sample Size: Top 75  Sample Size: Top 100   

 

 

Notes: The numbers in brackets are the number of cities. Top cities are defined 

according to the ranks in 1900. The corresponding t-statistic in the regression is 

constructed in the usual way by using HAC standard errors. At the 5% level, the null 

hypothesis of convergence is rejected if the t-statistic < -1.65. All the t-statistics 

reported are positive, indicating that we cannot reject the null hypothesis at 5% in any 

case. 
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Appendix: Cities within clubs 

Rank in 

1900 

First year in 

the sample Name (State) 

Club (Sample 

Size: Top 75) 

Club (Sample 

Size: Top 100) 

Club (Sample 

Size: Top 150) 

1 1790 New York (NY) 10 10 9 

2 1840 Chicago (IL)    

3 1790 Philadelphia (PA) 10 10 9 

4 1830 St. Louis (MO) 2 2 2 

5 1790 Boston (MA) 11 11 10 

6 1790 Baltimore (MD) 10 10 9 

7 1820 Cleveland (OH) 1 1 1 

8 1810 Buffalo (NY) 3 3 3 

9 1850 San Francisco (CA) 1 1 1 

10 1810 Cincinnati (OH) 4 4 4 

11 1800 Pittsburgh (PA) 3 3 3 

12 1810 New Orleans (LA) 3 3 3 

13 1820 Detroit (MI) 1 1 1 

14 1840 Milwaukee (WI) 1 1 1 

15 1800 Washington (DC) 2 2 2 

16 1830 Newark (NJ) 3 3 3 

17 1840 Jersey City (NJ) 8 8 7 

18 1790 Louisville (KY) 10 10 9 

19 1860 Minneapolis (MN) 6 6 6 

20 1790 Providence (RI)    

21 1840 Indianapolis (IN) 3 3 3 

22 1860 Kansas City (MO) 5 5 5 

23 1850 St. Paul (MN) 7 7 6 

24 1830 Rochester (NY) 8 8 7 

25 1860 Denver (CO) 5 5 5 

26 1840 Toledo (OH) 6 6 6 

27 1830 Columbus (OH) 3 3 3 

28 1790 Worcester (MA) 11 11 10 

29 1850 Syracuse (NY) 9 9 7 

30 1790 New Haven (CT)    

31 1840 Paterson (NJ) 7 7 7 

32 1860 Omaha (NE) 5 5 5 

33 1850 Los Angeles (CA) 1 1 1 

34 1850 Memphis (TN) 4 4 4 

35 1830 Lowell (MA) 7 7 7 

36 1790 Cambridge (MA) 12 12 11 

37 1860 Portland (OR) 4 4 4 

38 1850 Atlanta (GA) 6 6 6 

39 1850 Grand Rapids (MI) 6 6 6 

40 1810 Dayton (OH) 8 8 6 

41 1790 Richmond (VA) 12 12 11 

42 1800 Nashville-Davidson (TN) 1 1 1 

43 1870 Seattle (WA) 5 5 5 
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44 1790 Hartford (CT)    

45 1840 Bridgeport (CT) 8 8 7 

46 1860 Oakland (CA) 6 6 6 

47 1860 Des Moines (IA) 7 7 7 

48 1790 Springfield (MA) 11 11 10 

49 1850 Evansville (IN) 9 9 7 

50 1790 Manchester (NH) 10 10 9 

51 1840 Peoria (IL) 7 7 7 

52 1800 Savannah (GA) 7 7 7 

53 1860 Salt Lake (UT) 7 7 7 

54 1850 San Antonio (TX) 2 2 2 

55 1800 Erie (PA) 9 9 8 

56 1810 Elizabeth (NJ) 7 7 7 

57 1880 Kansas City (KS) 7 7 6 

58 1860 Yonkers (NY) 7 7 6 

59 1790 Norfolk (VA) 12 12 11 

60 1860 Waterbury (CT) 7 7 7 

61 1850 Fort Wayne (IN ) 6 6 6 

62 1850 Houston (TX) 1 1 1 

63 1850 Akron (OH) 8 8 7 

64 1880 Dallas (TX) 2 2 2 

65 1880 Lincoln (NE) 4 4 4 

66 1890 Honolulu CDP (HI) 5 5 5 

67 1830 Mobile (AL) 7 7 6 

68 1880 Birmingham (AL) 7 7 7 

69 1850 Little Rock (AR) 4 4 4 

70 1890 Tacoma (WA) 5 5 5 

71 1890 Spokane (WA) 6 6 6 

72 1850 South Bend (IN) 9 9 8 

73 1830 Allentown (PA) 8 8 7 

74 1840 Springfield (IL) 6 6 6 

75 1860 Topeka (KS) 7 7 7 

76 1850 Knoxville (TN)  5 5 

77 1860 Rockford (IL)  7 6 

78 1840 Montgomery (AL)  4 4 

79 1870 Chattanooga (TN)  6 6 

80 1850 Sacramento (CA)  2 2 

81 1850 Jacksonville (FL)  1 1 

82 1880 Fort Worth (TX)  4 4 

83 1860 Cedar Rapids (IA)  6 6 

84 1790 Lexington-Fayette (KY)  6 6 

85 1880 Wichita (KS)  5 5 

86 1850 Springfield (MO)  5 5 

87 1850 Austin (TX)  1 1 

88 1870 San Jose (CA)  1 1 

89 1880 Colorado Springs (CO)  1 1 
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90 1870 Waco (TX)  7 6 

91 1890 Newport News (VA)  5 5 

92 1850 Madison (WI)  5 5 

93 1850 Charlotte (NC)  2 2 

94 1860 San Diego (CA)  1 1 

95 1840 Columbus (GA)  5 5 

96 1860 Stockton (CA)  2 2 

97 1840 Portsmouth (VA)  9 7 

98 1860 Lansing (MI)  7 7 

99 1850 Shreveport (LA)  6 6 

100 1880 Stamford (CT)  7 6 

101 1880 El Paso (TX)   2 

102 1870 Tampa (FL)   6 

103 1790 Alexandria (VA)   9 

104 1860 Ann Arbor (MI)   5 

105 1870 Winston-Salem (NC)   5 

106 1800 Raleigh (NC)   2 

107 1860 Laredo (TX)   2 

108 1890 Berkeley (CA)   7 

109 1860 Flint (MI)   8 

110 1880 Fresno (CA)   1 

111 1840 Baton Rouge (LA)   4 

112 1890 Oklahoma City (OK)   4 

113 1870 Greensboro (NC)   4 

114 1890 Beaumont (TX)   7 

115 1890 Pasadena (CA)   6 

116 1850 Huntsville (AL)   3 

117 1890 Riverside (CA)   1 

118 1880 Vallejo (CA)   4 

119 1850 Jackson (MS)   5 

120 1870 Tucson (AZ)   2 

121 1860 Independence (MO)   5 

122 1880 Durham (NC)   2 

123 1860 Santa Rosa (CA)   1 

124 1890 Albuquerque (NM)   2 

125 1880 San Bernardino (CA)   3 

126 1870 Boise (ID)   1 

127 1890 Phoenix (AZ)   1 

128 1890 Pomona (CA)   3 

129 1890 Santa Ana (CA)   1 

130 1890 Bakersfield (CA)   1 

131 1860 Corpus Christi (TX)   4 

132 1870 Reno (NV)   1 

133 1870 Salem (OR)   2 

134 1890 Abilene (TX)   6 

135 1890 Salinas (CA)   1 
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136 1870 Eugene (OR)   2 

137 1840 Tallahassee (FL)   2 

138 1890 Hampton (VA)   5 

139 1890 Orlando (FL)   2 

140 1890 Long Beach (CA)   4 

141 1890 Modesto (CA)   1 

142 1870 Hayward (CA)   4 

143 1900 Miami (FL)   5 

144 1890 St. Petersburg (FL)   5 

145 1870 Anaheim (CA)   1 

146 1890 Amarillo (TX)   5 

147 1900 Tulsa (OK)   4 

148 1870 Plano (TX)   1 

149 1880 Orange (CA)   1 

150 1890 Arlington (TX)   1 

 

 


