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ABSTRACT 

Using the stochastic frontier analysis (SFA) model, we estimate total-factor 

energy efficiency (TFEE) scores for 47 regions across Japan during 

1996–2008. We extend the cross-sectional SFA model proposed by Zhou et al. 

(2012) to panel data models and add environmental variables. The results 

provide not only the TFEE scores, in which statistical noise is taken into 

account, but also the determinants of inefficiency. The three SFA TFEEs are 

compared with a TFEE derived from data envelopment analysis (DEA). The 

four TFEEs are highly correlated with one another. For the inefficiency 
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estimates, the higher the manufacturing industry share and wholesale and retail 

trade share, the lower the TFEE score.  

 

Keywords: Stochastic frontier analysis (SFA), Data envelopment analysis 

(DEA), Total-factor energy efficiency (TFEE), Panel data, 

Shephard distance functions
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1 Introduction 

After the Fukushima Daiichi nuclear disaster on March 11, 2011, energy 

conservation has been an urgent issue in Japan. All 54 nuclear reactors in 

Japan were shut down immediately following the accident. The resulting 

shortages in electricity supply made “setstuden,” which means saving 

electricity in English, into a mantra throughout Japan. In July 2012, the 

Japanese government decided to reactivate Reactors #3 and #4 of the Oi 

nuclear power plant in response to the electricity shortages experienced in the 

Kansai Electric Power Company’s jurisdiction in summer 2012. Both reactors, 

however, were shut down again in September 2012 following a periodical 

check.  

   Although a new feed-in tariff to promote renewable energy was introduced 

in July 2012, it cannot fully make up for the shortfall resulting from the 

cessation of nuclear power generation. Despite the full capacity operation of 

the country’s thermal power plants - including some plants inactive before the 

Fukushima disaster due to outdated technology - and efforts by firms and 

households to save energy, serious electricity shortages remain. Vivoda (2012) 
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asserted that nuclear reactors should be restarted as soon as possible because 

Japan is facing an energy security predicament. However, this is politically 

difficult given growing anti-nuclear public sentiment.  

Severe energy constraints in Japan cause the following four serious 

problems. 1  First, dependence on fossil fuels for electricity generation 

amounted to 88% in 2012, which exceeds the 76% during the first oil crisis. 

Second, Japan loses approximately 3.6 trillion yen (3.5 million US dollars) per 

year in international trade related to importing additional fossil fuels after the 

Fukushima disaster - approximately 30 thousand yen (290 US dollars) per 

capita. Third, electricity prices are higher compared with those before the 

Fukushima disaster, with a standard family facing an average appreciation rate 

of 20%. Fourth, general electric utilities increased carbon dioxide emissions by 

110 million tons, which corresponds to 9% of the nation’s emissions in 2010. 

We believe that improving energy efficiency is one feasible solution to the 

above problems. 

Energy is a fundamental factor from the viewpoint of both national 

 
1 See documents of the Follow-up Subpanel of Energy in the Industrial Competitiveness 

Council in Japan on December 20, 2013.  

(http://www.kantei.go.jp/jp/singi/keizaisaisei/bunka/energy/dai2/siryou.html) 
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security and the economy, and many empirical studies have examined energy 

efficiency. In this section, we classify these into three approaches.  

The first is energy intensity, defined as energy consumption per unit of 

output, such as GDP or energy productivity (the reciprocal of energy intensity). 

This approach is considered the traditional energy efficiency index because it 

is easily calculated and has been widely used to compare countries (Nilsson, 

1993; Miketa and Mulder, 2005; Mulder and De Groot, 2007; Le Pen and Sévi, 

2010; Liddle, 2010). However, this approach combines energy with other 

inputs such as labor and capital stock. Therefore, energy intensity, as a 

partial-factor framework, is a limited approach in terms of measuring energy 

efficiency (Patterson, 1996; Hu and Wang, 2006).  

The second approach is data envelopment analysis (DEA), a 

non-parametric linear programming methodology used to measure the 

efficiency of multiple decision-making units. Hu and Wang (2006) and Hu and 

Kao (2007) incorporated the total-factor energy efficiency (TFEE) index in the 

DEA model, resulting in an approach that was subsequently applied to Japan 

by Honma and Hu (2008, 2013), to Taiwan by Hu et al. (2012), and to OECD 

countries by Honma and Hu (2014). Moreover, Sözen and Alp (2009) 
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compared Turkey’s energy efficiency with that of the EU countries by 

incorporating energy consumption, greenhouse gas emissions, and local 

pollutants into the DEA model. Lozano and Gutiérreza (2008) proposed DEA 

models with undesirable outputs to estimate maximum GDP (minimum GHG 

emissions) compatible with given levels of population, energy intensity, and 

carbonization intensity (levels of population, GDP, energy intensity, or 

carbonization index). Mukherjee (2008) evaluated the energy efficiency of six 

sectors and found that the highest energy consumption occurs in the United 

States. Although DEA has been widely applied in energy efficiency studies, its 

drawback is that its efficiency analysissuffers from statistical noises.  

  The third approach is stochastic frontier analysis (SFA), which originated in 

Aigner et al. (1977) and Meeusen and van den Broeck (1977).2 To overcome 

the statistical noise problem, several authors applied the SFA approach to 

measure energy efficiency. Filippini and Hunt (2011) measured economy-wide 

energy efficiency in OECD countries. Stern (2012) computed energy 

efficiency by applying SFA to 85 countries and examining the determinants of 

inefficiency. Herrala and Goel (2012) investigated global carbon dioxide 

 
2 For a comparison of DEA and SFA, see Hjalmarsson et al. (1996) and Iglesias et al. 

(2010). 
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(CO2) efficiency (defined as the ratio of the CO2 frontier to actual emissions) 

for more than 170 countries. Filippini and Hunt (2011) and Herrala and Goel 

(2012) employed a stochastic cost function, taking energy or CO2 as the cost, 

in which GDP was a main explanatory output variable and neither labor nor 

capital stock data were used. On the other hand, Stern’s (2012) model used 

labor and capital stock data, but energy intensity was an explanatory variable. 

Unlike the above-mentioned studies, we measure energy efficiency on 

the basis of a standard Cobb–Douglas production function within the SFA 

approach. The study most closely related to ours is Zhou et al. (2012), who 

proposed a parametric frontier approach by using the Shephard energy 

distance function. Their approach essentially uses a single-output, production 

frontier model. One feature of their estimation technique is that it deems the 

reciprocal of energy consumption to be an output produced using labor, capital 

stock, and GDP as inputs. This methodology enables us to parametrically 

estimate energy efficiency, taking into account the statistical noise involved. 

Hu (2013) extends the cross-sectional model by Zhou et al. to a panel data 

model in order to measure the energy efficiency of regions in Taiwan.  

The purpose of the present study is three-fold. The first is to extend the 
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cross-sectional SFA model proposed by Zhou et al. (2012) to a panel data 

model and simultaneously estimate the determinants of inefficiency.3  The 

second is to estimate the TFEE scores for 47 administrative regions in Japan 

during 1996–2008 and examine the effects of Japan’s energy-saving policies 

over that period. The third is to compare the SFA results with those from DEA 

with respect not only to efficiency but also its determinants. 

In our SFA model, efficiency measurements are based on the Shephard 

energy distance function, which is assumed to take the Cobb–Douglas 

functional form. Following Zhou et al. (2012), we also assume that the 

reciprocal of energy consumption is produced by GDP, labor, and capital stock. 

The maximum likelihood estimator is used to estimate the parameters, 

including the inefficiency component.  

In a departure from the studies conducted by Zhou et al. (2012), Hu 

(2013), and Lin and Du (2013), we simultaneously estimate the determinants 

of inefficiency by employing the technical inefficiency effects model 

proposed by Battese and Coelli (1995). Before Battese and Coelli’s study, a 

 
3 Recently, Lin and Du (2013), using the metafrontier procedure of Battese et al. (2004), 

also extended the model of Zhou et al. to conduct a panel data SFA estimation of the first 

stage of Chinese regional energy efficiency. However, their model does not include 

environmental variables (i.e., the model of Battese and Coelli, 1992). 
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two-stage approach was employed in which efficiency was estimated in the 

first stage; then, this estimated efficiency was regressed against the 

determinants in the second stage. Nowadays, this two-stage approach is 

severely criticized because both stages suffer from serious bias (Fried et al., 

2008, p. 39). 

On the other hand, the potential determinants of inefficiency can be 

estimated using the two-stage DEA model. However, this model presents two 

problems (Fried et al., 2008). One is the possible correlation between the 

input–output variables and the efficiency-determinant factors. The other arises 

from the fact that the interdependency of the DEA efficiency scores violates 

the basic assumption of independence within the sample. Instead of a 

non-parametric DEA approach, our parametric approach provides an 

alternative method to estimate efficiency and its underlying factors. 

The rest of the study is organized as follows. Section 2 briefly review 

Japan’s historical and current energy situation. Section 3 describes our 

methodology and data. Section 4 presents the TFEE results and the 

determinants of inefficiency for both SFA and DEA models. Section 5 

discusses the results’ implications. Section 6 concludes with a brief summary 
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of the study.  

 

2 Japan’s Energy Situation 

Prior to presenting the empirical methodology that this study employs, we 

briefly explain Japan’s energy situation. 

2.1 Historical review 

Fig. 1 shows sector trends of final energy consumption since 1965. The 

industrial sector, and especially the manufacturing industry, emerges as the 

most energy consuming. Here, we divide energy consumption within the 

industrial sector into manufacturing and other industries.  

Energy consumption in manufacturing drastically increased from 

2.63×1018 J in 1965 to 6.43×1018 J in 1973, reflecting Japan’s rapid economic 

growth. However, following the first oil crisis in 1973, one effect of which was 

the promotion of energy conservation across all sectors, energy consumption 

in manufacturing declined during the remainder of the 1970s. Since the 1980s, 

manufacturing has gradually increased its energy consumption, but in 2011, 

this declined to 5.80×1018 J in the wake of the economic slowdown triggered 
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by the Lehman Brothers collapse.  

In sum, although manufacturing production increased up to 1.6 times 

from 1973 to 2011, energy consumption shrunk 0.9 times in the same period. It 

should be noted that manufacturing comprises a substantial portion of 

nationwide energy consumption, but its energy productivity has improved 

following the first oil crisis by approximately 1.78 (=1.6/0.9) times. The 

curbing of energy consumption in manufacturing is mainly driven by progress 

in energy conservation and shifts in industrial structure (Ministry of Economy, 

Trade and Industry, 2013).   

Final energy consumption in the commercial as well as industrial sectors 

increased until the first oil crisis, plateaued from 1973 to the early 1980s, and 

increased again after the late 1980s. This rise was caused by increases in gross 

floor area, air conditioning, and lighting equipment; development of office 

automation systems; and extension of business hours (Ministry of Economy, 

Trade and Industry, 2013).  

Energy consumption in residential and transportation sectors also grew as 

a result of demand for convenience and amenities in housing and increases in 

private and freight vehicles, respectively.  



 
 

12 

2.2 Japan’s energy conservation policy 

Historically, Japan has pursued an energy conservation policy since the 

first oil crisis in 1973. The Energy Conservation Law was enacted in 1979 and 

has since been revised eight times.  

In this subsection, we explain the revisions to the law in our sample period, 

1996–2008. The 1998 revision (effective April 1999) adopted the Top Runner 

Program, wherein a target standard value for a particular product (e.g., 

passenger vehicles, air conditioners, or TV sets) was established on the basis 

of the relevant product having the highest energy efficiency. Moreover, the 

Type 1 designated energy management category for factories consuming more 

than 3,000 kiloliters (kl) of crude oil equivalent per year with respect to fuel 

(heat) or electricity required the relevant factories to submit medium- and 

long-term energy conservation plans. In the 2002 revision (effective April 

2003), the Type 1 designated energy management category was expanded from 

the five particular manufacturing industries to cover all industries. In addition, 

the Type 2 designated category of energy management required factories 

consuming more than 1,500 kl of crude oil equivalent per year to submit 

periodic reports. As a result of Japan’s ratification of the Kyoto Protocol, the 
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law was again revised in 2005 (effective April 2006). The Type 1 (Type 2) 

designated energy management category was expanded to include factories 

consuming more than 3,000 kl (1,500 kl) of fuel and electricity per year, and 

energy conservation measures for residential and construction sectors were 

strengthened.  

As noted above, the Energy Conservation Law has been revised 

(strengthened) since the legislation was amended in response to the Kyoto 

Protocol. 4  We should thus examine whether such revisions exerted a 

significant effect on Japan’s energy situation. Therefore, we require a more 

accurate measurement of regional energy efficiency. 

 

 

 

 

 
4 After the 2005 revision, the Energy Conservation Law was revised in 2008, 2011, and 

2013. Although these subsequent revisions affect the country’s energy situation, we do not 
refer to them because they occurred after the period of our study. 
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Note) In Japan’s energy statistics, the calculation method changed in 1990. 

Fig. 1. Trends of final energy consumption by sector. Source: Comprehensive 

Energy Statistics, 2013, Ministry of Economy, Trade and Industry, Japan. 

 

2.3 After the Fukushima disaster 

With regard to Japan’s above-mentioned increasing energy demand, its 

energy supply is vulnerable. Because Japan is a resource-poor country, 

before the Fukushima disaster, the Japanese government promoted nuclear 

power generation in order to diversify energy sources. The Basic Energy 

Plan (2010) targeted the nuclear share in the country’s power generation to 
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be boosted from 24% in 2008 to by 50% in 2030. This strategy was 

abandoned by the aftermath of the Fukushima disaster, but no new strategy 

has been planned as of February 2014.  

Owing to the absence of nuclear power generation after the Fukushima 

disaster, Japan faces a grave electricity shortage. The Japanese government 

repeatedly urged the public to save electricity. In the summer of FY2011, the 

Japanese government requested a 15% reduction in maximum electricity use 

during peak periods and times for all power users and issued Article 27 of 

Japan’s Electricity Business Act, “Restriction on Use of Electricity,” for 

large power users in areas under the Tokyo Electric Power Co., Inc. and 

Tohoku Electric Power Co., Inc. In the winter of FY2011, the Japanese 

government again requested households and firms to save electricity and set 

savings targets for the districts under the Kansai Electric Power Co., Inc. and 

Kyushu Electric Power Co., Inc. Furthermore, in the summer of FY2012, the 

government’s requests covering the saving targets in central, and western 

parts of Japan were relaxed following the restart of the Oi nuclear power 

plant. In the winter of FY2012, the saving target set for the district under the 

Hokkaido Electric Power Co., Inc., called for a 7% reduction in electricity 
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use compared with that in FY2010.  

The above measures had significant impacts not only on electricity 

consumption but also on economic activities. Morikawa (2012) surveyed 

more than 3,000 firms and determined that 45% of Japanese firms have been 

directly or indirectly affected by the rolling blackouts and regulation of 

electricity usage. 

 

3 Methodology and Data 

3.1 SFA model for input efficiency  

Zhou et al. (2012) apply the single-equation, output-oriented SFA model to 

estimate the TFEE. Their cross-sectional SFA model was used to analyze 21 

OECD countries in 2001. Combining the studies by Zhou et al. (2012) and 

Battese and Coelli (1992), this study extends the panel data SFA model further 

by estimating the TFEE. 

Following Zhou et al., we assume that the stochastic frontier distance 

function is included in the Cobb–Douglas function as 

ln D (Kit, Lit, Eit, Yit) = 0 + K lnKit + L lnLit + E lnEit  

+ Y lnYit + vit,            (1) 
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where D() is the distance function, Kit is the capital stock, Lit is labor 

employment, Eit is the energy input, Yit is the real economic output, i indicates 

the region, t indicates the time, and vit is the statistical noise following a 

normal distribution. Because the distance function is homogeneous to one 

degree in the energy input, the above equation can be rearranged as 

ln DE (Kit, Lit, Eit, Yit) = ln Eit + 0 + K lnKit + L lnLit + E ln1  

+ Y lnYit + vit,                 (2) 

which can be also be arranged as  

-lnEit = 0 + KlnKit + LlnLit + E ln1 + YlnYit + vit   

- lnDE (Kit, Lit, Eit, Yit).               (3) 

That is,  

ln(1/Eit) = 0 + K lnKit + L lnLit + Y lnYit + vit − uit,       (4)                   

where uit is the inefficiency term, which follows a non-negative distribution, 

and vit − uit is the error component term of a stochastic production frontier. Eq. 

(4) fits with the panel data stochastic frontier model proposed by Battese and 

Coelli (1992). The free software Frontier Version 4.1, kindly provided by 

Professor Coelli (1996), can be used to estimate Eq. (4). The TFEE of region i 

at time t is then 

TFEEit = exp(−uit).                                      (5) 

Therefore, we can apply the panel data stochastic production frontier approach 

to estimate the TFEE, but we are limited in the use of the input-oriented DEA 
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suggested by Hu and Wang (2006) and Hu and Kao (2007). Moreover, if we 

use disaggregated energy inputs, we can also change the logged inverse energy 

inputs on the left-hand side of Eq. (4) and keep the other logged inputs on the 

right-hand side such that we can obtain the TFEE scores of different energy 

inputs. 

Battese and Coelli (1995) further added an inefficiency equation for 

simultaneous estimations with the stochastic frontier in the form of Eq. (4) 

uit = 0 + 1
1
itz  + … + H H

itz  + it,                     (6) 

where the z1 ,…, zH are environmental variables and  is white noise following 

a normal distribution. As a result, we can simultaneously estimate Eqs. (4) and 

(6) by applying the approaches of Battese and Coelli (1995) and Coelli (1996). 

3.2 DEA  

DEA is a linear programming method used to assess the comparative 

efficiency of decision-making units (DMUs) such as countries, regions, firms, 

and other organizations. There are K inputs and M outputs for each of the N 

regions. Since the SFA model finds a frontier with curvature, we assume 

variable returns to scale (VRS) in the DEA model. The VRS envelopment of 

the i-th region can be derived using the following linear programming problem, 

proposed by Banker et al. (1984): 

Min θ, λ θ 

s.t. – yi + Yλ ≥ 0 

θxi - Xλ ≥ 0 

eλ = 1 
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λ ≥ 0,    (7) 

where θ is a scalar that represents the efficiency score of the i-th DMU, e is a 

1  N vector of ones, λ is an N  1 vector of constants, yi is an M  1 output 

vector of DMU i, Y is an M  N output matrix composed of all output 

vectors of the N DMUs, xi is a K  1 input vector of DMU i, and X is a K  

N input matrix composed of all input vectors of the N DMUs. 

The efficiency score satisfies 0 ≤ θ ≤ 1, which is a radial contraction 

coefficient for the inputs. If θ = 1, DMU i operates on the efficiency frontier 

and is technically efficient. This is an input-oriented model in which the 

radial adjustment coefficient, θ, multiplies the input vector of DMU i. 

To control the annual environment, all efficiency scores and input 

targets for region i in year t are determined by comparing them to the 

regional efficiency frontier in year t. That is, the VRS-DEA model in this 

study uses regional observations in the same year. 

In the second-stage regression, determinants of inefficiency are 

estimated by the following equation: 

-ln(TFEEit) = γ0 +γ1
1
itz  + … +γH

H
itz  + it,               (8) 

where  is white noise following a normal distribution. Since SFATFEEit = 
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exp(-uit) in the SFA model, for consistency, we take the corresponding 

inefficiency term in the DEA, uit = )TFEEln( DEA
it , as the dependent 

variable in the second-stage regression. Because the dependent variable 

)TFEEln( DEA
it  is censored at zero when TFEEit = 1, we use the Tobit 

regression left censored at zero. 

3.3 Data and variables 

In our SFA model, we assume that the reciprocal of energy consumption is 

based on regional real GDP (million yen), labor (person), and capital stock 

(million yen). These data are taken from the Economic and Fiscal Model by 

Prefecture (Cabinet Office, Government of Japan), where all monetary values 

are given in million yen based on the year 2000 and labor is represented by the 

number of employees.  

Data on energy are taken from the Energy Consumption Statistics by 

Prefecture (Agency for Natural Resources and Energy, Japan), where 

aggregated energy consumption is the sum of oil, gas, coal, electricity, and 

industrial heat presented in terms of thermal units (tera joules [TJ]). In contrast 

with previous studies that take regional/national energy consumption as a 
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whole as one input (Hu and Wang, 2006; Hu and Kao, 2007; Honma and Hu, 

2008; Hu et al., 2012; Zhou et al., 2012), our aggregated energy consumption 

data do not include residential and transportation sectors or non-energy use. 

Residential energy consumption, such as cooking, heating, and hot water 

supply system generate no value added and are hence excluded from the 

aggregated energy consumption data. For the same reason, energy 

consumption by private vehicles is also excluded. Energy consumption in the 

business transportation sector is unavailable because fuel consumed outside 

regional borders cannot be accurately allocated by region in the statistics. 

Using the selected energy consumption data allows more precise measurement 

of energy efficiency than was previously possible. 

We employ industry shares as the environmental variables in two technical 

inefficiency effects models. 5  The first model (whose efficiency score is 

hereafter referred to as TFEESFA,M) includes as environmental variables the 

regional GDP shares of the manufacturing industry, service activities, and both 

wholesale and retail trade. The second model (hereafter TFEESFA,E) replaces 

 
5 Aside from industry shares, there are other candidates for environmental variables, such as 

social variables (e.g., population density) and natural variables (e.g., mean temperature and 

yearly precipitation). Because many of these variables are correlated with industry shares (e.g., 

the service industry is likely to be located in highly populated areas), we refrain from adding 

more environmental variables in order to avoid multicollinearity. 
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the manufacturing share with shares of five energy-intensive industries, 

namely, chemicals; iron and steel; non-ferrous metals; non-metallic mineral 

products; and pulp, paper, and paper products.  

Data on industry shares are taken from the Annual Report on Prefectural 

Accounts (Cabinet Office, Government of Japan). The data on each 

energy-intensive industry’s shares exclude Okinawa Prefecture because such 

data are unavailable for this prefecture, which comprises several small islands. 

All data are annual, and as mentioned earlier, the sample period spans 

1996–2008. Table 1 summarizes the input, output, and environmental variable 

statistics.  
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Table 1   

Statistical summary of inputs, outputs, and environmental variables 

Variable Unit Mean SD Min Max Obs 

Regional GDP 
million 

yen 
11,267,620 14,899,507 2,070,534 100,982,870 611 

Labor person 1,358,697 1,437,445 300,652 8,746,255 611 

Capital stock million yen 36,051,479 34,440,744 7,662,999 230,327,688 611 

Energy TJ 203,883 221,225 28,331 1,181,999 611 

Manufacturing 

industry share 
proportion 0.21239 0.07702 0.04031 0.43107 611 

Chemical industry 

share 
proportion 0.01798 0.01867 0.00021 0.10745 598 

Iron and steel industry 

share 
proportion 0.01395 0.01466 0.00044 0.10167 598 

Non-ferrous metals 

industry share 
proportion 0.01359 0.00945 0.00198 0.09322 598 

Non-metallic mineral 

products industry 

share 

proportion 0.00854 0.00588 0.00124 0.03798 598 

Pulp, paper, and paper 

products industry 

share 

proportion 0.00575 0.00591 0.00006 0.04200 598 

Service activities 

share 
proportion 0.19281 0.02771 0.11619 0.29261 611 

Wholesale and retail 

trade industry share 
proportion 0.11268 0.03134 0.05782 0.21673 611 

 

4 Results 

4.1 TFEE scores 

The maximum likelihood estimates of the TFEE scores are given in Table 

2, together with the DEA TFEE. The estimates of the SFA TFEEs are 
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calculated using Frontier 4.1 provided by Coelli (1996).6 Space limitations 

allow us to show only the mean TFEE scores and rankings of the four TFEEs 

for 1996–2008. The TFEEs of each region are stable during the sample period. 

Following Zhou et al. (2012) and Hu (2013), TFEESFA,O represents the 

estimated TFEE scores without the environmental variables, while following 

Hu and Wang (2006), Hu and Kao (2007), and Honma and Hu (2008), 

DEATFEE  represents the DEA TFEE scores under VRS assumptions. 

TFEESFA,O and TFEEDEA are mainly presented here as comparisons with 

TFEESFA,M and TFEESFA,E.  

It should be emphasized that the rankings are similar; nevertheless, the 

TFEE scores differ between the four methods. The maximum value of the 

DEA TFEE scores reaches unity since they do not take into account statistical 

noise. Tokyo, Nara, and Tottori achieve unity scores for TFEEDEA
 throughout 

the sample period.   

 

 

 

 
6 For more detail, see Coelli et al. (2005). 
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Table 2 

Mean TFEE scores and rankings by region in Japan (1996-2008) 

Region TFEESFA,O TFEESFA,M TFEESFA,E TFEEDEA 

Hokkaido 0.406 (33) 0.641 (25) 0.607 (25) 0.488 (33) 

Aomori 0.528 (29) 0.574 (30) 0.567 (30) 0.526 (31) 

Iwate 0.770 (14) 0.845 (14) 0.838 (13) 0.727 (22) 

Miyagi 0.584 (23) 0.674 (22) 0.676 (21) 0.626 (28) 

Akita 0.877 (9) 0.888 (9) 0.886 (10) 0.867 (12) 

Yamagata 0.971 (3) 0.966 (1) 0.967 (1) 0.884 (11) 

Fukushima 0.689 (17) 0.802 (16) 0.793 (15) 0.799 (16) 

Ibaraki 0.181 (43) 0.225 (43) 0.223 (42) 0.243 (43) 

Tochigi 0.564 (24) 0.614 (26) 0.623 (24) 0.664 (26) 

Gunma 0.663 (18) 0.750 (17) 0.754 (16) 0.704 (23) 

Saitama 0.53 0(28) 0.727 (19) 0.731 (18) 0.577 (29) 

Chiba 0.105 (47) 0.146 (45) 0.144 (44) 0.128 (47) 

Tokyo 0.562 (25) 0.951 (3) 0.949 (3) 1.000 (1) 

Kanagawa 0.233 (40) 0.345 (39) 0.344 (38) 0.311 (41) 

Niigata 0.513 (30) 0.656 (24) 0.637 (23) 0.671 (25) 

Toyama 0.530 (27) 0.533 (32) 0.532 (31) 0.809 (14) 

Ishikawa 0.920 (8) 0.889 (8) 0.907 (8) 0.943 (9) 

Fukui 0.785 (11) 0.747 (18) 0.745 (17) 0.959 (7) 

Yamanashi 0.964 (6) 0.881 (12) 0.900 (9) 0.987 (5) 

Nagano 0.777 (13) 0.914 (7) 0.914 (7) 0.780 (17) 

Gifu 0.617 (22) 0.704 (20) 0.701 (20) 0.659 (27) 

Shizuoka 0.434 (32) 0.585 (29) 0.58 (28) 0.501 (32) 

Aichi 0.305 (38) 0.479 (34) 0.469 (33) 0.414 (36) 

Mie 0.207 (42) 0.229 (42) 0.230 (41) 0.312 (40) 

Shiga 0.543 (26) 0.514 (33) 0.527 (32) 0.953 (8) 

Kyoto 0.734 (16) 0.814 (15) 0.835 (14) 0.778 (18) 

Osaka 0.375 (34) 0.599 (28) 0.589 (27) 0.481 (34) 

Hyogo 0.254 (39) 0.352 (38) 0.347 (37) 0.337 (39) 

Nara 0.982 (2) 0.887 (10) 0.916 (6) 1.000 (1) 

Wakayama 0.349 (35) 0.341 (40) 0.338 (39) 0.464 (35) 

Tottori 0.800(10) 0.690 (21) 0.704 (19) 1.000 (1) 
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Shimane 0.987 (1) 0.924 (5) 0.920 (4) 0.990 (4) 

Okayama 0.111 (46) 0.125 (46) 0.125 (45) 0.162 (46) 

Hiroshima 0.219 (41) 0.269 (41) 0.268 (40) 0.290 (42) 

Yamaguchi 0.137 (44) 0.148 (44) 0.146 (43) 0.211 (44) 

Tokushima 0.634 (20) 0.571 (31) 0.578 (29) 0.802 (15) 

Kagawa 0.477 (31) 0.447 (36) 0.456 (34) 0.536 (30) 

Ehime 0.337 (36) 0.363 (37) 0.361 (36) 0.389 (37) 

Kochi 0.632 (21) 0.602 (27) 0.598 (26) 0.748 (19) 

Fukuoka 0.328 (37) 0.452 (35) 0.448 (35) 0.345 (38) 

Saga 0.967 (5) 0.919 (6) 0.917 (5) 0.964 (6) 

Nagasaki 0.935 (7) 0.958 (2) 0.961 (2) 0.830 (13) 

Kumamoto 0.785 (12) 0.882 (11) 0.881 (11) 0.736 (21) 

Oita 0.117 (45) 0.115 (47) 0.116 (46) 0.168 (45) 

Miyazaki 0.660 (19) 0.665 (23) 0.669 (22) 0.682 (24) 

Kagoshima 0.758 (15) 0.853 (13) 0.844 (12) 0.739 (20) 

Okinawa 0.970 (4) 0.938 (4) na 0.919 (10) 

Mean 0.570 0.621 0.614 0.640 

SD 0.270 0.257 0.258 0.265 

Max 0.987 0.988 0.988 1.000 

Min 0.104 0.104 0.105 0.107 

Note) Figures indicate the mean TFEE scores and parentheses indicate rakings in each column.  

 

In comparing the four TFEEs, we observe that the rankings between 

TFEESFA,M and TFEESFA,E are similar, while those among others are not. There 

may be several explanations for why some regions experience different 

rankings between TFEESFA,O and TFEESFA,M and between TFEESFA,O and 

TFEESFA,E. Because the expected mean inefficiency terms in TFEESFA,M and 

TFEESFA,E vary across regions depending upon their individual environmental 

variables, regions located in a more advantageous environment are relatively 
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more efficient. Tottori, Shiga, and Tokyo vary widely across the ranks of the 

TFEEs. Tottori is ranked first on DEATFEE  but 10th, 21st, and 19th on 

TFEESFA,O
, TFEESFA,M

, and TFEESFA,E, respectively. Shiga is ranked 8th on 

DEATFEE  but 33rd on TFEESFA,M and 32nd on TFEESFA,E. Tokyo is ranked 1st 

on DEATFEE  but 25th on TFEESFA,O. This likely reflects whether statistical 

noise is considered. In addition, we assume that if a regional economy is far 

from average size, the estimated TFEE score is less accurate.  

Next, we examine individual TFEE scores by region. The top 

three—Yamagata, Tokyo, and Nagasaki—show similar relationships 

between TFEESFA,M and TFEESFA,E. These regions have very high TFEE 

scores (exceeding 0.95), except for Tokyo’s TFEESFA,E. This indicates that 

these regions have little room to save on energy consumption (less than 5%). 

Observing Tokyo’s results, a significant divergence exists between the 

TFEESFA,O and each of the TFEESFA,M and TFEESFA,E scores. This result may 

reflect Tokyo’s more advantageous environment for the variables included in 

TFEESFA,M and TFEESFA,E. Chiba, Okayama, and Oita are the bottom three 

regions for all TFEEs and also show similar rankings between them.7 Their 

 
7 Note that the number of regions except for TFEESFA,E is 47, but except for TFEESFA,E is 46. 
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TFEE scores for all four models are very low (<0.2), implying that energy 

saving has great potential (>80%) for all three regions.8  

 

0.5

0.6

0.7

1996 97 98 99 2000 01 02 03 04 05 06 07 08

TFEESFA,O

TFEESFA,M

TFEESFA,E

TFEEDEA

 
Note) Asterisks indicate when the various revisions of the Energy Conservation Law in Japan were enforced. 

 

Fig. 2. Transition of mean TFEEs by model 

Table 3  

Pearson (below diagonal) and Spearman rank (above diagonal) correlation 

coefficients between the TFEEs by model 

 

  TFEESFA,O TFEESFA,M TFEESFA,E TFEEDEA 

TFEESFA,O 1 0.912 0.921 0.826 

TFEESFA,M 0.931 1 0.998 0.761 

TFEESFA,E 0.937 0.999 1 0.770 

TFEEDEA 0.843 0.808 0.814 1 

 

 

                                                                                                                                           
The difference occurs because the TFEE scores cannot be calculated for Okinawa owing to a 

lack of data.  
8 We discuss improvement by regions that have very low TFEE scores in Section 5.1. 

*1999           *2003       *2006 

April           April        April  

TFEES FA, O  

TFEES FA, M  

TFEES FA, E  

TFEEDE A  
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a Histogram of TFEESFA,O
                b Histogram of TFEESFA,M 

   

c Histogram of TFEESFA,E
              d Histogram of TFEEDEA

     

 Fig. 3. Histograms of the TFEEs 

 

Table 3 shows the correlation coefficients for the four TFEEs. Pearson 

correlation coefficients are presented below the diagonal and Spearman rank 

correlation coefficients are presented above the diagonal. The four TFEEs 

are highly correlated with one another. While the correlation coefficients 

between the three SFA TFEEs are larger than 0.9, those between the SFA 

TFEEs and DEA TFEE are around 0.8. All correlations in Table 3 are 
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significant at the one percent level. 

Figs. 3a–d present histograms of the four TFEEs during 1996−2008. In the 

histogram of TFEESFA,O, two peaks, 0.5-0.6 and 0.9-1.0, are observed, and the 

frequency drops in the 0.8-0.9 range (Fig. 3a). Only the histograms of 

TFEESFA,M and TFEESFA,E
 are very similar. In these histograms as well, two 

peaks are observed in the 0.6-0.7 and 0.8-0.9 ranges (Figs. 3b and c). In the 

histogram of TFEEDEA, the peak is located in the 0.9-1.0 range (Fig. 3d). 

Finally, we examine the trend of energy efficiency in the sample period. 

Fig. 2 presents the mean TFEE indexes by model. Each asterisk represents the 

timing of enforcement of the energy conservation laws in the sample period. 

The mean TFEESFA,O, TFEESFA,M, and TFEESFA,E rise from 0.569, 0.603, and 

0.606 in 1996 to 0.571, 0.654, and 0.638 in 2008, respectively. On the other 

hand, only mean TFEEDEA shows slight deterioration from 0.631 to 0.628. In 

sum, the above results suggest that energy efficiency in Japan improved during 

the period of study. This might partly be attributed to the revisions to the 

Energy Conservation Law.  
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4.2 Simultaneous estimates of determinants of inefficiency by SFA 

Table 4 shows the estimated coefficients and determinants of inefficiency 

in the SFA TFEEs. Except for the coefficients of log regional GDP in 

TFEESFA,O and TFEESFA,E, coefficients for the log regional GDP, log labor, and 

log capital stock are significant. However, these coefficients are not directly 

interpretable. For example, the coefficient of log GDP in TFEESFA,M (0.306) 

means that a 1% increase in GDP reduces energy consumption by 0.306%. 

This finding is inconsistent with the standard production theory. We note that 

these implausible results may stem from the underlying assumption attributing 

inefficiencies regarding outputs and inputs to energy use.  

In the ML estimates, variances of v and u, σv
 2 and σu

 2, are reparameterized 

as σ2 = σv
 2 + σu

 2 and γ =σu
 2/σ 2, respectively. The parameter γ must lie between 

0 and 1 and indicates the relative contributions of u to the error components. 

The large values of γ (0.999, 0.999, and 0.994) for the three SFA TFEEs imply 

that the variance in the error components is almost explained by technical 

inefficiency. 

The trend of the time-varying inefficiency parameter, η, (Battese and 

Coelli, 1992) is also estimated in TFEESFA,O instead of the share variables. A 
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positive (negative) η implies that efficiency decreases (increases) over time. 

For TFEESFA,O, η is slightly positive (0.001) but insignificant. 

The determinants of inefficiency are simultaneously estimated for 

TFEESFA,M and TFEESFA,E using the technical inefficiency model (Battese and 

Coelli, 1995). Note that a positive (negative) coefficient of each industry’s 

share implies an inefficiency reducing (inducing) factor. The estimated 

coefficients for the shares of manufacturing and wholesale and retail trade, 

15.531 and 11.332, respectively, are highly significant, but that for the service 

industry is insignificant for TFEESFA,M. We find that the higher the shares of 

manufacturing and wholesale and retail trade, the lower the efficiency. The 

estimates of TFEESFA,E in Column 3 provide a more comprehensive analysis of 

the determinants of inefficiency. With the exception of the non-ferrous metals 

industry, which has a negative coefficient, the other four energy-intensive 

industries - chemical; iron and steel; non-metallic mineral products; and pulp, 

paper, and paper products - are highly significant in reducing efficiency. The 

wholesale and retail trade industry share continues to affect inefficiency levels, 

but its coefficient drops to a lower value in TFEESFA,E than in TFEESFA,M.   
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Table 4  

Maximum likelihood estimates of the stochastic frontier function parameters 

for the Japanese regions 

Variable 
Inefficiency of 

TFEESFA,O 

Inefficiency of 

TFEESFA,M 

Inefficiency of 

TFEESFA,E 

Constant (0) −0.530 3.491*** 2.912*** 

 (−0.458) (6.940) (6.804) 

Log regional GDP −0.069 0.306* 0.181 

 (−1.271) (1.861) (1.451) 

Log labor −0.576*** −0.971*** −0.928*** 

 (−6.410) (−7.492) (−9.109) 

Log capital stock −0.084*** −0.354*** −0.239*** 

 (−2.827) (−3.735) (−2.907) 

Constant (δ0)  −5.369*** −1.640*** 

  (−2.389) (−3.866) 

Manufacturing industry share  15.531***  

  (4.187)  

Chemical industry share   18.872*** 

   (11.527) 

Iron and steel industry share   35.694*** 

   (15.276) 

Non-ferrous metals industry share   −8.696** 

   (−2.517) 
Non-metallic mineral products    41.388*** 

industry share   (7.098) 

Pulp, paper, and paper products   24.243*** 

industry share   (4.925) 

Service activities share  −4.120 −0.785 

  (−0.610) (−0.453) 
Wholesale and retail trade  11.332** 7.359*** 

industry share  (2.504) (6.392) 

σ2 = σv
 2 + σu

 2 2.311 1.397*** 0.254*** 

 (0.986) (3.982) (9.846) 

γ = σu
 2 / σ 2 0.999*** 0.999*** 0.994*** 

 (1292.201) (1646.483) (353.468) 

μ −1.961   

 (−0.623)   

η 0.001   

 (0.956)   

Log likelihood 901.151 −287.998 −122.431 

Number of observations 611 611 598 

Number of regions  47 47 46 

Note) t-values are in parentheses. Statistical significance at the one, five, and ten percent levels are indicated by ***, 

**, and *, respectively.  
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4.3 Second-stage estimates of the determinants of inefficiency by DEA 

To compare with the simultaneous estimates of the determinants of 

inefficiency of TFEESFA,M and TFEESFA,E, we regress the inefficiency of 

TFEEDEA on industry shares using the Tobit model. As in the previous 

subsection, we exclusively use the manufacturing industry share and the five 

energy-intensive industry shares.  

Table 5 presents the results for the second-stage regression of the 

inefficiency of TFEEDEA on the environmental variables. Note that in the 

inefficiency equation of the SFA model, the inefficiency term is related to 

the efficiency score as SFATFEEit )exp( itu  for region i at time t. For 

consistency in the second-stage regression, the inefficiency term under DEA 

is obtained by the transformation as itu )TFEEln( DEA
it  for region i at 

time t. Column 1 in Table 5 presents the estimation results involving the 

manufacturing industry share, which is significantly positive in Column 1. 

The higher the manufacturing industry share, the less efficient the energy 

use. Note that a coefficient of Tobit regression is generally not comparable 

with that of another model on account of the distortion to the distribution 

due to the censored data. However, in our model, the marginal effects 
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computed are similar to the coefficients in Table 5. Related to the 

manufacturing share, the coefficients of TFEESFA,M
, 15.531, in Table 4 are 

larger than corresponding coefficients for TFEEDEA, 3.083, in Table 5. We 

hypothesize that this occurs mainly because the inefficiency terms in 

TFEESFA,M depend upon the industry shares as the environmental variables 

in Eq. (6), whereas the efficiency measurement of TFEEDEA
 does not use 

industry shares. Signs for the shares of service activities and the wholesale 

and retail trade industry are positive, but it is significant so only for the 

latter.  

Column 2 of Table 5 presents the estimation results involving the shares 

of the five energy-intensive industries. All coefficients of these industry 

shares are significant at the one percent level. Among them, energy-intensive 

industries, except the non-ferrous metals industry, are highly significant in 

reducing TFEE. Only the coefficient of the non-ferrous metals industry share 

is positive. These results are consistent with those for TFEESFA,E. Each 

(absolute) value of the coefficients for TFEEDEA
 is smaller than that of the 

corresponding coefficients for TFEESFA,E in Table 4. This can be attributed 

to the same reason as that given above.  
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Table 5  

Second-stage estimates of the determinants of inefficiency 

Variable Inefficiency of TFEEDEA 

Constant −0.872*** −0.536*** 

  (−2.746) (−2.808) 

Manufacturing industry 

share 

3.083***   

(7.478)   

Chemical industry share 
  10.571*** 

  (10.284) 

Iron and steel industry 

share 

  22.117*** 

  (8.398) 

Non-ferrous metals 

industry share 

  −10.245*** 

  (−8.142) 

Non-metallic mineral 

products industry share 

  13.114*** 

  (3.432) 

Pulp, paper, and paper 

products industry share 

  7.453*** 

  (2.831) 

Service activities share 
1.251 −0.014 

(1.105) (−0.017) 

Wholesale and retail trade 

industry share 

4.514*** 5.092*** 

(6.402) (8.712) 

Sigma 0.556*** 0.4203*** 

  (26.417) (22.440) 

Number of observations 611 598 

Number of regions  47 46 

Log likelihood −520.207 −359.426 

Note) Robust t-values are in parentheses. The statistical significance at the one, five, and ten percent levels are 

indicated by ***, **, and *, respectively.  
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5. Discussion 

5.1 Policy implications of the TFEE scores 

How should policy makers consider values of the various TFEE scores? In 

what follows, we discuss the policy implication of our TFEE results. It is ideal 

but implausible that all regions achieve scores near unity. As previously stated, 

inefficiency is successfully explained by industry shares, which cannot be 

radically changed. In addition, regions that specialize in energy-intensive 

industries supply energy-intensive goods to regions that barely produce them. 

In fact, industry composition should be taken as given to some extent.  

Policy makers in an inefficient region may target a minimum efficiency 

level that could be achieved given the region’s industry composition. This 

target can be set by comparing the regions that have similar industry 

compositions.9 For example, Oita, which ranks at or near the bottom (0.115 in 

average TFEESFA,M), is located in a rural area but has higher shares of 

manufacturing and energy-intensive industries. Oita may target other rural 

regions with similar industrial compositions that nevertheless attain better 

TFEE scores, e.g., Yamaguchi (0.148 in average TFEESFA,M) and Okayama 

 
9 As for DEA, Olesen and Petersen (2009) proposed a target efficiency DEA model that 

includes environmental variables in a one-stage model. 
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(0.125), even if these scores are only slight improvements.  

Although DEA suffers from statistical noise such as measurement errors, 

SFA does not. However, SFA needs to assume a functional form. To check 

robustness, policy makers should simultaneously examine both SFA and DEA 

efficiency indexes. 

Finally, it should be pointed out that TFEE indicates relative efficiency, 

which is derived from comparisons in each year. Thus, technological 

innovation is crucial to improving absolute efficiency, but that topic is beyond 

the scope of this study.  

 

5.2 Simultaneous estimation versus second-step estimation 

One-step estimation by SFA is seemingly more desirable than two-step 

estimation by DEA because both efficiency and its determinants are 

simultaneously derived and because the effects of environmental variables are 

appropriately incorporated into its efficiency values. However, once we focus 

on the individual effect in the conventional panel data econometric model and 

take into account any unobserved heterogeneity of regions, we are left with a 

cumbersome problem, namely, that cross-regional heterogeneity and 
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inefficiency should be differentiated. Related to TFEESFA,M and TFEESFA,E on 

the basis of Battese and Coelli (1995), cross-regional heterogeneity is 

considered by varying the mean value of the inefficiency error term depending 

upon environmental variables. Note that in these efficiency formulations, any 

unobserved time-invariant cross-regional heterogeneity is considered as 

inefficiency. 

However, in Eq. (3) of the stochastic approach, all regions have the same 

interception, β0. This value can vary by region if unobserved heterogeneity 

exists. Greene (2005a, b) proposes the true fixed-effects model and true 

random-effects model to estimate unit-specific constants. This line of research 

should be explored in energy efficiency research. However, unobserved 

heterogeneity in the parameter estimates is beyond the scope of this study, in 

which our plain panel results serve as the benchmark.  

   Note that treatments of environmental variables differ between SFA and 

DEA (Schmidt, 2011). In SFA, we must use the environmental variables to 

separate noise and inefficiency; nevertheless, they do not affect the stochastic 

frontiers. On the other hand, in DEA, we can construct frontiers without using 

environmental variables. These two approaches differ significantly with regard 
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to both efficiency measurement and estimates of the determinants of 

inefficiency. However, as shown in the previous section, the empirical results 

are similar. The SFA and DEA approaches are complementary and both should 

be employed as a robustness check.  

 

6. Concluding remarks 

This study parametrically and non-parametrically estimates the TFEE 

scores for 47 regions in Japan and the determinants of inefficiency for 

1996–2008. We extend the SFA approach employed by Zhou et al. (2012) and 

Hu (2013) and incorporate the technical inefficiency effects model proposed 

by Battese and Coelli (1995). Our two technical inefficiency effects models 

exclusively include the manufacturing industry share and the five 

energy-intensive industry shares  as environmental variables that influence 

inefficiency, the scores of which are referred to as TFEESFA,M and TFEESFA,E, 

respectively. For comparison, a stochastic TFEE without environmental 

variables, TFEESFA,O, is also computed. In addition, we use the DEA technique 

to measure non-parametric TFEE under VRS, TFEEDEA.  
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The four TFEEs are highly correlated with one another, especially 

TFEESFA,O, TFEESFA,M, and TFEESFA,E. The trend of the mean TFEEs suggests 

that energy efficiency improved during the sample period. However, there is 

considerable potential for further savings on energy consumption in the 

Japanese regions. For the bottom three regions—Chiba, Okayama, and 

Oita—the TFEE scores in all four models are very low (<0.2). This suggests 

the possibility of conserving more than 80% of energy in all three regions.  

We compare not only the TFEEs but also the determinants of inefficiency 

between SFA and DEA. In SFA, the determinants are estimated simultaneously 

with inefficiency. This simultaneous estimation suitably incorporates 

influences from environmental variables into inefficiency. This is SFA’s 

advantage over the two-step estimation in DEA. But in the SFA estimation, we 

must introduce additional assumptions regarding a functional form of the 

frontier and a distribution of inefficiency and error terms compared to DEA. 

On the other hand, the inefficiency of the DEA TFEEs is regressed on 

environmental factors via a Tobit approach. The signs of the Tobit model are 

consistent with those of the SFA estimation. For both SFA and DEA, the 

results that include the manufacturing industry share show that the higher the 
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manufacturing and wholesale and retail trade shares, the lower the energy 

efficiency. The results that include energy-intensive industry’s shares show 

that the higher shares of chemicals; iron and steel; non-metallic mineral 

products; and pulp, paper, and paper products industries, the significantly 

lower the levels of efficiency. 

Our study has two limitations. First, in our SFA model, all inefficiencies 

are attributed to energy input. This may lead to overestimating energy 

inefficiency. On this point, DEA is superior to SFA because the DEA TFEE 

takes into account both radial and non-radial slack with respect to energy 

inputs. The second limitation is that the estimates do not consider unobserved 

heterogeneity. 

Our approach can be extended in various directions. First, the 

environmental variables that affect energy efficiency should be further 

explored. It is important not only to measure efficiency but also to examine the 

determinants of inefficiency. Second, the functional form can be easily 

changed from the Cobb-Douglas function to more general functional forms 

such as a translog function. Third, undesirable outputs should be added to the 

stochastic models because energy consumption inevitably generates pollution 



 
 

43 

in the form of emissions and waste. 
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