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1 Introduction

The National Bureau of Economic Research defines the notion of business cycles as pe-

riodic but irregular up-and-down movements in economic activity, typically observed in

macroeconomic indicators such as real GDP and Industrial Production. However, its Busi-

ness Cycle Dating Committee does not enter into the causes of these recessions, which are

traditionally assumed to come from two different sources. On the one hand, recessions that

start on the supply side of the economy are known to be caused by supply shocks which

typically affect production costs. On the other hand, recessions that start on the demand

side of the economy are known as caused by demand shocks which affect economy-wide ex-

penditure levels. To discriminate between these two sources of business cycle downturns,

it is worth to emphasize that although both types of shocks cause decreases in actual

economic activity, their effects on the price level is different.

In a seminal work, Blanchard and Quah (1989) investigate if the joint behavior of U.S.

real and nominal variables is consistent with the traditional interpretation of macroeco-

nomic fluctuations, i.e. that aggregate demand (supply) shocks move output and prices in

the same (opposite) direction, finding a qualified yes as an answer. In other words, while

recessionary demand shocks tend to produce price declines, negative supply shocks tend

to increase the price level.

Recently, Aruoba and Diebold (2010) examine the dynamic interactions between real

activity and prices over the business cycle to extract information about the sources of

the contractionary shocks. For this purpose, they propose two separate state-space linear

dynamic-factor models and use the Kalman filter to produce optimal extractions of real and

nominal activities. According to these authors the coherence of their respective movements

and the business cycle chronology determined by the NBER are the key to determine

whether the recessionary shocks are demand- or supply-driven.

Relying on the widely accepted view that recessions are caused by adverse shocks of

different nature, with the corresponding mix varying substantially across recessions, Gaĺı
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(1992), Ireland (2010) and Forni and Gambetti (2010), this paper proposes a multistate

Markov-Switching Dynamic bi-Factor (MSDbF) approach that improves the methodology

used in Aruoba and Diebold (2010) in two directions, which allow us to make inference on

the type of aggregate shocks hitting the business cycle in order to uncover the sources of

recessionary episodes.

First, although the authors examine the interactions between real activity and prices,

they use separate dynamic factor models to compute the real and nominal indexes, without

taking into account the potential interrelation between these two concepts. The model in

this paper extends the previous approach by considering a unified framework where two

separate factors are extracted from the same set of real and nominal indicators. Hence,

both real and nominal indexes are endogenously determined and the interactions between

the indicators and the factors are estimated without strong restrictions.

Second, although one of the defining characteristics of the business cycle is its asymmet-

ric nature, Burns and Mitchel (1946), the authors extract the factors from linear models.

The proposed model in this paper accounts for nonlinearities by allowing the factors to

be governed by two, potentially dependent, Markov-switching processes. Therefore, this

proposal is a natural extension of the single-index Markov-switching dynamic factor model

proposed in the late nineties by Kim and Yoo (1995), Chauvet (1998) and Kim and Nelson

(1998), since it relaxes the restriction that all the indicators depend on a unique common

nonlinear dynamics.1 Accordingly, the algorithm used to estimate the model in this paper

via maximum likelihood is extended to consider two factors that depend on two separate

latent state variables, dealing with issues related to their dependence relation and the

identification of the factors.

The multistate MSDbF model is applied to study the interrelation, first, between real

activity and inflation cycles in order to assess the type of shock’s contribution to the busi-

ness cycle, and second, the interrelation between real activity and housing price cycles in

order to assess the impact of the shocks originated in the housing market on the business

cycle. On the one hand, inferences on the mix varying shock contribution across con-

1Kholodilin and Yao (2005) proposes a similar approach applied to the case of leading and coincident
indicators, by setting one state variable to be the lag of the other.
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tractionary episodes suggest that recessions occurred in 1960.II-1961.I and 2001.I-2001.IV

can be categorized as ”demand recessions”, while the ones occurred in 1969.IV-1970.IV,

1973.IV-1975.I and 1980.I-1980.III as ”supply recessions”. Furthermore, recessions during

the periods 1981.III-1982.IV and 1990.III-1991.I were given by similar amounts of both

types of contractionary shocks, being named as ”mix recessions”. The ”great recession”,

2007.IV-2009.II, which is of special interest, enters in the mix category, agreeing with Ire-

land (2010) who shows that this recession had its origins in a combination of aggregate

demand and supply disturbances.

On the other hand, the model that incorporates housing information reveals that most

of recessionary periods have been accompanied by deflationary pressures in the housing

market, the only exception occurred in the 2001’s recession, where housing prices ex-

perimented continuously increasing growth rates. The results also reveal that expansion

periods have been mainly influenced by expansionary housing demand shocks, with the

only exception occurred in the periods before and after the ”great recession”, where expan-

sionary housing supply shocks were mostly influencing such business cycle phases, making

this recession different than the rest of contractionary episodes in this respect.

The paper is structured as follows. Section 2, develops the algorithm to estimate the

proposed multistate MSDbF model, which can be straightforwardly generalized to the

case of K factors. Section 3 examines the empirical results by analyzing the dynamic

interaction between real economic activity, inflation, and housing price cycles. Section 4

concludes.

2 The model

2.1 Model’s dynamics

In this section, I combine the dynamic-factor and Markov-switching frameworks to create

a statistical model capturing both regime shifts and comovements. Specifically, the log-

level of each of the N economic indicators, yit, is modelled as composed of three stochastic

autoregressive processes. The first component corresponds to the common factor among

the real activity indicators, f bt , and refers to the business cycle conditions. The second
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component corresponds to the common factor among the nominal indicators, fpt , and

refers to the underlying price evolution. Finally, the third component corresponds to

the idiosyncratic dynamics, eit, and refers to the particular evolution of the time series.

According to previous studies (see Aruoba and Diebold, 2010, and references therein), a

stochastic trend is not included in the dynamic factor based on assumption that each of

the series studied are integrated but not cointegrated. Therefore, the empirical analysis is

undertaken using the log of the first difference of the observable indicators

yit = γbi f
b
t + γ

p
i f

p
t + eit, (1)

where γbi and γpi refer to the factor loadings.

To complete the specification of the data generating process, the factors, f bt and f
p
t ,

are assumed to be governed by two unobserved regime-switching variables, Sb
t and S

p
t ,

respectively. Hence, the dynamics of these factors can be specified as

f rt = µrSr
t
+

k∑
h=1

br

(
f rt−h − µr

S
j

t−h

)
+ ωr

t , (2)

where the errors, ωr
t , are distributed as N(0, σ2r ), and r = b, p.2 Within this framework,

one can label Sb
t = 1 as expansions and Sb

t = 2 as recessions at time t if µb1 > µb2. In

addition, one can also label Sp
t = 1 as highly inflationary regimes and Sp

t = 2 as regimes of

low inflation at time t if µp1 > µ
p
2. In these cases, the first coincident indicator is expected

to exhibit high (usually positive) growth rates in expansions and low (usually negative)

growth rates in recessions, while the second coincident indicator is expected to exhibit

higher growth rates in inflationary regimes and low growth rates periods of price stability.

In addition, each state variables is assumed to evolve according to a irreducible 2-state

Markov chains whose transition probabilities are defined by

p(Sr
t = j|Sr

t−1 = i, Sr
t−2 = h, ..., ψt−1) = p(Sr

t = j|Sr
t−1 = i) = prij , (3)

2According to Albert and Chib (1993), an AR(0) Markov-switching model, provides a useful model of
the U.S. quarterly output series, hence following Camacho and Perez-Quiros (2007), I use k = 0 in the
empirical application. In this case, the economic indicators are modelled as a recurrent sequences of shifts
between two fixed equilibria of high and low growth means.
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where r = b, p, ψt is the information set up to period t, and i, j, h = 0, 1.3

The dynamics of the idiosyncratic components are stated as

eit =
m∑

h=1

φiheit−h + εit, (4)

where εit are distributed as N(0, σ2i ), with i = 1, ..., N . Finally, all the shocks, εit and ω
r
t ,

are assumed mutually uncorrelated in cross-section and time-series dimensions.

2.2 Estimation procedure

For estimation purpose, it is convenient to cast model into state space form. More com-

pactly, the measurement equation is defined as

yt = Hβt + et, (5)

where yt is an N -vector that collects the observed indicators, and et ∼ i.i.d.N (0, R). In

addition, the expression for the transition equation is defined as

βt = µ̃Sb
t ,S

p
t
+ Fβt−1 + υt, (6)

with υt ∼ i.i.d.N (0, Q). An extensive description of what these equations look like for

the empirical model and a the detailed form of H, F , µ̃, et, υt, and the state vector βt is

presented in the Appendix.

If the regimes that determine the evolution of the two factors were observable, then the

system would be a linear Gaussian dynamic factor model and the standard Kalman filter

combined with procedures based on the likelihood functions could be applied to obtain

parameter estimates and the paths of the unobservable components. However, since the

regimes are not directly observed, rather it must be inferred from the data, the usual

Kalman filter cannot be employed. Instead, each iteration of the Kalman filter produces

a fourfold increase in the number of cases to consider and approximations to the Kalman

filter are unavoidable.

3The variances σ2

b and σ2

p are taken to be unity for identification of the model.
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Based on the approximate maximum-likelihood estimation method of Kim (1994), I

propose an algorithm to estimate the nonlinear dynamic bi-factor model. Basically, the

method contains three unified stages which are run in each iteration of the Kalman and

Hamilton filters. In the first stage, the algorithm computes one-step-ahead predictions

of the state vector and its associated mean squared error matrices by using as inputs

the joint probabilities of the Markov-switching processes and the state vector. Adding a

new set of observations, the Kalman filter updates the state vector and its mean squared

errors and evaluates the likelihood function conditional on the bivariate Markov processes.

In the second stage, the algorithm applies the Hamilton’s (1989) filter which involves an

evaluation of the likelihood function and updates the filtered probabilities. Accordingly,

the likelihood function can be maximized with respect to the model parameters. In the

third stage, the algorithm collapses the posteriors using the probability terms according

to the Kim’s (1994) approximations.4 Let us describe these three stages carefully.

Stage 1: The goal is to form a forecast of the state vector, βt, and its associated mean

squared error matrices, Pt, conditional on the information set ψt−1, and on present and

past states of each unobservable variables Sb
t and Sp

t . Assuming that the state variables

take on the values jb and jp at t, and take on the values ib and ip at t − 1, the forecasts

are computed from the prediction equations

β
(ib,ip,jb,jp)
t|t−1 = µ̃jb,jp + Fβ

(ib,ip)
t−1|t−1, (7)

P
(ib,ip,jb,jp)
t|t−1 = FP

(ib,ip)
t−1|t−1F

′ +Q, (8)

where ib, ip, jb, jp = 1, 2.

Once a new set of observations is included, the algorithm computes the forecast error

and its variance matrix that can be obtained as

η
(ib,ip,jb,jp)
t|t−1 = yt −Hβ

(ib,ip,jb,jp)
t|t−1 , (9)

f
(ib,ip,jb,jp)
t|t−1 = HP

(ib,ip,jb,jp)
t|t−1 H ′ +R. (10)

4The algorithm can straightforwardly be generalized to a Markov-switching dynamic K-factor model
where each factor is governed by M -state variables. For the empirical purposes of this paper, we focus just
on the case of a bi-factor model which largely facilitates notation.
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In addition, the conditional likelihood of the observable variables can be evaluated as a

by-product of the algorithm at each t, which allows estimation of the unknown model

parameters. The likelihood function at each t is:

f(yt|ψt−1) =
∑

ibipjbjp

f(yt|S
b
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp, ψt−1)

×p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt−1), (11)

where the first terms of these products are the conditional Gaussian

(2π)−
N
2 |f

(ib,ip,jb,jp)
t|t−1 |−

1

2 exp

[
−
1

2
η
(ib,ip,jb,jp)′
t|t−1

[
f
(ib,ip,jb,jp)
t|t−1

]−1
η
(ib,ip,jb,jp)
t|t−1

]
(12)

and the second probability terms are computed in the next stage.

Stage 2: The goal is to compute inferences about the different states by using Hamil-

ton’s nonlinear filter. Since the dependence relationship between the two Markov-switching

variables is unknown, in order to model the joint probability events associated to the

possible realizations of each unobserved state variable, I rely on the two polar cases of

dependence. First, the completely independent case, in which the joint probability event

is just the product of the individual probabilities.

p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt−1) = p(Sb

t−1 = ib, Sb
t = jb|ψt−1)×

p(Sp
t−1 = ip, S

p
t = jp|ψt−1). (13)

Second, the completely dependent or perfect synchronization case, in which both

Markov-switching variables follow exactly the same pattern, implying that there is just

one state variable governing the whole model’s dynamics, i.e. Sb
t = S

p
t = St.

p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt−1) = p(St−1 = i, St = j|ψt−1). (14)

Then, I follow the line of Bengoechea et al. (2005), who suggest that in empirical

applications such degree of dependence should be located somewhere in between these two

extreme possibilities. Hence, it can be seen as a linear combination between them, given
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by a parameter δ which provides insights about the degree of synchronization between the

state variables and that satisfies 0 ≤ δ ≤ 1.

p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt−1) = δ × p(St−1 = i, St = j|ψt−1) + (1− δ)×

p(Sb
t−1 = ib, Sb

t = jb|ψt−1)× p(Sp
t−1 = ip, S

p
t = jp|ψt−1). (15)

The terms on the right hand side of equations (13) and (14) can easily be obtained by

using the transition probabilities

p(Sr
t−1 = ir, Sr

t = jr|ψt−1) = p(Sr
t = jr|Sr

t−1 = ir)p(Sr
t−1 = ir|ψt−1) (16)

p(St−1 = i, St = j|ψt−1) = p(St = j|St−1 = i)p(St−1 = i|ψt−1), (17)

where r = d, b.

Stage 3: Using the new set of observations at the end of time t, yt, the probability

terms can be updated using Bayes rule

p(Sr
t−1 = ir, Sr

t = jr|ψt) =
f(yt, S

r
t−1 = ir, Sr

t = jr|ψt−1)

f(yt|ψt−1)
(18)

p(St−1 = i, St = j|ψt) =
f(yt, St−1 = i, St = j|ψt−1)

f(yt|ψt−1)
, (19)

where

f(yt, S
r
t−1 = ir, Sr

t = jr|ψt−1) =
∑

ir
′
jr

′ f(yt|S
r
t−1 = ir, Sr′

t−1 = ir
′

, Sr
t = jr, Sr′

t = jr
′

, ψt−1)

×p(Sr
t−1 = ir, Sr′

t−1 = ir
′

, Sr
t = jr, Sr′

t = jr
′

|ψt−1),

f(yt, St−1 = i, St = j|ψt−1) =
∑

ir
′
=jr

′ f(yt|S
r
t−1 = ir, Sr′

t−1 = ir
′

, Sr
t = jr, Sr′

t = jr
′

, ψt−1)

×p(Sr
t−1 = ir, Sr′

t−1 = ir
′

, Sr
t = jr, Sr′

t = jr
′

|ψt−1),

with r, r′ = b, p. By the law of total probability, the state probabilities become

p(Sr
t = jr|ψt) =

2∑

ir=1

p(Sr
t−1 = ir, Sr

t = jr|ψt) (20)

9



p(St = j|ψt) =
2∑

ir=1

p(St−1 = i, St = j|ψt) (21)

with r = b, p.

The last step of the Kalman filter updates the inferences of the state vector and its

variance matrix by using the updating equations

β
(ib,ip,jb,jp)
t|t = β

(ib,ip,jb,jp)
t|t−1 + P

(ib,ip,jb,jp)
t|t−1 H ′

[
f
(ib,ip,jb,jp)
t|t−1

]−1
η
(ib,ip,jb,jp)
t|t−1 , (22)

P
(ib,ip,jb,jp)
t|t =

(
I − P

(ib,ip,jb,jp)
t|t−1 H ′

[
f
(ib,ip,jb,jp)
t|t−1

]−1
H

)
P

(ib,ip,jb,jp)
t|t−1 . (23)

It is worth noting that the algorithm calculates a battery of (2ˆ2)ˆ2 different inferences of

the state vector and its mean square error matrix, corresponding to every possible value

of the vector
(
ib, ip, jb, jp

)′
. This implies that after a few iterations the number of cases

increases dramatically and the system become intractable.

To overcome this drawback, I extend the approximation to the filter suggested by

Kim (1994) that reduces the number of different terms at each time t by collapsing the

(2ˆ2)ˆ2 posteriors β
(ib,ip,jb,jp)
t|t and P

(ib,ip,jb,jp)
t|t , into (2ˆ2) posteriors β

(jb,jp)
t|t and P

(jb,jp)
t|t .

In particular, I use

β
(jb,jp)
t|t =

2∑
ib=1

2∑
ip=1

p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt)β

(ib,ip,jb,jp)
t|t

p(Sb
t = jb, S

p
t = jp|ψt)

, (24)

and

P
(jb,jp)
t|t =

1

p(Sb
t = jb, S

p
t = jp|ψt)

2∑

ip=1

p(Sb
t−1 = ib, S

p
t−1 = ip, Sb

t = jb, S
p
t = jp|ψt)

×

[
P

(ib,ip,jb,jp)
t|t +

(
β
(jb,jp)
t|t − β

(ib,ip,jb,jp)
t|t

)(
β
(jb,jp)
t|t − β

(ib,ip,jb,jp)
t|t

)′
]
. (25)

2.3 Weights

The weights implicitly used by the Kalman Filter to perform factor estimates from the

coincident variables can be calculated by measuring the effects of units changes in the lags
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of individual observations on the inference of the state vector βt|t. They are useful for

identification purposes since they give insights regarding to which are the key variables

governing the evolution of each factor. The weights can be obtained directly from the

Kalman filter matrices βt, Pt and ft. However, contrary to the standard linear frameworks,

these matrices are in this case state dependent. Since the Kalman filter is linear when

the unobservable states are known, the expected value of the Kalman matrices conditional

on the state variables is computed following the line used in Markov-switching impulse

responses, that is

Θt|t−1 =

2∑

jb=1

2∑

ib=1

2∑

jp=1

2∑

ip=1

Θ
(ib,ip,jb,jp)
t|t−1 p(Sb

t = jb, Sb
t−1 = ib, S

p
t = jp, S

p
t−1 = ip), (26)

for Θ = β, P and f. According to Stock and Watson (1991) and Banbura and Rustler

(2007), the weights are now easy to compute. Plugging the expression of the forecast

errors into the forecasting equation leads:

βt|t = βt|t−1 + Pt|t−1H
′
[
ft|t−1

]−1 [
yt −Hβt|t−1

]
. (27)

Then, replacing βt|t−1 in the right hand side of the above equation by the prediction

equation and denoting the Kalman gain by Gt|t−1 = Pt|t−1H
′
[
ft|t−1

]−1
, it can be obtained

βt|t =
[
I −Gt|t−1H

]
Fβt−1|t−1 +Gt|t−1yt +

[
I −Gt|t−1H

]
µ̃, (28)

where

µ̃ =
2∑

jb=1

2∑

jp=1

µ̃jb,jpp[S
b
t = jb, S

p
t = jp|ψt]. (29)

Since the matrix F in the transition equation of the state-space representation is time

invariant, Gt|t−1 converges to the steady-state Kalman gain, G. Under these conditions

and with some algebra Equation (28) can also be expressed as:

βt|t =M(L)yt + Jµ̃, (30)
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where L denotes the lag-operator, J = (I − (I −GH)FL)−1 (I −GH), and the elements

of the matrix of lag polynomial M(L) = (I − (I −GH)FL)−1G measure the effect of

changes in yt on the inference of βt|t, which can be decomposed into the weighted sum of

observations by letting Mj be each of these matrices

βt|t =

∞∑

j=0

Mjyt−j + Jµ̃. (31)

Accordingly, M(1) = (I − (I −GH)F )−1G, is the matrix that contains the cumulative

impacts of the individual observations in the inference of the state vector, Camacho and

Perez -Quiros (2010).

2.4 Ragged Edges

The framework can also be extended to allow for missing observations in the data by

following the approach in Mariano and Murasawa (2003). It consists in replacing missing

observations with random draws ǫt from a N(0, σ2ǫ ) that are independent from the model

parameters that do not impact on the model estimation. As a consequence, some of

the system matrices would be time-varying, remaining the elements in the measurement

equation being replaced by the following expressions:

y∗it =





yit if yit observable

ǫt otherwise
(32)

H∗
it =





Hit if yit observable

0κ otherwise
(33)

e∗it =





0 if yit observable

ǫt otherwise
(34)

R∗
iit =





0 if yit observable

σ2ǫ otherwise
(35)

where yit is the i-th element in the vector yt, Riit its variance, Hit is the i-th row of

the matrix Ht that contains κ columns, and 0κ a row vector of κ zeroes. Accordingly,
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Equation (5) would be replaced by

y∗t = H∗βt + e∗t , (36)

where e∗t ∼ i.i.d.N (0, R∗).

3 Empirical results

3.1 Data

This section presents the estimates of two multistate MSDbF models. The first model

study the interrelation between real activity cycles and inflation cycles by relying on infor-

mation of price dynamics of the overall economy. The second model focuses particularly

on disentangle shocks originated in the housing market affecting business cycle phases,

this is done by analyzing the interrelation between real activity cycles and housing price

cycles.

The indicators of real economic activity are real GDP (1959.I–2011.III), industrial

production (1959.I–2011.III), real personal income less transfers (1959.I–2011.III), real

manufacturing trading sales (1967.I–2011.III), and total non-farm labor (1959.I–2011.III).

The indicators of inflation dynamics are deflator of GDP(1959.I–2011.III), consumer price

index (1959.I–2011.III), producer price index (1959.I–2011.III), Standard and Poor’s GSCI

non-energy commodities price index (1970.I–2011.III), spot oil price (1959.I–2011.III), and

hourly compensation in the non-farm business sector (1959.I–2011.III). These variables

were taken from the Federal Reserve Bank of St. Louis and the Bureau of Economic

Analysis databases, and their selection was based following the line of Aruoba and Diebold

(2010). The indicators of housing prices are Price deflator index of new single-family houses

under construction (1975.I-2011.III), Conventional mortgage home price index (1975.I-

2011.III), Federal Housing Finance Administration (FHFA) All-transactions index (1975.I-

2011.III), FHFA Purchase-only index (1991.I-2011.III), and S&P Cash-Shiller-10-cities

home price index (1987.I-2011.III). These indicators were taken from the Federal Reserve

Bank of St. Louis, Freddie Mac and Census Bureau databases, and the selection was based
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by following Ng and Moench (2011), who analyze the US housing market dynamics with

hierarchical regional and national factors.

For all the indicators in logs, the standard tests for a unit root were unable to reject

at standard significance levels. Accordingly, the empirical analysis uses the growth rates

of the observable indicators.5 Finally, the variables are standardized to have a zero mean

and a variance equal to one before estimating the model.

3.2 Real Activity versus Inflation Cycles

In the first model to be analyzed, the vector of observed variables, yt, contains all five

indicators of real economic activity and all six indicators of inflation dynamics, which

coincides with the database used in Aruoba and Diebold (2010). Several features of the

model’s parameters estimates, reported in Table 1, deserve attention. First, the loading

factors of f bt that are associated to real activity and inflation indicators are positive and

statistically significant, with the exception of GDP deflator and hourly compensation.

However, the loading factors of f bt that are related to real activity indicators are much

higher than those related to price indicators. This result indicates that the first factor can

be interpreted as a coincident index of the US real economic activity. Second, the loading

factors of fpt that are related to price indicators in the measurement equation are positive

and statistically significant.6 But, the loading factors of fpt that are related to real activity

indicators are negative. These estimates suggest that the second factor can be interpreted

as an inflation index. Note that although the indicators has not been a priory classified

as real and nominal, the model assigns endogenously the indicators loads on each factor.

Third, the degree of dependence between the phases of the two indexes given by δ, is equal

to 0,32 and statistically significant at all levels. Since its interpretation refers to perfect

synchronization when it is equal to one and total independence when it is equal to zero,

it is suggesting that U.S. business cycles and inflation cycles coincide approximately 30%

of the time.

Moreover, as it was pointed out in Section 2, the weights that variables have on each

5Recall that we assume that the series are not cointegrated.
6Again with the only exception of hourly compensation that has a negative loading factor related to

f
p
t .
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Table 1: Maximum likelihood estimates: Real activity versus Inflation

Param. Estim. St. D. Param. Estim. St. D. Param Estim. St. D.

γb1 0.4414 0.0415 γ
p
8 0.5078 0.0580 σ5 0.2775 0.0286

γb2 0.5354 0.0407 γ
p
9 0.1897 0.0498 φ61 0.6673 0.0670

γb3 0.3410 0.0431 γ
p
10 0.3584 0.0465 φ62 0.2422 0.0669

γb4 0.2745 0.0496 γ
p
11 -0.3186 0.0493 σ6 0.4303 0.0210

γb5 0.3309 0.0276 µ
p
1 3.0261 0.3699 φ71 1.7643 0.0607

γb6 0.0438 0.0225 µ
p
2 -0.3546 0.1052 φ72 -0.7782 0.0535

γb7 0.2433 0.0394 p
p
11 0.7162 0.1484 σ7 0.0364 0.0134

γb8 0.2487 0.0468 p
p
22 0.9641 0.0217 φ81 0.0242 0.1120

γb9 0.2525 0.0493 φ11 -0.1094 0.0802 φ82 0.1962 0.1057
γb10 0.2110 0.0447 φ12 0.0393 0.0747 σ8 0.5879 0.0346
γb11 -0.0955 0.0470 σ1 0.5856 0.0326 φ91 0.0181 0.1028
µb1 0.4662 0.1036 φ21 -0.1122 0.1487 φ92 -0.0001 0.0009
µb2 -3.0542 0.3805 φ22 -0.0031 0.0083 σ9 0.8747 0.0485
pb11 0.9627 0.0221 σ2 0.3335 0.0388 φ10,1 -0.0957 0.0716
pb22 0.9581 0.0792 φ31 0.0026 0.0747 φ10,2 -0.0023 0.0034
γ
p
1 -0.2286 0.0480 φ32 0.1715 0.0722 σ10 0.8123 0.0405
γ
p
2 -0.2273 0.0452 σ3 0.6745 0.0357 φ11,1 0.0153 0.0707
γ
p
3 -0.2735 0.0468 φ41 0.4695 0.0611 φ11,2 0.0136 0.0698
γ
p
4 -0.1035 0.0456 φ42 0.0001 0.0713 σ11 0.8857 0.0438
γ
p
5 -0.1150 0.0302 σ4 0.7288 0.0396 p∗11 0.9666 0.0337
γ
p
6 0.0838 0.0228 φ51 1.1629 0.0751 p∗22 0.6622 0.1977
γ
p
7 0.5008 0.0399 φ52 -0.3381 0.0437 δ 0.3187 0.0914

Note. Superindexes p and b refer to the first (or business cycle) and the second (or price index)

factors. Subindexes in the loadings, γ, from1 to 11 refer to real GDP (1), Industrial Production

(2), Personal Income less Net Transfers (3), Real Manufacturing Trading Sales (4), Total Nonfarm

Labor (5), GDP Deflator (6), Consumer Price Index (7), Producer Price Index (8), Spot Oil Price

(9), Standard and Poor’s GSCI Non-energy Commodities Price Index (10), Hourly Compensation

in the Non-farm Business Sector (11).
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factor helps us to analyze further the extent to which indicators loads on each factor.

These weights were computed, indicating that real activity variables have the 68% of the

weight on the first factor dynamics, while price indicators have the 67% of the weight on

the second factor. This result reinforces the interpretation of the first factor as an index

of economic activity and the second factor as an index of inflation dynamics.

According to the results of the previous section, each of the eleven economic indicators

is decomposed on two unobserved common dynamic factors plus an idiosyncratic compo-

nent. The first factor is mainly driven by all five real activity indicators while the second

factor is governed by the evolution of all six price indicators.
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Chart 2. Filtered probabilities of low mean state 
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Figure 1. Real Activity versus Inflation: First Factor 

Chart 1. First factor and the CFNAI index 

Notes. In Chart 1, the solid line refers to the first factor (1959.II-2011.III) and 

the dashed line refers to the CFNAI (1967.II-2011.III). To facilitate graphing, 

both series are standardized. The probabilities plotted in Chart 2 come from the 

state variable that governs the dynamics of the first factor. Shaded areas 

correspond to recessions as documented by the NBER. 

The top chart of Figure 1 depicts the business cycle dynamics the first factor. While it

fluctuates around its unconditional mean, the broad changes of direction in the factor seem
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to mark quite well the NBER-referenced business cycles. During expansions, the value of

the factor rises up to about its estimated first-state mean of 0.46. During recessions, the

factor drastically falls to its second-state mean of about -3.05. In addition, the figure also

reveals the strong coherence of the second factor and the Chicago Fed National Activity

Index (CFNAI) which is a leading index designed to gauge overall US economic activity.7

Figure 2. Real Activity versus Inflation: Second Factor 

Chart 1. Second factor and the PCEP index 

Chart 2. Filtered probabilities of high mean state 
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Notes. In Chart 1, solid line refers to the second factor (1959.II-2011.III) and 

the dashed line refers to the PCEPI (1959.II-2011.III). To facilitate graphing, 

both series are standardized. The probabilities plotted in Chart 2 come from the 

state variable that governs the dynamics of the second factor. Shaded areas 

correspond to high inflation periods documented by the Chicago Fed. 

Finally, the bottom chart of Figure 1 displays the filtered probabilities of being in state

2 that come from the state variable that governs the evolution of the first factor of the

7To convert the monthly CFNAI into quarterly observations, the index is expressed as weighted averages

wt =
1

3
zt +

2

3
zt−1 + zt−2 +

2

3
zt−3 +

1

3
zt−4,

where wt refers to quarterly and zt to monthly.
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multistate MSDbF model, p(Sb
t = 2|ψt), along with the NBER recessions. According to

this figure, it is easy to interpret state 2 as recessions and the series plotted in this chart as

probabilities of being in recession. Therefore, one can interpret this factor an index of the

broad economic activity which is much less noisy than the individual economic indicators.

The top chart of Figure 2 plots the second factor and reveals that the evolution of

the factor does not follow as closely as the first factor the business cycle dynamics. This

index takes negative values in the sixties, it sharply increases to during the seventies and

mid-eighties and come back to negative values since then. According to the estimates

of the conditional means of the state variable that governs the evolution of the second

factor reported in Table 1, the first and last part of the sample is governed by state 1

(estimated mean of state 1 is 3.02) while the middle part of the sample is governed by

state 2 (estimated mean of state 1 is -0.35). The chart also points out that the evolution

of the second factor and PCEPI (Personal Consumption Expenditure Price Index) growth

strongly cohere. Finally, the bottom chart of Figure 2 displays the filtered probabilities of

being in state 1 that come from the state variable that governs the evolution of the second

factor, p(Sp
t = 2|ψt), along with the high inflation periods referenced by the Chicago Fed.

According to this figure, one can interpret state 1 as periods of high inflationary pressures

and the second factor a price index.

3.2.1 Inferences on Shocks

It is now widely accepted that fluctuations in economic activity are caused by a mix of

several types of shocks, e.g. demand, supply, monetary or fiscal, as shown in Forni and

Gambetti (2010) or technology and nontechnology shocks, Gaĺı (1999), which can have

simultaneous or lagged, soft or strong, short or long, positive or negative impact on it.

Some seminal attempts to study the effects of some of these shocks using structural VARs

are presented in Blanchard and Quah (1989) in which disturbances that have a temporary

effect and the ones that have a permanent effect on output fluctuations are interpreted

as demand and supply disturbances respectively. This work was extended by Gaĺı (1992)

to allow the inclusion of monetary components, finding that the four main sources of

fluctuations are money supply, money demand, investment, and aggregate supply shocks.
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However, there is some criticism about the identification strategy of shocks when struc-

tural VARs are used, as can be seen in Lippi and Reichlin (1993). They show that a very

simple modification of the underlying model can lead to significant changes in results. The

main point of their criticism is based on the fact that economic theory does not in general

provide sufficient structure to choose the most appropriate moving-average representation

to estimate the structural VAR model, carrying to the dilemma of fundamentalness of the

representation to be issued, Blanchard and Quah (1993). Hence another way to identify

shocks without imposing strong restrictions on the structure of the model and without

loss of economic intuition seems needed.

Two of the most relevant types of shocks are aggregate demand and aggregate supply

shocks since their features are of great importance to the study of business cycles. As

suggested by Aruoba and Diebold (2010), prices and quantities are related over the busi-

ness cycle, and the nature of this relationship contains information about the sources of

shocks. While adverse demand shocks lead to periods of business cycle downturns and

low inflation, adverse supply shocks lead to reductions in economic activity along with in-

flationary pressures. In an analogous way, expansionary demand shocks lead to increases

of economic activity along with prices, but expansionary supply shocks lead to periods of

business cycle upturns and low inflation.

The proposed multistate MSDbF model allows to perform inference on the four types

of shocks since the probabilities of recession, p(Sb
t = 2|ψt), can be additively decomposed

into the probability of a recession consistent with an adverse demand shock, p(Sb
t = 2, Sp

t =

2|ψt), and the probability of a recession consistent with a contractionary supply shock,

p(Sb
t = 2, Sp

t = 1|ψt). The same criterion applies for periods of expansions, that is

p(Sb
t = 1|ψt) = p(Sb

t = 1, Sp
t = 2|ψt) + p(Sb

t = 1, Sp
t = 1|ψt) (37)

p(Sb
t = 2|ψt) = p(Sb

t = 2, Sp
t = 2|ψt) + p(Sb

t = 2, Sp
t = 1|ψt). (38)

The top panel of Figure 3 plots the probabilities of recessions that are caused by de-

mand shocks, i.e., probabilities of the joint event that characterizes periods of low activity

and low prices. The figure shows that this probability tends to raise during the whole
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periods of the recessions 1960.II-1961.I and 2001.I-2001.IV, consistent with the view that

these recessions are caused by adverse demand shocks. The bottom panel of Figure 3

shows the joint filtered probabilities of stagflation, i.e., low activity and high prices. This

figure reveals that recessions in 1969.IV-1970.IV, 1973.IV-1975.I and 1980.I-1980.III show

high probabilities of decreased real activity and increased inflation, consistent with ad-

verse supply shocks as the source of these recessions. Moreover, the recessions occurred

during the periods 1981.III-1982.IV and 1990.III-1991.I, start showing high probability of

contractionary supply shocks, but they end showing high probability of contractionary de-

mand shocks. This is consistent with the view that they were caused by a mix of aggregate

a supply and demand shocks.

Chart 2. Probability of contractionary supply shock 

Notes. Chart 1 plots the joint filtered probabilities of low economic activity 

and low prices. Chart 2 plots the joint filtered probabilities of low economic 

activity and high prices. Shaded areas correspond to recessions as 

documented by the NBER. 

Chart 1. Probability of contractionary demand shock 

0

0,2

0,4

0,6

0,8

1

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 2011

0

0,2

0,4

0,6

0,8

1

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 2011

Figure 3. Real Activity versus Inflation: Contractionary Shocks 
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The analysis of the ”great recession” is of special interest. According to Aruoba and

Diebold (2010), in this recession inflation falls later than real activity, plunging only in

summer 2008, whereas real activity begins its descent in 2007. This agrees with the high

values of p(Sb
t = 2, Sp

t = 1|ψt) observed at the beginning of this recession in the bottom

panel of Figure 3. However, inflation follows the falls occurred in real activity within

approximately six months, leading to the sharp increases on the joint probability of low

real activity and prices, p(Sb
t = 2, Sp

t = 2|ψt), during the third quarter of 2008 plotted in

the top panel of Figure 3. This positive comovement of real activity and inflation during

the recent recession is consistent with the adverse demand shock documented by these

authors. Finally, since the end of 2008 prices start to increase while real activity was still

falling, as can be seen with the high values of p(Sb
t = 2, Sp

t = 1|ψt) during the last part of

the ”great recession,” suggesting that it is consistent with a mix of contractionary supply

and demand shocks.

Regarding the expansionary phases, the top panel of Figure 4 plots the probability of

high real activity and high prices, p(Sb
t = 1, Sp

t = 1|ψt), showing that some expansion-

ary periods occurred in the 1970s and early 80s were caused by expansionary demand

shocks. However, during the rest of expansionary periods in the sample, the probability

of high real activity and low prices, p(Sb
t = 1, Sp

t = 2|ψt), plotted in the bottom panel of

Figure 4, remains high, indicating that the main source of these expansions are positive

supply shocks. This result agrees with Gaĺı (1992), who attributes a large estimate of the

contribution of supply factors to short-run GNP fluctuations.

Finally, the proposed model allows quantifying the contribution of each type of shock

on the phases of the U.S. business cycle by averaging the filtered probabilities of the

joint events through each NBER-referenced recession periods. In order to obtain a better

picture of the results described so far, Table 2 reports such contributions, calculated as

αsupply
τ =

∑

τ

Pr(Sp
t = 1, Sb

t = 2)

Pr(Sb
t = 2)

(39)

αdemand
τ =

∑

τ

Pr(Sp
t = 2, Sb

t = 2)

Pr(Sb
t = 2)

, (40)
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where αsupply
τ and αdemand

τ denote the contribution of aggregate supply and demand shocks, re-

spectively, to the recession occurred during the period τ .

Chart 2. Probability of expansionary supply shock 

Notes. Chart 1 plots the joint filtered probabilities of high economic activity 

and high prices. Chart2 plots the joint filtered probabilities of high economic 

activity and low prices. Shaded areas correspond to recessions as documented 

by the NBER. 

Chart 1. Probability of expansionary demand shock 
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Figure 4. Real Activity versus Inflation: Expansionary Shocks 

The results reported in Table 2 support the heterogeneity of recessions showing a sub-

stantial mix of shocks varying across recessions and agreeing with Gaĺı (1992), Forni and

Gambetti (2010) and Ireland (2010). Specifically, contraction periods 1960.II-1961.I and

2001.I-2001.IV can be categorized as Demand recessions, while 1969.IV-1970.IV, 1973.IV-

1975.I and 1980.I-1980.III as Supply recessions. Moreover contractions during 1981.III-

1982.IV and 1990.III-1991.I can be referred as Mix recessions, since the contribution of

one of the average shocks type, supply or demand, is less than or equal to 70%.8 Regarding

8The 70% has been chosen based on the criterion of the author just for the purpose of defining an
intermediate category.
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Table 2: Contractionary shocks contributions

Recession Periods Cont. Demand Cont. Supply Rec. type

1960.II - 1961.I 0.89 0.11 Demand
1969.IV - 1970.IV 0.15 0.85 Supply
1973.IV - 1975.I 0.08 0.92 Supply
1980.I - 1980.III 0.17 0.83 Supply
1981.III - 1982.IV 0.32 0.68 Mix
1990.III - 1991.I 0.30 0.70 Mix
2001.I - 2001.IV 0.87 0.13 Demand
2007.IV - 2009.II 0.33 0.67 Mix

Note: Average contribution of Contractionary Demand and Contractionary Supply shocks through

periods of recession. If the contribution of one of the average shocks type, supply or demand, is

less than or equal to 70% they are categorized as mix recessions.

the 2007.IV-2009.II recession, two thirds of the whole period were influenced by negative

supply shocks, the beginning and the end, while one third was caused by negative demand

shocks. As a result the ”great recession” enters in the mix category.

Previous studies provide evidence that when an economy faces supply-driven recessions,

such contractionary episodes are usually companied by increases in oil prices. Also, when

the opposite occurs and the economy faces a demand-driven recession, credit conditions

usually become tighter. In order to assess the validity of such statements, the top chart

of Figure 5 plots the inferences on contractionary demand shocks, computed with the

multistate MSDbF model, along with the National Financial Conditions Credit (NFCC)

Index, computed by the Chicago Fed, and the bottom chart of the same figure plots the

inferences on contractionary supply shocks along with the Spot oil prices.

Focusing first on the ”great recession” (2007.IV-2009.II) at the beginning of the reces-

sion the inferences computed from the model suggest that contractionary supply shocks

are the ones prevailing, that is consistent with the increase in oil price, reaching growth

rates higher than 20%, while at the same time, credit conditions were ”average” accord-

ing to the NFCC index.9 In the middle of such recession, there is a significant drop in

9Positive values of the NFCC index indicate financial conditions that are tighter than on average, while
negative values indicate financial conditions that are looser than on average. Hence, average conditions
occur when the index is equal to zero.
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oil prices, reaching growth rates around -50%, while credit conditions reach the tightest

position occurred in the last two decades, this is consistent with the computed inferences

of contractionary demand shock, which rise up to one during that period. Finally, the

last part of the contractionary episode is characterized by a drop in credit conditions and

a rise in oil prices, this coincides with a high probability of contractionary supply shocks

computed from the multistate MSDbF model.

Figure 5. Contractionary Demand versus Contractionary Supply Shocks 

Chart 1. Demand-driven Recessions 

Chart 2. Supply-driven Recessions 

Notes. Chart 1 plots the National Financial Conditions Credit Index, thick 

black line, and inferences on contractionary demand shocks, thin red line. 

Chart 2 plots Spot oil price, thick black line, and inferences on contractionary 

supply shocks, thin red line. Shaded areas correspond to NBER recessions. 
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The whole 2001’s recession period is accompanied by a drop in oil prices and, although

slightly, tighter credit conditions, this coincides with the high probability of contractionary

demand shocks. During the 1990’s recession, there is a temporary rise in oil price at the

beginning, followed by an increase in credit conditions, consistent with a Mix recession,
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which starts with the supply side and ends with the demand side. This consistency with

the contractionary demand or supply shocks and oil prices or credit conditions can be

seen also in the previous recessions providing validity of the model’s assignments on the

sources of contractionary episodes.

3.3 Real Activity versus Housing Price Cycles

Particular interest has been placed in the evolution of housing market prices for the U.S.

economy. Most of related studies focus on analyzing housing price movements across

U.S. states, extracting regional and national components to assess the monetary policy

effects on each of them, as in Del Negro and Otrok (2007) and Ng and Moench (2011),

among others. However, those studies do not directly assess the relationship between the

evolution of housing prices and the phases of the business cycle.

The second model to be implemented focuses on studying the interaction between

real economic activity and housing price cycles in order to assess the impact of shocks

originated in the housing market on the business cycle. For this purpose, in this model

the vector of observed variables, yt, contain all five real economic activity indicators and all

five housing price indicators. Model’s parameters estimates reported in Table 3 indicate,

on the one hand, that loadings of f bt associated to real activity indicators are all positive

and statistically significant, while those associated to housing prices have lower magnitude,

one of them is negative and some of them are not statistically significant, giving a first

interpretation of f bt as a real activity factor. On the other hand, loadings of fpt associated to

real activity indicators are of low magnitude, most of them are not statistically significant,

with the exception of real GDP, but loadings associated to housing price indicators are all

positive and most of them statistically significant, in particular the two indicators obtained

from the Federal Housing Finance Agency are the ones showing higher influence an the

factor, giving to fpt an interpretation of housing price factor. It is worth noting that the

degree of dependence between the latent variable governing real activity and housing prices

cycles equals to 0,38 showing a higher interdependence than in the case of real activity

and inflation cycles.

The first factor extracted with the multistate MSDbF model is plotted in the top chart
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Table 3: Maximum likelihood estimates: Real actvity versus Housing prices

Param. Estim. St. D. Param. Estim. St. D. Param Estim. St. D.

γb1 0.4377 0.0447 γ
p
7 0.0765 0.0174 φ51 1.1342 0.1305

γb2 0.5614 0.0453 γ
p
8 0.1985 0.0306 φ52 -0.2873 0.1256

γb3 0.3816 0.0499 γ
p
9 0.2486 0.0228 σ5 0.2745 0.0328

γb4 0.2880 0.0582 γ
p
10 0.0355 0.0237 φ61 0.4908 0.0808

γb5 0.3236 0.0316 µ
p
1 0.7382 0.4768 φ62 0.3125 0.0798

γb6 0.0266 0.0427 µ
p
2 -5.5240 0.8558 σ6 0.6363 0.0373

γb7 0.0578 0.0250 p
p
11 0.9684 0.0226 φ71 1.0123 0.0873

γb8 -0.1428 0.0397 p
p
22 0.7573 0.1120 φ72 -0.0930 0.0881

γb9 0.0000 0.0316 φ11 -0.1526 0.1006 σ7 0.3313 0.0201
γb10 0.1743 0.0416 φ12 0.0149 0.0958 φ81 0.6533 0.0849
µb1 0.4839 0.1252 σ1 0.5560 0.0377 φ82 0.2071 0.0830
µb2 -3.3693 0.4072 φ21 0.0309 0.1628 σ8 0.4701 0.0311
pb11 0.9998 0.0020 φ22 0.0455 0.1421 φ91 1.8072 0.0510
pb22 0.9856 0.0146 σ2 0.3165 0.0429 φ92 -0.8165 0.0461
γ
p
1 0.1152 0.0321 φ31 -0.0301 0.0861 σ9 0.0377 0.0070
γ
p
2 0.0491 0.0306 φ32 0.1968 0.0838 φ10,1 1.1166 0.1215
γ
p
3 0.0394 0.0351 σ3 0.7255 0.0445 φ10,2 -0.1956 0.1231
γ
p
4 -0.0636 0.0389 φ41 0.5529 0.0898 σ10 0.3054 0.0242
γ
p
5 0.0456 0.0229 φ42 -0.0311 0.0879 p∗11 0.7316 0.2441
γ
p
6 0.0341 0.0321 σ4 0.6798 0.0414 p∗22 0.9573 0.0258

δ 0.3791 0.0858

Note. Superindexes p and b refer to the first (or business cycle) and the second (or housing prices)

factors. Subindexes in the loadings, γ, from1 to 10 refer to real GDP (1), Industrial Production

(2), Personal Income less Net Transfers (3), Real Manufacturing Trading Sales (4), Total Nonfarm

Labor (5), Price deflator index of new single-family houses under construction (6), Conventional

Mortgage Home Price Index (7), FHFA All-transactions Prices (8), FHFA Purchase-only Index

(9), S&P Case-Shiller-10-cities Home Price Index (10).
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of Figure 6, showing high similarity with the dynamics of the CFNAI and hence indicating

that it can be interpreted as a real activity factor. Its corresponding probabilities of low

mean, plotted in the bottom chart of Figure 6, closely track NBER recession, taking the

interpretation of recession probabilities.
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Chart 1. First factor and the CFNAI index 

Notes. In Chart 1, the solid line refers to the first factor (1975.II-2011.III) and 

the dashed line refers to the CFNAI (1975.II-2011.III). To facilitate graphing, 

both series are standardized. The probabilities plotted in Chart 2 come from the 

state variable that governs the dynamics of the first factor. Shaded areas 

correspond to recessions as documented by the NBER. 

Figure 6. Real Activity versus Housing Price: First Factor 

The second factor is plotted in the top chart of Figure 7, along with the National

Composite Home Price Index (NCHPI), which is based on the Cash-Shiller methodol-

ogy, covering not only information about some cities, but about the overall national U.S.

economy. Although data of NCHPI starts in 1987, the figure shows strong comovement

between both series, which lead to the interpretation of the second factor as a housing

price factor. It experiments increasing growth rates during the 90’s and the early 2000’s,

27



followed by a deep and prolonged drop until the end of the sample. An interesting feature

of the housing price factor is that during the 70’s and 80’s its dynamics are closely related

to the business cycle. This is confirmed with its associated probabilities of low mean,

plotted in the bottom panel of Figure 7, which follow a close relationship with the NBER

recessions. Therefore, these probabilities can be interpreted as an indicator of deflationary

pressures in the housing market, which are especially present during and after the ”great

recession”.

Chart 2. Filtered probabilities of high mean state 
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Notes. In Chart 1, the solid line refers to the second factor (1975.II-2011.III) 

and the dashed line refers to the National Composite Home Price Index 

(1987.II-2011.III). To facilitate graphing, both series are standardized. The 

probabilities plotted in Chart 2 come from the state variable that governs the 

dynamics of the second factor. Shaded areas correspond to NBER recessions. 

Chart 1. Second factor and the NCHPI 
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Figure 7. Real Activity versus Housing Price: Second Factor 

3.3.1 Inferences on Housing Shocks

The probabilities of recession attached to the real activity factor can be additively decom-

posed in order to disentangle contractionary episodes which are accompanied by deflation-
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ary pressures in the housing market, low prices, from recessionary periods accompanied by

high prices. By relying on the results obtained in the real activity versus inflation model

in Section 3.2 and taking into account that housing prices correspond to a particular set of

information contained in the economy’s inflation dynamics, the decomposed probabilities

obtained from the real activity versus housing price model can give insights on the im-

pact of contractionary or expansionary shocks originated in the housing market over the

business cycle. The top chart of Figure 8 plots the joint probability of low real economic

activity and low housing prices, i.e. inferences on contractionary housing demand shocks,

and the bottom chart of the same figure plots the probability of low real economic activity

and high housing prices, i.e. contractionary housing supply shocks.

Chart 2. Probability of contractionary supply shock 

Notes. Chart 1 plots the joint filtered probabilities of low economic activity 

and low housing prices. Chart2 plots the joint filtered probabilities of low 

economic activity and high housing prices. Shaded areas correspond to 

recessions as documented by the NBER. 
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Figure 8. Real Activity versus Housing Price: Contractionary Shocks 
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The results show that recessionary periods are usually accompanied by deflationary

pressures in the housing market, while expansionary periods are mainly influenced by

expansionary housing demand shocks. Specifically, during the first half of the 1980’s

recession, contractionary demand shocks originated in the housing market were mainly

influencing such period, while during the second half, contractionary housing supply shocks

were the ones prevailing.

Chart 2. Probability of expansionary supply shock 

Notes. Chart 1 plots the joint filtered probabilities of high economic activity 

and high housing prices. Chart2 plots the joint filtered probabilities of high 

economic activity and low housing prices. Shaded areas correspond to 

recessions as documented by the NBER. 

 

 

Chart 1. Probability of expansionary demand shock 
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Figure 9. Real Activity versus Housing Price:  Expansionary Shocks 

The scenario during the 1981’s recession is different, since almost the entire recession period

was influenced by contractionary housing demand shocks. A somewhat similar situation

occurs during the 1990’s recession, which is entirely influenced by the demand side of the

housing market. In the next recession, 2001’s, the scenario is actually the opposite to the

previous one, since this is the only recession, in the sample, which is not accompanied
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Table 4: Housing shocks contributions

Expansion Periods Exp. Housing Demand Exp. Housing Supply

1975.II - 1979.IV 1.00 0.00
1980.IV - 1981.II 0.99 0.01
1983.I - 1990.II 0.99 0.01
1991.II - 2000.IV 0.99 0.01
2002.I - 2007.III 0.94 0.06
2009.III - 2011.III 0.19 0.81

Recession Periods Cont. Housing Demand Cont. Housing Supply

1980.I - 1980.III 0.49 0.51
1981.III - 1982.IV 0.78 0.22
1990.III - 1991.I 0.98 0.02
2001.I - 2001.IV 0.00 1.00
2007.IV - 2009.II 0.85 0.15

Note: Average contribution of Contractionary and Expansionary Housing Demand and Supply

shocks through periods of recession based on housing prices.

by deflationary pressures in the housing market, this is consistent with the increasing

growth rates that the housing factor experimented during the early 2000’s. Finally, the

contribution of the housing market shocks to the ”great recession” is well-defined, since

such period is mainly characterized by a deep and prolonged drop in the housing price

factor, which is consistent with the high probability of contractionary housing demand

shocks. There is just a sudden and short increase in housing prices, which is represented by

the spike in the probabilities of supply shocks occurred almost at the end of the recession.

Regarding periods of expansions, in the top and bottom charts of Figure 9 are plotted

the probabilities of expansionary housing demand shocks, i.e. high real activity and high

housing prices, and expansionary housing supply shocks, i.e. high real activity and low

housing prices, respectively. The figure clearly shows that almost all expansion periods

have been free of deflationary pressures in the housing market, as can be seen in the

top chart. The only notorious exception occurs during the period surrounding the ”great

recession”, as can be seen in the bottom chart. These results suggest that the importance

of shocks originated in the housing market have played a fundamental role in the fall
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and the recovery from such recession, making it different than the rest of contractionary

episodes, in the sample, in this respect.

The average contribution of the type of housing shock affecting the business cycle are

quantified and reported in Table 4, showing that all expansionary periods come from the

supply side, with the exception of the one after the ”great recession”, and that contrac-

tionary periods have been more influenced by the housing demand side, with the exception

of the 2001’s recession, and the 1980’s recession, which was almost equally influenced by

the demand and supply side of the housing market.

4 Conclusions

By using the proposed multistate Markov-Switching Dynamic bi-Factor model, the inter-

relation between real activity and inflation cycles is assessed, providing a tool useful to

infer economic recessions and periods of high inflation simultaneously. Relying on such in-

ferences, the framework is able to categorize NBER contractionary episodes into demand,

supply and mix recessions by quantifying the type of shock contribution to each period

of time, finding the ”great recession” in the mix category, since it is initially affected by

supply, followed by demand, and finally again by supply contractionary shocks.

Moreover, by incorporating data of housing prices in the proposed model, it is assessed

the impact of shocks originated in the housing market over the business cycle. The results

show that recessionary periods are usually accompanied by deflationary pressures in the

housing market, while expansions are mainly influenced by expansionary housing demand

shocks, with only a notorious exception occurred during the period surrounding the ”great

recession” showing that housing market shocks have played a fundamental role in the fall

and the recovery from such recessionary episode.
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Appendix

It is assumed that m = 2, and k = 0. Focusing first on the real activity versus

inflation model, according to the eleven-variable model used in the empirical application,

the measurement equation, yt = Hβt + et, with et ∼ N(0, R), is
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(A.1)

where R is a matrix of zeroes. The notation of the variables is defined as: GDP is real

GDP, IND is industrial production, PIN is real personal income less transfers, SAL

is real manufacturing trading sales, PAY is total non-farm labor, DEF is deflator of

GDP, CPI is consumer price index, PPI is producer price index, GSC is Standard and

Poor’s GSCI non-energy commodities price index, OIL is spot oil price, and HCN hourly

compensation in the non-farm business sector.
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The transition equation, βt = µ̃Sb
t ,S

p
t
+ Fβt−1 + υt, with υt ∼ N(0, Q), is
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where Q is a diagonal matrix in which the entries inside the main diagonal are collected

in the vector
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For the real activity versus housing prices model, for the measurement and transi-

tion equations follow the same reasoning as in Equations (A.1) and (A.2), respectively.

The main change, apart from adjusting the appropriate dimension of the matrices for 10

observed indicators, is that vector yt, as defined in Equation (A.1), is replaced by

(∆GDPt,∆INDt,∆PINt,∆SALt,∆PAYt,∆PDIt,∆CMHt,∆ATPt,∆POIt,∆SPCt)
′

The notation of the housing price indicators is defined as: PDI is Price deflator index of

new single-family houses under construction, CMH is Conventional Mortgage Home Price

Index, ATP is FHFA All-transactions Price Index, POI is FHFA Purchase-only Index,

SPC is S&P Case-Shiller-10-cities Home Price Index.
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[14] Gaĺı, J. (1989). ”The Dynamic Effects of Aggregate Demand and Supply Distur-

bances.” American Economic Review. 79, 4, 655-673.
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[16] Gaĺı, J. (1999). ”Technology, Employment, and the Business Cycle: Do Technology

Shocks Explain Aggregate Fluctuations?” American Economic Review, 89, 1, 249-271.

[17] Hamilton, J. (1989). ”A new approach to the economic analysis of nonstationary time

series and the business cycle.” Econometrica, 57, 2, 357-384.

[18] Hamilton, J. (1983). ”Oil and the macroeconomy since world war II.” Journal of

Political Economy, 91, 2, 228-248.

[19] Harrison, P., and C. Steven (1976). ”Bayesian Forecasting.” Journal of the Royal

Statistical Society, B, 38, 205-247.

[20] Ireland, P. (2010). ”A New Keynesian Perspective on the Great Recession.” Journal

of Money, Credit and Banking, Blackwell Publishing, 43, 1, 31-54.

[21] Kholodilin, K., and V. Yao (2005). ”Measuring and predicting turning points using a

dynamic bi-factor model.” International Journal of Forecasting, 21, 3, 525-537.

[22] Kim, C. (1994). ”Dynamic linear models with Markov-switching.” Journal of Econo-

metrics, 60, 1-22, 1-22.

[23] Kim, C., and C. Nelson (1998). ”Business cycle turning points, a new coincident

index, and tests of duration dependence based on a dynamic factor model with regime

switching.” Review of Economics and Statistics, 80, 2, 188-201.

36



[24] Kim, C., and C. Nelson (1999). ”State-space models with regime switching: Classical

and gibbs-sampling approaches with applications.” MIT Press.

[25] Kim, C., and J. Yoo (1995). ”New index of coincident indicators: A multivariate

Markov switching factor model approach.” Journal of Monetary Economics, 36, 3,

607-630.

[26] Lippi M., and L. Reichlin (1993). ”The Dynamic Effects of Aggregate Demand and

Supply Disturbances: Comment.” American Economic Review, 83, 3, 644-652.

[27] Mariano, R., and Y. Murasawa (2003). ”A new coincident index of business cycles

based on monthly and quarterly series.” Journal of Applied Econometrics, 18, 4,

427-443.

[28] Ng, S., and E. Moench (2011). ”A Hierarchical Factor Analysis of US Housing Market

Dynamics.” Econometrics Journal, 14, 1, C1-C24.

[29] Stock, J., and M. Watson (1991). ”A probability model of the coincident economic

indicators.” Leading economic indicators: new approaches and forecasting records,

edited by Lahiri, H., and Moore, G., Cambridge University Press.

[30] Stock, J., and M. Watson, M (1999). ”Forecasting inflation.” Journal of Monetary

Economics, 44, 2, 293-335.

37


