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Abstract

Using a general equilibrium model with endogenous growth, I show that risk to human
capital leads to a “Value” premium in equity returns. In particular, firms with relatively
more firm-specific human capital or more positive covariance between asset growth and
returns on human capital are less valuable (and hence have greater Book-to-Market
Equity) and yield greater expected equity returns since human capital is more tied to the
fate of said firms. Thus, I reproduce some of the results of Fama and French (1996) and
show that in the model their HmL factor is a proxy for human capital risk as measured
by macroeconomic and financial variables such as the covariance between human capital
growth, or labor income growth, with the growth rate of firm assets. The model implies
relatively lower investment-to-asset ratio and lower average asset growth for Value firms
as observed in data and as argued in Zhang (2005). Furthermore, the model yields
counter-cyclical Value premium and relative Book-to-Market Equity, greater long-run
risk exposure for Value firms, and failure of the CAPM. Hence, it replicates several
results from the related literature.
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1 Introduction

“Why is relative distress a state variable of special hedging concern to investors? One
possible explanation is linked to human capital...” – Fama and French (1996)

I investigate the theoretical implications of investments in human capital for asset pricing. In

particular, I investigate the possibility for risk in human capital to explain the Value premium. There

is an extensive literature which documents the Value premium, an empirical feature of equity returns

where securities with greater Book-to-Market ratio (BE/ME)1 have greater average return. This

excess return is not explained by standard measures of risk2. Fama and French (1992) were among the

first to document the Value premium puzzle in the US stock markets. Fama and French (1996, 1997,

1998), Jagannathan, Kubota, and Takehara (1998), Davis, Fama, and French (1999), Rouwenhorst

(1999) subsequently showed that the Value premium is a pervasive feature of equity returns in both

US and international stock markets. Currently, the Value premium is simply considered a feature

of the data which one needs to take into account in asset pricing3. There is an extensive literature

that shows an empirical link between the Value premium and risk to human capital as measured

by variability in labor income. Indeed, Jagannathan and Wang (1996), Jagannathan et al. (1998),

Hansson (2004), and Santos and Veronesi (2005) show that variability in labor income explains part

of the Value premium.

However, there are few theoretical models in which the Value premium arises endogenously.

Santos and Veronesi (2005) show that variability and predictably of labor income leads to a value

premium. But, the process for the labor income is exogenous. Bansal, Dittmar and Lundblad

(2005), Kiku (2006) and Hansen, Heaton and Li (2008) show that if some securities are relatively

more exposed to long-run risk (low-frequency fluctuations in aggregate consumption), then these

securities returns will carry a Value premium. However, it is not clear why said securities are more

exposed to long-run risk. In Zhang (2005), the author produces a model which replicates the Value

premium but it relies on asymmetric adjustment costs and an exogenously specified countercyclical

price of risk. Garleanu, Kogan and Panageas (2012) obtain a Value premium by assuming that

Growth firms (firms with low BE/ME) have relatively more blueprints to produce intermediary

goods (and are hence more innovative) than Value firms (firms with high BE/ME). On the other

hand, there is already a well-established literature showing the importance of human capital for

portfolio theory and asset pricing. In addition to some of the works already mentioned, this literature

1The ratio of a firm’s total assets minus liabilities and total value of its publicly traded common equity. More
formally, the Value premium is the difference in average returns between Value (high BE/ME) firms and Growth (low
BE/ME) firms.

2Such as the “beta” coefficient from a regression of returns against the market returns (the value-weighted average
returns on traded securities).

3For a example by including the Fama and French HmL factor (the average return of securities in the top 70th
percentile of BE/ME minus that of securities from the bottom 30th percentile) in regressions. But, ignoring the reason
why the Value premium arises can lead to identification strategies that are not valid.
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includes Mayers (1972, 1973), Fama and Schwert (1977a), Landskroner (1977), Liberman (1980),

Bodie, Merton, and Samuelson (1992), Campbell (1996), Glascock and Hung (2003), Palacios-Huerta

(2003a, 2003b), and Lustig and Van Nieuwerburgh (2006). Thus, human capital risk may indeed

explain the Value premium as Fama and French (1996) argue.

“[A] negative shock to a distressed firm more likely implies a negative shock to the value
of specialized human capital... Thus, workers [may] avoid the stocks of [all] distressed
firms.”– Fama and French (1996)

The authors interpret the BE/ME as a measure of firm relative distress. Human capital is of

particular interest because agents provide it to firms as an input to their production process in return

for a wage. However, the firms do not own the agent’s human capital; hence the value of a firm

consists (mostly) of the value of its physical capital (and perhaps some intangible capital). Although

the firm does not own the agent’s human capital, if the stock of human capital (or alternatively labor

income and labor/leisure choice) is a state variable of concern to agents in the economy and there

is significant co-variation between the shocks to the human capital and the shocks to firm physical

capital (and hence the firm value and its security returns), in equilibrium human capital will have

important effects on expected returns of claims to the firm’s profits. This is the essence of the

explanation in the above quotes from Fama and French (1996).

I construct a general equilibrium model with endogenous growth and investments in both human

and physical capital using elements from the recent literature on asset pricing in a production

economy. This literature includes Jermann (1998), Hall (2000), Kogan (2001, 2003), Jones and

Manuelli (2004), Uhlig (2007), Cochrane, Longstaff and Santa-Clara (2008), Eberly and Wang (2009,

2011), Brunnermeier and Sannikov (2011), and He and Krishnamurthy (2012). I find that risk to

human capital does give rise to a Value premium endogenously; that is the firms with more human

capital risk tend to have greater average equity returns and those greater returns are not explained

by risk measures which do not take human capital into account. Thus, the CAPM4 fails when we

do not adjust for human capital returns. Furthermore, Value firms tend to have lower investment-

to-asset ratio and lower asset growth than Growth firms. Lastly, the Value firms’ equity returns are,

in the long run, more sensitive to changes in risk exposures as argued in the long-run risk models. I

begin by describing the model in Section 2. Then, I discuss the asset pricing implications in Section

3, and the numerical results in Section 4. I explore the model’s testable implications and provide

some empirical evidence in Section 5. Some of the model’s implications are contrary to those from

4The Capital Asset Pricing Model (CAPM) is a popular asset pricing model introduced by Sharpe (1964), Lintner
(1965) and Black (1972). According to the CAPM, (1) the expected return on a security is linear in the security’s
beta (the slope coefficient from a regression) with the wealth portfolio, (2) the risk of the security is entirely reflected
in the security’s beta with the wealth portfolio. I define the conditional CAPM as done in Jaganathan and Wang
(1996). The conditional CAPM allows for time-varying betas. It implies that expected returns are linear in their
conditional betas with the wealth portfolio and that their risk is measured by the aforementioned conditional betas.
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Donangelo, Eiling and Palacios (2010), Belo and Lin (2012), and Donangelo (2013). I highlight these

differences in Section 5 as well. I conclude in Section 6.

2 Model

I consider an economy populated with a continuum of identical agents with unit mass. At

date zero, each agent is endowed with human capital, H0. There are two types of firms, {A,B},

each with a continuum of firms with unit mass. Firms are endowed with physical capital Ki
0 for

i 2 {A,B}. The agents have a recursive utility preference over consumption. In particular, I use the

continuous-time formulation from Duffie and Epstein (1992a and 1992b) for the recursive preferences

from Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1989). Each agent maximizes

her value function

Vt = Et

✓
ˆ 1

t
f {Cs, Vs} ds

◆

where Ct is the agent’s consumption at date t and f {Ct, Vt} is the normalized aggregator function

defined as

f {Ct, Vt} =
�

⇢

 

C⇢
t

((1� �)Vt)
ρ

1�γ
�1

� (1� �)Vt

!

� is the subjective discount factor, � is the parameter which governs the agents’ risk aversion (RA).

The inter-temporal elasticity of substitution (IES) is associated with (1� ⇢)�1, where ⇢ < 1 so that

the IES ranges from zero to infinity. I consider three cases to verify that the results are robust,

highlight the importance of human capital for asset pricing and explore the implications of recursive

utility:

1. � = (1� ⇢) = 1: the normalized aggregator becomes

f {C, V } = � ln (C)� �V

thus preferences collapse to the simple case of log-utility

Vt = Et

✓
ˆ 1

t
e��(s�t)� ln (Cs) ds

◆

2. � 6= (1� ⇢) = 1: the normalized aggregator becomes

f {C, V } = �(1� �)V

✓

ln (C)� 1

1� �
ln ((1� �)V )

◆
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3. � > (1 � ⇢) 6= 1: the agent has a preference for earlier resolution of uncertainty. I use this
specification for all numerical results unless I say otherwise.

I derive the above implications in Section 7.1 of the Appendix. Firms of Type A use physical capital

of Type A as well as human capital in their production process. For now, I will assume that the

agent’s human capital is productive only in firms of Type A and is thus is specific to Type A firms.

There is a fair amount of evidence that human capital can be tied to (or specific to) firms5. In such

a case, an agent’s human capital receives a wage in a particular firm or industry and cannot be

readily transferred to another firm (or sector) because it is much less productive (if at all) in other

sectors. An example for this may include low-skilled labor in the manufacturing sector or assembly

lines in the automobile industry6.

Throughout the paper, I use the superscript i 2 {A,B} to denote the firm type and the subscript

j 2 J to denote individual agents or firms; where J = [0, 1] is the set of agents or firms of each type.

Type A firms output is linear7

Y A
j,t = A

�
KA

j,t +Hj,t

�

A is the constant marginal product of capital. Firms of Type B use only physical capital, KB, in

their production process

Y B
j,t = AKB

j,t

Aggregate production in this economy is simply

Yt =

ˆ

J

�
Y A
j,t + Y B

j,t

�
dj = Y A

t + Y B
t

The human and physical capital follow

dHj,t

Hj,t
= Γ ln

 

1 +
IHj,t
✓Hj,t

!

dt� �dt+ �hdZ
A
t (2.1)

dKi
j,t

Ki
j,t

= Γ ln

 

1 +
Iij,t
✓Ki

j,t

!

dt� �dt+ �dZi
t for i 2 {A,B} (2.2)

Here, Ij,t is agent or firm j’s investment in capital on date t. � is the depreciation rate. The concave

5See Parsons (1972), Jovanovic (1979b), Hashimoto (1981), Altonji and Shakotko (1987), Topel (1991), Neal (1995),
Acemoglu and Pischke (1998), Parent (2000), Cappelli (2002).

6The value of their human capital is relatively more tied to the fate of the industry. Empirically, these workers
have some influence on the asset allocation of their pension funds and hence equilibrium equity returns even if they
may not be active investors.

7Using a Cobb-Douglas production function gives rise to some difficulties which I discuss in Section 7.2 of the
Appendix.

5



function Γ ln

✓

1 +
IHj,t
✓Hj,t

◆

is from Eberly and Wang (2009) 8 and introduces an adjustment cost in

the law of motion of capital. This function encompasses two special cases. First, if Γ ⌘ �

ln(1+ δ
θ )

and ✓ ! 1, the adjustment cost goes to zero and we obtain the usual law of motion of capital with

perfectly liquid capital (dHt

Ht
=

IHt
Ht

dt� �dt+ �hdZ
A
t ) as in Cox, Ingersoll and Ross (1985) . On the

other hand, if Γ ⌘ �

ln(1+ δ
θ )

and ✓ ! 0, the law of motion collapses to the case of perfectly illiquid

capital (
dHj,t

Hj,t
= ��dt+ �hdZ

A
t ) as in Cochrane, Longstaff and Santa-Clara (2008). The parameters

Γ and ✓ govern the adjustment cost of investment in capital. For convenience, these parameters

are the same for both human and physical capital. In the context of human capital we can think

of the adjustment cost as reflecting some opportunity cost of time spent on schooling (as a means

of investing in human capital), psychic costs, or a reduction of the time spent on leisure activities

that are valuable to agents. The adjustment cost for physical capital may reflect some frictions

to capital reallocation, installation costs, or more general forms of capital illiquidity. Furthermore,

to simplify the notation and following Cox, Ingersoll and Ross (1985), Eberly and Wang (2009,

2011), Brunnermeier and Sannikov (2011) and the literature on endogenous growth I incorporate

technological shocks in the law of motion for capital. Thus Hj,t and Ki
j,t are effective units of capital

which include the productivity shocks. In Theorem 2, I show that the current formulation of the

model is equivalent to one in which the TFP shocks are modeled as separate variables.

dZt = {dZA
t , dZ

B
t }

0

is a two-dimensional standard Brownian Motion increment9 where dZA
t and

dZB
t are independent. The growth rate of human capital,

dHj,t

Hj,t
, and Type A physical capital,

dKA
j,t

KA
j,t

,

are subject to the same total factor productivity shock, dZA
t . This is for convenience. I would get

very similar results if the human capital were subject to shocks dZH
t where Corr

�
dZA

t , dZ
H
t

�
> 0.

I have made the assumption that only firms of Type A use human capital. This is to create

a stark contrast between the two types of firms where Type A firms have relatively more firm-

specific human capital or are more human capital intensive. Nonetheless, the linear production

processes make it easy to instead interpret the model as one where agents are free to work in

firms of either type10. But, the human capital of every worker in the economy covaries more with

the Type A physical capital, Cov
⇣
dH
H , dK

A

KA

⌘

> Cov
⇣
dH
H , dK

B

KB

⌘

. This is more in line with the

explanation from Fama and French (1996) that Value firms are distressed firms and the value of

human capital covaries more positively with the outcomes of such firms. I provide some evidence for

this alternative interpretation of the model in Table 8 of Section 5.2. More generally, the qualitative

8Introducing the adjustment cost in the law of motion of capital traces back to Uzawa (1969).
9I fix a probability space (Ω,F , P ) with filtration, {Ft}t�0

, generated by the two-dimensional standard Brownian
Motion, Zt. The filtration satisfies the usual conditions.

10We should note that for this alternative interpretation, without changing the current model specification, I could
instead have that the production process for firms of Type i 2 {A,B} is linear in the physical capital Ki and
introduce a third type of competitive firms that rent human capital from agents and have a production process
Y H
j,t = AHj,t. This third type of firms make zero profits so the value of these firms is zero. We can then

also think of “Value” firms as being comprised of a mix for Type A firms and the third type of firms; and
“Growth” firms as being comprised of a mix for Type B firms and the third type of firms.
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results would be the same if I allow Type B firms to also use firm-specific human capital in their

production process so long as the human capital is relatively more tied to the Type A firms. That

is, Cov
⇣
dHA

HA , dK
A

KA

⌘

> Cov
⇣
dHB

HB , dK
B

KB

⌘

. Lastly, in addition to the aggregate shocks (dZt) I could

include idiosyncratic shocks (dZH
j,t, dZ

i
j,t) but this would not affect the results since there is continuum

of agents and firms of each type. Indeed, by the Law of Large Numbers11 the idiosyncratic shocks

would integrate to zero in the aggregate. Throughout the paper, I will often refer to the relative

covariance, Cov
⇣
dH
H , dK

A

KA

⌘

> Cov
⇣
dH
H , dK

B

KB

⌘

, as relative human capital risk.

2.1 Planner’s problem

All agents and all firms of a given type are identical; thus following Eberly and Wang (2009, 2011),

the planner simply chooses the optimal aggregate investments in each type of capital to maximize

the Hamiltonian-Jacobi-Bellman (HJB) equation

0 = max
IA,IB ,IH

f {C, V } dt+ VHE (dH)

+VAE
�
dKA

�
+ VBE

�
dKB

�

+
1

2

⇣

VAA

�
dKA

�2
+ VBB

�
dKB

�2
+ VHH (dH)2 + 2VAHdHdKA

⌘

(2.3)

with

Ct = Yt �
�
IAt + IBt + IHt

�

where E(dH), E(dKA), and E(dKB), denote the drifts of H, KA, and KB, and Vl is the derivative

of the value function with respect to physical (l 2 {A,B}) or human capital (l = H).

2.1.1 Equilibrium

Definition 1. An equilibrium in the planner’s problem ( 2.3) consists of a set of adapted processes

{Ct, I
A
t , I

B
t , IHt } 8t such that

1. The processes {Ct, I
A
t , I

B
t , IHt } solve the HJB ( 2.3)

2. The resource constraint is satisfied: Ct + IAt + IBt + IHt = Yt = A
�
Ht +KA

t +KB
t

�

11I assume that the necessary technical conditions for the Law of Large Numbers to hold are satisfied. See Judd
(1985).
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3. The laws of motion for aggregate human and physical capital are satisfied:

dHt

Ht
= Γ ln

✓

1 +
IHt
✓Ht

◆

dt� �dt+ �hdZ
A
t (2.4)

dKi
t

Ki
t

= Γ ln

✓

1 +
Iit
✓Ki

t

◆

dt� �dt+ �dZi
t for i 2 {A,B} (2.5)

I derive equations (2.4)-(2.5) in Section 7.4 of the Appendix by integrating dHj,t and dKi
j,t across

all j 2 J and making use of the fact that the investment to capital ratios are independent of j

since all agents are identical and all firms of each type are identical. Despite the linear production

processes, the adjustment cost implies that the planner does not simply invest all resources in one

type of capital12.

2.1.2 Solution

Following Eberly and Wang (2009) we conjecture (and later verify) that the value function can be

written as

V
�
H +KA +KB, xA, xB

 
=

1

1� �

��
H +KA +KB

�
F
�
xA, xB

 �1��

where xi, for i 2 {A,B}, denotes the Type i share of total capital. {xA, xB} are the two state

variables of interest

xi =
Ki

H +KA +KB

The state variables follow

dxit = µx,i,tdt+ �
0

x,i,tdZt

where {µx,i,t,�x,i,t} for i 2 {A,B} are defined in Section 7.5 of the Appendix. Throughout the

paper, I use Fi and Fij for i, j 2 {A,B} to denote the first derivative and the cross derivatives of

F
�
xA, xB

 
with respect to

�
xA, xB

 
.

12See Section 7.4 of the Appendix.
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Theorem 1. Let

c =
C

H +KA +KB

◆i =
Ii

Ki

◆H =
IH

H

The solution to the planner’s problem is obtained by jointly solving the following system of partial
differential equations for c, ◆A, ◆B, ◆H and F

�
xA, xB

 

c = A� xA◆A � xB◆B � (1� xA � xB)◆H (2.6)

c = F

 

Γ
�
�xAFA � xBFB + F

�

� (◆H + ✓)

!
1

ρ�1

(2.7)

c = F

 

Γ
�
�(xA � 1)FA � xBFB + F

�

� (◆A + ✓)

!
1

ρ�1

(2.8)

c = F

 

Γ
�
�xAFA � (xB � 1)FB + F

�

� (◆B + ✓)

!
1

ρ�1

(2.9)

0 =
�

⇢

⇣ c

F

⌘⇢

+ �
�
xA, xB

 
(2.10)

+ln

✓
◆H + ✓

✓

◆

(xA + xB � 1)

✓
ΓxAFA

F
+

ΓxBFB

F
� Γ

◆

+ln

✓
◆B + ✓

✓

◆

xB
✓

�ΓxAFA

F
� Γ(xB � 1)FB

F
+ Γ

◆

+ln

✓
◆A + ✓

✓

◆

xA
✓

�Γ(xA � 1)FA

F
� ΓxBFB

F
+ Γ

◆

with boundary conditions F {1, 0} = F {0, 1} = F̄ and F {0, 0} = F̂ .

Proof. We obtain the first equation by normalizing the resource constraint. The next three equa-

tions are the first order conditions for investment in human and physical capital from the planner’s

problem. The last equation is the HJB from (Section 2.3) where we plug in the conjecture for the

value function. I provide more details as well as the definition of the function �
�
xA, xB

 
and the

boundary values {F̄ , F̂} in Section 7.6 of the Appendix. I solve the above system of equations using

high order projections as described in Judd (1998) and implemented in Kozak (2012)13.

13See Section 7.21 of the Appendix
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Corollary 1. With (1� ⇢)�1 = 1, or equivalently ⇢ = 0 , the consumption-to-total-capital ratio is
constant

c =
A+ ✓

Γ+ �
�

and the consumption-to-wealth ratio is constant

C

Hp+KAqA +KBqB
= �

Proof. We obtain these results by combining equations (2.6)-(2.9) as done in Eberly and Wang (2009)

and Kozak (2012). Thus in the case of log-utility and more generally when ⇢ = 0, the consumption

level grows at the same rate as total aggregate capital in the economy, H +KA +KB.

Theorem 2. The model with processes for effective units of capital

dHj,t

Hj,t
= Γ ln

 

1 +
IHj,t
✓Hj,t

!

dt� �dt+ �hdZ
A
t

dKi
j,t

Ki
j,t

= Γ ln

 

1 +
Iij,t
✓Ki

j,t

!

dt� �dt+ �dZi
t for i 2 {A,B}

is equivalent to one where the total factor productivity (TFP) shocks are modeled as separate variables,
ait, for i 2 {A,B}. That is, the model can be re-written as

dhj,t
hj,t

= Γ ln

 

1 +
Ihj,t

✓aAt hj,t

!

dt� �dt

dkij,t
kij,t

= Γ ln

 

1 +
Iij,t

✓aitk
i
j,t

!

dt� �dt

dait = ait�dZ
i
t for i 2 {A,B}

Yt = A
�
aAt ht + aAt k

A
t + aBt k

B
t

�

where ht =
´

J hj,tdj, kit =
´

J k
i
j,tdj and the prices of human and physical capital are respectively

defined as aAt pt and aitq
i
t. Due to scale invariance, the value function is unaffected.

Proof. I obtain this result from Brunnermeier and Sannikov (2011) and I provide the derivation

in Section 7.3 of the Appendix.
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2.2 Competitive equilibrium

In order to derive the asset pricing implications, I now decentralize the planner’s problem. The First

and Second Welfare Theorems hold in this economy since there is no externality. Therefore, the

solution to the planner’s problem coincides with the solution to the agents’ and firms’ problems.

Proposition 1. We can decentralize the planner’s problem as follows.

• Each agent is endowed with human capital H0, takes the wage rate !t, the price of human
capital pt, and her initial financial wealth W̃0 as given. The agent has access to a risk-less
bond with return rt and a risky claim on the sum of profits of all firms of each type. The risky
security prices are St = {SA

t , S
B
t }

0

; where Si
t is the price of the claim on the sum of profits of

all firms of Type i. Si
t follows

dSi
t =

�
µi
tS

i
t �Di

t

�
dt+ Si

t&
i
t · dZt for i 2 {A,B}

Stacking the above equation for i 2 {A,B} yields

dSt =
⇣

µ
0

t diag (St)�Dt

⌘

dt+

✓
SA
t &

A0

t

SB
t &

B0

t

◆

dZt

where & it is a two-dimensional vector which denotes the local volatility of security i’s return.
The agent solves

max
{Cj,t,IHj,t,Hj,t,$j,t}1t=0

E0

ˆ 1

0
f {Cj,t, Vj,t} dt s.t.:

dW̃j,t =
⇣

W̃j,trt +$j,t · W̃j,t(µt � 1rt)� Cj,t � IHj,t + !tHj,t

⌘

dt+$
0

j,t

✓
W̃j,t&

A0

t

W̃j,t&
B0

t

◆

dZt

dHj,t

Hj,t
= Γ ln

 

1 +
IHj,t
✓Hj,t

!

dt� �dt+ �hdZ
A
t

where 1 = {1, 1}
0

and $j,t = {$A
j,t,$

B
j,t}

0

is the fraction of financial wealth, W̃j,t, that the
agent invests in the risky securities {A,B}.

• Let Λt denote the state price density (SPD). Firms of types A and B (respectively) own physical
capital Ki

j for i 2 {A,B}, take the wage rate !t, and the price of physical capital qit as given
and solve

max
KA

j,t,Hj,t,IAj,t

ˆ 1

0
Λt

�
A
�
KA

j,t +Hj,t

�
� !tHj,t � IAj,t

�
dt s.t.:

dKA
j,t

KA
j,t

= Γ ln

 

1 +
IAj,t

✓KA
j,t

!

dt� �dt+ �dZA
t

max
KB

j,t,I
B
j,t

ˆ 1

0
Λt

�
AKB

j,t � IBj,t
�
dt s.t.:

dKB
j,t

KB
j,t

= Γ ln

 

1 +
IBj,t

✓KB
j,t

!

dt� �dt+ �dZB
t
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• The resource constraint and market clearing conditions are

Ct + IAt + IBt + IHt = Yt where Yt = A
�
Ht +KA

t +KB
t

�

$A
t W̃t +$B

t W̃t = SA
t + SB

t market for risky securities clears

1�$A
t �$B

t = 0 zero net bond holdings

where $i
t =
´

J $
i
j,tdj, Ct =

´

J Cj,tdj, Iit =
´

J I
i
j,tdj, IHt =

´

J I
H
j,tdj, W̃t =

´

J W̃j,tdj.

Corollary 2. The price of human and physical capital (respectively) are

p = 1
Γ

�
◆H + ✓

�
=

1

�

⇣ c

F

⌘1�⇢ �
F � xAFA � xBFB

�

qA = 1
Γ

�
◆A + ✓

�
=

1

�

⇣ c

F

⌘1�⇢ �
F � (xA � 1)FA � xBFB

�

qB = 1
Γ

�
◆B + ✓

�
=

1

�

⇣ c

F

⌘1�⇢ �
F � xAFA � (xB � 1)FB

�

Per the usual result from Q-Theory, the investment to capital ratio is linear in the marginal Q and
positive if and only if the marginal Q is above a particular threshold

◆H > 0 iff p >
✓

Γ

◆i > 0 iff qi >
✓

Γ

Proof. See Section 7.7 of the Appendix. In the equations above, I have made implicit the dependence

of {◆A, ◆B, ◆H , p, qA, qB} on the state state variables {xA, xB}. The drift and diffusion of the security

prices, {µi
t +

Di
t

Si
t

, & it} , are also endogenous functions of the state variables. We should note that

there is zero net holdings of the risk-free bond. Therefore, it is not needed in decentralizing the

planner’s problem. The two risky claims are necessary and sufficient to decentralize the planner’s

problem. Nonetheless, to maintain a structure that is fairly standard in theoretical asset pricing and

to introduce the risk-free rate (which later plays an important role), I use the latter in defining a

competitive equilibrium.

3 Asset Pricing Implications

Proposition 2. The state price density, the consumption growth and the value function follow

dΛt

Λt
= �rtdt� �Λ,tdZt with Λ0 = 1

dCt

Ct
= µc,tdt+ �c,tdZt
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dVt = �f {Ct, Vt} dt+ Vt�v,tdZt

where

rt = � + (1� ⇢)µc,t �
1

2
(⇢� 2)(⇢� 1)�2c,t �

(⇢� 1)(� + ⇢� 1)�c,t�v,t
� � 1

�
⇢(� + ⇢� 1)�2v,t

2(� � 1)2

�Λ,t = �(⇢� 1)�c,t �
✓

⇢

� � 1
+ 1

◆

�v,t

Proof. See Section 7.8 of the Appendix for a derivation of the above as well as the subsequent results.

We can write the returns on the risky securities as

dRi
t =

A� qitΓ+ ✓

qit
| {z }

dividend yield=Di
t/S

i
t

dt+
dqit
qit

+
dKi

t

Ki
t

+
dKi

t

Ki
t

⇥ dqit
qit

| {z }

capital gains=dSi
t/S

i
t

=
�
rt + �Λ,t · &

i
t

�
dt+ & it · dZt

& it =
1

qit

@qit
@xAt

�x,A,t +
1

qit

@qit
@xBt

�x,B,t + �1i for i 2 {A,B}

where Si
t = Ki

tq
i
t is the value of security i 2 {A,B} and also the value aggregate capital of Type i.

1i is a coordinate vector in R
2 ; that is 1A = {1, 0}

0

and 1B = {0, 1}
0

.

Thus the expected return on security i, (that is Et

�
dRi

t

�
) is the risk-free return minus the

covariance of the risky security with the SPD. The realized return (dRi
t) is the expected return plus

the innovation from the Brownian Motion increment with a local volatility & it . We can similarly

derive the return from human capital even though it is not explicitly traded. In particular, we can

write the return on human capital as

dRH
t =

Ht!t � IHt
Htpt

| {z }

dividend yield=DH
t /SH

t

dt+
d (Htpt)

Htpt
| {z }

capital gains=dSH
t /SH

t

=
�
rt + �Λ,t · &

H
t

�
dt+ &Ht · dZt

The return from human capital is composed of capital gains, which is due to appreciation or de-

preciation in the value of human capital (SH
t = Htpt), as well as a dividend yield. The latter is

comprised of labor income (Ht!t where !t = A) less current investment in human capital. Although

this is a continuous-time model we can think of the �IHt term as the real cost the agent faces at

time t if she decides to invest IHt in human capital. Ignoring the general equilibrium effects for

the moment, at time t + ∆t the agent’s skill level would on average be greater (Ht+∆t > Ht) and

she would receive some extra compensation for this additional skill, !t+∆t(Ht+∆t � Ht). Thus as

Palacios-Huerta (2003a) points out, this capital gains and skill premium decomposition of the re-

turn on human capital is consistent with a fully specified model of endogenous labor supply and

investment in schooling. Palacios-Huerta (2003a) shows that incorporating these two components

of returns on human capital into the CAPM significantly improves the CAPM’s ability to explain

13



the variability of observed security returns. The author finds lower pricing errors and greater R2’s

compared to what is obtained using the approach of Jaganathan and Wang (1996) 14 or Campbell

(1996)15.

The market portfolio return is the value weighted return of the traded securities

dRm
t = dRA

t

SA
t

Sm
t

+ dRB
t

SB
t

Sm
t

= µm
t dt+ &m

0

t dZt

Sm
t = SA

t + SB
t

It is also convenient to derive the return on the total wealth portfolio. The total wealth is the sum

to marketable wealth and human wealth, Sw = SA + SB
| {z }

marketable

+ SH
|{z}

non-marketable

.

dRw
t = dRA

t

SA
t

Sw
t

+ dRB
t

SB
t

Sw
t

+ dRH
t

SH
t

Sw
t

= (rt + �Λ,t · &
w
t ) dt+ &wt · dZt

Notice that the wedge between the return on the wealth portfolio and the return on the market

portfolio is due entirely to the fact that market portfolio does not include returns on human capital.

Stambaugh (1982) argues that this wedge is what causes the poor performance of the CAPM.

Jaganathan and Wang (1996) and the many other empirical research which include the returns on

human capital in a CAPM framework confirm this. In Sections 4.2.2 and 5.2, I use the CAPM to

quantify the importance of human capital for asset pricing. We should also note that this wedge

arises despite the fact that markets are dynamically complete in the model. I could easily introduce

market incompleteness by having human capital subject to shocks dZH
t and not allowing agents to

issue claims on the value of their human capital. As long as Corr
�
dZA

t , dZ
H
t

�
/dt = % > 0 all the

qualitative results are exactly the same and I conjecture that the quantitative results would not be

very different16.

Lastly, the Book-to-Market Equity (BE/ME) ratio is

Ki
t

Ki
tq

i
t

=
1

qit

This definition of the BE/ME is identical to that from Eberly and Wang (2009, 2011) as well as

Zhang (2005). This definition of the BE/ME ratio is not necessarily equivalent to that which we

observe in data. This is because in the model the firms are entirely equity-financed whereas in data

firms are both equity and debt-financed. Thus, 1/q omits the effect of liabilities. On the other

14Jaganathan and Wang (1996) use the growth in labor income as a proxy for the returns on human capital.
15Campbell (1996) uses a more general approach but still ignores endogenous labor supply and investment in human

capital.
16See Section 7.9 of the Appendix.
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hand, the Value premium is also present in data if instead of the Book-to-Market ratio we use a

different price ratio17. Therefore, the fact that 1/q is not equivalent to the Book-to-Market ratio is

not worrisome and can still reflect the Value premium at least qualitatively. Furthermore, so long

as the Modigliani-Miller Theorem holds (that is the case in the model), a firm’s value is unaffected

by its financing. Hence, if a firm of Type i finances a fraction dit of its value with debt then 1/q is

indeed the Book-to-Market ratio

BE/ME =
Assets� Liabilities

Equity
=

Ki
t � ditS

i
t/q

i
t

Si
t � ditS

i
t

=
1

qit

I could modify the model to allow for endogenous debt financing by using the approach from Brun-

nermeier and Sannikov (2011) and replace firms with managers who finance their net worth by

issuing equity and borrowing from households. However, this approach would reduce the model’s

tractability, would not affect the qualitative results much and hence would not be very beneficial.

Alternatively, I can use the approach form He and Krishnamurthy (2012) and assume that the house-

holds hold an amount diSi
t of debt from firms of Type i which pays the risk-free rate. In Section

7.10 of the appendix, I show that with this assumption, the BE/ME ratio would indeed be 1/qi and

the Type A security expected excess return would not be affected much

E
⇣

dR̃A
t � dR̃B

t

⌘

⇡ �0.0005dt+ E
�
dRA

t � dRB
t

�

However, this approach makes the share of debt (or the leverage), di, exogenous. It also imposes

that the firms debt pays the risk-free return. Lastly, I could instead introduce a risk-less capital

(as in Kozak; 2012) which is owned by the two types of firms. The firms could then issue claims to

this risk-less capital in the form of a risky bond18. However, this introduces one more state variable

to the model. Consequently, I do not allow for net bond holdings nor do I allow for any difference

between firms of Types A and B other than the Type A relative human capital risk. Allowing for

some heterogeneity would strengthen the results since in data Value firms are more volatile than

Growth firms. I instead focus entirely on the implications of human capital risk.

4 Results

4.1 Calibration, model fit and descriptive statistics

Table 1 shows the calibrated and assumed parameters of the model. All parameters and moments

are in annual units. I set the subjective discount rate to (�) to 7% and for simplicity, I set the

depreciation rate to zero19 (� = 0), restrict the adjustment cost parameters with Γ = ✓, equalize the

17For example the Value premium is also present if we sort securities by their Price-to-Earnings ratio.
18The bond would be risky because of discount rate risk.
19With δ = 0, we need Γ = θ to guarantee that the expected growth rate of capital as a function of the investment-
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local volatilities of capital (� = �h) and fix the investment-to-capital ratio to 2% in an economy with

one capital type20. Let, c⇤ and F ⇤ denote the consumption-to-total-capital ratio and the normalized

value function in an economy with one capital type. Hence, c⇤ and F ⇤ are scalars and because � = �h

we have F ⇤ = F̄ = F̂ . I search for a combination of {A, c⇤, F ⇤, �, ✓, ⇢,�} over the corresponding

seven-dimensional space to satisfy seven conditions: 1) a risk-free rate of 0.90%, 2) a volatility of

returns on the market portfolio of 16%, and the next five equations from an economy with one type

of capital; 3) an expected output growth of 2%, 4) a consumption-to-output ratio of 90%, 5) the

resource constraint, 6) the first-order condition for investment, 7) the HJB21. A consumption-to-

output ratio of 90% in a one-capital economy (C/Y = c⇤/A = 0.90) yields a consumption-to-output

ratio of 86% on average in the full model. In US data, C/Y is 67% but the government expenditures-

to-output ratio is 27%. Since there is no government in the model, for the resource constraint to be

satisfied I allow for a C/Y that is greater than that in data. In the model, the total investment-

to-output ratio ((Y � C)/Y ) is 14% and is also somewhat greater than it is in data (11%). There

is substantial controversy about whether the the parameter which governs the IES is larger22 or

smaller23 than one. Following the more recent literature, I find that an implied IES parameter

greater than one is needed to better match some moments of the data ((1� ⇢)�1 = 2.0025). All the

qualitative results hold with different values for the parameters as long as � > 0 and Γ = ✓ < 124.

Variable Name/Calculation Value

A Marginal Product of Capital 20.63%
� Subjective Discount Rate 7.00%

c⇤ Consumption
Capital

in a one-capital economy 18.63%

� Depreciation 0.00%
F ⇤ Normalized Value Function, F , in a one-capital economy 0.0791
� Risk Aversion Parameter 3.97

Γ = ✓ Adjustment Cost Parameters 2.73%
⇢ Implied IES Parameter = 2.0025 0.5006

� = �h Standard deviation of Capital Growth 21.27%

Table 1: Parameters of the model

In Figure 1, I plot the policy functions from the planner’s problem. I henceforth label firms of

to-capital ratio is a concave function which always lies below the 45-degree line. That is, for each positive unit of
investment the expected capital growth increases by less than one unit.

20An economy with one capital type is a boundary case of the model with xA = 1 (the case with only Type A
physical capital), or xB = 1 (the case with only Type B physical capital), or 1 � xA � xB = 1 (the case with only
human capital). With σ = σh, these boundary cases have the same solution.

21I fix the state variables at their average value and then look for the seven unknown scalars {A, c⇤, F ⇤, γ, θ, ρ,σ}
that solve the seven non-linear equations described above. Equations 4) and 5) determine A and c⇤. Equations 1), 6)
and 7) determine F ⇤, γ, and ρ. Equation 3) determines θ and equation 2) determines σ.

22Attanasio and Vissing-Jørgensen (2003), Bansal and Yaron (2004), Hansen, Heaton and Li (2008), Van Binsbergen
et al. (2010), Constantinides and Ghosh (2013)

23Hansen and Singleton (1982), Hall (1988)
24As Γ = θ ! 1 the adjustment cost goes to zero. In Section 7.11 of the Appendix I show that without adjustment

cost the expected excess return of Security A is zero, E(dRA)� E(dRB) = 0
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Type A, Value Firms, and firms of Type B , Growth firms. Since the state variables are xA 2 [0, 1]

and xB 2 [0, 1], the state space is triangular. The investment-to-physical-capital ratio for Value firms

(◆A) and the investment-to-human-capital ratio (◆H) are identical because the production processes

are linear, � = �h, and the productivity shocks to human capital and Value firms physical capital

are perfectly correlated. Over much of the state space the investment to capital ratio is larger for

Growth firms; that is ◆A < ◆B. The model allows for negative investments however due to the choice

of parameters the investment-to-capital ratios are positive over the entire state space.

Figure 1: Plot of the three policy functions: ιA
�
xA, xB

 
, ιB

�
xA, xB

 
, ιH

�
xA, xB

 
. With the parameter choice

σ = σh we have ιA = ιH .

To calculate the empirical returns for the Value and Growth firms I merge monthly returns data

from CRSP with fundamentals data from Compustat for the years 1963-2012. I restrict the data

to securities traded on the NYSE, NASDAQ, and the AMEX. Following the approach of Fama and

French (1993, 1996), I form Value and Growth portfolios using the top thirtieth and the bottom

thirtieth percentiles of BE/ME distributions with the BE/ME cut-offs from the Kenneth R. French

Data Library25. BE is the sum of book equity, deferred taxes, and investment tax credit, minus the

book value of preferred stock for fiscal year t� 1. ME is the value of common equity at the end of

year t� 1. I then calculate returns from July of year t through June of year t+1. The mean return

shown in Table 2 for the Value and Growth portfolios is the annualized26 average monthly returns.

The market return is the value-weighted sum of returns on the traded securities. I adjust the security

returns for inflation using the GDP deflator27. The model is not be able to simultaneously match

the volatility of the market portfolio returns and the volatility of output. That is because there

is no exogenous variation to increase the volatility of the Tobin Q’s independently of the volatility

of output. So, the local volatility of capital (�) determines both the volatility of output and the

25The empirical results which follow are similar if we exclude financial sector securities from the portfolios.
26I multiply the average monthly return by twelve and the standard deviation by the square-root of twelve.
27I use a two-year rolling geometric average of the GDP deflator. I do so because in constructing BE/ME and

Value-Growth portfolios returns, I use the BE and ME from the previous year (t� 1).
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Moments Data/Targets (%) Model (%)

Mean Consumption Growth 2.00 1.91
Mean Output Growth⇤ 2.00 1.92
Mean Risk-free Return⇤ 0.90 0.22

Standard Deviation of Risk-free Return 2.00 0.68
Mean Return of Value Stocks 10.32 10.85

Standard Deviation of Value Stocks 16.73 18.78
Sharpe Ratio of Value Stocks 56.31 56.60

Mean Return of Growth Stocks 6.24 8.79
Standard Deviation of Growth Stocks 16.62 17.11

Sharpe Ratio of Growth Stocks 32.13 50.09
Mean Value premium 4.08 [2.06, 3.12]

Sharpe Ratio of Value premium 38.50 10.80
Mean Market Return 7.16 10.09

Standard Deviation of Market Return⇤ 15.45 15.83

Table 2: The parameters are set to to match some annual moments. The moments with ⇤ are some of the moments
that I target in the calibration. To obtain the model’s moments, I simulate 25 years of observations 10,000 times
with a monthly frequency. I then take the sample mean (or standard deviation) over time and then its average across
simulations. All values are in annual units.

volatility of market returns. The above calibration yields a value of about 16% for the volatility

of consumption and output growth since � ⇡ 21%. Again, that is because the model is a simple

model with three identical risky sectors28 and no exogenous discount rate shocks. I obtain similar

results for key moments of the model (e.g: the Value premium) if instead of targeting the volatility

of the market portfolio returns I target the volatility of output. This alternative calibration yields

a volatility of consumption of 4% but the volatility of the market portfolio returns is only 4%. I

provide the model’s moments from this alternative calibration in Section 7.12 of the Appendix.

For all the results that will follow, I use the first calibration as described above (where I target the

volatility of the market portfolio returns) since I am more interested in the asset pricing implications

of the model and since the results are very similar with the alternative calibration (where I target

the volatility of output).

I generate ten thousand simulations of the model each with twenty-five years of observation29.

Using each time series I calculate the moment of interest and then take the average across simulations.

The model’s estimates for the average output and consumption growth are 1.9% and are close their

28However, if I allow for additional types of capital with no risk or negatively correlated shocks, I could potentially
match both the volatility of output and the volatility of returns. Alternatively, I couldallow for heterogeneity between
firms or agents. Such heterogeneity has been shown to help simultaneously match financial and macroeconomic
moments (Constantinides and Duffie; 1996, Panageas and Garleanu; 2010, Gomes and Michaelides; 2008). I could
also allow for liquidity shocks or discount rate shocks by making θ or γ (respectively) stochastic. This would increase
the volatility of the SPD and the volatility of returns without affecting the volatility of output since the latter is a
weighted average sum of the volatilities of effective capital.

29I use a monthly frequency. The results are almost identical when I use a frequency of one hundredth of a year (or
roughly four days).
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2.0% targeted values. The model yields a Value premium of 2.06% to 3.12%; that is fifty to seventy

percent of the observed value premium, 4.08%. Recall that I did not target the Value premium in

the calibration. But, if I so desired, I could have targeted (and exactly matched) the Value premium.

Indeed, by having �h 6= � and/or by making the human capital adjustment cost parameters different

from those for physical capital I would obtain additional degrees of freedom to match more moments.

Furthermore, the empirical Value premium is calculated as the difference in average return in the top

and bottom thirtieth percentiles of BE/ME. Using the fiftieth percentile would yield an empirical

Value premium closer to 2%. The lower bound in the model Value premium is a conservative estimate

from the difference in mean returns, E(dRA)�E(dRB), and the upper bound is calculated as done

in the empirical literature by relabeling the Value and Growth stock each year using the BE/ME

(1/q). We should also note that in the model I focus on firms and not necessarily on industries or

sectors. Nonetheless, in the model we could think of industries or sectors as containing firms of both

Type A and B. Thus, the Value premium would also be present within industries as we observe in

data.

The model matches the mean risk-free rate, the market premium, the returns and volatility of

the Value, Growth and market portfolio fairly well. More importantly, the model yields a greater

Sharpe Ratio for Value firms (0.57) than Growth firms (0.50); as we indeed observe in data. The

model’s volatility of the risk-free rate is much smaller than observed in data. However, this is not

very worrisome since usually asset pricing models yield high values for the volatility of the risk-free

rate and struggle to reduce this volatility. The Sharpe ratio of the Value premium in the model

(0.11) is somewhat lower than that in data (0.39). That is because, in the model the covariance of

the two risky securities is only slightly positive. In Section 7.20 of the Appendix, I propose a possible

extension of the model which would increase the model’s fit30.The model also yields greater average

dividend yields for Value stocks (0.09) than Growth stocks (0.07) as observed in data. However,

the model does not match the level of dividend yields since this moment is not targeted in the

calibration.

By pooling all observations across time and simulations, I produce plots of the distributions

for several key variables of the model in Figures 2a-2b. Thus, in equilibrium human capital and

physical capital of both types co-exists. In particular, on average the shares total capital comprised

by physical capital of Type i (that is xi) are E( KA

H+KA+KB ) = E(xA) = 0.313 and E( KB

H+KA+KB ) =

E(xB) = 0.374; hence E( H
H+KA+KB ) = 1 � E(xA) � E(xB) = 0.313. From Figure 5b we also find

that the distribution for the value of human capital, pt, and the value of physical capital of Type

A, qAt , are identical (up to minor numerical errors). That is because the Marginal Q’s are linear in

the investment-to-capital ratios and ◆A = ◆H due to the parameter restrictions (discussed earlier).

30In particular, by making the parameter which governs the risk aversion (γt) or the adjustment cost parameter
(Γt = θt) stochastic we would introduce additional covariation between the risky securities without affecting the Value
premium much. This would increase the Sharpe ratio of the Value premium while also providing a way of increasing
the volatility of returns independently from the volatility of output. Thus in this extension of the model we could
potentially match both the volatility of output and the volatility of market returns.
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In Figures 2c-2d, I plot the distribution of the state variables across simulations at five different

x
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Figure 2: I pool all observations (across time and simulations) from the model for {xA, xB , p, qA, qB} to produce the
distributions in Figures 2a-2b. In Figures 2c-2d, I plot the distribution of the state variables across simulations at five
different points in time.

points in time. These plots confirm that twenty-five years are sufficient for the distribution of state

variables to converge to a stationary distribution. Indeed, the distributions of the state variables

across simulations are very similar at years fifteen, twenty and twenty-five.

Notice that in the model other than the relative human capital risk, the two firm types are

identical. Thus, all the results are driven by the fact that human capital is more tied to one

firm type than the other. More specifically, Cov
⇣
dH
H , dK

A

KA

⌘

> Cov
⇣
dH
H , dK

B

KB

⌘

along with positive

adjustment costs give rise to the Value premium. Allowing for some modest heterogeneity31, for

example by making V ol
⇣
dKA

KA

⌘

> V ol
⇣
dKB

KB

⌘

or making the adjustment cost greater for Value firms

(ΓA = ✓A < ΓB = ✓B) as implied by Zhang (2005), would amplify the effect of the human capital

risk. To focus entirely on the effect of human capital on asset pricing I do not allow for such firm

heterogeneity.

31This is indeed observed in data.
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4.2 Results and dynamics

4.2.1 Reproducing and explaining the results from Fama and French (1996)

The Value premium is

Et

�
dRA

t

�
� Et

�
dRB

t

�
= Covt

✓

�dΛt

Λt
,
dqAt
qAt

◆

� Covt

✓

�dΛt

Λt
,
dqBt
qBt

◆

+ �Λ,t · {1,�1}
0

�dt

In equilibrium the instantaneous covariance between the SPD and the price of physical capital of

Value firms (Type A) is on average smaller than that between the SPD and the price of phys-

ical capital of Growth firms (Type B). In particular, �Λ,t · {1,�1}
0

�dt > Covt

⇣

�dΛt

Λt
,
dqAt
qAt

⌘

�

Covt

⇣

�dΛt

Λt
,
dqBt
qBt

⌘

> 0 on average. Negative shocks to Value firms are costlier to the economy since

they coincide with negative shocks to the human capital; hence the price of risk is larger for the

shock dZA than the shock dZB (that is, �
(1)
Λ,t > �

(2)
Λ,t) and hence the premium of security A relative

to security B (as shown in Table 2). Notice that with log-utility, the price of risk is �Λ,t = �c,t

therefore the Value stock returns covary more with consumption growth than the returns on Growth

stock do (see Appendix Section 7.16.3). This also holds in the general model (with � > (1�⇢) 6= 1).

As a result, the model reproduces the long-run risk explanations for the Value premium. More

specifically, in Section 7.16 of the Appendix I follow Hansen (2011) and Borovicka et al. (2011) and

produce risk-price elasticities for securities A and B. That is

⇡i {x, t} =
1

t

d

d✏
ln
�
E
�
Si
t⇣t {✏} |x0 = x

� 
�
�
�
✏=0

� 1

t

d

d✏
ln
�
E
�
ΛtS

i
t⇣t {✏} |x0 = x

� 
�
�
�
✏=0

for i 2 {A,B}

where x is the vector of state variables (x = {xA, xB}) and ⇣t {✏} is a perturbation process

ln (⇣t {✏}) =

ˆ t

0
�1

2
✏2↵ · ↵ds+

ˆ t

0
✏↵ · dZs and ↵ =

⇢
1p
2
,
1p
2

�

The risk-price elasticity, ⇡i {x, t}, captures the sensitivity of a date t expected return on security

i to a date zero change in risk exposure. I quantify the long-run risk as ⇡i {x,1} and find that

⇡A {x̄,1} > ⇡B {x̄,1}, where x̄ is the mean of the vector of state variables. Thus, Value stocks

(security A) are (is) relatively more exposed to long-run risk. In the model, this is entirely due the

fact that human capital is more tied to firms of Type A than Type B. Of course, it is tautological

to say that the expected returns of Security A is larger than that of Security B because the returns

on Security A covary more negatively with the SPD. However, that this is entirely driven by the

human capital risk that is more tied to Security A is interesting.

The fact that negative dZA shocks are more costly than dZB shocks also implies that physical

capital of Value firms are less valuable than that of Growth firms (on average qA < qB and hence
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1
qA

> 1
qB

). Thus, the model yields the result from Fama and French (1996). In particular, Table

BE/ME Quintiles

Low 2 3 4 High

Expected Return
E(dRt)

6.36 6.84 8.40 9.12 10.44

(a) This table uses data from CRSP and
Compustat.

BE/ME (1q ) Quintiles

Low 2 3 4 High

Expected Return
E(dRt)

6.72 8.81 10.23 11.29 11.97

(b) This table is constructed using data from
the simulations of the model.

BE/ME Mean (%) Std. Dev.(%) Sharpe Ratio

E (dRt) � (dRt)
E(dRt�rt)
�(dRt)

Value Stocks 1.38 10.32 16.73 0.56
Growth Stocks 0.31 6.24 16.62 0.32

(c) This table uses data from CRSP and Compustat. It shows the (annualized) average
monthly returns, standard deviations and Sharpe Ratios for Value and Growth Stocks.

Marginal Q BE/ME Mean (%) Std. Dev. (%) Sharpe Ratio (%)

E
�
qit
�

E
�
1/qit

�
E
�
dRi

t

�
E|& it |

E(dRi
t�rt)

E|&it |

Security A 2.02 0.51 10.85 18.78 0.57
Security B 2.58 0.41 8.79 17.11 0.50

(d) In this panel I report the corresponding objects from the model

Table 3: Table 3a reproduces the results from Table 1 of Fama and French (1996). It shows the (annualized) average
monthly returns and standard deviations of securities by BE/ME quintiles. I calculate the data from Table 3b as
follows. At each point in time I pool the expected returns on Securities A and B across all simulations. I then group
these returns into five quintiles of Book-to-Market Equity, 1

qt
. I then calculate the mean of the expected return in

each quintile and then take the average over time.

3a reproduces the results from Fama and French (1996) and highlights the positive (and monotone)

relationship between equity returns and their BE/ME. Securities with greater BE/ME have greater

average returns. This relationship holds if we consider the Sharpe ratios32 of Value and Growth

stocks. Indeed, Table 3c shows that Value stocks have a more attractive risk-return profile, as

measured by the Sharpe Ratio, compared to Growth Stocks. This is the essence of the Value

premium puzzle. In Table 3d, I provide the model’s equivalent results. The Value firms (Type

A) have greater expected returns (10.85%), BE/ME (0.51) and Sharpe Ratio (0.57) compared to

Growth firms (Type B).

I could reproduce Table 3a by introducing additional types of physical capital with different

degrees of covariance with human capital growth. This would require additional state variables.

32A measure of risk adjusted returns which we obtain by dividing the excess return on the risk-free returns by the
standard deviation of stock returns.
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Instead, in Table 3b, at each point in time I pool the expected returns on Securities A and B across

all simulations. I then group these returns into five quintiles of Book-to-Market Equity, 1
qt

. Lastly,

I calculate the mean of the expected return in each quintile and then take the average over time.

I find a similar positive relationship between expected returns and the BE/ME ratio. Figures 3a

and 4a further illustrates this result. This pattern is due to the fact that Security A tends to have

greater expected return and BE/ME33 than Security B and the fact that this expected excess return,

Et

�
dRA

t

�
� Et

�
dRB

t

�
, is increasing in the Security A’s excess BE/ME, 1

qAt
� 1

qBt
. Figures 3b and

4b confirm this result. Furthermore, Figures 4a and 4b shows that the model also reproduces the

following two results from Zhang (2005):

1. Industry equity returns are increasing in the industry Book-to-Market ratio.

2. The Value spread, the relative Book-to-Market ratio, is a powerful predictor of the future
Value premium, Et(dR

A
t )� Et(dR

B
t ).

1 2 3 4 5

7

8

9

10

11

12

Quantiles of Book!Market :
1

q

! Return : Et"dR#

(a)

1 2 3 4 5

!2

0

2

4

6

Quantiles of Relative Book!Market :
1

qA
!

1

qB

Excess Return ""#: Et"dRA#!Et"dRB#

(b)

Figure 3: I calculate the data in the above figures as follows. At each point in time I pool the expected returns (excess
returns) across all simulations. I then group these returns into five quintiles of Book-to-Market Equity, 1

qt
(excess

Book-to-Market Equity, 1

qA
t

� 1

qB
t

). I then calculate the mean of the expected returns (expected excess return) in each

quintile and then take the average over time.

33Instead of pooling both security returns, I can do this exercise for securities A and B separately. The positive
relationship between BE/ME and expected returns is present but much weaker since the spread of expected return
and BE/ME are smaller.
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(a) (b)

Figure 4: Here, I show a scatter plot of the expected return (expected excess return) against the BE/ME ratio
(relative BE/ME ratio) for a given simulation. The dark shading shows where the observations are relatively more
concentrated.

4.2.2 The conditional CAPM

With log-utility (� = (1 � ⇢) = 1) the price of risk is �Λ,t = �c,t. Furthermore, from Corollary

1 since the consumption-to-total-wealth ratio is constant we can easily show that �Λ,t = �c,t = &wt .

This implies that the conditional CAPM holds. In particular

Et

�
dRi

t

�
=

�
rt + &wt · & it

�
dt

) Et

�
dRi

t

�
=

�
rt + &wt .&

w
t ⇥ �i,w

�
dt (4.1)

�i,w =
covt(dR

i
t, dR

w
t )

&wt .&
w
t

=
& it · &

w
t

&wt .&
w
t

(4.2)

Thus, with log-utility the expected return on the traded securities is linear in their beta with the

total wealth portfolio. In particular, if we regress the expected excess return of Security A against

that security’s excess beta on the total wealth portfolio scaled by the volatility of the wealth port-

folio (&wt .&
w
t (�

A,w
t � �

B,w
t )) we obtain a regression slope equal to one and an intercept that is not

statistically different from zero. With log-utility this is purely mechanical. In column (1) of the first

panel of Table 4, I show the results from running this regression. I calculate the regression coeffi-

cients and their standard errors (not shown) by taking the average and the standard deviation of
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Conditional CAPM Regressions

(1) Wealth Portfolio: Et

�
dRA

t

�
� Et

�
dRB

t

�
= α0

|{z}

Pricing Error

+ α1
|{z}

Slope

⇥ ςwt .ςwt

⇣

β
A,w
t � β

B,w
t

⌘

dt

(2) Market Portfolio: Et

�
dRA

t

�
� Et

�
dRB

t

�
= α0

|{z}

Pricing Error

+ α1
|{z}

Slope

⇥ ςmt .ςmt

⇣

β
A,m
t � β

B,m
t

⌘

dt

� = (1� ⇢) = 1 � 6= (1� ⇢) = 1 � > (1� ⇢) 6= 1

↵0 (%)
t-stat

↵1

t-stat

R2

t-stat

(1) (2) Diff.

0.00 1.1 �1.1
0.38 290. �290.

1. 0.97 0.04
1.3⇥ 1016 290. 1.3⇥ 1016

1. 1. 0.00
7000. 330. 1.5

(1) (2) Diff.

�0.12 1.4 �1.5
�6.9 110. �120.

3. 3. 0.01
790. 170. 620.

1. 0.97 0.02
330. 31. 0.78

(1) (2) Diff.

�0.06 1.9 �2.
�2.9 100. �110.

3.4 0.09 3.3
370. 120. 260.

1. 0.97 0.03
410. 33. 0.95

Table 4: Each panel shows the regression results for three different specifications for preferences. To obtain the
regression coefficients I simulate the model 10, 000 times and run a regression for each simulation. The coefficients
displayed are the average coefficients across simulations. I then calculate the standard errors as the standard deviation
of the statistics across simulations. The t-stats are the ratio of the average statistic and their standard error. In the
columns labelled (1), I include the results from the CAPM regressions of excess returns against excess betas on the
wealth portfolio. In the columns labelled (2), I include the results from the CAPM regressions of excess returns
against excess betas on the market portfolio. The column labelled Diff shows the difference between the statistics
from regressions (1) and (2) as well as the corresponding t-stats.

the coefficients across simulations. The t-stat is the ratio of these two statistics. Column (2) shows

the results from using the market portfolio rather than the total wealth portfolio. This allows us to

quantify the effect of using the wrong proxy for the total wealth portfolio. As argued in Stambaugh

(1982) and Jaganathan and Wang (1996) using the market portfolio as a proxy for the total wealth

portfolio leads to concluding that the CAPM does not hold even when it does hold. This is because

the market portfolio does not take into account the component of total wealth which is comprised

by human capital and which is not traded. As we can see in the column labelled Diff from Table 4,

the pricing errors are significantly larger (�1.1% per year) when we do not take human capital into

account.

With the second specification for preferences, � 6= (1 � ⇢) with ⇢ ! 0 and f {C, V } = �(1 �
�)V

⇣

ln (C)� 1
1��

ln ((1� �)V )
⌘

, the conditional CAPM does not hold (�Λ,t = �c,t � �v 6= &wt ).

Nonetheless, when we run CAPM regressions with the total wealth portfolio the R2 is large, 100%,

and the pricing error is not economically significant although it is statistically significantly different

from zero. Thus, if we start from log-utility and increase the risk aversion the conditional CAPM

still works very well if we use the total wealth portfolio. Using the market portfolio yields a lower R2

of 97% and a larger pricing error of 1.4%. Lastly, if agents have preference for earlier resolution of

uncertainty, � 6= (1�⇢) and ⇢ > 0, the conditional CAPM does not hold and performs worse. When

we use the market portfolio the pricing error is largest, 1.9% per year, and the R2 is 97%. With the
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total wealth portfolio the pricing error is not economically significant and the R2 is very large. The

R2’s are overall fairly large because in running these regressions in the model �i,mt , �i,wt , &mt , and

&wt are perfectly estimated. However if these variables were measured with error (as is indeed the

case empirically), the R2 would be lower and the difference between the R2 from regressions (1) and

(2) would be larger (See Section 7.13 of the Appendix). The results from Table 4 also imply that

empirically any measure of risk which does not take human capital into account cannot explain the

Value premium. Indeed, from Table 5 we can see that in data the market betas are not monotonically

BE/ME Quintiles

Low 2 3 4 High

Univariate betas with
Market Portfolio

1.04 0.98 0.92 0.89 0.97

Table 5: The this table uses data from CRSP and Compustat and shows the coefficients from univariate regressions
of monthly BE/ME quintile portfolio returns against the market portfolio returns.

increasing with the BE/ME quintiles34. Similarly, from the model the difference in the market betas

is fairly small and hence cannot explain the Value premium. But the difference in total-wealth betas

is much larger because it takes the difference in human capital risk into account (see Table 6). The

difference in total-wealth betas is large enough to explain the Value premium entirely (log-utility)

or almost entirely (stochastic differential utility). In practice, we use the unconditional CAPM

Market Betas Total-Wealth Betas

�
A,m
t �

B,m
t �

A,m
t � �

B,m
t �

A,w
t �

B,w
t �

A,w
t � �

B,w
t

Mean 0.97 0.95 0.02 1.05 0.83 0.21

Table 6: In the table above, I show the market betas, the total-wealth betas as well as the relative betas of the Type
A and Type B securities for preferences with γ > (1� ρ) 6= 1.

regressions more often than the conditional CAPM. Jaganathan and Wang (1996) show that the

conditional CAPM implies an unconditional CAPM with an additional factor. Thus the model’s

implications for the conditional CAPM should also apply to the corresponding unconditional CAPM

with that additional factor35.

There is an additional interpretation of the model related to the results from Eberly and Wang

(2009). In particular, with � = �h, Corr(dHH , dK
A

KA )/dt = 1, and linear production we have that H

and KA are identical. Thus the key friction of the model is due to the concave function for capital

growth (the adjustment cost). The expected growth rate of capital and the investment-to-capital

34The correct comparison should be done with a cross-sectional regression rather than the time-series regressions
of Table 4. Nonetheless, by taking the average of both sides of the regressions in Table 4 we find that a large pricing
error in time-series regressions, Et

�
dRi

t

�
= α0 + α1 ⇥ ςmt .ςmt

�
β
i,m
t

�
dt for i 2 {A,B}, implies a large pricing error in

the cross-sectional regression, E
�
dRi

�
= ᾱ0 + ᾱ1 ⇥ ςm.ςm (βi,m)dt.

35I discuss this implication in Section 5.2.
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ratio are lower in Type A firms than Type B firms because both H and KA incur adjustment costs

and hence production in Type A firms (Y A = A(H +KA)) is less efficient36 than in Type B firms

(Y B = AKB). As a result, the capital stocks H and KA are on average less valuable than KB; that

is E
�
qA
�
= E (p) < E

�
qB
�
. This then implies all of the aforementioned results with the exception

of the results concerning the conditional CAPM. In particular, with this interpretation of the model

H is not human capital but rather any additional stock of capital with a separate accumulation

process. As a result, we may no longer argue the returns on H are not taken into account in the

market portfolio returns. Hence dRm = dRw and the conditional CAPM would work very well (and

hold exactly with log-utility) in this interpretation of the model37.

4.2.3 Fama and French (1997)

Fama and French (1997) show substantial variation in the Value premium both in aggregate and at

the industry level. The model reproduces this results. Indeed in the distribution of expected returns

in Figure 5a there is a significant region where the expected excess return of security A is negative.

There is a 24.07% probability that Et(dR
A
t ) � Et(dR

B
t ) < 0. Similarly, there is a lot of variation

in the BE/ME. And, from Figure 5b we can see that there is a non-trivial area in the distribution

of excess BE/ME ( 1
qAt

� 1
qBt

) where firms of Type A behave more like Growth firms and have lower

BE/ME. I plot the joint distribution for {Et(dR
A
t ) � Et(dR

B
t ),

1
qAt

� 1
qBt

} in Figure 5c. This figure

confirms the strong positive correlation between the Value premium and the excess BE/ME (notice

the elliptic contour plots). It also depicts the high degree of time-variation in the Value premium.

There is a 24% probability that both Et(dR
A
t )� Et(dR

B
t ) < 0 and 1

qAt
� 1

qBt
< 0.

Figure 5 also implies that simply labeling securities A and B as Value and Growth (respectively)

as done in Tables 2 and 3d yields conservatives estimates. That is because I do not calculate these

moments as done in the empirical literature by first relabeling the Value and Growth stock each

year using the BE/ME (portfolio formation). I provide the conservative values for more clarity and

because they are not much different from the values calculated with annual portfolio formation.

The exceptions are the Value premium for which I provide both the conservative estimate and the

estimate with portfolio formation in Table 2 and the shares of total capital, which I discuss next. The

model yields E(xA) < E(xB) but if instead I allow portfolio formation, I find that Value firms have

36If instead we use a Cobb-Douglas production for firms of Type A, the same mechanism persists and I conjecture

that it is strengthened since Y A = A
�
KA

�α �
HA

�1�α
implies that KA is less effective in contributing to total output

(Y = Y A + AKB) compared to KB . I also conjecture that the qualitative results would be unchanged if Type B

firms also have a Cobb-Douglas production in two inputs, Y B = A
�
KB

�α �
HB

�1�α
, so long as cov

⇣
dHA

HA , dKA

KA

⌘

>

covt
⇣

dHB

HB , dKB

KB

⌘

. This interpretation of the model is reminiscent of Tuzel (2010) where firms use structures and

equipments in their production process and both inputs are subject to adjustment costs.
37There is some research which argues that the Value premium can be explained by intangible capital. However,

intangible capital can be measured on the firms balance sheet and income statement (Goodwill or expenditures on
R&D) or inferred from IPO’s and M&A activities. Furthermore, in data Value firms tend to have less intangible
capital (as measured by Goodwill or R&D) both in levels and relative to total assets compared to Growth firms.
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Figure 5: I pool all observations (across time and simulations) from the model for the expected excess return

(Et(dR
A
t ) � Et(dR

B
t )) and the excess BE/ME ( 1

qA
t

� 1

qB
t

) to produce the distributions. In Figure 5c, I also in-

clude the scatter plot from one of the simulations as well as the probability associated with each quadrant of the joint
distribution.

a larger share of total capital than Growth firms (E(xV ) = 0.43 > E(xG) = 0.27). This is akin to

the empirical result from Hansson (2004) which shows that Value firms have greater levels of assets

than Growth firms. In U.S. data, I find that the total-asset-to-nominal-GDP ratio for value firms
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is on average 0.41 and for Growth firms it is 0.34. The discrepancy between E(xA) < E(xB) and

E(xV ) > E(xG) is due to endogenous reallocation (diversification incentive). As xB " 1 (and xA # 0

), Type B physical capital becomes relatively abundant and hence less valuable, qB #. Eventually if

xB is large enough (xB � xA ), Type B capital becomes less valuable than Type A capital, qB < qA.

As a result, 1
qAt

� 1
qBt

< 0 and Et(dR
A
t )�Et(dR

B
t ) < 0 as shown in Figure 5c and if we define Value

and Growth stocks using BE/ME (1/q), Security B is the Value stock. This also implies that the

asset share of Value firms must be greater when we allow for portfolio formation than when we

simply call Security A the Value stock (E(xV ) > E(xA)). That is simply because Security B is

re-labelled Value when xB � xA. The investment-to-capital ratio for Value firms is lower than that

of Growth firms even when Security B is the Value stock because 1
qA

� 1
qB

< 0 ) ◆B�◆A < 0. Lastly,

we should note that without human capital risk E(xA) = E(xB) and although the realized capital

shares in general are not equal (xAt 6= xBt ) they tend to be similar (xAt ⇡ xBt ) due to symmetry.

Hence the portfolio formation mechanism by itself would yield a Value premium that is only slightly

positive and close to zero.

4.2.4 Impulse responses

Theorem 3. The deterministic formulation of the model (with � = �h = 0) admits a steady state
(dxAt = dxBt = 0 8t) where the prices of capital are equalized

p = qA = qB

the security returns are equal to the risk-free rate

dRA = dRB = rdt = ((1� ⇢)µc + �) dt

the local growth rates of consumption, human capital, physical capital of types A and B, and aggregate
output are equalized

dC

C
=

dH

H
=

dKA

KA
=

dKB

KB
=

dY

Y
= µcdt =

✓

Γ ln

✓

p
Γ

✓

◆

� �

◆

dt

the capital shares, xA and xB, are indeterminate. p and F are constant and jointly solve

p =
1

�

✓
A� Γp+ ✓

F

◆1�⇢

F

0 =
�

⇢

✓
A� Γp+ ✓

F

◆⇢

� �

⇢
+ Γln

✓

p
Γ

✓

◆

� �

The investment-to-capital ratios are equalized

◆A = ◆B = ◆H = Γp� ✓
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Proof. I derive the above results in Section 7.14 of the Appendix by setting � = �h = 0 and dxAt =

dxBt = 0. Thus, we need a stochastic model to generate greater average returns and greater book-

to-market equity for Value firms. Furthermore, xA and xB are indeterminate in the deterministic

steady state because of linear production and because H, KA and KB are risk-less and have the

same productivity, A. Thus, it is possible to have that the share of total assets comprised by Value

firms is zero in equilibrium (xA = KA

H+KA+KB = 0). Therefore, the hedging motive (or diversification

incentive) from the stochastic model along with the adjustment cost are what guarantee that the

share of total assets comprised by Value firms does not go to zero on average. Indeed, I find

E(xA) = 0.313 and E(xB) = 0.374 (see Figure 2a as well as the joint distribution for
�
xA, xB

 
in

Figure 11 of Appendix 7.15 ).

To explore the diversification incentive and further understand the dynamics of the model and its

implications for the cyclicality of some of the endogenous variables I produce some impulse responses

in Figures 6 and 7. In particular, let �t denote a given endogenous variable of the model. Following

Koop, Pesaran and Potter (1996) and Kozak (2012), I construct two non-linear impulse responses

for �t using

IRF�

�
xAt , x

B
t

 
= E

⇣

�t

�
�
�xA0 = x̄A, xB0 = x̄B, dZ0 = 1i

⌘

1i 2
n

{1, 0}
0

, {0, 1}
0
o

Thus, starting at the mean values for the state variables {x̄A, x̄B}, I introduce one-standard-deviation

positive orthogonal shocks (through dZA or dZB) at date zero and simulate twenty-five years of

observations one hundred thousand times. I condition on a particular history following the date zero

shocks as done in equation (6) of Koop, Pesaran and Potter (1996). I then compute the average

across simulations. I define the impulse response relative to a baseline with no shock at date zero.

As Koop, Pesaran and Potter (1996) and Kozak (2012) point out, using such generalized non-linear

impulse responses is a correct way of constructing impulse responses for highly non-linear, state (and

shock) dependent models. Using the traditional impulse response where we hit the economy with a

shock at date zero and turn off all future shocks would yield spurious results.

From Figure 6, the investment-to-capital ratios ◆A and ◆H display a counter-cyclical evolution

following dZA shocks. This is because a positive dZA shock increases the effective human capital and

Type A physical capital. Hence, the value of capital (qA and p) and the investment-to-capital ratios

(◆A = ΓqA� ✓ and ◆H = Γp� ✓) decrease ceteris paribus. Similarly, ◆B decreases following a positive

dZB shock. The impulse responses in Figures 6a-6c also highlight the endogenous re-allocation due

to the diversification incentive. That is, ◆A and ◆H increase following a positive dZB shock, and ◆B

increases following a positive dZA shock. This diversification incentive ensures that Value firms and

Growth firms coexist in equilibrium.
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Figure 6: Starting at the mean values for the state variables {x̄A, x̄B}, I introduce a one-standard-deviation positive

shock through dZA or dZB at date zero and simulate twenty-five years of observations 100, 000 times. I then compute
the average across simulations. I define the impulse response relative to a baseline with no shock at date zero.

A positive dZA shock leads to a relative decrease in the value of Type A physical capital (qA)

since this capital is now relatively more abundant. Thus qA � qB decreases, hence the relative

BE/ME ( 1
qA

� 1
qB

) increases (Figure 6e). The investment to capital ratios are linear in the Marginal

Q’s therefore, the relative investment to physical capital ratios, ◆A� ◆B, decreases. As shown before,

an increase in the relative BE/ME is strongly associated with an increase in the expected excess

return, Et(dR
A
t ) � Et(dR

B
t ); hence the results in Figure 6f . Hypothesis 2 of Zhang (2005) states

that the Value premium, the relative BE/ME, and the price of risk are counter-cyclical38. To see if

these hold in the model, I define a boom as a positive shock in both dZA and dZB and produce the

impulse responses in Figure 7. Since the dZA shock enters both the law of motion of human capital

and that of the Type A physical capital, it is twice as impactful as the dZB shock. Thus, I scale

the dZA shock39 by ↵ = 1
2 . The results are qualitatively identical for any ↵ < 1. I find that the

Value premium, the relative BE/ME and the norm of the price of risk are indeed counter-cyclical in

the model. In particular, the price of risk associated with dZA (that is the first element of the �Λ,t

vector, the local volatility of the SPD) is counter-cyclical while the price of risk associated with dZB,

that is �
(2)
Λ,t, is pro-cyclical. �

(1)
Λ,t is on average much larger than �

(2)
Λ,t as I explain in Section 4.2.1.

38Zhang (2005) mentions that this hypothesis is consistent with the limited available evidence. It is difficult to test
such hypotheses. Nonetheless, given the evidence for countercyclical risk-premia from Fama and French (1989), it
should indeed be the case that the Value premium is countercyclical.

39The correct approach is to use a third Brownian Motion increment, dZH , in the law of motion of human capital
with Corr

�
dZA, dZH

�
/dt 2 (0, 1). Then there would be no need to scale the dZA shock.
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Figure 7: Impulse responses following a positive shock to both dZA and dZB .

Thus, |�Λ,t| (the norm of the local volatility of the SPD), which is a more comprehensive measure

of the price of risk, is counter-cyclical (see Figure 7e). That is, in good times agents are willing to

bear more risk by postponing current consumption and investing relatively more in the Value firm

(◆A � ◆B > 0). The pro-cyclical relative investment-to-asset ratio implies that the relative BE/ME

is countercyclical (◆A � ◆B > 0 ) 1
qA

� 1
qB

= Γ

◆A+✓
� Γ

◆B+✓
< 0). Since relatively more capital flows

towards Value firms in good times the excess equity return of Value firms (the Value premium) must

be countercyclical. In the model, these result are endogenous whereas in Zhang (2005) they rely on

an exogenously specified counter-cyclical stochastic discount factor.

5 Empirical Evidence and Testable Implications

There is a large literature which documents the strong link between human capital risk or returns on

human capital (as measured by labor income) and the Value premium. In particular, Jaganathan and

Wang (1996) show that controlling for returns on human capital helps explain the Value premium

in CAPM regressions with time-varying betas. The authors define returns on human capital as the

growth rate in per-capita labor income. Palacios-Huerta (2003a) uses a rich set of empirical variables

to capture human capital and provides further evidence that taking returns on human capital into

account explains the Value premium. Hansson (2004) uses Swedish data and shows that differences

in wage growth explains much of the Value premium. Santos and Veronesi (2005) show that the ratio
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of labor income to consumption explains a large portion of the Value premium. Below, I reproduce

some of the results from this empirical literature while focusing on the predictions of the model.

5.1 Value firms, Growth firms and labor income risk

The key mechanism which gives rise to the Value premium in the model is the fact that there is

relatively more human capital risk associated with Value firms, Cov
⇣
dH
H , dK

A

KA

⌘

> Cov
⇣
dH
H , dK

B

KB

⌘

.

This assumption of the model implies that labor income growth covaries more with the asset growth

of Value firms, Cov
⇣
d(wH)
wH , dK

A

KA

⌘

> Cov
⇣
d(wH)
wH , dK

B

KB

⌘

; which itself implies that the equity returns

of Value firms covary more with labor income growth, Cov
⇣
d(wH)
wH , dRA

⌘

> Cov
⇣
d(wH)
wH , dRB

⌘

.

The model is flexible enough to allow me to re-formulate these two predictions with the following

hypotheses; for which I provide some empirical support in Tables 7-14.

Hypothesis 1. Within Value firms the human capital of workers covary more the firms’ assets and
equity returns compared to Growth firms because Value firms have more firm-specific human capital
and are hence more burdened by their wage bill.

Hypothesis 2. The human capital of all agents in the economy (regardless of their place of work)
covaries more positively with the assets and equity returns of Value firms than with those of Growth
firms because Value firms are relatively more distressed (as posited by Fama and French; 1996) and
negative productivity shocks to such firms’ assets tend to coincide with negative productivity shocks
to human capital.

In Table 7a, I show the results from regressing the natural logarithm of firm assets against the

natural logarithm of the wage bill as well as the wage bill times an indictor variable for Value firms.

The data is in annual frequency and the wage bill is the sum of salaries, wages, pension costs,

profit sharing and incentive compensation, payroll taxes and other employee benefits40. We can see

that the coefficient on the interacted regressor is positive and highly significant. In particular, for

Value firms log-wages covary more positively with log-assets than for Growth firms. A one percent

increase in log-wages implies an additional 26.0 basis point increase in firm assets. I also present

the results from regressing log-growth in assets against log-growth of the wage bill as well as the

interaction of the latter with the Value firm indicator. Again we find a relatively more positive

covariance between the asset growth and wage growth for value firms. A one percent increase in

the wage growth coincides with an additional 11 basis point increase in asset growth for Value firms

relative to Growth firms. The R2 is much smaller (0.29) since asset growth is a lot more volatile than

wage growth. Thus, the equity return is increasing in the covariance between firm asset growth and

human capital growth. This is akin to the results from Mayers (1972, 1973) and Liberman (1980)

40As measured by the XLR variable from the firm income statement in Compustat.
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R2 #Obs.
(1) ln (Asset)i,t = a1 ln (Wage)i,t + a2 ln (Wage)i,t ⇥ V alueDummyi,t + εi,t 0.89 16, 998
(2) ∆ln (Asset)i,t = a1 ∆ln (Wage)i,t + a2 ∆ln (Wage)i,t ⇥ V alueDummyi,t + εi,t 0.29 14, 798

Coef. Std.Err. T-stat P-value

(1)
ln (Wage) 1.33 0.01 246.71 0.00

ln (Wage)⇥ V alueDummy 0.26 0.01 33.80 0.00

(2)
∆ln (Wage) 0.48 0.01 53.83 0.00

∆ln (Wage)⇥ V alueDummy 0.11 0.01 7.75 0.00

(a) Panel (1) shows the results from regressing the natural logarithm of firm assets against the natural logarithm
of the wage bill as well as the wage bill times an indictor variable for Value firms. Panel (2) shows the results
from regressing the annual change in the natural logarithm of assets against the change in the natural logarithm
of the wage bill as well as the interaction of the latter with the Value firm indicator. The wage bill is the sum of
salaries, wages, pension costs, profit sharing and incentive compensation, payroll taxes and other employee benefits
(As measured by the XLR variable from the firm income statement in Compustat).

Labor Share ( LaborExpense

LaborExpense+Profits
) Wage Growth (∆ln (Wage))

Coef. T-stat P-val Coef. T-stat P-val
Value Firms - Growth Firms 0.16 1.71 0.09 �0.04 �12.22 0.00

(b) I calculate the difference in labor share (and wage growth) between Value and Growth firms by regressing the labor
share (and wage growth) on a Value firm indicator variable and a constant. The labor share is firm labor expense
divided by labor expense plus firm profits. Labor expense is the number of employees from Compustat times the
average industry wage from the firm’s industry. The industry wage is the employee compensation from NIPA Tables
6.2B and 6.2C divided by the number of full-time and part-time employees from NIPA Tables 6.4B and 6.4C. Firm
profits are sales minus cost of goods sold and selling, general and administrative expenses. In the second panel, I
define the wage growth as done Table 7a.

Table 7: All data is in annual frequency.

where human capital matters for asset pricing only to the extent that it covaries with returns from

marketable securities41. Since Growth firms tend to hire more employees than Value firms, in Table

21 of Section 7.17 of the Appendix, I reproduce the regressions from Table 7a while controlling for

for the level (or growth rate) of employment. I again find that the coefficient on the interaction

term is positive and highly significant. We can confirm that Value firms are indeed more exposed

to human capital risk than Growth firms by comparing their labor share of profits42. In Table 7b, I

follow the approach of Favilukis and Lin (2013a) and show that Value firms have greater labor share,
LaborExpense

LaborExpense+Profits , than Growth firms. The difference in labor share is 16% and is significantly

positively (the p-value is 0.09). This implies that Value firms are more burdened by their wage bill

and are more labor (or human capital) intensive than Growth firms; as I posit in Hypothesis 1. From

41See equation (2) of Landskroner (1977).
42The labor share is defined as in Favilukis and Lin (2013a); firm labor expense divided by labor expense plus firm

profits. Labor expense is the number of employees from Compustat times the average industry wage from the firm’s
industry. The industry wage is the employee compensation from NIPA Tables 6.2B and 6.2C divided by the number
of full-time and part-time employees from NIPA Tables 6.4B and 6.4C. Firm profits are sales (SALE) minus cost
of goods sold (COGS) and selling, general and administrative expenses (XSGA). I obtain the NIPA tables from
EconStats.
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Table 7b, we also find that Value firms have an average wage growth that is 4% lower than that of

Growth firms.

The model predicts that the relative instantaneous covariance between firm assets and human

capital (or labor income) growth causes the Value premium. Therefore in theory, if we could esti-

mate this instantaneous covariance we could perfectly predict the Value premium. We could also

replace the Fama-French HmL factor43 with a different signal built from sorting securities by the

instantaneous covariance between firm assets and human capital (or labor income). This approach

should work at least as well as a sort based on BE/ME (as done when constructing the Fama-French

HmL factor). Furthermore, this instantaneous covariance should perfectly predict the HmL factor

(verifying that HmL is a proxy for human capital risk). In reality however, it is not possible to

estimate this instantaneous covariance. In particular, data is not accurate and is available at low

frequency. Data on publicly traded firms’ expenses on employees as well as total assets is readily

available on Compustat but only at an annual frequency. Thus, even though we could use a rolling

ten-year window (that is ten data points) to calculate the covariance of firm assets with labor in-

come the estimate we would obtain would be highly inaccurate. As a result, we would be using

a low frequency and spurious factor to predict high frequency returns. This would not be a good

way of predicting the Value premium. In Figures 4a and 4b, the model shows a better approach

which can be done empirically with more accuracy and higher frequency. That is, using the relative

Book-to-Market Equity: the Fama and French approach.

Nonetheless, if Value firms are indeed more exposed to human capital risk and the BE/ME is a

proxy for human capital risk, we should be able to explain away the monotone increasing relationship

between BE/ME and average equity returns with a dual sort. Before attempting this, I will first

define the human capital returns, Rh
t , as done in Jaganathan and Wang (1996). I calculate the real

monthly growth in labor income, using the aggregate labor income per capita less dividends from the

Bureau of Economic Analysis NIPA Table 2.6 adjusted by the GDP deflator. Rh
t is the two-month

moving average of the growth in labor income (Lt)

Rh
t = 100⇥

✓
Lt�1 + Lt�2

Lt�2 + Lt�3
� 1

◆

(5.1)

This definition of the returns on human capital is common in the related empirical literature

and reflects the dividend yield component of returns on human capital but does not fully re-

flect the capital gains component. This does lead to some bias. However, correcting for this

bias would leave the qualitative results unchanged. Indeed, in the context of the model because

Cov
⇣

dH
H

, dKA

KA

⌘

> Cov
⇣

dH
H

, dKB

KB

⌘

, we automatically have that the capital gains component of human

capital returns covary more with the assets growth or equity returns of Value firms than Growth

firms. Furthermore, in data (as I show below), because income per-capita covary more with assets

(and equity returns) of Value firms and because the value of human capital is a present-discounted

value of future income flows we should expect that Value firms returns covary more positively with

the capital gains component of human capital than for Growth firms. Palacios-Huerta (2003a) shows

43The excess equity return of Value relative to Growth firms.
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that incorporating these two components44 of returns on human capital into the CAPM strengthens

the results (lower pricing errors and greater R2’s). Lastly, since the model predicts that equity

returns of Value firms covary more with labor income growth, the empirical proxy for returns on

human capital as defined above is the correct object to use when testing this prediction of the model.

Portfolio Level Human Capital Aggregate Human Capital ⇠Obs
�i,h P-val �i,h P-val

Value Portfolio 2.24 0.10 1.96 0.03 50
Growth Portfolio 1.26 0.53 0.82 0.38 50

Firm Level Human Capital Aggregate Human Capital ⇠Obs
�i,h P-val �i,h P-val

Value Firms 0.01 0.78 0.95 0.00 38, 000
Growth Firms 0.01 0.87 0.41 0.00 38, 000

Table 8: In the first panel I show the univariate betas and p-values from regressions of annual returns from Value
and Growth portfolios against annual portfolio-level human capital returns (value-weighted average of the annual
growth in wage-per-employee for firms in the Value and Growth portfolios) as well as annual aggregate human capital
returns (annual growth in aggregate labor income per capita). In The second panel I run similar regressions with
annual returns from Value firms and Growth firms. The column labelled “⇠Obs” lists the approximate number of
observations.

Table 8 provides additional evidence for Hypotheses 1-2. The first panel shows the univariate

betas and the associated p-values from regressions of annual returns45 from Value and Growth

portfolios against both portfolio-level human capital returns (value-weighted average of the annual

growth in wage-per-employee for firms in the Value and Growth portfolios) and aggregate human

capital returns (annual growth in aggregate labor income per capita less dividends). I find that Value

firms are indeed exposed to relatively more portfolio-level (Hypothesis 1) and aggregate (Hypothesis

2) human capital risk since �i,h is much larger (�i,h 2 {2.24, 1.96}) and significantly positive (p-

value less than 5%) for the Value portfolio. The corresponding values for the Growth portfolio are

much smaller (�i,h 2 {1.26, 0.82} with p-values greater than 30%). In the second panel, I produce

similar statistics from regressions of annual returns on firm-level equity returns against firm-level

and aggregate human capital returns. Again, I find that Value firms have greater human capital

betas than Growth firms. These firm-level regressions provide additional evidence in support of the

second interpretation of the model from Hypothesis 2. Indeed, in the regressions with firm-level

human capital, the betas are not significantly different from zero for both Value and Growth firms.

On the other hand, the aggregate human capital betas are more precisely estimated and much larger

for Value than for Growth firms (0.95 and 0.41 respectively). This is evidence that the human capital

of all agents in the economy (regardless of their place of work) covaries more with the outcomes of

Value firms than with those of Growth firms. This may be why the Value premium can be empirically

44Dividend yields and capital gains.
45I obtain similar results with regressions of monthly equity returns against monthly human capital returns. I show

these results in Section 7.18 of the Appendix.
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difficult to explain with firm or industry characteristics. It may also be why Jaganathan and Wang

(1996) obtain strong results by using aggregate human capital returns in explaining equity returns

and expected returns.

�h Quintiles

Low 2 3 4 High

Expected Return
E(dRt)

1.94 2.78 3.39 3.74 6.46

(a) Mean annualized real monthly returns
for βh-quintile portfolios.

BE/ME Quintiles
�h Quintiles Low 2 3 4 High
Low �0.34 3.30 6.14 4.70 7.45
2 1.06 3.25 5.66 3.68 8.75
3 3.07 3.10 4.06 6.71 4.63
4 4.57 3.40 4.87 6.70 9.54
High 9.33 6.49 5.95 7.48 8.21

(b) This table shows the annualized average real monthly return of
25 dual-sort portfolios. The dual-sort portfolios are from groupings
of securities by BE/ME quintiles and βh quintiles. The shaded cells
show where the monotone increasing relationship between BE/ME
and average equity returns breaks down.

Table 9: βh is the slope from a rolling 12 month univariate regression of equity returns against human capital returns.

Table 9 provides some evidence that BE/ME is indeed a proxy for human capital risk. Table 9a

shows the mean annualized real monthly returns for �h-quintile portfolios. �h is the slope from a

rolling twelve-month univariate regression of monthly equity returns against monthly human capital

returns, Rh
t (as defined above), and the underlying �h’s are updated monthly46. I find a monotone

increasing relationship between equity returns and the �h-quintiles. This is akin to the relationship

between equity returns and BE/ME quintiles from Table 3a. In Table 9b, I show the annualized

average real monthly return of twenty-five dual-sort portfolios. The dual-sort portfolios are from

groupings of securities by BE/ME quintiles and �h quintiles. In each row of the table, I shade in the

cells where the monotone increasing relationship between BE/ME and average equity returns breaks

down. Instead, this monotone relationship between returns and quintiles appears (and is very strong)

along the diagonal of the table. Thus, there is a strong relationship between BE/ME quintiles and

average equity returns in Table 3a because securities with relatively more human capital risk (as

measured by �h) tend to have greater equity returns. This confirms that BE/ME may indeed be a

proxy for human capital risk since high BE/ME firms tend to have greater �h (see Tables 8 and 14).

5.1.1 Modified Value-Growth portfolio

The above results hint at a more precise way of constructing a portfolio that is long Value stocks

and short Growth stocks (that is the HmL portfolio; high BE/ME minus low BE/ME). This may

be useful to obtain a more precise Fama-French HmL factor or to obtain a portfolio which yields a

46I find similar results when I update the betas annually (see Section 7.19). Using a larger window for the rolling
regressions is problematic because securities tend to switch BE/ME quintiles as we increase the window.
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greater Value premium. Indeed, the usual definition of Value and Growth is based solely on BE/ME.

However, BE/ME is available at best at an annual frequency hence the HmL portfolio is rebalanced

annually. From Table 9b, we could instead construct two modified HmL portfolios which we can

rebalance monthly since the human capital �’s are calculated monthly. In particular, Modified

Portfolio 1 is short securities in the two lowest BE/ME and �h quintiles and long securities in the

two highest BE/ME and �h quintiles. Modified Portfolio 2 is defined similarly but contains only

securities on the diagonal of Table 9b. Table 10 provides an illustration of the portfolio construction.

In Table 11, I show some descriptive characteristics of the modified and the original HmL portfolios.

BE/ME Quintiles
�h Quintiles Low 2 3 4 High
Low Short Short
2 Short Short
3
4 Long Long
High Long Long

Table 10: The modified HmL portfolios are long the Value portfolio and short the Growth portfolio. The Value
portfolio is a value-weighted sum of securities in the cells labelled “Long”. The Growth portfolio is a value-weighted
sum of securities in the cells labelled “Short”. Modified Portfolio 1 contains securities from all cells labelled “Long” or
“Short”. Modified Portfolio 2 contains only securities from the shaded cells.

The modified portfolios hold relatively fewer securities since their dual-sort criteria is more stringent

than the single-sort criteria for the original HmL portfolio. Nonetheless, both the long and short

side of all three portfolios hold securities of similar size.

Portfolio Components

Long Value Short Growth
#Securities %Small %Big #Securities %Small %Big

Port. 1 515.76 84.46 15.54 619.72 65.91 34.09
Port. 2 267.27 84.18 15.82 324.10 67.15 32.85
Orig. 973.08 84.69 15.31 1125.26 63.85 36.15

Table 11: The column labelled “#Securities” respectively show the average number of securities every month in the
long and short legs of the corresponding portfolio. “%Small” shows the percentage of these securities that are small
stocks (below median market value). “%Big” shows the percentage of these securities that are large stocks (above
median market value).

Table 12 shows the returns characteristics of the modified portfolios as well as those of the

original HmL portfolio and the market portfolio to facilitate comparisons. I use monthly equity

returns in all calculations. Modified Portfolio 2 has the greatest average return (5.80% per year)

and Sharpe Ratio (0.43). Modified Portfolio 1 has a similar performance with an average return of

5.59% and a Sharpe Ratio of 0.42. The Sharpe Ratios are greater than the corresponding values

from the original HmL portfolio as well as the market portfolio. The columns labelled “CAPM

Results” show the intercept (↵) and slope coefficients (�) from regressions of the portfolio returns
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against the market. The market �’s are economically insignificant although they are statistically

significant for the original portfolio as well as Modified Portfolio 2. Modified Portfolio 1 has the

market � with the smallest magnitude (�0.03) and it is not statistically significant. As expected,

Modified Portfolios 1 and 2 have the largest ↵’s (0.48% and 0.51% monthly, respectively). The last

panel of the table shows correlations between all four portfolios. Modified Portfolios 1 and 2 are

not highly correlated with the original portfolio (these correlations are 0.54 and 0.45 respectively).

This highlights the fact that these portfolios offer notable diversification potential. All correlations

with the market portfolio are fairly small, as implied by the aforementioned market �’s. The two

modified HmL portfolios have a high correlation of 0.89.

Portfolio Characteristics From Monthly Returns

Annualized (%) CAPM Results Correlations
E (R) � (R) S.R. ↵ � Port. 1 Port. 2 Orig. Mkt.

Port. 1 5.59 13.30 42.03 0.48 �0.03 1.00 0.89 0.54 �0.04
[3.00] [�0.84]

Port. 2 5.70 13.37 42.63 0.51 �0.08 1.00 0.45 �0.10
[3.20] [�2.29]

Orig. 4.08 10.60 38.49 0.38 �0.09 1.00 �0.13
[3.02] [�3.23]

Mkt. 7.16 15.45 40.52 � � 1.00

Table 12: Calculations are done with monthly portfolio returns. Returns are annualized by multiplying the mean by

12 and the standard deviations by
p
12.

Table 13 reproduces the calculations from Table 12 using annual returns. The market �’s are

a little more negative but nonetheless not economically important. The Sharpe Ratios from the

modified HmL portfolios are larger while those of the original HmL portfolio and the market portfolio

are smaller. Figure 8 compares the returns of the original portfolio to Modified Portfolios 1 and

2. The modified portfolios tend to have lower down-swings particularly around the years 1980 and

2000. Figure 8c shows that the cumulative performance of the modified HmL portfolios has been

much more attractive than that of the original HmL portfolio.

39



Portfolio Characteristics From Cumulative Annual Returns

(%) CAPM Results Correlations
E (Re) � (Re) S.R. ↵ � Port. 1 Port. 2 Orig. Mkt.

Port. 1 5.83 12.85 45.37 6.56 �0.14 1.00 0.83 0.62 �0.13
[10.82] [�4.00]

Port. 2 5.94 13.13 45.24 7.39 �0.27 1.00 0.54 �0.31
[12.86] [�8.28]

Orig. 4.70 14.15 33.22 5.83 �0.25 1.00 �0.29
[10.27] [�7.87]

Mkt. 7.56 16.74 39.79 � � 1.00

Table 13: Calculations are done with (twelve-month cumulative) annual portfolio returns.
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Figure 8: Portfolio Performance

5.2 Conditional and unconditional CAPM

From Section 4.2.2, the model implies that conditional CAPM regressions should work well in de-

scribing the returns of Value and Growth stocks once we take returns on human capital into account.

To verify this implication in data, I first construct twenty portfolios using the twenty quantiles of

Book-to-Market Equity from the Kenneth French Data Library. I use the standard approach (de-

scribed in Section 4.1) to construct these portfolios. First, I consider the static (unconditional)

CAPM. Using the Fama-MacBeth two-step approach, I regress each of the twenty test portfolios re-

turns, Ri,t, against the market return, Rm
t , and collect the slope coefficients, �i,m for i 2 {1, ..., 20}.

I then regress the mean returns of the portfolios against the betas with the market.

E(Ri) = �0 + �m�i,m (5.2)
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My goal is to test wether the market portfolio returns are a good proxy for the wealth portfolio

returns or wether the market portfolio returns need to be augmented with returns on human capital

to obtain a good proxy for the wealth portfolio. Recall from Section 4.2.2 when the conditional

CAPM holds (with log-utility) we have

Et

�
dRi

t

�
=

�
rt + &wt .&

w
t ⇥ �i,w

�
dt

) Et

�
dRi

t

�
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�
rt + �i,w ⇥ Et (dR

w
t /dt� rt)

�
dt (5.3)

Thus, if the unconditional CAPM holds we can test the validity of the proxy for the wealth portfolio

by verifying that �0 equals the risk-free rate and that �m equals the market premium. Using the

definition of �i,w from (4.2) and dRw
t from Section 3, we can re-write (5.3) as a Human Capital

Asset Pricing Model (HCAPM):
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This leads me to instead implement a weaker test using the steps below

1. Run the regression in (5.2) as well as

E(Ri) = �0 + �m�i,m + �h�i,h (5.5)

where �i,h is the coefficient from a univariate regression of portfolio i’s returns on Rh
t from

(5.1)

2. Determine which of the regression specifications yields a �0 that is not statistically different
from the average three-month T-Bill rate47, Rf

3. Determine whether both slope coefficients �m and �h in (5.5) are significant and positive or
whether �i,m is enough to explain the cross section of average returns

4. Determine which of the regressions (5.2 or 5.5) yields the largest coefficient of determination,
R2

Jaganathan and Wang (1996) show that conditional CAPM implies an unconditional CAPM with

an additional factor. In particular, the authors suggest the following cross-sectional regression for

the conditional CAPM

E(Ri) = �0 + �m�i,m + �prem�i,prem (5.6)

where �i,prem is the coefficient from a univariate regression of portfolio i’s returns on the corporate

spread. The latter is difference in the average monthly returns between corporate bonds with a

47I obtain this data from the Kenneth French Data Library.
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BAA- rating and those with a AAA ratings as provided by the Board of Governors of the Federal

Reserve System. Assuming that the conditional CAPM holds, I again repeat the steps above and

compare the regression in (5.6) to

E(Ri) = �0 + �m�i,m + �prem�i,prem + �h�i,h (5.7)

in order to determine whether using returns on human capital yields a better proxy for the wealth

portfolio. From the two panels with non-log-utility preferences in Table 4, even if the conditional

CAPM only holds approximately we may still use the aforementioned test to determine whether

human capital returns allows us to better explain returns and expected returns on BE/ME sorted

portfolios.

Quantiles of BE/ME

Low 2 3 4 5 6 7 8 9 10
�i,h 0.04 0.01 0.23 �0.07 0.09 0.03 0.32 0.70 0.24 0.57
�i,m 1.08 1.00 1.05 1.09 1.02 0.99 0.98 0.97 1.00 0.91
�i,prem 0.39 0.51 0.61 0.58 0.60 0.49 0.58 0.54 0.63 0.66
E(Ri) 0.46 0.53 0.64 0.58 0.59 0.53 0.61 0.61 0.69 0.72

11 12 13 14 15 16 17 18 19 High
�i,h 0.68 0.27 0.31 0.82 0.98 0.75 1.12 0.71 0.84 1.11
�i,m 0.92 0.91 0.93 0.91 0.94 0.95 1.01 0.93 0.98 1.12
�i,prem 0.72 0.61 0.65 0.61 0.70 0.64 0.81 0.82 0.67 1.11
E(Ri) 0.83 0.66 0.69 0.73 0.84 0.81 1.00 0.87 0.78 1.29

Table 14: The first three rows show the coefficients from univariate regressions of the returns on the corresponding
BE/ME quantile portfolio against the returns on human capital, the market or the corporate spread (respectively).
The last row shows the average return of the portfolios. All returns are in real monthly units.

In Table 14, I show some characteristics of the twenty test portfolios. In particular, I show their

human capital betas (�i,h), market betas (�i,m), corporate spread betas (�i,prem) from univariate

regressions, as well as the their average real monthly return. We can first notice that human capital

betas tend to be relatively greater for the high BE/ME portfolios as the model predicts. Indeed, this

is empirical evidence that Value firms are relatively more exposed to aggregate human capital risk

as implied by Hypothesis 2. There is a wide spread in these betas, �i,h 2 [�0.07, 1.12]. Similarly,

there is a fairly wide spread in the betas with the corporate spread. Indeed, �i,prem ranges from

0.39 to 1.11. However, the betas with the market, �i,m, remain fairly flat around 1. As a result,

the market beta by itself is not able to explain the spread in average returns on the test portfolios.

These average returns are on the last row of Table 14 and tend to be greater for higher BE/ME

quantiles.

In Table 15, I report the CAPM regressions results. The top two panels show the regression re-
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sults for the unconditional CAPM with and without including returns on human capital. The bottom

Unconditional CAPM
E(Ri) = �0 + �m�i,m + �h�i,h

Bootsrap Clustered Bootstrap Z (�0 �Rf ) R2

Coef T-stat P-val Z-stat P-val Z-stat P-val 0.61 0.00
�0 0.57 0.83 0.42 0.77 0.44 0.66 0.50
�m 0.15 0.22 0.83 0.20 0.84 0.17 0.87

Coef T-stat P-val Z-stat P-val Z-stat P-val �0.80 0.77
�0 �0.30 �0.85 0.41 �0.57 0.57 �0.62 0.54
�m 0.82 2.32 0.03 1.50 0.13 1.57 0.12
�h 0.44 7.63 0.00 4.16 0.00 4.21 0.00

Conditional CAPM
E(Ri) = �0 + �m�i,m + �prem�i,prem + �h�i,h

Bootsrap Clustered Bootstrap Z (�0 �Rf ) R2

Coef T-stat P-val Z-stat P-val Z-stat P-val �0.40 0.93
�0 0.03 0.17 0.87 0.13 0.95 0.16 0.88
�m �0.12 �0.65 0.52 �0.46 0.64 �0.47 0.64
�prem 1.25 16.51 0.00 9.28 0.00 8.05 0.00

Coef T-stat P-val Z-stat P-val Z-stat P-val �1.58 0.98
�0 �0.15 �1.50 0.15 �0.85 0.40 �0.96 0.34
�m 0.20 1.83 0.09 1.00 0.32 1.00 0.32
�prem 0.93 14.11 0.00 7.94 0.00 6.57 0.00
�h 0.16 6.32 0.00 4.43 0.00 3.77 0.00

Table 15: The top two panels show the regression results for the unconditional CAPM with and without including
returns on human capital. The bottom two panels show the results for conditional CAPM regressions. I include the
usual t-distributed test statistics and p-values as well the bootstrap normally-distributed test statistics and p-values.
I calculate the bootstrap results using 10,000 repetitions with and without clustering at the year level. The column
labelled Z (γ0 �Rf ) shows the normally-distributed bootstrap statistic for testing if γ0 is significantly different from
the three-month T-Bill rate, Rf .

two panels show the results for conditional CAPM regressions. I include the usual t-distributed test

statistics and p-values. In order to correct for bias dues to estimation errors from the Fama-Macbeth

two-step approach, I provide the bootstrap normally-distributed test statistics and corresponding

p-values. I calculate the bootstrap results using ten-thousand repetitions. It is well documented that

equity returns display some autocorrelation (momentum and reversal). As a result, I also provide

the statistics from a bootstrap with clustering at the year level. The column labelled Z (�0 �Rf )

shows the normally-distributed bootstrap statistic for testing if �0 is significantly different from the

three-month T-Bill rate, Rf . First, we note that �0 �Rf is not significantly different from zero for
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all four regression specifications. Nonetheless, the unconditional CAPM regression without human

capital performs worst. Indeed, the R2 is less than one percent. Thus the market betas alone cannot

explain the spread in average returns. The slope coefficient, �m, has a test statistic of 0.22 and is

slightly lower with the bootstrap approach. Hence, �m is not significantly different from zero. In

the second panel where I include the betas on human capital as an additional regressor the uncon-

ditional CAPM performs a lot better. The R2 is much larger (R2 = 0.77). �i,m plays a relatively

more important role in explaining the average returns since �m now has p-values ranging from 0.03

to 0.13. Furthermore, �m has the correct sign (�m > 0). The regression coefficient for the human
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Figure 9: Each graph displays a scatter plot of the realized average monthly return (in real units) on the twenty test
portfolios versus the predicted returns from the corresponding cross-sectional regression.

capital betas, �h, is highly significant and positive even with the bootstrap and clustered bootstrap

corrections. In Figures 9a-9b, I provide scatter plots of the average portfolios returns and the pre-

dicted returns from the unconditional CAPM regressions. These figures confirm that we indeed need

to take returns on human capital into account to obtain a good proxy for the wealth portfolio and

predict returns. The conditional CAPM regressions have greater R2 than the unconditional CAPM

regressions. This is partly because they include one more regressor. However, the adjusted R2’s (not
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shown) are also greater. Thus the conditional CAPM regressions provide a relatively better descrip-

tion of returns and average returns than the unconditional CAPM. Jaganathan and Wang (1996)

reach a similar conclusion. The conditional CAPM regression without human capital works well.

However, when we include the human capital betas, the market betas have a coefficient that is more

significant and has the correct sign (�m > 0). Indeed, �m has a t-stat and p-value of 1.83 and 0.09

(respectively) compared to �0.65 and 0.52 when we omit returns on human capital. The bootstrap

test statistics are much lower in both regressions and their p-values are much larger (0.32). More

importantly, the coefficient on the human capital betas , �h = 0.16, is highly significant and positive

in the conditional CAPM regression even with the bootstrap correction. Its p-values are much lower

than one-percent. This again confirms the model’s implications from Table 4 that human capital

returns helps predict security returns and expected returns above and beyond the contribution of

the market portfolio returns. Lastly, by comparing Figures 9c and 9d we see that including human

capital returns in the conditional CAPM regressions yields a slightly better fit.

5.3 Optimal production choices

One additional implication of the model is that on average Value firms have lower investment-to-

capital ratio than Growth firms. Indeed, on average qA < qB therefore ◆A = ΓqA�✓ < ◆B = ΓqB�✓.
In particular, the model yields E(◆A) = 2.78% and E(◆B) = 4.30%. On Table 16, I report the mean

annual investment-to-asset ratio for firms grouped in BE/ME quintiles as well as the difference

between Value and Growth48 . This table confirms that Value firms indeed tend to have relatively

BE/ME Quintiles

Low 2 3 4 High V-G
Acquisitions 0.023 0.024 0.020 0.015 0.010 �0.012

CapEx 0.077 0.071 0.064 0.059 0.050 �0.024
Net Investments 0.097 0.085 0.074 0.062 0.041 �0.048
∆Ln (Asset) 0.151 0.111 0.090 0.072 0.040 �0.092

Table 16: The first five columns shows conditional means for each of the BE/ME quintiles. The last column shows
the mean differences between Value and Growth firms which I calculate as the slope coefficient from a regression of
the variable of interest on a constant and an indicator variable for Value firms. The first four rows show the results for
investment to capital ratios. I define the investment-to-capital ratio as the ratio of firm Acquisitions to total assets,
the ratio of capital expenditures (CapEx) to total assets, and lastly, the ratio of net cash flows from all investments
activities (where decreases in cash are treated as positive numbers) to total assets. The last row show results for the
growth rate of total assets (annual difference in the natural logarithm of total assets). All data is in annual units and
all values are significantly different from zero at a one percent level.

lower investment-to-capital ratios. In particular, from the last column, the total acquisitions-to-asset

ratio and capital expenditures-to-asset ratio are 1.2% and 2.4% lower for Value firms. Using the more

48This table was inspired by Table 2 of Bazdresch, Belo and Lin (2013).
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comprehensive measure49, net investment-to-capital ratio, shows that investment-to-capital ratio is

4.8% lower for Value firms. The first five columns of the table shows that there is a decreasing

and monotone relationship between the investment-to-asset ratio or asset growth and the Book-to-

Market Equity. These data are all significantly different from zero (at a one percent level). In the

last row of the table, I show that Value firms have significantly lower asset growth than Growth

firms. Zhang (2005) has similar implications. His results rely on asymmetric adjustment costs (it

is relatively more costly to dis-invest), firm heterogeneity and an exogenously specified counter-

cyclical stochastic discount factor. In the model that I present, other than the positive covariance

Cov
⇣
dH
H , dK

A

KA

⌘

, the two types of firms are identical. Thus, I can reproduce some of the results of

Zhang (2005) with a fully endogenous model with human capital risk. Figure 10 shows scatter plots

for a given simulation of the model. It further emphasizes that the model replicates the important
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physical capital for Value and Growth firms versus the investment-to-capital ratio.

differences in optimal production choices for Value and Growth firms that we observe in data (See

Table 16). Value firms tend to have lower investment-to-asset ratio, greater Book-to-Market Equity,

and lower asset growth than Growth firms. The scatter plots trace out exact functions relating

the BE/ME or the expected capital growth to the investment-to-capital ratio; that is 1
q = Γ

◆+✓
and

E
�
dK
K

�
= Γ ln

�
1 + ◆

✓

�
dt (respectively). The model yields an average asset growth of 1.92% and

2.58% for the Type A and B firms respectively. We would obtain the same qualitative results with

any other specification for the adjustment cost. Zhang (2005) produces similar results but he relies

heavily on firm heterogeneity and asymmetric adjustment costs.

49The Net-Investment is the negative of the Investing Activities Net Cash Flow variable (ICNCF) from the Cash
Flow items in Compustat. Net-Investment = Increase in Investments (IVCH) + Capital Expenditures (CAPX) +
Acquisitions (AQC) - Sale of Investments (SIV) - Short Term Investments Change (IVSTCH) - Sale of Property
(SPPE) - Investing Activities Other (IVACO).
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5.4 Some related research

One of the implications of the model is that firms with relatively more firm specific human capital

tend to have greater equity returns. This goes against some related theoretical results in recent

research. First, Belo and Lin (2012) argue that firms in skill-intensive industries tend to have greater

equity returns. In their model, it is more costly for firms to invest in (hire) high-skilled workers due

to training cost, etc. As a result, firms in skill-intensive industries face additional risk; hence their

excess equity return. However, this skill-intensive return spread is statistically significant only for

small firms. Furthermore, it is not clear whether high-skill or low-skill workers’ human capital tend

to be more specific to firms. A custodian or a computer programmer may easily switch industry

but a low-skilled worker in an assembly line or a nuclear physicist may not. Thus, the relative labor

skill intensity may not be the appropriate way of measuring the relative firm specificity of human

capital which is in my model.

On the other hand, Donangelo, Eiling and Palacios (2010) and Donangelo (2013) argue that firms

with relatively less labor mobility tend to have lower equity returns. Firm specific human capital

tend to be less mobile therefore the theoretical results in these papers is contrary to that of my model.

These authors argue that labor mobility is an additional risk to firms because it allows workers to

switch industries following negative shocks; which exacerbates the impact of these negative shocks

on said industries. However, Donangelo (2013) uses a partial equilibrium model with exogenously

specified stochastic discount factor, labor supply and wage processes. Furthermore, the conditional

CAPM holds in Donangelo (2013). This is counterfactual per the results from Jaganathan and

Wang (1996) and Palacios-Huerta (2003a). Although Donangelo, Eiling and Palacios (2010) use a

general equilibrium model, labor is exogenously and inelastically supplied. The productivity growth

(and hence the state variable) is exogenous as well. The labor supply side plays a similarly minimal

role in Belo and Lin (2012). In my model, human capital is endogenously supplied by agents who

dynamically choose how much to invest in their stock of human capital. Thus, although some of

the theoretical results of my model go against those from the aforementioned research it is not

clear whether such a comparison is appropriate since Donangelo, Eiling and Palacios (2010), Belo

and Lin (2012) and Donangelo (2013) focus more on the production side of the economy and make

assumptions that are very different from those in my model. My results are somewhat similar to

those from Garleanu, Kogan and Panageas (2012) where Value firms are relatively more exposed to

innovation risk. In Garleanu, Kogan and Panageas (2012), Value firms are less able to acquire new

blueprints50 compared to Growth firms. As a results, Growth firms provide a hedge against future

innovations. These innovations tend to lead to a displacement of older workers as they are less able

to learn and work with newer technologies than younger workers. Thus, Value firms are relatively

more exposed to displacement risk; hence a Value premium in equity returns.

50 The right to produce new intermediary goods.

47



Lastly, some of the recent empirical evidence from Betermier, Calvet, and Sodini (2013) support

the results from my model. In particular, these authors use a large administrative panel dataset

on Swedish investors and find that investors with relatively more wealth and less income (human

capital) risk tend to invest relatively more in Value stocks. On the other hand, investors that are

less wealthy, less educated and have more income (human capital) risk hold relatively more Growth

stocks in their portfolio.

6 Conclusion

There is increasing interest in studying the asset pricing implications of investment in physical

capital. I complement the existing literature by investigating the joint effects of investment in

physical and human capital on asset pricing. I produce a general equilibrium model with endogenous

growth where human capital risk explains the Value Premium. Thus the Fama-French HmL factor

is a proxy for some macro and financial variables reflecting human capital risk. The model allows

us to identify some of these variables as the covariance between Human capital, or labor income

growth with the growth rate of firm assets. More specifically, in the model the Value premium arises

from the fact that Value firms are associated with more risk to human capital. This is because

Value firms have relatively more firm-specific human capital and are hence more burdened by their

wage bill and also because human capital (both aggregate and firm-level) is more dependent on the

fate of Value firms and hence covary more positively with the assets of Value firms. As a result, a

negative productivity shock to Value firms’ assets implies a negative productivity shock to human

capital. Consequently, these firms are less valuable, have greater Book-to-Market Equity and greater

expected equity returns. I provide empirical evidence in support of these model implications.

The model also predicts that for Value firms wage growth is relatively more positively correlated

with asset growth (and equity returns) and that Value firms have relatively lower investment-to-asset

ratio and lower asset growth. I verify that these are indeed present in data. Zhang (2005) has similar

results. However, unlike Zhang (2005), these arise endogenously in the model and do not require

firm heterogeneity, asymmetric adjustment costs or exogenously specified countercyclical price of

risk. Furthermore, the model endogenously produces a counter-cyclical Value premium, relative

Book-to-Market Equity and price of risk. The model confirms that taking returns on human capital

into account in conditional and unconditional CAPM regressions helps to better explain returns

and expected returns and is necessary to obtain a good proxy for the total wealth portfolio; as

Jaganathan and Wang (1996) argue. The excess covariance of asset growth with human capital

growth for Value firms implies that Value stocks are relatively more exposed to long-run risk. This

is often assumed in long-run risk models but my model provides a rationale for it. Lastly, the model

implies substantial variation of the Value premium as shown empirically by Fama and French (1997).

Thus human capital (or labor income) risk not only explains the Value premium but also yields a
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broad range of implications for the characteristics of firms and security returns which we indeed

observe in data.
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7 Appendix

7.1 Limiting cases of SDU

f {C, V } =
�

⇢

 

C⇢

((1� �)V )
ρ

1�γ
�1

� (1� �)V

!

7.1.1 � = (1� ⇢) = 1

If � = (1� ⇢) we have

f {C, V } =
�

⇢
(C⇢ � ⇢V )

As seen in Duffie and Skiadas (1994) we obtain the usual time-separable utility when � = (1 � ⇢).

Therefore with � = (1� ⇢) ! 1 we obtain

lim
⇢!0

f {C, V } = � ln (C)� �V

Now, recall that dV = �fdt+ V �vdZ. With � = 1 we have �v = 0

dV/dt = �� ln (C) + �V

D
⇣

V e��t
⌘

= �e��t� ln (C)

V {t} = �
ˆ t

0
e��(s�t)� ln (Cs) ds

The transversality condition is limT!1Et (VT ) = 0, therefore

Et (VT � Vt) = �Et


ˆ T

t
e��(s�t)� ln (Cs) ds

�

Taking the limit as T ! 1

Vt = Et


ˆ 1

t
e��(s�t)� ln (Cs) ds

�
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7.1.2 � 6= (1� ⇢) and ⇢! 0

lim
⇢!0

f {C, V } = �(1� �)V lim
⇢!0

1

⇢

 

C⇢ � ((1� �)V )
ρ

1�γ

((1� �)V )
ρ

1�γ

!

As in Section 2.4 of Duffie and Epstein (1992a)

lim
⇢!0

f {C, V } = �(1� �)V

✓

ln (C)� 1

1� �
ln ((1� �)V )

◆

7.2 Difficulties with non-linear production

I have also considered using a Cobb-Douglas production function. With linear production the model

yields natural boundary conditions necessary for solving the PDE we obtain from the Hamiltonian-

Jacobi-Bellman equation. We obtain these boundary conditions by solving the model with a single

capital type (human capital, Type A physical capital, or Type B physical capital). With any

CES production function, Y A = A

✓

↵H
η�1

η + (1� ↵)
�
KA

� η�1

η

◆ η
η�1

, with elasticity of substitution

⌘  1 as found in empirical estimates (and of which Cobb-Douglas production is a special case) and

↵ 2 (0, 1) the boundary value F {0, 0} is not well defined. In particular, the boundary case with

solely human capital would imply

lim
KA!0

Y = lim
KA!0

Y A = lim
KA!0

✓

↵
�
HA

� η�1

η + (1� ↵)
�
KA

� η�1

η

◆ η
η�1

= 0

hence the HJB is not well-defined and F {0, 0} is indeterminate. Thus to solve the model with Cobb-

Douglas production (or CES with ⌘  1) one would need to impose an ad hoc boundary condition.

I have thus far found that imposing such a boundary condition and solving the model with Cobb-

Douglas production is not possible. Furthermore, even with an ad hoc boundary condition the

problem would still be ill-defined at the bound xA = xB = 0. The state variables can visit this

bound. Indeed the state variables can be absorbed at the boundaries because from Equation 7.5 we

have

µx,A,t

�
0, xBt

 
= µx,A,t

�
1, xBt

 
= 0 & �x,A,t

�
0, xBt

 
= �x,A,t

�
1, xBt

 
= 0

µx,B,t

�
xAt , 0

 
= µx,B,t

�
xAt , 1

 
= 0 & �x,B,t

�
xAt , 0

 
= �x,B,t

�
xAt , 1

 
= 0

Jones and Manuelli (2004) show how to solve the model with Cobb-Douglas production but

without adjustment cost. They also discuss the asset pricing implications of human capital in
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such a context. Without adjustment costs solving the model no longer requires solving a PDE;

we need only solve a system of non-linear equations for the now constant shares of capital xA

and xB. Without the adjustment cost the model loses much the of the interesting dynamics

since the Marginal Q’s are equal to 1 (so BE/ME and expected equity returns are the same for

the two types of securities, see Section 7.11 of the Appendix). Furthermore, without adjustment

costs the model requires very specific values for the parameters to ensure that all types of capi-

tal co-exist in equilibrium. Palacios (2013) solves a similar model with human capital, one type

of physical capital and CES production. However, with one type of physical capital there is only

one state variable and hence his model is much simpler than mine. Furthermore, the author as-

sumes that the stochastic component of output comes solely from physical capital, dY = dK =

A
⇣

↵H
η�1

η + (1� ↵) (K)
η�1

η

⌘ η
η�1

dt+�KdZk rather than Y = A
⇣

↵H
η�1

η + (1� ↵) (K)
η�1

η

⌘ η
η�1 )

dY = @Y
@H dH+ @Y

@K dK+ 1
2

⇣
@2Y
@H2dH

2 + @2Y
@K2dK

2 + 2 @2Y
@H@K dHdK

⌘

. This ensures that the local volatil-

ity is constant and avoids some additional complexity which is present in my model. For tractability,

the author also makes the simplifying assumptions that the production of human capital requires

only human capital as input.

A discrete-time version of the model would not be easier to solve. Indeed, as argued in Kaltenbrun-

ner and Lochstoer (2008) and Gourio (2013) to make quantitative statements we would need to solve

the model globally rather than solving some first or second-order local approximations. The more

common approaches to solving discrete-time models globally include function iterations and value

function approximation with high order polynomials (as described in Judd; 1998 and Miranda and

Fackler; 2002). In a discrete-time model, regardless of the solution method used we would need to

carefully compute the expectation of the continuation value. Since the two state variables are en-

dogenous, stochastic and not independently distributed, it is not trivial to compute this expectation.

We avoid this issue with a continuous-time model. Obtaining a global solution to the discrete-time

model would also yield numerical difficulties at the bounds of the state variables if we use a CES

production function with an elasticity of substitution ⌘  1.

7.3 Total factor productivity

The following derivation is based on the results of Brunnermeier and Sannikov (2011) . Let ht, k
i
t

denote the levels of human and physical capital of Type i

dkit = kit

✓

Γ ln

✓

1 +
Iit

✓atkit

◆

� �

◆

dt with a similar process for ht
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The TFP shocks follows

dait = ait
�
ādt+ �dZi

t

�

In endogenous growth models, ā = 0, thus

the TFP is Martingale and any growth will be endogenous.

The production process follows

Yt = A
�
aAt ht + aAt k

A
t + aBt k

B
t

�
= A

�
Ht +KA

t +KB
t

�

The price of human and physical capital are now defined as aAt pt and aitq
i
t. Introducing the TFP

shocks in the law of motion of capital traces back to Cox, Ingersoll and Ross (1985) and Jones

and Manuelli (2004). As argued in Brunnermeier and Sannikov (2011), for scale invariance the

adjustment function has to be a function of effective capital.

“The Brownian shocks dZt reflect the fact that one learns over time how “effective” the
capital stock is. That is, the shocks dZt capture changes in expectations about the future
productivity of capital, and [Kt] reflects the “efficiency units” of capital, measured in ex-
pected future output rather than in simple units of physical capital (number of machines).
For example, when a company reports current earnings it not only reveals information
about current but also future expected cash flow. In this sense our model is also linked
to the literature on news to business cycles, see e.g. Jaimovich and Rebelo (2009).[...]
To preserve the tractable scale invariance property one has to modify the adjustment cost
function (Φ(◆t/at)). The fact that adjustment costs are higher for high at can be justified
by the fact that high TFP economies are more specialized.” – Brunnermeier and Sannikov
(2011)

Notice that the value function is unchanged and at is not a state variable since {Y,C} scale with
�
aAt ht + aAt k

A
t + aBt k

B
t

�

0 = max
IA,IB ,IH

f {C, V }+ VHE
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+VAE
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d
�
aAkA

 �
+ VBE
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d
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2
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VAA
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d
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 �2
+ VBB
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d
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+ 2VAHd

�
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d
�
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we then plug in the conjecture for the value function

(V
�
aAh, aAkA, aBkB, xA, xB

 
=

((aAh+aAkA+aBkB)F{xA,xB})
1�γ

1��
with xi = aiki

aAh+aAkA+aBkB
) and
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simplify

0 =
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⇣ c
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This is exactly what the current formulation of the model yields. To reduce the complexity of the
notation and to maintain the notation from the recent literature on endogenous growth, I will use
Ki = aiki and H = aAh.

Using Ito’s Lemma we then have

d
�
aitkt

�

aitkt
=

dKi
t

Ki
t

=
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Γ ln
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Similarly
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7.4 Processes for aggregate capital

dKi
t = d

✓
ˆ

J
Ki

j,tdj

◆

=

ˆ

J

�
dKi

j,t

�
dj

=

ˆ

J
Ki

j,t

 

Γ ln

 

1 +
Iij,t
✓Ki

j,t

!

dt� �dt+ �dZi
t

!

dj

) dKi
t =

ˆ

J
Ki

j,t

 

Γ ln

 

1 +
Iij,t
✓Ki

j,t

!

dt

!

dj �Ki
t�dt+Ki

t�dZ
i
t

We can conjecture and verify from the decentralized problem that

Iij,t
Ki

j,t

is idependent of j since all firms in each sector are identical

Therefore
Iij,t
Ki

j,t
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Iit
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t

) dKi
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t for i 2 {A,B}
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Similarly

dHt

Ht
= Γ ln

✓

1 +
IHt
✓Ht

◆

dt� �dt+ �hdZ
A
t

Despite the linear production processes, the adjustment cost implies that the planner will not simply

invest all resources in one type of capital. For example, let us compare investing only in human

capital or physical capital of Type A to investing in both. Given an initial positive stock of capital

{Ht,K
A
t }, the expected growth rate of the stock if the planner invests in both is

Et
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dHt + dKA

t

Ht +KA
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If instead the planner were to invest entirely in KA
t we would have
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Now, with �h = �, we have H = KA and equations (7.1) and (7.2) become
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Due to concavity
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A

Thus even if the agents were risk neutral, it would be preferable to invest in both types of capital

despite having linear production. The simulation results will confirm that on average it is optimal

to invest in all three types of capital. All the qualitative results would be unchanged with if the

production function for were a Cobb-Douglas function in H and KA. However, using a Cobb-Douglas

(or other non-linear) production function makes the model significantly more difficult to solve.
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If there were no adjustment cost the equations above would imply
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Thus, aggregate production would be independent of the allocation of resources. The planner would

be indifferent between putting all resources in any type of capital if �h = � and would otherwise

strictly prefer the less risky technology.

7.5 State variables

The state variables are xi = Ki

H+KA+KB 2 [0, 1]. With linear production, the boundaries {0, 1} are

absorbing.
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7.6 The HJB
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where E(dH), E(dKA), and E(dKB) denote the drifts of H, KA, and KB

Plugging in the conjecture for V and simplifying a bit yields the desired result. The function � is

�
�
xA, xB

 
= FB

0

@

�xAxBFA(2�2xAxB+�h(���h)(x
A+xB�1)2��(xA+xB�1)(xA(���h)+xB(�+�h)))

F 2

+
�xB

⇣

�2
⇣

(xA)
2
+(xB�1)xB

⌘

�2��hx
A(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

F

1

A

+

0

B
@

�
�(xA)

2
F 2
A

⇣

�2
⇣

(xA�1)2+(xB)
2
⌘

�2��h(x
A�1)(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

2F 2

+
�xAFA

⇣

�2
⇣

(xA�1)xA+(xB)
2
⌘

���h(2x
A�1)(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

F

1

C
A

+

0

@

(xA)
2
FAA

⇣

�2
⇣

(xA�1)2+(xB)
2
⌘

�2��h(x
A�1)(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

2F

+
xAxBFAB(�2((xA�1)xA+(xB�1)xB)���h(2x

A�1)(xA+xB�1)+�2
h
(xA+xB�1)2)

F

1

A

+

0

B
B
B
B
@

�
�(xB)

2
F 2
B

⇣

�2
⇣

(xA)
2
+(xB�1)2

⌘

�2��hx
A(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

2F 2

+
⇢(xB)

2
FBB

⇣

�2
⇣

(xA)
2
+(xB�1)2

⌘

�2��hx
A(xA+xB�1)+�2

h
(xA+xB�1)2

⌘

2F⇢

+
F
⇣

�2��⇢
⇣

2�+�
⇣

�2
⇣

(xA)
2
+(xB)

2
⌘

�2��hx
A(xA+xB�1)+�2

h
(xA+xB�1)2

⌘⌘⌘

2F⇢

1

C
C
C
C
A

We find the boundary conditions by plugging {xA = 1, xB = 0}, {xA = 0, xB = 1}, and {xA =

0, xB = 0} in equations (2.6)-(2.9) and solving the resulting non-linear equation for the constant F .

When �h = �, we have F̄ = F̂ .

7.7 Martingale method

I will suppress the subscript j for clarity. Let Λt denote the state price density (SPD). Let
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Using the Martingale Method, I will derive some static constraints
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Notice that
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Using the same steps we can derive
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where 1A = {1 , 0}, 1B = {0 , 1} and
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We can write the agent and firm problems as
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Following Duffie and Skiadas (1994), the first order condition for consumption is

GfC = Λt
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The first order condition for human capital implies
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The first order condition for investment in human capital implies
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The firms problems are
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The first order conditions for physical capital51 imply
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51We can think of p and qi as already including the Lagrange multipliers.
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where ◆H = IH/H and ◆i = Ii/Ki. Plugging in the first order conditions from the decentralized

problem in the static constraints (7.3) and (7.5) yields

ΛsS
H
s = ΛsHsps = Es

ˆ 1

s
ΛtptHt

�
A� eHt

�
dt = Es

ˆ 1

s
ΛtHtpt

✓
A� ptΓ� ✓

pt

◆

| {z }

Dividend Yield: DH/SH

dt = Es

ˆ 1

s
ΛtD

H
t dt

ΛsS
i
s = ΛsK

i
sq

i
s = Es

ˆ 1

s
Λtq

i
tK

i
t

�
A� eit

�
dt = Es

ˆ 1

s
ΛtK

i
tq

i
t

✓
A� qitΓ� ✓

qit

◆

| {z }

Dividend Yield: Di/Si

dt = Es

ˆ 1

s
ΛtD

i
tdt

We can combine and re-write these last equations as
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The resource constraint and market clearing conditions are
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as expected. I will summarize some of the above results in the following proposition.

Proposition 3. : We can re-write the agent and firms problems as follow
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• The agent solves
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Proof. We can obtain these results by applying the Martingale Method from Karatzas and Shreve

(1991).

7.8 Asset pricing formulas

Since markets are complete, there exists a unique state price density (SPD), Λt. I will conjecture

and verify the following process for the SPD
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From Duffie and Skiadas (1994) we have
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Applying Ito’s Lemma to Λt and collecting the drift and diffusion terms yields
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I define the risky security prices as
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Equivalently, using Ito’s Lemma we can write
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t +DA +DB

ptHt + qAt K
A
t + qBt K

B
t

=
DH

t

SH
t

(1� !A � !B) +
DA

t

SA
t

!A +
DB

t

SB
t

!B =
Ct

Sw
t
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Thus the return on the total wealth portfolio is

dRw
t =

Dw
t

Sw
t

dt+
dSw

t

Sw
t

dt = (rt + �Λ,t · &
w) dt+ &w

0

t dZt = µw
t + &w

0

t dZt

Similarly the return on the market portfolio is

dRm
t =

Dm
t

Sm
t

dt+
dSm

t

Sm
t

dt = (rt + �Λ,t · &
m) dt+ &m

0

t dZt = µm
t + &m

0

t dZt

where

&m = &A
SA

Sm
+ &B

SB

Sm
=

Sw

Sm

�
&A!A + &B!B

�

µm
t = µA SA

Sm
+ µB SB

Sm
=

Sw

Sm

�
µA!A + µB!B

�

We can write the return on the market portfolio as a value-weighted sum of the two risky securities

return

dRm
t = dRA

t

SA

Sm
+ dRB

t

SB

Sm

dRm
t =

Sw

Sm

�
dRA

t !A + dRB
t !B

�

Notice that when ⇢ = 0

Dw
t

Sw
t

=
DH

t +DA +DB

ptHt + qAt K
A
t + qBt K

B
t

=
A
�
H +KA +KB

�
�
�
✏H � ✏A � ✏B

�

ptHt + qAt K
A
t + qBt K

B
t

) Dw
t

Sw
t

=
C

ptHt + qAt K
A
t + qBt K

B
t

= �

Back to the more general case we have, the beta with the wealth portfolio

�i,w =
cov(dRi

t, dR
w
t )

&m
0

t &mt
=
& i

0

t &
m
t

&w
0

t &wt

Beta with the market portfolio

�i,m =
cov(dRi

t, dR
m
t )

&m
0

t &mt
=

& i
0

t &
m
t

&m
0

t &mt
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The expected excess return of stock A relative to stock B is

Et

�
dRA

t

�
� Et

�
dRB

t

�
= �Λ,t ·

�
&At � &Bt

�
dt

= Covt

✓

�dΛt

Λt
,
dqAt
qAt

◆

� Covt

✓

�dΛt

Λt
,
dqBt
qBt

◆

+ �Λ,t · {1,�1}
0

�dt

After simulating the model, I find that the instantaneous covariance between the SPD and the price

of physical capital of Type A is on average smaller than that between the SPD and the price of

physical capital of Type B. In particular, I find

E
⇣

�Λ,t · {1,�1}
0

�
⌘

dt > E

✓

Covt

✓

�dΛt

Λt
,
dqAt
qAt

◆

� Covt

✓

�dΛt

Λt
,
dqBt
qBt

◆◆

> 0

Thus most of the action comes from the fact that the price of risk associated with dZA is on average

larger than that associated with dZB. This is because negative shocks to firms of Type A are costlier

to the agents since they coincide with negative shocks to the human capital.

Let us define the Q measure as the measure under which the gains processes are Martingale.

Let ⇠t denote the corresponding Radon-Nikodym derivative (with ⇠0 = 1). Λt = ⇠te
�
´ t

0
rsds. Thus,

⇠0 = 1 ) Λ0 = 1.

7.9 Market Completeness

With Corrt

⇣
dHt

Ht
,
dKA

t

KA
t

⌘

/dt = Corrt
�
dZA

t , dZ
H
t

�
/dt = % = 1 markets are dynamically complete as

long as the two risky securities (claims on the profits of firms of types A and B) are traded. Thus

with % = 1 the agents can implicitly issue claims on the value of their human capital. Now, let

1 > % > 0. In that case, markets are dynamically complete only if we explicitly introduce a third

risky security by allowing agents to issue claims on the value of their human capital. With complete

markets, we can use the solution to the planner’s problem. The asset pricing formulas would be

slightly different and the Value premium would be lower (compared to when % = 1)

Et

�
dRA

t

�
� Et

�
dRB

t

�
= Covt

✓

�dΛt

Λt
,
dqAt
qAt

◆

� Covt

✓

�dΛt

Λt
,
dqBt
qBt

◆

+
n

�
(1)
Λ,t + �

(3)
Λ,t%,�

(2)
Λ,t

o

· {1,�1}
0

�dt

Notice that with % = 1 we have Covt

⇣
dHt

Ht
,
dKA

t

KA
t

⌘

= �h�dt and with 1 > % > 0 it is Covt

⇣
dHt

Ht
,
dKA

t

KA
t

⌘

=

�̃h�%dt. Thus, we can always set �h = �̃h% so this covariance is the same in both models. Further-

more, the expected excess return of Security A with % = 1 is Covt

⇣

�dΛt

Λt
,
dqAt
qAt

⌘

�Covt

⇣

�dΛt

Λt
,
dqBt
qBt

⌘

+
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�Λ,t · {1,�1}
0

�dt. Thus we again recover a simple mapping between the two models. Hence, I con-

jecture that the quantitative results should not be very different. Furthermore, I should be able

to calibrate the parameters of the model with 1 > % > 0 (and complete markets) so that the key

moments are exactly the same as those in the model with % = 1. The time paths will nonetheless

not be identical because of non-linearities, state dependence, and because the introduction of the

additional shock dZH changes the time paths of the state variables.

With 1 > % > 0, if we do not allow agents to issue claims on the value of their human capital,

markets are incomplete. As a result the price of risk is greater since the agents can no longer smooth

consumption as much as before due to the restriction on security holdings. In particular, �
(3)
Λ,t (and

hence
n

�
(1)
Λ,t + �

(3)
Λ,t%,�

(2)
Λ,t

o

· {1,�1}
0

�) is greater (relatively to the case with complete markets and

1 > % > 0). Thus, market incompleteness can undo the effect52 of a decrease in %. When markets are

dynamically complete, the Martingale Method is simple. If we introduced markets incompleteness,

we would need to directly solve for the competitive equilibrium. With incomplete markets the

Martingale Method would be more complex as it would require solving a min-max problem. We

could instead use dynamic programming to solve for the competitive equilibrium.

7.10 Allowing for firm liabilities

Let us assume that at time t the agents hold an amount ditS
i
t of debt from firms of Type i. As

before, $i
t is the fraction of financial wealth the agent invests in the equity of Type i. The securities

market clearing conditions would be

$A
t W̃t +$B

t W̃t =
�
(1� dAt )S

A
t + (1� dBt )S

B
t

�
equity market clears

(1�$A
t �$B

t )W̃t = dAt (W̃t � SB
t ) + dBt (W̃t � SA

t ) debt market clears

where financial wealth is

W̃s = SA
t + SB

t

By Walras Law one of these equations is redundant. Indeed, we can re-write these equations as

�
$A

t +$B
t � 1

�
W̃t = �dAt S

A
t � dBt S

B
t equity market clears

�
1�$A

t �$B
t

�
W̃t = dAt S

A
t + dBt S

B
t debt market clears

52Of course market incompleteness would also affect all other endogenous variables of the model. Nonetheless, I
expect that the mechanism highlighted above will be the dominant one.
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Notice that when dAt = dBt = 0 we recover the outcome of the baseline model. When we allow for

firm debt the return on equity becomes

dR̃i
t = dRi

t � rtd
i
tdt for i 2 {A,B}

) dR̃i
t =

�
rt(1� dit) + �Λ,t · &

i
t

�
dt+ & it · dZt

The model’s BE/ME ratio is unchanged because of the Modigliani-Miller Theorem (the firm value

is unaffected by how it is financed)

BE/ME =
Assets� Liabilities

Equity
=

Ki
t � ditS

i
t/q

i
t

Si
t � ditS

i
t

=
Ki

t � ditK
i
t

Si
t � ditS

i
t

=
1� dit

(1� dit)q
i
t

=
1

qit

Let us assume that dit is constant and that firm debt pays the risk-free rate (as in He and Krishna-

murthy; 2012). We can obtain the parameters {dA, dB} by using data on the Value (firms of Type

A) and Growth firms (of Type B)

Leverage =
Liabilities

Assets
=

diSi
t/q

i
t

Si
t/q

i
t

= di

Using data from Compustat and the Fama and French breakpoint for Value and Growth, I find the

ratios of total liabilities to total assets

dA = 0.62

dB = 0.58

The Type A security excess return becomes

dR̃A
t � dR̃B

t =
�
rt(d

B � dA) + �Λ,t · (&
A
t � &Bt )

�
dt+ (&At � &Bt ) · dZt

With an average risk-free rate of 1% we would have

E
⇣

dR̃A
t � dR̃B

t

⌘

= E
�
rt(d

B � dA)
�

| {z }

⇡-0.0005

dt+ E
�
dRA

t � dRB
t

�

76



7.11 Cox, Ingersoll and Ross (1985a)

To better understand the implications of the adjustment costs, I will now consider the case without

adjustment costs as in Cox, Ingersoll and Ross (1985).

dHj,t

Hj,t
=

IHj,t
Hj,t

dt� �dt+ �hdZ
A
t

dKi
j,t

Ki
j,t

=
Iij,t
Ki

j,t

dt� �dt+ �dZi
t for i 2 {A,B}

From the Martingale Method in Section 7.7 we have

max
{Cj,t,IHj,t,Hj,t}1t=0

E0

ˆ 1

0
f {Cj,t, Vj,t} dt s.t.:

W̃0 + p0H0 = E0

ˆ 1

0
Λt

�
Cj,t + IHj,t � !tHj,t

�
dt

+E0

ˆ 1

0
ΛtptHj,t

 

 ̄t

pt
�

IHj,t
Hj,t

+ �

!

dt

The FOC for investment in human capital implies

pt = 1

Similarly from the firms problems we have

qit = 1 for i 2 {A,B}

This is the same result reported in Section 5.3 of Eberly and Wang (2011) and Appendix A.4.3

of Kozak (2012). Therefore, without adjustment cost the BE/ME is the same for both types of

securities.

In particular, the FOC’s from planner’s problem become

1 =
1

�

⇣ c

F

⌘1�⇢ �
F � xAFA � xBFB

�

1 =
1

�

⇣ c

F

⌘1�⇢ �
F � (xA � 1)FA � xBFB

�

1 =
1

�

⇣ c

F

⌘1�⇢ �
F � xAFA � (xB � 1)FB

�
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They imply

c = F

✓
�

F

◆ 1

1�ρ

FA = FB = 0

This is exactly as shown in Appendix A.4.3 of Kozak (2012). The HJB becomes

0 =
�

⇢

⇣ c

F

⌘⇢

+ �
�
xA, xB

 
+ ◆H(1� xA � xB) + ◆BxB + ◆AxA

where

◆H(1� xA � xB) + ◆BxB + ◆AxA = A� c

c = F

✓
�

F

◆ 1

1�ρ

�
�
xA, xB

 
=

�2� � ⇢

 

2� + �

 

�2
⇣�

xA
�2

+
�
xB

�2
⌘

� 2��hx
A(xA + xB � 1)

+�2h(x
A + xB � 1)2

!!

2⇢

We can thus find F

F =

 

⇢(A+ �
�
xA, xB

 
)�

1

ρ�1

⇢� 1

!�
1�ρ
ρ

As in Eberly and Wang (2011) and Kozak (2012) , xA and xB are no longer state variables but

(constant) choice variables which maximize the value function (at date zero).
�
xA, xB

 
solve

0 = max
xA,xB

 

⇢(A+ �
�
xA, xB

 
)�

1

ρ�1

⇢� 1

!�
1�ρ
ρ

The solution is

xB = x̄B = 1/2

xA = x̄A 2 [0, 1/2]
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To summarize, we have

F = F̄ =

 

⇢(A+ �
�
x̄A, x̄B

 
)�

1

ρ�1

⇢� 1

!�
1�ρ
ρ

and the optimal consumption to capital ratio and total investment to capital ratio

c = c̄ = F̄

✓
�

F̄

◆ 1

1�ρ

xA◆A + xB◆B + (1� xA � xB)◆H = ◆̄ = A� c̄

The asset pricing implications are as follows

 ̄t = rt + �h�
(A)
Λ,t

 i
t = rt + ��

(i)
Λ,t

The first order condition for human capital implies

0 = � ̄t + !t

)  ̄t = A

Similarly, the first order condition for physical capital implies

 i
t = A

Thus we must have

A = rt + �h�
(A)
Λ,t

A = rt + ��
(A)
Λ,t

A = rt + ��
(B)
Λ,t

which implies

�h = �
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�
(A)
Λ,t = �

(B)
Λ,t

A = rt + ��
(A)
Λ,t

The diffusions are

�v,t =
n

�(� � 1)�xA + (� � 1)�h
�
xA + xB � 1

�
, �(� � 1)�xB

o

�c,t =
�
(1� xA � xB)�h + xA� , xB�

 
(since c is constant)

�Λ,t = �(⇢� 1)�c,t �
✓

⇢

� � 1
+ 1

◆

�v,t

�
(B)
Λ,t = ��xB

�
(A)
Λ,t = ��

�
1� xB

�

Thus,

rt = A� 1

2
��2

�
(A)
Λ,t = �

(B)
Λ,t =

1

2
��

The volatility of returns are

&At = {�, 0}
0

&Bt = {0,�}
0

and

dRi
t =

✓

rt +
1

2
��2

◆

dt+ & i
0

t dZt

) dRi
t = Adt+ & i

0

t dZt

Thus the expected excess return (Et(dR
A
t )� Et(dR

B
t )) is zero.
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7.12 Alternative calibration

I search for a combination of {A, c⇤, F ⇤, �, ✓, ⇢,�} over the corresponding seven-dimensional space to

satisfy the following seven conditions: an expected output growth of 2% in a one-capital economy,

a risk-free rate of 0.90%, a volatility of output of 4% , a consumption-to-output ratio of 90% in a

one-capital economy, the resource constraint in a one-capital economy, the first-order condition for

investment in a one-capital economy, and the HJB in a one-capital economy.

Variable Name/Calculation Value

A Marginal Product of Capital 20.63%
� Subjective Discount Factor 7.00%

c⇤ Consumption
Capital

in one-capital economy 18.63%

� Depreciation 0.00%
F ⇤ Normalized Value Function, F , in one-capital economy 0.0791
� Risk Aversion Parameter 59.35

Γ = ✓ Adjustment Cost Parameters 2.73%
⇢ Implied IES Parameter = 2.0025 0.5006

� = �h Standard deviation of Capital Growth 5.50%

Table 17: Parameters of the model

Moments Data/Targets (%) Model (%)

Mean Consumption Growth 2.00 2.02
Mean Output Growth⇤ 2.00 2.02
Mean Risk-free Return⇤ 0.90 0.90

Standard Deviation of Risk-free Return 2.00 0.14
Mean Return of Value Stocks 10.32 10.97

Standard Deviation of Value Stocks 16.73 4.66
Sharpe Ratio of Value Stocks 56.31 216

Mean Return of Growth Stocks 6.24 9.34
Standard Deviation of Growth Stocks 16.62 4.15

Sharpe Ratio of Growth Stocks 32.13 204
Mean Value premium 4.08 [1.64, 1.65]

Sharpe Ratio of Value premium 38.50 41.42
Mean Market Return 7.16 10.05

Standard Deviation of Market Return 15.45 3.92

Table 18: The parameters are set to to match some annual moments. The moments with ⇤ are some of the moments
that I target in the calibration. To obtain the model’s moments, I simulate 25 years of observations 10,000 times
with a monthly frequency. I then take the sample mean (or standard deviation) over time and then its average across
simulations. All values are in annual units.

This alternative calibration yields a Value premium that is very close to that from the main

calibration. The Sharpe ratios are much larger because the return volatilities are small. All other

results of the model are qualitatively identical and quantitatively similar to those from the main
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calibration.

The volatility of equity returns is much lower than what is observed in data. We can nonetheless

reconcile the two by adjusting for leverage. Indeed, the model does not include debt financing. In

data, firms are levered and the observed volatility of equity is the volatility of levered equity, which

is much higher than that of equity with zero leverage.

7.13 More on the conditional CAPM

In the table below I reproduce the regressions from Table 4 while introducing some error in �
i,m
t ,

�
i,w
t , &mt , and &wt . In particular, for each observation of {&At , &

B
t , &mt , &wt } construct {&̂At , &̂

B
t , &̂mt , &̂wt }

where &̂At = &At + ✏At , &̂Bt = &Bt + ✏Bt , &̂mt = &mt + ✏mt , &̂wt = &wt + ✏wt and the ✏’s are Normal random

variables with mean zero and standard deviation equal to that of the corresponding &. Lastly, I

define �̂i,w =
&̂it ·&̂

w
t

&̂wt .&̂wt
and �̂i,m =

&̂it ·&̂
m
t

&̂mt .&̂mt
.

Conditional CAPM Regressions

(1) Wealth Portfolio: Et

�
dRA

t

�
� Et

�
dRB

t

�
= α0

|{z}

Pricing Error

+ α1
|{z}

Slope

⇥ ς̂wt .ς̂wt

⇣

β̂
A,w
t � β̂

B,w
t

⌘

dt

(2) Market Portfolio: Et

�
dRA

t

�
� Et

�
dRB

t

�
= α0

|{z}

Pricing Error

+ α1
|{z}

Slope

⇥ ς̂mt .ς̂mt

⇣

β̂
A,m
t � β̂

B,m
t

⌘

dt

� = (1� ⇢) = 1 � 6= (1� ⇢) = 1 � > (1� ⇢) 6= 1

↵0 (%)
t-stat

↵1

t-stat

R2

t-stat

(1) (2) Diff.

0.34 1.1 �0.71
6.3 32. �26.

0.66 0.63 0.03
24. 24. 0.22

0.66 0.65 0.00
23. 23. 0.11

(1) (2) Diff.

0.98 1.8 �0.78
7.7 20. �13.

1.5 1.5 0.01
18. 17. 0.41

0.51 0.5 0.01
8.3 6.8 0.27

(1) (2) Diff.

0.9 2. �1.1
7.1 24. �17.

1.9 0.05 1.9
20. 17. 3.

0.56 0.48 0.08
11. 5.9 1.2

Table 19: Each panel shows the regression results for three different specifications for preferences. To obtain the
regression coefficients I simulate the model 10, 000 times and run a regression for each simulation. The coefficients
displayed are the average coefficients across simulations. I then calculate the standard errors as the standard deviation
of the statistics across simulations. The t-stats are the ratio of the average statistic and their standard error. In the
columns labelled (1), I include the results from the CAPM regressions of excess returns against excess betas on the
wealth portfolio. In the columns labelled (2), I include the results from the CAPM regressions of excess returns
against excess betas on the market portfolio. The column labelled Diff shows the difference between the statistics
from regressions (1) and (2) as well as the corresponding t-stats.
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7.14 Deterministic model

I now turn off all the shocks in the model by setting � = �h = 0. The processes for the state

variables become

dxit = µx,i,tdt for i 2 {A,B}

µx,A,t = xAt

✓

Γ
�
xAt + xBt � 1

�
ln

✓
Γpt
✓

◆

+
�
Γ� ΓxAt

�
ln

✓
ΓqAt
✓

◆

� ΓxB ln

✓
ΓqBt
✓

◆◆

µx,B,t = xBt

✓

Γ
�
xAt + xBt � 1

�
ln

✓
Γpt
✓

◆

� ΓxA ln

✓
ΓqAt
✓

◆

+
�
Γ� ΓxB

�
ln

✓
ΓqBt
✓

◆◆

At the deterministic steady state we have

0 = Γ
�
xA + xB � 1

�
ln

✓
Γp

✓

◆

+
�
Γ� ΓxA

�
ln

✓
ΓqA

✓

◆

� ΓxB ln

✓
ΓqB

✓

◆

0 = Γ
�
xA + xB � 1

�
ln

✓
Γp

✓

◆

� ΓxA ln

✓
ΓqA

✓

◆

+
�
Γ� ΓxB

�
ln

✓
ΓqB

✓

◆

which implies that

p = qA = qB

dRA = dRB = rdt = ((1� ⇢)µc + �) dt

µc = Γ ln

✓

p
Γ

✓

◆

� �

In steady state, xA and xB are indeterminate because H, KA and KB are risk-less and have the

same productivity, A. Using Corollary 2 and the HJB (2.10), we then have that p and F jointly

solve

p =
1

�

✓
A� Γp+ ✓

F

◆1�⇢

F

0 =
�

⇢

✓
A� Γp+ ✓

F

◆⇢

� �

⇢
+ Γln

✓

p
Γ

✓

◆

� �

Lastly, in steady state we also have ◆A = ◆B = ◆H = Γp� ✓.

7.15 Joint distribution of the state variables
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Figure 11: I pool all observations (across time and simulations) from the model for {xA, xB} to produce the joint
distribution.

The red dot shows the mean of the state variables. Because xA 2 [0, 1] and xB 2 [0, 1], the

state space is triangular (and is delineated with the thin black line). However because of the strong

symmetry of the model, there is a strong relationship between xAt and xBt and the realizations of

{xAt , x
B
t } are in a tight band. In particular, the thick black curve is actually a scatter plot from

10, 000 simulation of the model. The dark shading shows where the observations are relatively more

concentrated. I also plot the 45-degree line and the percentage of observations in the two halves of

the state space. Furthermore, from the 10, 000 simulations of the model I find that the boundaries

are never visited: xAt 2 [0.0038, 0.4976] and xBt 2 [0.0034, 0.9924].

7.16 Long run risk

Following Borovicka et al. (2011) and Hansen (2011), I construct risk-price elasticities for securities

A and B. Let x denote the vector of state variables. We have

dxt = µx,tdt+ �x,tdZt

µx,t =

 

µx,A,t

µx,B,t

!

and �x,t =

 

�
0

x,A,t

�
0

x,B,t

!
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I introduce the perturbation with ⇣t {✏} where

ln (⇣t {✏}) =

ˆ t

0
�1

2
✏2↵ · ↵ds+

ˆ t

0
✏↵ · dZs and ↵ =

⇢
1p
2
,
1p
2

�0

The risk-price elasticities are

⇡i {x, t} =
1

t

d

d✏
ln
�
E
�
Si
t⇣t {✏} |x0 = x

� 
�
�
�
✏=0

| {z }

risk-exposure elasticity

� 1

t

d

d✏
ln
�
E
�
ΛtS

i
t⇣t {✏} |x0 = x

� 
�
�
�
✏=0

| {z }

risk-value elasticity

for i 2 {A,B}

The first step is to produce the dynamic valuation decomposition for Si
t and ΛtS

i
t . Since the approach

is the same in both cases, I will produce the decomposition for a generic multiplicative functional

Mt and later specialize to Mt = Si
t and Mt = ΛtS

i
t .

dln (Mt) = µM,tdt+ �M,t · dZt

) Mt = M0exp

✓
ˆ t

0
(µM,s) ds+

ˆ t

0
�M,s · dZs

◆

I look for an eigenfunction e {x} = exp {g {x}} and an eigenvalue ⌫ which solve53

E
⇣

Mte {xt}
�
�
�x0 = x

⌘

M {x}
= exp (⌫t) e {x}

Since this equation holds for any t, it can be localized as

lim
t#0

E
⇣

Mte {xt}
�
�
�x0 = x

⌘

� exp (⌫t) e {x}M {x}

t
= 0

) @e

@x0 (µx + �x�M ) +
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2
trace

⇢✓
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✓
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◆◆

�x�x
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�M · �M

◆
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2
trace
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◆◆
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(7.8)

+

✓

µM +
1

2
�M · �M

◆

= ⌫

53See Section 6.2 of Hansen (2011).
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⌫ is also the long run growth (or decay) rate, ⌫ = limt!1
1
t ln

⇣

E
⇣

Mt

�
�
�x0 = x

⌘⌘

. To obtain ⌫ we can

collect the constant terms from the above eigenfunction equation (7.8) by evaluating this equation

at the xA = xB = 0 boundary. As expected, I find that ⌫ is larger for Mt = SA
t (Value stocks) than

Mt = SB
t since Value stocks have greater returns on average. In particular,

⌫A = � � A� ΓqA {0, 0}+ ✓

qA {0, 0}
+

1

2
��h (2� + (�2 + ⇢)�h) + (1� ⇢)

✓

Γln

✓
ΓpA {0, 0}

✓

◆

� �

◆

⌫B = � � A� ΓqB {0, 0}+ ✓

qB {0, 0}
+

1

2
�(�2 + ⇢)�2h + (1� ⇢)

✓

Γln

✓
ΓpA {0, 0}

✓

◆

� �

◆

where qB {0, 0} > qA {0, 0} > pA {0, 0}. The difference in the long-run growth of stock prices

between Value and Growth is

⌫A � ⌫B =

�
qA {0, 0}� qB {0, 0}

�
(A+ ✓)

qA {0, 0} qB {0, 0}
+ ���h > 0

Similarly, for Mt = ΛtS
i
t , I find

⌫̄A = �A� ΓqA {0, 0}+ ✓

qA {0, 0}

⌫̄B = �A� ΓqB {0, 0}+ ✓

qB {0, 0}

Thus, following Section 6.4 of Borovicka et al. (2011), the limiting Value premium is

lim
t→∞

8

<

:
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t

h

ln
⇣

E
⇣

SA
t

�
�
�x0 = x

⌘⌘

� ln
⇣

E
⇣

ΛtS
A
t

�
�
�x0 = x

⌘⌘i
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ln
⇣

E
⇣
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�
�
�x0 = x

⌘⌘

� ln
⇣
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⇣

ΛtS
B
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�
�
�x0 = x

⌘⌘i

9

=

;
= (⌫A � ⌫̄A)� (⌫B � ⌫̄B) = ���h

The ��h term comes from the relative covariance of human capital growth with the asset growth of

Type A firms; that is Cov
⇣
dH
H , dK

A

KA

⌘

�Cov
⇣
dH
H , dK

B

KB

⌘

= ��hdt. This is by design. Nonetheless, it

is interesting that we are able to characterize the limiting Value premium by the product of the risk

aversion governing parameter and the relative covariance of human capital growth with the asset

growth of Value firms.

Continuing with the decomposition, I can now write

Mt = exp(⌫t)M̃t
ê {xt}

ê {x}

where ê {x} = 1/e {x} and M̃t is Martingale. Notice that at the boundaries we have

Mt = exp(⌫t)M̃t
ê {xt}

ê {x}
= exp(⌫t)M̃t
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Therefore, we can set

e{1, 0} = e{1, 0} = e{0, 0} = 1

) g{1, 0} = g{0, 1} = g{0, 0} = 0

The above boundary conditions are necessary for solving the partial differential equation in (7.8).

ln(M̃t) = ln(Mt) + ln(e {xt})� ln(e {x})� ⌫t

dln(M̃t) = �1

2
�̃M,t · �̃M,tdt+ �̃M,t · dZt

) �̃M,t = �M,t + �x,t
@

@x
g {xt}

I now define an alternative measure such that for any function n {xt} we have

E
⇣

M̃texp(n {xt})
�
�
�x0 = x

⌘

= Ẽ
⇣

exp(n {xt})
�
�
�x0 = x

⌘

dZ̃t is a standard Brownian motion increment under the alternative measure and

dZt = Θtdt+ dZ̃t

dxt = µx,tdt+ �x,t

⇣

Θtdt+ dZ̃t

⌘
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✓
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dx+O
�
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= µndt+
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M̃texp(n {xt})
�
�
�x0 = x

⌘
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exp(n {xt})
�
�
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⌘

implies Θt = �̃M,t.

Now, we have
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+
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Ẽ
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ê {xt}
⇣
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�
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⌘

Ẽ (ê {xt} |x0 = x)
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Using the innovation representation

ê {xt} =

ˆ t

0
� {xs, t� s} dZ̃s + Ẽ (ê {xt} |x0 = x)

� {x, t� s} = �x
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Ẽ
⇣
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Notice that

� {x, t} = �x
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ln
⇣
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⇣

exp (�g {xt})
�
�
�x0 = x

⌘⌘

� {x, 0} = ��x
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g {x}

I will assume that process for the state vector, x, is stochastically stable under the alternative

measure. Thus limt�s!1 Ẽ
⇣

exp (�g {xt})
�
�
�xs = x

⌘

= Ẽ (exp (�g {xt})) and

lim
t!1

� {x, t} = 0

7.16.1 Limiting behavior

Following the approach from Section 3.4 of Borovicka et al. (2011) I derive the limiting behavior.

The long horizon risk-price elasticities are

⇡i {x,1} = ↵ ·

✓

�Λ {x}+ �x
@

@x
gig {x}� �x

@

@x
giv {x}

◆

i 2 {A,B}

where gig {x} and giv {x} solve equation (7.8) for Mt = Si
t and Mt = ΛtS

i
t respectively. When we

condition on the mean value of the state vector (x̄) we find ⇡A {x̄,1} > ⇡B {x̄,1}. Thus, in the

model the Type A firms are indeed more exposed to long-run risk than the Type B firms.
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(a) Contour plots for the relative long-run risk-price elas-
ticity. The red dot shows the location of the mean of the
state variables. The 45-degree line separates the two halves
of the domain of the state variables.
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(b) Distribution of the relative risk-price elasticities from
10, 000 simulations of the model.

Figure 12: Figure (a) shows the relative long-horizon risk-price elasticity as a function of the state variables. Figure
(b) shows the distribution of the relative risk-price elasticities from simulations of the model.

From Figure 12 we can see that ⇡A {x̄,1} > ⇡B {x̄,1} (where x̄ is the mean of the state

variables, that is x̄ = E (x)) and E
�
⇡A {x,1}

�
> E

�
⇡B {x,1}

�
. Thus the Type A firms are

indeed more exposed to long-run risk.

7.16.2 Transitional dynamics

Let

f {x, t� s} = Ẽ
⇣

exp (�g {xt})
�
�
�xs = x

⌘

) f {x, 0} = exp (�g {x})

Stochastic stability implies
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0
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A conditional expectation is Martingale, therefore
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Let u = t� s, now we can find f {x, u} by solving

0 = � @

@u
f +

✓
@

@x0 f

◆

(µx + �x�M + �x�xgx) (7.9)

+
1

2
trace

⇢
@

@x

✓
@

@x0 f

◆

�x�x

�

f {x, 0} = exp (�g {x})

lim
u!1

@

@x
ln (f {x, u}) = {0, 0}

0

The risk-price elasticities are
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and f i
g {x, u} and f i

v {x, u} solve equation (7.9) for Mt = Si
t and Mt = ΛtS

i
t respectively.

7.16.3 Autocorrelations and covariances with consumption growth
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Figure 13: These figures show covariances of security returns with consumption growth over τ years and autocorrela-
tions with lags of τ years.

First, I write the process for consumption as

dlnCt = µc,tdt�
1

2
�c,t · �c,tdt+ �c,t · dZt

Then, I calculate the covariances between equity returns and consumption growth as follows.
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As expected the returns on the Type A security covary much more with consumption growth over

horizons ⌧ > 0 compared to the Type B security. This result is reminiscent of that from Hansen,

Heaton and Li (2008) and shows that the Type A security is relatively more exposed to long horizon

risk than the Type B security. However, in my model it is also true at shorter horizons. The

contemporaneous correlations between consumption growth and equity returns are in Table 20.

They are larger than what is observed in data because the model is not tailored to match these

moments.

dRA
t dRB

t dRm
t dRw

t

Corrt

⇣
dCt

Ct
, dRt

⌘

0.90 0.74 0.98 1.0

Table 20: Contemporaneous correlations between consumption growth and equity returns

The autocorrelations are somewhat large for expected consumption growth (µc,t), expected re-

turns, as well as the levels and expected growth rate of the state variables (xit and µx,i,t for i 2 {A,B}

respectively). That is because the adjustment costs prevent instantaneous reallocation of capital.

As a result the capital shares, {xAt , x
B
t }, have large autocorrelations for ⌧ < 3. Since the expected

consumption growth, the expected returns and the expected growth rate of the capital shares are

functions of state variables, these drifts also display strong autocorrelations for ⌧ < 3.

7.17 Controlling for the number of employees

Since Growth firms tend to hire more employees, in the regressions below I control for the level (or

growth rate) of employment.
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R2 #Obs.
(1) ln (Asset)i,t = a1 ln (Wage)i,t + a2 ln (Wage)i,t ⇥ V alueDummyi,t 0.96 15, 051

+a3 ln (Emp)i,t + εi,t

(2) ∆ln (Asset)i,t = a1 ∆ln (Wage)i,t + a2 ∆ln (Wage)i,t ⇥ V alueDummyi,t 0.41 13, 089
+a3 ∆ln (Emp)i,t + εi,t

Coef. Std.Err. T-stat P-value

(1)
ln (Wage) 1.68 0.00 391.53 0.00

ln (Wage)⇥ V alueDummy 0.11 0.01 21.69 0.00
ln (Emp) �0.92 0.01 �134.67 0.00

(2)
∆ln (Wage) 0.30 0.01 53.83 0.00

∆ln (Wage)⇥ V alueDummy 0.07 0.01 7.75 0.00
∆ln (Emp) 0.47 0.01 50.34 0.00

Table 21: Panel (1) shows the results from regressing the natural logarithm of firm assets against the natural logarithm
of the wage bill, the wage bill times an indictor variable for Value firms, as well as the natural logarithm of the number
of employees. Panel (2) shows the results from regressing the annual change in the natural logarithm of assets against
the change in the natural logarithm of the wage bill, the interaction of the latter with the Value firm indicator, as
well as the change in the natural logarithm of the number of employees. The wage bill is the sum of salaries, wages,
pension costs, profit sharing and incentive compensation, payroll taxes and other employee benefits (As measured by
the XLR variable from the firm income statement in Compustat).

7.18 Univariate betas of monthly equity returns with monthly returns on human
Capital

Aggregate Human Capital ⇠Obs

�i,h P-val

Value Portfolio 0.91 0.07 600

Growth Portfolio 0.04 0.93 600

Aggregate Human Capital ⇠Obs

�i,h P-val

Value Firms 0.71 0.00 500, 000

Growth Firms 0.52 0.00 500, 000

Firm level returns on human capital data is only available annually from Compustat. Thus, I am

unable run the above regressions at a monthly frequency for portfolio or firm level human capital

returns.

7.19 Annually Updated βh
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BE/ME Quintiles
�h Quintiles Low 2 3 4 High
Low �0.18 3.72 5.09 4.54 5.19
2 1.44 3.42 5.20 6.84 6.94
3 1.65 2.26 3.77 4.83 8.04
4 4.58 3.30 4.23 6.69 9.19
High 4.60 3.48 6.39 7.19 8.71

(a) This table shows the annualized average real monthly return
of 25 dual-sort portfolios. The dual-sort portfolios are from group-
ings of securities by BE/ME quintiles and βh quintiles. βh is the
slope from a rolling 12 month univariate regression of equity re-
turns against human capital returns. The shaded cells show where
the monotone increasing relationship between BE/ME and average
equity returns breaks down.

�h Quintiles

Low 2 3 4 High

Expected Return
E(dRt)

1.73 2.84 3.70 3.88 5.35

(b) Mean annualized real monthly returns
for βh-quintile portfolios.

Table 22: These tables use data from CRSP and Compustat.

7.20 Extension of the model

The model yields a Sharpe ratio for the Value premium (
Et(dRA

t )�Et(dRB
t )p

&At ·&At �2&At ·&Bt +&Bt ·&Bt
) which is fairly small

compared to what is observed in data. This is because the local covariance of the two risky securities

(&At · &Bt dt) is fairly small. I can correct this without affecting the average Value premium much by

introducing some common variation in the two types of firms which is locally orthogonal to (or

has the same local covariance with) both dZA
t and dZB

t . I can do so by making the parameter

which governs the risk aversion (�t) or the adjustment cost parameter (Γt = ✓t) stochastic (and

mean-reverting for stationarity). In the current model, the Tobin Q’s have a rather low volatility

and most of the volatility of the capital gains comes from the volatility of capital. With ✓t or �t

stochastic, the Tobin Q’s would me more volatile and we could have highly volatile capital gains

while keeping the volatility of capital low; which would be more factual. This model would be more

difficult to solve because there would be on additional state variable, ✓t or �t. I go through some of

the details of one of the aforementioned extensions of the model below.

7.20.1 Stochastic Risk Aversion

Let � = �t where

d�t = #0 (�̄ � �t) dt+ #1�tdZ
�
t
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We can obtain the solution for �t using the steps below.
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Notice that with �0 = �̄,#0 > 0 , #1 > 0 we have �t � 0. Furthermore,

E0 (�t) = �̄ (1� exp {�#0t}) + �0exp {�#0t}

lim
t!1

E0 (�t) = �̄

To maintain market completeness, I will set dZ�
t = dZA

t + dZB
t . For homogeneity, I need to modify

the value function slightly. In particular, I will use an aggregator, < f̃, Ãv >, where

f̃
n

Ct, Ṽt

o

=
�

⇢

 

C⇢
t

Ṽ ⇢�1
t

� Ṽt

!

Ãv

n

Ṽt

o

= ��t
Ṽt

the new value function is Ṽt ⌘ ((1� �)Vt)
1

1�γt and f̃
n

Ct, Ṽt

o

⌘ Ṽ �t
t f {Ct, Vt}. The process for the

value function is

dṼt = �
✓

f̃
n

Ct, Ṽt

o

+
1

2
Ṽ 2
t Ãv

n

Ṽt

o

�v,t · �v,t

◆

dt+ Ṽt�v,tdZt

The variance multiplier, Av {Vt}, introduces a penalty for volatility in the value function.

In the case where � is constant, this new aggregator is ordinally equivalent to the original

aggregator. Indeed, following Kozak (2012), let us define the change of variables � {y} = y1�γ

1��
.
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This implies that Vt = �
n

Ṽt

o

and

f̃
n

Ct, Ṽt

o

=
f {Ct, Vt}

�
0
n

Ṽt

o (7.10)

Ãv

n

Ṽt

o

=
�

00
n

Ṽt

o

�
0
n

Ṽt

o

Recall that the original aggregator was a normalized aggregator < f,Av > with

Av {Vt} = Av

n

�
n

Ṽt

oo

= 0

Thus we can re-write Ãv

n

Ṽt

o

as

Ãv

n

Ṽt

o

= �
0
n

Ṽt

o

Av

n

�
n

Ṽt

oo

+
�

00
n

Ṽt

o

�
0
n

Ṽt

o (7.11)

Equations (7.10) and (7.11) imply that the aggregator < f̃, Ãv > and f are ordinally equivalent (see

Section 1.4 of Duffie and Epstein; 1992b). Thus the corresponding SPD’s are the same.

Gt = exp

✓
ˆ t

0
fv {Cs, Vs} ds

◆

Λt = Gtfc {Ct, Vt}

dΛt

Λt
= �rtdt� �Λ,t · dZt

rt = �fv {Ct, Vt}� Et


dfc {Ct, Vt}

fc {Ct, Vt}

�

�Λ,t = �L


dfc {Ct, Vt}

fc {Ct, Vt}

�

where L [·] denotes the loading on dZt

f {Ct, Vt} = Ṽ ��
t f̃

n

Ct, Ṽt

o

Ṽt = ((1� �)Vt)
1

1�γ
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fv = f̃v � �
f̃

Ṽt

fc = Ṽ ��
t f̃c

dfc
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=
df̃c
fc

� �
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fc

! 

dṼt
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o

f̃c
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o � �
dṼt

Ṽt

3

5

Now, when the parameter which governs the risk aversion is stochastic (� = �t) we can guess and

verify that the process for the SPD is

dΛt

Λt
= �rtdt� �Λ,t · dZt

rt = �
 

f̃v � �t
f̃

Ṽt

!

� Et

"

df̃c
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Ṽt

!#

�Λ,t = �L

2

4
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o
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o � �t
dṼt

Ṽt
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5

The following verification proof below is adapted from Kozak (2012). Recall that the agent’s is

max
{Cj,t,IHj,t,Hj,t,$j,t}1t=0

E0

ˆ 1

0
f̃
n

Cj,t, Ṽj,t

o

dt s.t.:

dW̃j,t =
⇣

W̃j,trt +$j,t · W̃j,t(µt � 1rt)� Cj,t � IHj,t + !tHj,t
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dt+ W̃j,t$
0

j,t&tdZt

dHj,t
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= Γ ln

 

1 +
IHj,t
✓Hj,t

!

dt� �dt+ �hdZ
A
t
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where &t =

 

&A
0

t

&B
0

t

!

is a 2⇥ 2 matrix. The corresponding HJB is

0 = max
Cj,t,IHj,t,Hj,t,$j,t

✓
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2
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ṼwwdW
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where
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⇣
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⌘
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The FOCs for Cj,t and $j,t are
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Ṽ 2ÃvW̃j,t
Ṽw
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2
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⇣
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This the implies
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"
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0
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Λ,t&t = (µt � 1rt) (7.12)

Now, the gains processes adjusted by the SPD is Martingales, therefore

Et

✓

ΛTST +

ˆ T

0
ΛtDtdt

◆

= ΛtSt +

ˆ t

0
ΛtDtdt
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0 = Et

✓

d

✓

ΛtSt +

ˆ t

0
ΛtDtdt

◆◆

µt = 1rt + �
0

Λ,t&t +
Dt

St
� Dt
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) �
0

Λ,t&t = (µt � 1rt) (7.13)

Since equations (7.12) and (7.13) are the same, we have confirmed that the guess for dΛt

Λt
when �t is

stochastic is indeed correct.

7.20.2 Boundary conditions

Following Kozak (2012), we can guess and verify that the value function takes the form

Ṽ
�
H +KA +KB, xA, xB, �

 
=

�
H +KA +KB

�
F
�
xA, xB, �

 

Solving the model requires solving a system of five PDE’s (three FOC’s for investment, the HJB and

the resource constraint) with three boundary conditions. I obtain the boundary conditions by solving

the model with xA = 1, xB = 1, and 1� xA � xB = 1. These boundary problems reduce to solving

second order ODE’s for F {1, 0, �t} = F {0, 1, �t} = F {0, 0, �t} = F {�t}. I solve these second

order ODE’s with the following conditions: F {�t = 0} = 1 (since with risk-neutral preferences the

value function is linear in total capital) and F {�t = 1} = 0 (since the value function is zero for an

infinitely risk averse agent). Solving this extension of the model requires a lot of computing power.

7.21 Solving PDEs

First, following Chap 6 of Judd (1998) I re-write the state variables as {x̃A, x̃B}, functions of Cheby-

shev nodes. I then approximate F{xA, xB} with a complete54 Chebyshev polynomial, F̃{x̃A, x̃B}.

I define the residual function, R, as the PDE where I plug in the approximation F̃ and the as well

as the nodes
�
x̃A, x̃B

 
. Using the collocation approach, the vector of polynomial coefficients ↵, is

chosen to solve R {↵} = 0 on the grid
�
x̃A, x̃B

 
. I first choose the size of the n ⇥ n grid. Then I

start with low order polynomials and solve for ↵. I then use an interpolation method to obtain the

solution for F
�
xA, xB

 
over the continuous state space

�
xA 2 [0, 1], xB 2 [0, 1� xA]

 
. I plug this

function, F
�
xA, xB

 
, back into the PDE and examine the size of the PDE errors over the continu-

ous state space
�
xA 2 [0, 1], xB 2 [0, 1� xA]

 
. I steadily increase the degree of the polynomial and

54The approximation function will be composed of complete orthogonal basis functions.
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repeat the procedure until the PDE errors are minimized. I use the AMPL modeling language to

write the problem and I solve it using SNOPT on the NEOS server.
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