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Abstract

We implement an agent-based, threshold model of innovation diffusion to simulate the adoption of

electric vehicles among Irish households. We use detailed survey microdata to develop a nationally

representative, heterogeneous agent population. We then calibrate our agent population to reflect

the aggregate socioeconomic characteristics of a number of geographic areas of interest. Our data

allow us to create agents with socioeconomic characteristics and environmental preferences. Agents

are placed within social networks through which the diffusion process propagates. We find that

even if overall adoption is relatively low, mild peer effects could result in large clusters of adopters

forming in certain areas. This may put pressure on electricity distribution networks in these areas.
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1. Introduction

Electric vehicles (EVs) have been around since the mid-nineteenth century but have only re-

cently been offered as a mass-market alternative to private cars with petrol and diesel engines.

They are considered an important element in de-carbonising the transport sector and a number of

governments have introduced initiatives to encourage their adoption. While this may have environ-

mental benefits, both in direct emission reductions and in helping achieve CO2 reduction targets in

electricity generation [1], negative externalities also exist with mass-adoption. A large engineering

literature documents the negative effects clustering of electrical load and uncontrolled charging of
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large numbers of EVs could have on low-voltage distribution networks [2; 3] and [4]. At the ag-

gregate network level, high penetrations of these vehicles, when charging, may exacerbate existing

peaks in electricity demand [5]. Even if overall adoption levels are very low, this could be concen-

trated in relatively few areas, due to the heterogeneous spatial distribution of individuals. This

effect could be exacerbated if there is spatial dependence in adoption behaviour1.

To examine this problem we create a tool to simulate how adoption patterns and clustering

might develop over time and across space. We use an agent-based methodology to explicitly model

the interactions which may give rise to emergent outcomes, not immediately obvious from an aggre-

gation of individual preferences. Adoption is modelled as a binary choice. Agents have a threshold

beyond which the benefits to adoption exceed the costs. Their utility is a function of their so-

cioeconomic characteristics, environmental behaviour and attitudes. Their utility from adoption

increases as their peers adopt and as the innovation gains popularity within the population. Agents

are heterogeneous, drawn from a detailed, nationally representative study connected to an Irish elec-

tricity smart-metering trial. Agent populations are spatially explicit; we can generate populations

of agents to match any geographic area of interest.

2. Agent-based adoption models

Agent-based models or ABMs are useful when describing systems of interacting agents, that

exhibit emergent properties not easily deduced by aggregating the preferences of individual agents.

ABMs have been widely used to study the diffusion of new technology. We will mainly focus on

the diffusion of ”green” technology for the purposes of this work.

Within an ABM framework, the diffusion process can take different forms. Linder [10] uses a

Bass diffusion model to simulate adoption profiles for EVs amongst households in Stuttgart in 2020.

Based on microdata they construct different adopter types and simulate various scenarios of spatial

diffusion. They find that adopters will concentrate in urban areas and that spatial differences will

become quite apparent by 2020.

Tran [11] explicitly models social network effects to examine their interaction with individual

preferences in innovation diffusion. The author simulates adoption profiles for a variety of competing

1This has been shown to occur in the adoption of solar PV panels in California [6], High-voltage air conditioning

systems in Chigaco [7]. Also in the adoption of hybrid electric vehicles [8] and [9]

2



vehicle types; including petrol, diesel, EV and hybrid electric vehicle (HEV). Using heterogeneous

agents, it is found that network influence can be an important factor in driving high levels of adop-

tion, even if agents have low individual incentives to adopt. However, he cautions that homophily

can account for a lot of what first appears to be contagion. Other work by the same author [12],

examines the techno-behavioural aspects of diffusion.

Threshold models are also widely used throughout the literature. Eppstein et al. [13] develop

spatially explicit, agent-based consumer choice models of plug-in hybrid electric vehicle (PHEV)

adoption to assess the market’s sensitivity to various input parameters, such as fuel prices, battery

range, purchase price and government subsidies. Agents have characteristics such as age and salary.

Social groups are modelled as homophilous networks with fat-tailed degree distributions. An agent’s

threshold is defined as the proportion of adopters within its social group required for the agent to

adopt; this is negatively correlated to their salary - the authors argue that wealthier agents would

be less risk averse, thus having a lower threshold.

Hamilton et al. [14] model technology diffusion when consumers are uncertain about the per-

formance of a new technology versus the old one. The agent environment is a square lattice of N

cells and agents receive electricity from three potential sources; the grid, solar or CHP. Agent’s

thresholds are normally distributed and heterogeneous. An interesting aspect of this paper is the

emergence of ”punctuated equilibria”. This is a characteristic of a complex system, in which neg-

ligible changes in inputs can induce dramatic shifts in system outputs. This feature is observed

empirically when the diffusion process does not follow the textbook S-curve.

Other research [15] simulates the adoption of smart-metering technology. This paper has similar

features to others mentioned in that agents have local and random interactions on a grid, allowing

for networks which exhibit small-world and scale-free properties. An interesting feature of this

paper is the finding that a random and dispersed initial seeding can yield a much higher overall

diffusion rate than a controlled centralised one. This has interesting policy implications when one

considers government interventions to induce adoption of socially beneficial technologies.

A big problem inhibiting the widespread adoption of green technologies is consumer indifference.

This is explicitly modelled by Kowalska-Pyzalska et al. [16], in which the authors examine the

diffusion of dynamic electricity tariffs. Again, the environment is modelled as a square lattice.

Influence is channelled through nearest-neighbours and media. Indifference is essentially noise in

the system and can arise if the product offers both advantages and disadvantages between which the
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agent is unable to compare. They find that due to high levels of indifference, widespread adoption

will be ”virtually impossible” in modern societies, highlighting the need for better information in

order to overcome this.

The focus of our research broadly follows a number of other papers in which agents have a utility

function associated with the adoption of a new product. Agents have a threshold beyond which the

benefits of adoption exceed the costs and they adopt. Within this literature thresholds can take

various distributional forms, be heterogeneous or be the same for all agents.

Delre et al. [17] use a simple utility function consisting of two terms, individual preference

and social influence. Agents are heterogeneous in their preferences and thresholds are uniformly

distributed. The authors experiment with regular lattice and preferential attachment networks.

An interesting element of this research is the study of so-called VIP effects. This is created using

scale-free, non-symmetric adjacency matrices, with heterogenous weights on the edges to represent

social networks. This is a more realistic representation of real-life networks where influence is not

bi-directional. Certain nodes have a greater number of connections, but they also have a greater

magnitude. Interestingly, they find that when modelling influential nodes it is the number of

connections, more so than their weight/magnitude that propagates the diffusion process.

McCullen et al. [18] extend this approach to multi-parameter models. Along with peer-effects,

they include a term for overall diffusion in the population (the S-curve). Thus, agents are influenced

by their personal preferences, peer-effects and social-norms. Various network types are constructed;

random, small-world and highly clustered community-based networks. They take a dynamical

systems approach, rather than agent based, and run multiple simulations to explore the parameter

space. They find that the level of adoption depends strongly on network topology and the relative

weightings of parameters.

Palmer et al. [19] employ a similar methodology to simulate the diffusion of photovoltaic (PV)

systems in Italy. Each agent has a unique utility which is a function of the payback period of

the investment, the environmental benefit to the agent, their income and peer-influence from other

agents within the population. Adopter categories are constructed using Sinus-Milieu(R) data for

Italy and this information is also used to construct homophilous social groups. The aggregate

adoption level is calibrated to past data, then projections are made. The authors find a common

threshold for all agents that best fits the data and the model output is very sensitive to changes in

this. The relative weightings of preferences vary only with adopter category and these weights are
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also chosen to calibrate to past data.

In terms of the spatial aspect of adoption, Campbell et al. [20] use a clustering algorithm

on Birmingham Census data to determine the areas most likely to have high proportions of early

adopters. Others employ a similar methodology using Finnish data [21], but go a little further in

that they find the correlation between certain demographic and socio-economic characteristics and

early HEV adoption.

We incorporate elements from a range of the above mentioned research in our work, we use

clustering algorithms on Census data to determine where we might expect dense concentrations of

adopters to form. We then generate agent populations based on the distribution of characteristics

within these areas. Following that we employ a version of McCullen’s main model equation in our

agent-based model. We also include elements of [19] in that we decompose personal preferences

into economic and environmental categories.

3. Materials and Methods

3.1. Basic Principles

The basic principle examined by this model is the interaction of individual preferences and

peer-effects in the adoption or spread of behaviour, attitudes or new technologies.

3.2. Entities, State Variables and Scales

Entities or agents represent households. Agents are heterogenous and defined by a matrix of

static and dynamic characteristics. They are located within a neighbourhood. The neighbourhood

is represented as a discrete, homogenous grid. A regular lattice of size N1∗N2, where N1∗N2 = N

the total number of agents.
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Fig. 1. Agent Environment for N = 1600 agents at t = 15. Agents are represented as squares on the grid. The

green agents have adopted, the black have yet to adopt. Graphics generated using MATLAB code adapted from [22]

The global environment consists of a number of adjacent neighbourhoods based on Irish Census

2011 data. We will mainly work with Electoral Districts (EDs) of about 1,000 households. However,

we could easily adapt our environment to cover Small-Areas (approximately 100 households) or

much larger regions.

Agents are created using a large, nationally representative micro-data set connected to an elec-

tricity metering trial (CER Smart Metering Behavioural Trial 2009). For more information on data

used see Appendix 6.1. Agents are described by two attributes, which we call Income Utility (IU)

and Environmental Utility (EU).

To create IU, we use the age and social class of the household’s chief income earner, com-

bined with the tenure type of the household, IU ∈ [0, 1]. This is an adoption probability which

could be considered an implicit budget constraint. Other things being equal, agents with a higher

IU are more likely to adopt. We create simple rules; e.g. Pr(Adopting | ofsocialclassAB) >

Pr(Adopting | ofsocialclassC1) > Pr(Adopting | ofsocialclassC2) etc. From which we generate

these distributions. Further detail on this procedure can be found in Appendix 6.2.
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Table 1

Socioeconomic variables

ranking Age Social class Tenure

1 25-59 AB own outright

2 all other categories C1 own with mortgage

3 C2 rent private

4 DE rent from local authority

5 F other

Agent’s EU is based on their attitude toward the environment and previous adoption of energy

saving technology within their homes, EU ∈ [0, 1]. Other things being equal, agents with a higher

EU are more likely to adopt. Further detail on this procedure can be found in appendix 6.2.

Table 2

Environmental variables-behavioural

ranking Proportion

of Energy

Saving

Light-

bulbs

Proportion

of

Double-

Glazed

Windows

Lagging

Jacket

Attic In-

sulated

External

Walls

Insulated

1 All All Yes Yes, more

than 5

years ago

Yes

2 3/4 3/4 No Yes, less

than 5

years ago

No

3 1/2 1/2 Dont

know

Don’t

know

4 1/4 1/4 No

5 None None

Therefore an agent with IU ≥ 0.7 and EU ≥ 0.7 for example, is likely to be aged 25-59, a
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Table 3

Environmental variables-attitudinal

ranking Opportunity to

sell back elec-

tricity

Environmental

damage as-

sociated with

electricity gen-

erated

Percentage

of electric-

ity generated

from renewable

sources

1 Very dissatisfied Very dissatisfied Very dissatisfied

2

3

4

5 Very Satisfied Very Satisfied Very Satisfied

home owner, of social class AB, have strong environmental preferences and already an adopter of a

range of energy saving technologies within their home. We have identified these characteristics as

being prominent amongst early stage adopters of EVs from the literature 2. A limit to this work

is that we did not have access to econometric estimates of the parameters. We also acknowledge

that the weightings we attach to different attitudes or behaviours is problematic as we do not

know their relative importance in determining the adoption decision. However, we argue that

in reality statistical distributions do exist that describe the range of individual preferences in a

population, even if we can’t always fully observe them. Also, much research in this space, assumes

these distributions to take some or other form, e.g. uniform, normal etc, which can appear quite

arbitrary. We base ours on detailed survey data and we argue that this allows us a greater claim

to realism.

Fig. 2 below shows the distribution of agent preferences generated from survey data in the full

sample of 3099 individuals. IU and EU are weakly positively correlated. We will draw sub-samples

from this to create our agent populations.

2Early adopters of EVs are expected to share a number of characteristics with early adopters of hybrid electric

vehicles. See [23], [24] and [25]
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Fig. 2. Distribution of Preferences for full agent population

3.3. Collectives

We will mainly experiment with two different types of social network, that have a number of

the characteristics of real-life social networks; small-world and preferential attachment. In order

to better describe these, it is first useful to introduce two other network types; regular lattice and

random.
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Fig. 3. Social Networks: N = 20 nodes or agents in each case. Agents arranged in a circle for illustrative purposes

only. Network matrices constructed using CONTEST [26]. Network graphics using ”Matlab Tools for Network

Analysis” [27]

Starting with the regular lattice in fig. 3.1a, each node is connected to it’s k nearest neighbours,

with k = 2 in this case. This is a very simple network type and not very realistic as nodes can only

have local connections. In the next network, a random graph fig. 3.1b, nodes do not necessarily

have any local connections but are randomly connected to any other node in the network. Again

this is an unrealistic characterisation of a real social network.

A small-world network, fig. 3.1c can be considered something in between a regular lattice and a

random graph. They are both highly clustered and have short characteristic path lengths. Small-

World networks were originally proposed by [28]. The authors found that by randomly re-wiring

a certain proportion of the edges of a regular lattice, they could create a graph which had ”small-

world” properties. The graph shown has a rewiring probability of 0.1. A wide range of networks in

both physical and social systems have this property. Graphs with small-world properties include

the neural networks of worms, the electric power grid and collaboration networks in academia and

film. For a discussion of their statistical properties, see [29].

Preferential attachment networks fig. 3.1d, exhibit a scale-free property. The connectivity dis-

tribution of nodes within these networks decay as a power-law. This essentially means that the

majority of nodes have few connections but a small proportion have a very large number of con-
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nections, e.g. node v1. As new nodes enter the network, they connect with existing nodes with

a probability which is an increasing function of the number of connections these nodes currently

have. These highly-influential nodes could be considered opinion leaders in a community. Many

real-life networks also exhibit this property.

3.4. Process Overview and Scheduling

The main process in this model is the diffusion of EVs. At every time step, each agent decides

to adopt or not. A time step is defined as the length of time it takes to update all agents and thus

does not correspond to real time. Agents are updated sequentially on the grid, starting at the top-

left corner. Simulations last until all agents are activated or until the model reaches equilibrium.

Equilibrium will occur when a gap in either the threshold distribution, or in the agent’s individual

preferences do not allow any further agents to be activated.
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Fig. 4. Flow-chart of agent updates

3.5. The Model

3.5.1. Agent Decision Making

The adoption status of each agent is represented as a binary variable; 1 if agenti has adopted, 0

otherwise. Adoption is an absorbing state - once an adopter it is not possible to switch back. This

model is adapted from the work of [17; 18; 19].

xi(t+ 1) =























1, if xi(t) = 1

1, if xi(t) = 0 and if equation ( 2) is true

0, otherwise

(1)
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The adoption submodel is the main engine of the agent-based model. Agenti adopts with a

certain probability once its utility Ui exceeds its threshold θi.

Ui(t) ≥ θi(t) and if t ∗ crit ≥ rand(0, 1) (2)

Utility is a weighted function of individual preferences (IU,EU), peer effects (G) and wider

social norms (S).

Ui(t) = αiIUi + βiEUi + γiGi(t) + δiS(t) (3)

With αi + βi + γi + δi = 1

3.5.2. Individual Preferences

Individual Preferences are determined by an agent’s income utility (IU) and an environmental

utility (EU). These have been described in detail above.

3.5.3. Peer Influences

Agents are modelled as nodes in a network. Influence between nodes is represented by an

adjacency matrix A.

Ai,j =











1, if n node i influences node j

0, otherwise

(4)

Group influence is the proportion of adopters within each agent’s social group.

Gi(t) =
1

ki

N
∑

j=1

Aijxj(t) (5)

3.5.4. Social Norms

This is the total number of adopters in the population.

S(t) =
1

N

N
∑

i=1

xj(t) (6)

3.5.5. Technology/Information Deficiency

This parameter is a decaying stochastic cost term that accounts for poor products or poor

information about the product when in its infancy. This is to account for the inertia that can exist

in the early stages of technology adoption. For example if the critical value crit = 0.1 adoption
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will be slow in the early periods but by time t = 10, t ∗ crit = 1 and the product will have reached

maturity or agents will be fully informed of its benefits.

3.5.6. Rules/Archetypes

As stated above αi+βi+γi+ δi = 1. We can set fixed weights or allow them to vary depending

on the agent or product. This is explained in greater detail in section 4.1.

4. Simulations and Results

4.1. EV adoption for a random sample of agents

Electric vehicles are expensive items and this should be reflected in the decision rule that agents

might make when purchasing one. Therefore we feel that peer effects might have a limited impact

for certain agents. An individual may be more likely to buy one if a neighbour or friend has one

and speaks favourably about it. Or someone with very strong environmental concerns may be more

inclined to buy one. However, income will constrain the available options. To initially calibrate the

model we create four different consumer groups. We segment agents based on their IU and EU.

Table 4 below displays the weights we attach to preferences for each group. We create stochastic

weights, within bounds to account for the uncertainty in their estimation.

Table 4

Parameter weightings for EV

Group Income

(α)

Environ-

mental

(β)

Social

Network

(γ)

Population

(δ)

Rule 1 Rule 2 Category

1 rand(0.3-

0.7)

(1− α)/3 (1− α)/3 (1− α)/3 IU ≤ 0.3 Low income

2 (1− β)/3 rand(0.3-

0.7)

(1− β)/3 (1− β)/3 IU ≥ 0.3 EU ≥ 0.7 Mid-high income

environmentalists

3 (1− γ)/3 (1− γ)/3 rand(0.3-

0.7)

(1− γ)/3 IU ≥ 0.3 0.3 ≤ EU ≤

0.7

Mid- high income

indifferent

4 (1− δ)/3 (1− δ)/3 (1− δ)/3 rand(0.3-

0.7)

IU ≥ 0.3 EU ≤ 0.3 Mid-high in-

come non-

environmentalists
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❼ Group 1: Low income agents will be income constrained regardless of their environmental

preferences and thus will place a high importance on IU. This is an implicit budget constraint.

We allow α take a random value between 0.3 and 0.7

❼ Group 2: Mid-high income environmentalists will place a high importance on environmental

factors. We allow β take a random value between 0.3 and 0.7

❼ Group 3: Mid-high income indifferent agents may be influenced by word of mouth from their

peers. We allow γ take a random value between 0.3 and 0.7

❼ Group 4: Mid-high income non-environmentalists have negative attitudes and behaviour to-

wards environmental issues and will only adopt if a high proportion of the total population

adopt. We allow δ take a random value between 0.3 and 0.7

Again we select a random sample of N = 1600 agents from our population. We set threshold

distribution θ ∼ N(0.65, 0.15) to generate relatively low adoption levels. These results have been

verified for a range of threshold distributions. In all simulations thresholds are negatively correlated

with IU, as per [13].

4.1.1. The effect of seeding and network type on adoption

With a network model we can examine whether it matters who adopts first within the population.

In order to do this we seed different groups of agents, i.e. we initialise them as being EV owners.

To seed agenti, we set xi = 1 at time t = 0. This may be policy relevant for initiatives which target

specific consumer groups in order to encourage the mass adoption of EVs. Three different seeding

methods are examined.

1. Seed random: We seed random samples of 5% of the agent population

2. Seed early adopter: We seed the 5% of the agent population with the highest probability of

adoption, given their personal preferences

3. Seed most influential nodes: We seed the 5% of the agent population with the greatest number

of connections. This can be either a random or early adopter seeding. To do this we place a

5% seeding, then re-arrange the adjacency matrix to make these the most connected nodes in

the network
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Results are reported in fig. 5 and tables 5 and 6 below. We first connect agents with preferential

attachment networks, table 5. Without intervention average adoption after 15 time periods is just

over 9%. We then compare seeding a random group of agents with seeding the early adopters.

Interestingly a random seeding yields a higher mean adoption level. We suspect this is because

the early adopters are likely to adopt anyway. However, by activating a random group of agents,

adoption is spreading to agents and groups that would otherwise not have adopted. Zhang and

Nuttall [15] found similar results in their ABM of smart-metering technology adoption.

Within a preferential attachment network some nodes have a much greater number of connec-

tions than others. We investigate the outcome when the most influential nodes adopt first. We

find that seeding is much more effective when the most influential are targeted. Again, a random

distribution results in higher adoption than if the high probability agents adopt first. However, in

reality it is impossible to fully map the network topology. This simulation is run to illustrate the

point that if we aim to encourage high levels of adoption through the targeting of specific consumer

groups, we need much better data on the channels through which technology diffuses.

These results also hold for small-world networks as can be seen in table 6. We must be cautious

when interpreting these results, due to limitations with the model. In particular, the adjacency

matrices we use are symmetrical and we do not place different weights on the links between nodes

in the network. In reality, as well as having many connections, some individuals are likely to have

a greater weight to their connections.
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Fig. 5. EV adoption levels. Results reported for average uptake after 100 Simulations of N = 1600 Agents.

θ ∼ N(0.65, 0.15) for all simulations

Table 5

Preferential Attachment

Mean Std. Dev. Min Max

No seeding 9.28 1.04 7.00 12.25

Random 5% 15.93 1.04 13.44 18.63

Early Adopter 5% 14.18 0.89 11.50 16.63

Random most connected 5% 23.31 1.51 18.25 26.81

Early Adopter most connected 5% 21.45 1.38 18.19 24.63

Table 6

Small-World

Mean Std. Dev. Min Max

No seeding 9.25 0.95 7.00 11.44

Random 5% 15.48 1.01 12.69 17.56

Early Adopter 5% 14.04 0.90 11.50 16.25

In reality though, neighbourhood composition is not random and clusters may develop if certain

types of individual self-select into particular areas. We will examine this in the next section.

4.2. EV adoption for specific neighbourhoods

To motivate this section we use Census 2011 data to generate a heat map of areas with high

proportions of likely early adopters in Dublin, fig. 6. We use Ward’s clustering algorithm to rank

Small-Areas based on their proportions of individuals of social class AB, who drive a car to work

and live in a house. Details on the ranking algorithm can be found in Appendix 6.3
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Fig. 6. Spatial distribution of likely early adopters for Census Small-Areas in Dublin (approx 100 households in

each area). Areas are ranked 1-10. 1-coloured white indicates a very low proportion, 10-coloured dark blue

indicates a very high proportion

There is quite a degree of spatial heterogeneity, as can be seen. This is interesting as positive

network externalities may exacerbate clustering in areas with high proportions of adopters. To

simulate this process we generate agent populations that represent the distributions of households

within these areas.

4.2.1. Adoption levels

In this section we focus on four neighbourhoods, based on Census Electoral Districts (EDs)

which vary in their socioeconomic characteristics. The selected EDs are Clonskeagh-Roebuck,

Dalkey-Hill, Palmerstown West and Arran Quay C. We select houses based on the social class of

their chief income earner and tenure type.
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Table 7

Neighbourhoods included in simulations

Number Electoral District (ED) Reason for inclusion

1 Clonskeagh-Roebuck Current location of a electricity distribution

test network examining the effect of EV charg-

ing

2 Dalkey-Hill High proportion of social class AB and home-

owners

3 Palmerstown West High proportion of social class DE and local

authority renters

4 Arran Quay C Good mix of social class and high proportion

of private renters

Below are the resulting distributions of preferences for each ED.
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Fig. 7. Distribution of agent preferences for different EDs

We use the previous model specification and parameter set up. We split our grid into four

quadrants to represent each ED. This process no longer generates the smooth adoption S-curves

previously observed when using a random sample, fig. 8. This is because we now have groups of

similar individuals and their preference distribution can take discrete jumps, potentially causing a

number of similar agents to adopt within the same time period as each other.

Results are reported below in fig. 8 and tables 8 and 9. The wealthier neighbourhoods (1,2)

with a greater proportion of homeowners have much higher adoption levels the the less wealthy

(3,4), as expected. Interestingly, the choice of network used to connect agents now begins to have

a greater impact on the results.

Preferential attachment networks lead to average adoption levels of 17-18% in the wealthier

neighbourhoods and 0.7-3.2% in the less wealthy neighbourhoods.

However, small-world networks generate over 10% higher average adoption levels for the wealth-

ier neighbourhoods than preferential attachment networks. We can easily get to 30% adoption for
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these areas. This level is very sensitive to changes in threshold distribution and a reduction of

threshold mean from 0.65-0.55 can induce uptake of over 50% for these areas. This lowering of

threshold is analogous to the cost or barriers to adoption dropping. For instance, if technological

developments allowed price to fall or if charging infrastructure improved for a particular area the

cost to adoption for agents in that area would fall. This high adoption in certain areas may have

an impact on the distribution network in these areas. We will discuss this in the next section.

Fig. 8. EV adoption levels. Results reported for average uptake after 100 Simulations of N = 1600 Agents.

θ ∼ N(0.65, 0.15)

Table 8

Preferential attachment network

ED Mean Std. Dev Min Max

Clonskeagh-Roebuck 18.02 1.02 16 21

Dalkey-Hill 17.61 1.1 15.5 21

Palmerstown West 3.18 0.42 2.5 4.25

Arran Quay C 0.69 0.38 0 1.75

Table 9

Small-world network

ED Mean Std. Dev Min Max

Clonskeagh-Roebuck 29.77 0.61 27 30.5

Dalkey-Hill 31.79 0.33 30.75 32.5

Palmerstown West 3.97 0.1 3.75 4.25

Arran Quay C 1.99 0.035 1.75 2

4.2.2. Local Clustering

The most interesting results occur when we examine the level of clustering of adopters. We find

small-world networks yield a smaller number of clusters than preferential attachment networks.
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Table 10

Clustering. Results reported for 100 simulations of N = 1600 agents. θ ∼ N(0.65, 0.15)

Network type Number of clusters Size of clusters

Small-World Mean Max Min Mean Max Min

k = 1 21.06 24 17 12.26 295 2

k = 2 21.06 24 17 22.47 242 2

k = 3 21.06 24 17 23.78 237 2

k = 4 15.32 17 13 33.84 236 2

k = 5 21.06 24 17 26.66 249 2

Preferential attachment 23.54 29 16 2.36 9 2

However cluster size increases dramatically if agents are connected locally using small-world net-

works. If agents are connected to just their two nearest neighbours (k = 1), mean cluster size

increases from 2 to 12. Cluster size further increases as we increase the number of local connections

agents are allowed to have. We can’t generalise these results as they may be particular to the areas

in question, and our networks are a stylised version of reality. However, we can say that even mild

peer-effects could induce dense clusters in areas with high proportions of adopters.
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Fig. 9. Distribution of cluster size for small-world networks

In a study of a test network of 134 households in Dublin, Richardson et al. [30] found that severe

voltage drop and unsafe thermal loading of components can occur when EV penetration reaches

27-44% of the households. Clusters occurring further from the transformer have a greater impact.

From the distribution of cluster size we generate, it is quite possible to observe clusters that in

reality would be large enough to cause the network to exceed safe operating limits. This problem

would be greater if clusters are located towards the end of network line, away from the substation

bus.

5. Conclusion

In this paper we present a simple and stylised agent-based model of EV adoption amongst Irish

households. The motivation was to create a tool in order to model;

❼ The drivers of aggregate adoption levels

❼ The formation of clusters of adopters at a local level

❼ Spatially explicit adoption profiles
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This is relevant because we know that spatial dependencies do exist in the adoption of ”green”

technologies and if this exists for EVs it may cause negative externalities in the form of reduced

life for electricity network assets.

We use an agent-based methodology as there is potential for micro-interactions to generate

aggregate outcomes that can’t be deduced by merely examining the preferences of individuals. We

adapt a methodology used by others and apply it to the diffusion of EVs amongst Irish households.

Agents are created based on detailed, nationally representative survey data. We define simple

rules that govern their behaviour, link them with other agents, through different network types and

place them within an environment. We then use a spatial microsimulation algorithm to generate

agent populations that represent specific geographic areas of interest.

We find that it is important who adopts first in determining the overall diffusion level in the

population. We demonstrate that in order for policies encouraging the adoption of socially beneficial

technologies to succeed, network topology needs to be better understood.

In terms of clustering, we find that mild peer-effects can induce very high adoption levels in

certain areas. Even if overall adoption levels are quite low, this could be highly clustered in certain

areas and peer-efects within those areas could significantly increase cluster size. This could lead to

increased costs for electricity network operators and ultimately for consumers, as the average cost

of improvements to the network will be socialised.

There are many limitations to this type of modelling in general and to this model in particular.

We do not claim to accurately understand agent preferences; we merely use survey data to generate

distributions that should be considered place-holders in order to calibrate this model. Nor do we

claim to create realistic social networks; we experiment with different network types, both of which

contain some of the characteristics of actual human social networks. We do not suppose to fully

describe the various consumer groups that may exist; we use some simple rules to segment the

population into different groups to illustrate how heterogenous groups can alter the dynamics of

such a system.

Further work will involve collecting survey data to better inform our choice of parameters. As

more data on EV adopters becomes available, we will be better able to characterise them. Survey

data on early adopters and the factors which influence them to adopt would help inform our network

matrices. We could potentially generate adoption profiles for all Census Small-Areas in Dublin to

create a ranking of areas in order to inform distribution network upgrades. We also plan to link
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this model with engineering network-cost models.
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6. Appendices

6.1. Appendix A: Data

(1) CER Smart Metering Customer Behavioural Trial. This is a nationally representative sam-

ple of over 5,000 households in the Republic of Ireland. This dataset contains high frequency

energy consumption data along with socioeconomic information on the participants. The survey

was conducted on Electric Ireland customers who at that time represented 100% of Irish residential

electricity demand. Households were randomly assigned to a treatment group or different control

groups in order to estimate the effect of different stimuli on residential electricity demand. This

is described in detail in [31]. The main questions of interest for this paper are listed below in

Appendix 6.2

(2) Census 2011 Small Area Population Statistics. This is a national census, conducted in 2011,

based around 46 different tables covering a range of themes, see table 11. This data is disaggregated

to Small Area level, of which there are approximately 18,500 across the country; typically these

would consist of 80-100 households. We have based our agent populations on Electoral Districts

(EDs) of which there are approximately 3400.

Table 11

Census SAPS Themes. Source: Central Statistics Office (CSO), Census 2011 Small Area Population Statistics

(SAPS)

Census SAPS Themes

Theme 1: Sex, age and marital status Theme 9: Social class and socio-economic group

Theme 2: Migration, ethnicity and religion Theme 10: Education

Theme 3: Irish language Theme 11: Commuting

Theme 4: Families Theme 12: Disability, carers and general health

Theme 5: Private households Theme 13: Occupation

Theme 6: Housing Theme 14: Industries

Theme 7: Communal establishments Theme 15: PC and internet Access

Theme 8:Principal status
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6.2. Appendix B: Weights applied to calculate IU and EU

To create weights we ranked each category from 0-1, summed up the totals and normalised between 0 and 1. We then add

a degree of randomness to these distributions. This is to remove the initial lumpiness, allowing them to be more continuous as

we would expect to be the case in reality.

In calculating EU, we felt past adoption is a better guide to future adoption than declared environmental attitudes. We

allowed the past adoption of energy saving measures within the home have 5 times the weight of the attitudinal data.
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Table 12

Calculation of IU and EU

Income utility (IU) Environmental Utility (EU) - attitudinal Environmental Utility (EU) - behavioural

Social Class Rank Opportunity to sell back electricity Rank Lightbulbs Rank

AB 1.00 Very dissatisfied 1.00 All 1.00

C 0.25 - 0.50 3/4 0.80

DE 0.20 - 0.33 1/2 0.60

F 0.17 - 0.25 1/4 0.40

No answer 0.14 Very satisfied 0.20 None 0.20

Tenure Environmental damage with electricity generation Rank Windows Rank

own outright 1.00 Very dissatisfied 1.00 All 1.00

own with mortgage 0.50 - 0.50 3/4 0.80

rent private 0.33 - 0.33 1/2 0.60

rent from local authority 0.25 - 0.25 1/4 0.40

other 0.20 Very satisfied 0.20 None 0.20

Age Percentage generated from renewables Rank Lagging Rank

25-59 1.00 Very dissatisfied 1.00 Yes 1.00

Other 0.50 - 0.50 No 0.00

- 0.33

- 0.25

Very satisfied 0.20

Attic Rank

Yes, more than 5 years ago 1.00

Yes, less than 5 years ago 1.00

Don’t no 0.00

no 0.00

External Wall insulated Rank

Yes 1.00

No 0.00

Don’t know 0.00
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6.3. Appendix C: Ward’s clustering algorithm

To rank Census small-areas we used Ward’s method, a hierarchical clustering algorithm. These

results are purely descriptive, do not feed into the simulations and were generated only to graphi-

cally represent the level of spatial heterogeneity that may exist. Dublin is divided into over 4000

small-areas. The objective of Ward’s method is to minimise within-cluster variance. It starts by

considering each individual area/observation as a cluster. It then begins to merge clusters with

each other, at each step finding the pair of clusters that leads to lowest within-cluster variance. We

decided after trial and error to allow 10 distinct clusters. We merged on:

1. absocial. The proportion of individuals of AB social class in each area

2. carwork. The proportion of individuals who drive to work

3. house. The proportion of individuals who live in a house

This work is informed by [20] who employ this method to determine the spatial location of

potential early EV adopters in Birmingham.
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Table 13

Clusters generated for Dublin small-areas

wards10 absocial carwork house

1 mean 0.255 0.465 0.048

N = 196 sd 0.118 0.096 0.047

2 mean 0.392 0.234 0.060

N = 244 sd 0.091 0.113 0.072

3 mean 0.130 0.123 0.122

N = 347 sd 0.083 0.085 0.095

4 mean 0.202 0.220 0.549

N = 511 sd 0.127 0.092 0.139

5 mean 0.332 0.472 0.427

N = 231 sd 0.121 0.093 0.136

6 mean 0.202 0.429 0.975

N = 727 sd 0.057 0.048 0.025

7 mean 0.345 0.388 0.975

N = 748 sd 0.063 0.071 0.031

8 mean 0.334 0.364 0.757

N = 404 sd 0.120 0.091 0.074

9 mean 0.120 0.277 0.952

N = 952 sd 0.067 0.058 0.044

10 mean 0.519 0.387 0.972

N = 446 sd 0.065 0.060 0.041

Total mean 0.261 0.332 0.734

N = 4806 sd 0.150 0.123 0.339
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