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1 Introduction

There are many financial derivatives whose payoff or pricing is related to an integrated diffusion

process. Here by an integrated diffusion process, we mean a continuous-time stochastic process

that is a time integral of a diffusion process. For example, virtually all variance derivative

products are associated with the accumulated realized variance, which is often modeled as

the time integral of the instantaneous variance for high accumulating frequency. Another

example is the continuous-time average price Asian option in which the payoff is a function

of the integrated stock process. A third example is interest rate derivatives pricing using

short-rate models, in which the integrated short-rate process plays an important role.1

A common technique for pricing derivatives is through solving the corresponding pricing

PDE, either analytically or numerically. Financial derivatives related to integrated diffusion

processes pose a challenge for this approach. The reason is that the PDE is usually of high

dimension. For example, in pricing variance derivatives, in order to form a Markovian sys-

tem, one usually has to include simultaneously the instantaneous variance process and the

accumulated variance process. Therefore, the pricing PDE also includes both variables. On

the other hand, the final payoff of a variance derivative never depends explicitly on the unob-

servable instantaneous variance. For example, in the case of a volatility swap, to get the fair

volatility swap rate today, we just need to compute the expectation of the square root of the

accumulated variance at expiry. If we have the explicit probability density of the accumulated

variance at expiry, the computation becomes just a simple one-dimensional integration.

The above discussion highlights the potential usefulness of the probabilistic approach based

on the risk-neutral expectation since often fewer variables are involved using this approach

than the PDE approach. In practice, however, it is not easy to compute the probability

densities. Analytical results are only known for a very limited set of models and even in

those cases multiple dimensional Fourier inversion is often involved. Therefore, under many

circumstances, in order to use the probabilistic approach effectively, it is useful to have the

probability density available through analytical approximation means such as perturbation.

The current paper is one step in this direction. The central object of interest in this paper is

the random time that the integrated process first exceeds a fixed budget. We study this hitting

time directly rather than the integrated process itself for several reasons. First, for a positive

diffusion process, once we have the distribution function of the hitting time, by a duality result,

we immediately have the distribution function for the integrated process. Second, a technical

but important motivation for the current paper is that the PDEs for functionals of the hitting

1We note that integrated processes are also useful for modeling in biology or economics, where the time integral
of quantities such as mortality rate, birth rate, gene mutation, income stream, consumption stream, etc. are often
of great interest.
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time are sometimes easier to deal with than those for the integrated process itself. Third, in

practice, there are derivative securities whose final payoffs are explicit functions of the hitting

time. For example, Société Générale Corporate and Investment Banking introduced a new

type of variance derivative products called “timer options” in 2007. See Sawyers (2007, 2008).

A timer option is similar to a plain-vanilla option, except that it can only be exercised when

the accumulated realized variance reaches a given budget. Major banks have since traded

timer options. Sawyers (2008) also reports that more complex derivatives with timer features

such as timer swaps have been introduced to the over-the-counter derivatives market.

The basic assumption we use is that the diffusion coefficient of the diffusion process is small.

We perform an asymptotic perturbation analysis on the moment generating function of the

hitting time of the integrated diffusion process. We show that under small diffusion coefficient,

the hitting time is approximately normally distributed since its moment generating function

has an asymptotic form similar to that of a normal random variable. For many common

models including the popular square-root process, the approximate mean and variance can

be easily obtained in simple closed form. We also generalize the result to the time integral

of functions of diffusion processes. The result of approximate normal distribution is very

convenient in approximating derivative prices. We give several examples in the paper using

the Heston model, including generic variance derivative pricing, plain-vanilla European-style

options, timer forwards, and timer options. In all these examples, the final approximated price

is either a simple one-dimensional integration or in closed form. Numerical analysis shows

that these approximations are fairly accurate when the volatility coefficient is not too large,

in addition to being extremely fast and easy to implement.

There have been studies in the literature on integrated diffusion processes. For example,

Dufresne (2001) studies the integrated square-root process. Forde and Jacquier (2010) consider

the integrated geometric Brownian motion process to price Asian options. The approach we

take here is different. While existing literature focuses mostly on exact properties of specific

processes, we study the approximate properties of general integrated processes. These two

branches of research directions are therefore complementary to each other.

The use of perturbation technique in derivative pricing has a long history and it is difficult

to list all the references. The two references which are most closely related to the current

paper are Lewis (2000) and Lipton (2001), where the authors consider volatility of volatility

expansion for plain-vanilla European-style option prices in the Heston model. One difference is

that in this paper we perform an expansion for the moment generating function of the hitting

time of any integrated diffusion process and then use it to price many different derivative

products.

There are several clear advantages of the proposed technique over alternative numerical
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methods such as Monte Carlo or PDE. First, the computation usually takes well below one

second or even below one millisecond for computing each derivative price, compared with

Monte Carlo or PDE which can take many orders of magnitude more computational time.

The benefit in computational time is much greater than it first seems when looking at pricing

a single option price. Below I elaborate on this point because it is often overlooked and

under-appreciated. Take for example, the computation of credit value adjustment (CVA)

required by Basel II and III (see, for example, Gregory (2012)). Roughly speaking, CVA is

a time-average of conditional exposure up to a future horizon, weighted by the default time

probability density. In a Monte Carlo setup, for each future time grid and each realized

intermediate state variable configuration, one needs to run a Monte Carlo to get a price as

a function of the state variables. These intermediate future prices are in turn fed into the

time-averaging formula. The number of simulations needed in such a nested Monte Carlo

is the usual number of simulations needed for a single price, multiplied by the number of

scenarios (usually taken to be at least 1000, but can require a lot more if number of factors

involved is large), and also by the number of time steps (usually taken to be somewhere from

20 to 100). Furthermore, hedging analysis, stress testing, risk analysis, real-time pricing,

and greek computations all exacerbate the Monte Carlo simulation burden. For example, to

compute the greek gamma through bumping and repricing, one needs to repeat the Monte

Carlo simulations three times. Related, the availability of closed-form approximations allows

us to examine the price sensitivity to model parameters more easily. For example, suppose

one wants to study the price of a certain derivative as a function of the long-run mean and

the mean-reverting strength in the Heston model. In a Monte Carlo setup, we can sample 10

different values of the mean and the mean-reverting strength. If each Monte Carlo takes 1

minute which is easily exceeded in the cases of exotic derivatives such as timer options, then

we will need 100 minutes of computational time since each parameter combination requires

a separate Monte Carlo simulation. To contrast, it usually takes less than one second to

compute 1000 prices with an analytic approximation.

Second, the perturbation technique developed in this paper often gives us closed-form

formulas for derivative prices. The closed-form formulas are nice not just for aesthetic reasons.

They are very intuitive and one can see clearly the financial meaning of the different parts in

the formula. These formulas often satisfy additional attractive properties, such as having the

right limits, obeying put-call parity automatically, preserving price positivity or convexity,

etc. Often, greeks are also available in closed form. The analysis leading to the explicit

formulas also provides additional insights about the derivative pricing problem at hand. For

example, in the timer option case, when volatility of variance is small, our analysis shows that

the time to exercise the option roughly follows a normal distribution. An investor can then
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make heuristic hedging and other decisions based on this observation.

Third, the approximations developed from the perturbation technique are very easy to

implement. As we will see from the examples, most of the approximations involve only a

one-dimensional numerical integration on the real line. This is to contrast other numerical

methods such as the timer option pricing formula in Liang, Lemmens and Tempere (2011)

which is a high-dimensional numerical integration in the complex plane involving complicated

functions such as modified Bessel functions. These integrals are often very tricky to evaluate

numerically due to oscillatory integrand and slow decaying near ends of integration region.

Even without these difficulties, multi-dimensional numerical integration is still very expensive

computationally.2 For example, Li (2013) reports a computing time of about 60 seconds for

pricing one perpetual timer option. Another alternative, PDE method, also requires a lot of

expertise and care, especially when a high dimension is encountered. To contrast, valuing

one perpetual timer option using the proposed perturbation technique takes less than 10−4

seconds.

There are limitations with the perturbation technique developed in this paper which a

potential user should be aware of. First, only a limited number of models have been solved

in this paper, and we have only tested the numerical accuracy in the Heston model for some

limited set of parameters.3 The Heston model is used in the testing because it is one of

the most popular models for derivatives pricing. Also, while the method applies to generic

Heston-like stochastic models, not all models possess simple closed-form formulas. Second, the

perturbation technique developed in this paper requires the presence of a small parameter,

which might not be available in some real-life applications. Third, other methods such as

Monte Carlo might be more versatile in the sense that it is easier to incorporate additional

features such as American feature into the pricing engine. However, we believe that these

limitations do not diminish the advantages of numerical approximations. It is also our hope

that future research will address and overcome some of these limitations.

The rest of the paper is organized as follows. Section 2 develops the approximation for the

moment generating function of the hitting time of a general integrated diffusion process. We

show that under small diffusion coefficient, the hitting time is approximately normally dis-

tributed. Section 3 illustrates the usefulness and accuracy of this probabilistic approach using

several examples, namely, generic variance derivatives, European options, timer forwards, and

timer options. Section 4 concludes.

2This is not to say that they are not useful. In fact, they are extremely useful because they can provide definite
benchmarks to examine the accuracy of approximations or Monte Carlo.

3More testing using different sets of parameters and a different model (3/2-model) has been carried out in Li and
Mercurio (2013a, 2013b, 2013c). The approximations are still found to be very accurate. We refer readers to these
papers for more details.
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2 Approximating the Hitting Time Distribution

2.1 The Setup

We consider a time-homogeneous one-dimensional diffusion process Xt whose dynamics is as

follows

dXt = a(Xt) dt+ ηb(Xt) dWt . (1)

Here Wt is a standard Brownian motion. Notice that we have singled out a nonnegative

constant η for the diffusion function and will refer to it as the volatility coefficient. The

drift and diffusion functions a(Xt) and b(Xt) are assumed to be functions of Xt only. We

assume that the state space of Xt is (0,∞) and that the process does not explode to either

zero or infinity in finite time. Despite its simplicity, this specification covers many important

models in finance, including the Black-Scholes model for stock price movement, the Vasicek

and Cox-Ingersoll-Ross models for the short rate movement, and the Heston model for the

instantaneous variance movement, among many others.

We use ξt to denote the time-integrated process of Xt, defined as follows

ξt = ξ +

∫ t

0
Xu du. (2)

Here ξ0 = ξ is the value of the integrated process at time 0. We assume that ξ ≥ 0.4

Notice that ξt is nonnegative and increasing in t. As motivated by the reasons listed in the

introduction, the central object of interest is the hitting time τB for the process ξt to hit a

certain level B where B ≥ ξ. That is,

τB ≡ inf {t ≥ 0 : ξt = B} = inf

{
t ≥ 0 :

∫ t

0
Xu du = B − ξ

}
. (3)

We are interested in the distribution of the random time τB. Therefore, we consider its

moment generating function:

MτB (λ) ≡ E0

[
eλτ

B ∣∣ ξ0 = ξ,X0 = X
]
. (4)

We assume that the process Xt is such thatMτB (λ) is well-defined and exists for a continuous

range of real values of λ.

4The accumulation can start from sometime in the past, so that ξ > 0. For example, this can correspond to a
timer option initiated in the past, so that it has accumulated some nonzero amount of realized variance at time 0.
The variable ξ is needed in the PDEs since they involve partial derivatives with respect to ξ, but after solving the
PDEs, they are usually set to value 0 by thinking of B as the remaining variance budget rather than the original
budget in the contract. The situation is similar to the Black-Scholes PDE where the variable t is used in the PDE.
But after the Black-Scholes formula is obtained as a function of t, one usually assumes today is time 0 and set t = 0,
and reinterprets T as the remaining maturity τ = T − t.
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Since (Xt, ξt) is jointly Markovian which is sufficient to determine whether B is exceeded

or not, MτB (λ) is a function of ξ and X only, and not a function of the current time t.

This situation is similar to that of perpetual American options in the Black-Scholes model.

Therefore, we let

Π(ξ,X;λ) ≡MτB (λ). (5)

For notational ease, we will often omit the parameter λ in Π(ξ,X;λ) and just write Π(ξ,X).

We can interpret Π(ξ,X) as the price of a zero-coupon timer bond which pays 1 dollar when

the budget B is exceeded with the risk-free rate being constant and equal to −λ.
By the Feynman-Kac theorem applied to the random exit time τB, Π(ξ,X) satisfies the

following partial differential equation

XΠξ + a(X)ΠX +
1

2
η2b2(X)ΠXX + λΠ = 0, (6)

with the boundary condition

Π(B,X) = 1. (7)

In the PDE above, we have used subscripts to denote partial derivatives. For general a(X)

and b(X) functions, the above PDE is difficult to solve exactly. Therefore, below we take a

perturbation approach.

2.2 The Approximation

We approximate the moment generating function of τB under the assumption that the volatil-

ity coefficient η is small. Small η expansion is considered for plain-vanilla options in Lewis

(2000) and Lipton (2001). In Li and Mercurio (2013a), it is shown that for the Heston model

and the 3/2 model, τB is approximately normally distributed for small η in the sense that the

asymptotic expansion of MτB (λ) is exactly in the form of the moment generating function

of a normal random variable. Below we show that this is true for any time-homogeneous

one-dimensional diffusion process.

We make an important remark that by “small η” here, we do not require that η is smaller

than 1. Rather, we mean that the effect of η should be small. This could be measured by the

long-run variance of the process Xt, for example. If b(Xt) is small, then it is possible that η

is much larger than 1 even though the effect of η is still very small. It is the effect of η on the

variability of the process Xt that matters.

It is useful for developing perturbation series purpose to have a constantly zero boundary

condition. Therefore, we define the function p(ξ,X) by

Π(ξ,X) ≡ ep(ξ,X). (8)
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Because Π(ξ,X) > 0, this is well-defined. The quantity p(ξ,X) is actually the cumulant

generating function of the random variable τB conditioning on that the current process value

is X and the current integrated process value is ξ. From Equation (6), p(ξ,X) satisfies the

nonlinear partial differential equation below

Xpξ + a(X)pX + λ+
1

2
η2b2(X)

[
pXX + (pX)

2
]
= 0, (9)

with the boundary condition

p(B,X) = 0. (10)

The above partial differential equation is exact. We can solve it approximately by asymp-

totically expanding in η. It is clear that when η = 0, we get an ordinary first-order differential

equation which can be solved exactly by method of characteristics. This gives us the zeroth-

order expansion p0(ξ,X) in η2. The first-order expansion in η2 (second-order in η) can then

be obtained by replacing
[
pXX + (pX)

2
]
with

[
p0,XX + (p0,X)

2
]
. This second-order expansion

of p(ξ,X) in turn gives a second-order expansion for Π(ξ,X). It turns out that because of the

special structure of the PDE for p(ξ,X), the first-order expansion in η2 for p(ξ,X) is actually

quadratic in λ, as Proposition 1 below states. This is very interesting because it means that in

a certain sense, τB is approximately normally distributed for small η. This is true regardless

of the functional forms of a(X) and b(X). A detailed proof is given in Appendix.

Proposition 1. Assume that E0e
λτB , E0[e

λτBτB] and E0[e
λτBτ2B] are finite for some range

of λ values in R containing 0. The moment generating function of τB has the following

asymptotic expansion form

MτB (λ) ≡ E0e
λτB = eλ(T0+η

2H0)+λ2η2H1 + o(η2), (11)

where T0, H0 and H1 are not functions of λ or η.5 Furthermore, T0 ≥ 0 and H1 ≥ 0 with

equality if and only if B = ξ. Therefore, for B > ξ, in the sense above, τB is approximately

normally distributed with mean µ and variance σ2, where µ and σ2 are given by

µ = µ(B) = T0 + η2H0, (12)

σ2 = σ2(B) = 2η2H1. (13)

5Explicit expressions for evaluating T0, H0 and H1 are given in Equations (110), (114) and (115) in Appendix.
However, in practice, it is usually easier to directly solve the PDE perturbatively than to use these integral equations.
Once the PDE is solved perturbatively to first order in η2, we can use Proposition 1 to read off T0, H0 and H1

because by Proposition 1 they are multiplied by λ, λη2 and λ2η2, respectively. Also, in professional software such
as Mathematica, one does not need to perform the characteristic transformation to the original PDE oneself, as we
have done in the proof of Proposition 1 in Appendix. For many models, the software can solve the perturbed PDEs
in the original variables directly and all one needs to do is to simplify the results by defining variable combinations
that appear multiple times in the results. Most of the time, these definitions correspond to the characteristic
transformations. However, Equations (110), (114) and (115) in Appendix can be useful numerically when a model
has complicated drift and diffusion functions.
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We make a few remarks below. First, it is useful to take a look at Proposition 1 for the

degenerate case η = 0. In this case, the process Xt evolves deterministically according to

dXt/dt = a(Xt). The time τB to hit the budget B becomes exactly T0 = T0(ξ,X), which

satisfies the first-order PDE below:

XT0,ξ + a(X)T0,X + 1 = 0, (14)

with the boundary condition

T0(B,X) = 0. (15)

Therefore, the moment generating function MτB (λ) degenerates to that of a Dirac delta

function at T0, that is, e
λT0 . This provides a sanity check for Proposition 1.

The approximate mean µ(B) and variance σ2(B) are functions of B, ξ and X as well as

other model parameters. For notational simplicity, we only emphasize their dependence on B

in Proposition 1. They actually depend on ξ and B through the difference B − ξ, but later

on we will always assume without loss of generality that ξ = 0. The quantities µ and σ2

are also approximations in the following sense. If we let m1(ξ,X) and m2(ξ,X) be the true

first and second moments of τB when the initial integrated process value is ξ and the initial

state variable value is X, then it is easy to see that they satisfy the following PDEs: (see, for

example, Chapter 15 of Karlin and Taylor (1991) for a derivation)

Xm1,ξ + a(X)m1,X +
1

2
η2b2(X)m1,XX + 1 = 0, (16)

Xm2,ξ + a(X)m2,X +
1

2
η2b2(X)m2,XX + 2m1 = 0. (17)

By formally differentiating Equation (6) with respect to λ once and twice and setting λ = 0,

we can easily see that µ satisfies Equation (16) asymptotically to order η2. Similarly µ2 + σ2

satisfies Equation (17) asymptotically.6

In many actual applications, the final payoff of the derivative is a function of ξT instead

of τB. Therefore, it is useful to have an approximation for the distribution function of ξT .

Let FZ(·) denote the distribution function of a random variable Z. For simplicity we assume

without loss of generality that ξ = 0. Then, for T > 0, we can approximate the cumulative

distribution function FξT (x) as:

FξT (x) ≡ P(ξT < x) = 1− Fτx(T ) ≈ N

(
µ(x)− T

σ(x)

)
, (18)

6In fact, all raw moments and central moments of τB can be approximated to second order in η in the sense of
both matching the actual expectation and satisfying their respective PDEs asymptotically.
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where N(·) is the cumulative normal distribution function. The first equality in the above

statement is easily seen by noticing the following duality between τx and ξT :

{τx > T} = {ξT < x}. (19)

Therefore, we have

P(ξT < x) = P(τx > T ). (20)

The last approximate equality in Equation (18) is due to Proposition 1. Although it is

difficult to show analytically, for reasonable parameter values we have tried using the Heston

model, we always observe numerically that FξT (0
+) = 0, FξT (+∞) = 1, and that FξT (x) is

monotonically increasing in x. For small η, the above approximation is very good and captures

some important features of the simulated distribution of ξT .

2.3 Examples

The proof in Appendix shows a procedure to compute µ(B) and σ(B) needed in Proposition 1.

We first compute the characteristic coordinates, and then T0, H0 and H1 needed for µ(B) and

σ(B) are simply given by integrals. For models with simple a(X) and b(X) functions, the

integrals can be performed analytically. We give a few examples below. Readers interested

in the details of the calculations are referred to Li and Mercurio (2013a). For simplicity, we

assume that currently ξ = 0 so that the quantity B in formulas below should be interpreted

as the remaining budget B − ξ.

Example 1: (Square root process where dV = κ(θ − V )dt+ η
√
V dW )

Here the state variable Xt is Vt. We will interpret Vt as the instantaneous variance as in the

Heston (1993) model. It is worth mentioning that this square-root process is also frequently

used to model short rates, as in Cox, Ingersoll and Ross (1985). For notational ease, we will

assume that the current time is 0. We use V0 to denote the current instantaneous variance,

which is more natural than V . By solving the PDE for p(ξ, V ) to second order in η, the final

T0, H0 and H1 are given by7

T0 =
1

κ
logR, (21)

7We can also use the integral equations in the Appendix. However, it’s much more straightforward to solve the
PDE perturbatively and then eyeball the results to get T0, H0 and H1. We can do it because T0 is multiplied by
λ, H0 is multiplied by λη2 and H1 is multiplied by λ2η2 by Proposition 1. In fact, our implementation to get the
results for the Heston model only takes a few lines of code in Mathematica. The first line solves the zero-order
PDE. The built-in function DSolve is perfect for this purpose. The second line solves the first-order PDE in η2,
again using DSolve. The rest a few lines are pure algebraic simplification. It takes only a few seconds to run the
Mathematica code, but takes considerably much more time to type the results up and double-check that no human
mistakes have been made!
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and

H0 =
(R− 1)

[
2R2z2 +R(2− 5z − 2z2)− 2− z

]

4κ2R2(1 + z)3θ
+

3z logR

2κ2(1 + z)3θ
, (22)

H1 =
(R− 1)(1 + 2R2z +R(2z − 3))

4κ3R2(1 + z)2θ
− (2z − 1) logR

2κ3(1 + z)2θ
, (23)

with

R = ez−z0+κ
B
θ , (24)

z0 ≡
V0 − θ

θ
, (25)

z ≡W
(
z0e

z0 · e−κB
θ

)
, (26)

where W (·) is Lambert’s product-log function defined implicitly as x = W (x)eW (x). See

Corless et al (1996) for information on product-log function. We refer readers to Li and

Mercurio (2013a) for more details on the derivation of the above formulas.

Since R ≥ 1, T0 is nonnegative. Notice also that T0 is the implicit solution of

θT0 + (V0 − θ)
1− e−κT0

κ
= B. (27)

This is exactly the deterministic time when ξT0 = B for η = 0. The easiest way to see that

H1 ≥ 0 is through numerical plotting. A three-dimensional plotting is possible because the

denominators of both H0 and H1 are positive, and the numerators of both H0 and H1 can be

written as a function of the two variables z0 and κB/θ.

Figure 1 plots the probability density function and cumulative distribution function of ξT in

the Heston model using our approximation as well as the histogram and empirical cumulative

distribution function from Monte Carlo simulation. Here the process ξt is the accumulated

realize variance process. Parameters used here are: V0 = 0.087, κ = 2, θ = 0.09, T = 1.5

years, and η = 0.250. As we see, the approximation is fairly good when compared to the

histogram from simulation. Both graphs show almost zero mass in the regions ξT < 0.06 and

ξT > 0.4, and both are left skewed. The theoretical expectation of ξT is given by

E0ξT = θT + (V0 − θ)
1− e−κT

κ
. (28)

Notice that it does not depend on η. With the given parameters, the expectation is about

0.1336. Numerical integration shows that the approximate density gives the expectation of ξT

as 0.1338 with a percentage error of around 0.1%. The two cumulative distribution functions

are also very similar. The approximate cumulative distribution function has the desired

property of being strictly increasing.
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Example 2: (3/2 model where dV = κV (θ − V ) dt+ ηV
3
2 dW )

Here the state variable Xt is Vt. See Ahn and Gao (1999) for some univariate analysis

on the 3/2 model. This model has been used to model both short rate and instantaneous

variance. In this model, T0, H0 and H1 are given by

T0 =
1

κθ
log

(
V0 + θ(eκB − 1)

V0

)
, (29)

H0 =
4V0

[
1 +

(
logR− 1

)
R
]
+ θ
[
− 3 + (4− 4 logR)R+ (2 logR− 1)R2

]

4κ2 [V0 + θ(R− 1)]2
, (30)

H1 =
4R− [3− 2 logR]R2 − 1

4κ3 [V0 + θ(R− 1)]2
, (31)

with R = eκB. Since R ≥ 1, it is very easy to check that T0 ≥ 0 and H1 ≥ 0.

Example 3: (Geometric Brownian Motion where dS = (r − δ)Sdt+ ηS dW )

Here the state variable is S. For simplicity, we assume r ̸= δ. The degenerate case r = δ

is simpler and can be solved similarly. We solve the PDE of p(ξ, S) to second order in η. The

functions T0, H0 and H1 can then be read off as

T0 =
1

r̂
logR, (32)

H0 =
Br̂(Br̂ + 2S)− 2(Br̂ + S)2 logR

4r̂2(Br̂ + S)2
, (33)

H1 =
2(Br̂ + S)2 logR−Br̂(3Br̂ + 2S)

4r̂3(Br̂ + S)2
, (34)

where R = (S +Br̂)/S and r̂ = r − δ. It is easy to verify that T0 > 0 and H1 > 0 if B > 0.

2.4 A Generalization

We now discuss an interesting generalization of the previous setup.8 The result in this sub-

section is not used in the numerical study section, and readers interested in the applications

of the previous results can skip this subsection completely.

It turns out that the hitting time of the following integrated diffusion process is also

approximately normally distributed (to be shown below):

∫ t

0
f(Xu) du, (35)

where Xt is any diffusion process not necessarily living on (0,∞), and f(·) is any second-

order differentiable function. The only requirement is that f(·) is positive and Xt has a small

8We thank an anonymous referee for suggesting this fruitful extension.
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parameter η in its diffusion function. Such a setup has been considered in Cui (2013). Notice

that in this case f might not be one-to-one, and the filtration generated by f(Xu) might be

strictly smaller than that of Xu. One example in point is the Schöbel-Zhu (1999) stochastic

volatility model where instead of modeling the instantaneous variance Vt, one models the

“signed volatility” vt (so here Xt ≡ vt is the state variable):

dSt = rStdt+ vtStdW
S
t , (36)

dvt = κ(θ − vt)dt+ ηdW v
t . (37)

The “signed volatility” vt follows an Ornstein-Uhlenbech process and has a state space (−∞,∞).

The instantaneous variance is given by Vt = v2t . The joint state variables are (St, vt). Notice

that vt contains strictly more information than Vt since Vt does not contain the information

about the sign of vt. In this case, the hitting time of the integrated variance
∫ t
0 v

2
udu (rather

than
∫ t
0 vudu) is of interest in finance.

Following Cui (2013), we write f(x) = m2(x) for some function m to emphasize that f is

positive. The integrated process we are interested in is

ξt = ξ +

∫ t

0
m2(Xu)du. (38)

Notice that dξt = m2(Xt)dt. The hitting time τB is the first time a budget B is reached by

the ξt process:

τB ≡ inf {t ≥ 0 : ξt = B} = inf

{
t ≥ 0 :

∫ t

0
m2(Xu) du = B − ξ

}
. (39)

Since (Xt, ξt) is a Markovian system sufficient to determine whether B is exceeded or not,

the moment generating function of τB is again a function of the current states ξ and X. By

Feynman-Kac theorem Π satisfies the slightly more general PDE below:

m2(X)Πξ + a(X)ΠX +
1

2
η2b2(X)ΠXX + λΠ = 0, (40)

with the boundary condition

Π(B,X) = 1. (41)

Whenm(x) =
√
x, the PDE above reduces to the one in the case we have considered previously.

The same method of characteristics we have used in the Proof of Proposition 1 applies with

little modification.9 The upshot is that τB is still approximately normally distributed. All

9Specifically, we need to modify z to be

z = Φ

(
B − ξ +

∫ X

X∗

m2(u)

a(u)
du

)
. (42)
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three equations in Proposition 1 are still valid. The exact formulas for the mean and variance

can be obtained, similar to what we have done in Appendix. However, as we have remarked

previously in the footnote, in practice it is much easier to directly perturb the PDE in Equation

(40) and read off the functions T0, H0 and H1 from the results.

In some sense, we have already seen one example in this generalized setup. The 3/2-

model studied in Example 2 is the reciprocal of the Heston model in Example 1, as can

be verified using Ito’s lemma. If we let Xt follow the Heston model, then our generalized

result immediately says that the hitting time of
∫ t
0 1/Xu du is also approximately normally

distributed.

The Schöbel-Zhu (1999) model, unfortunately, does not give simple formulas when solving

it using our perturbation approach.10 The reason is that in this model we cannot obtain the

zeroth-order solution T0 in an explicit form. The instantaneous variance when η = 0 is given

by

Vt = v2t =
(
θ + (v0 − θ)e−κt

)2
. (44)

The deterministic time T0 to reach a variance budget B is the solution of

∫ T0

0

(
θ + (v0 − θ)e−κt

)2
dt = B − ξ. (45)

Unfortunately, it’s not possible to write T0 as an explicit function of ξ and v0 easily unless

θ = 0, or κ = 0, or v0 = θ. All special cases are of considerably less interest in practice. Since

the derivatives of T0 need to be fed into the first-order perturbed PDE for Π, the lack of an

explicit expression for T0 prevents an explicit formula for Π.

There are, nonetheless, some interesting new models that are explicitly solvable in this

generalized setup, and we discuss two of them below. The first model is similar to the Schöbel-

Zhu (1999) model, except that the volatility process follows a 3/2-process:

dSt = rSt dt+ vtSt dW
S
t , (46)

dvt = κvt(θ − vt) dt+ ηv
3/2
t dW v

t . (47)

Equation (106) then changes to

m2(X)zξ + a(X)zX = 0. (43)

Modifications to other equations are straightforward.
10We emphasize that this by no means implies that our perturbation technique is no longer valid. The procedure

still works. The distribution of τB is still approximately normal. It is just that the generalized versions of Equations
(110), (114) and (115) in Appendix cannot be integrated out to give explicit formulas. Numerical methods can still
be used to perform these integrals. The numerically obtained µ(B) and σ(B) can still be used to price timer options,
for example.
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We are interested in the distribution of τB, which is the first time for the process
∫ t
0 Vu du to

exceed the remaining budget B − ξ. Following the PDE convention, we let v0 = v. The PDE

for its moment generating function Π(ξ, v) is given by

v2Πξ + κv(θ − v)Πv +
1

2
η2v3Πvv + λΠ = 0, (48)

with the boundary condition Π(B, v) = 1. This equation can be solved perturbatively to first

order in η2. The function T0 can be read off from the zeroth-order solution. It is given by (for

simplicity, we let ξ = 0 in the following)

T0 =
1

κθ
log

(
z0(1 + z)

z(1 + z0)

)
, (49)

where

z0 =
v − θ

θ
, (50)

z =W
(
z0e

z0 · e−κB
θ

)
. (51)

Here W (·) is the product-log function. The functions H0 and H1 can be read off from the

first-order solution in η2 by Proposition 1 and are given by

H0 =

(
1 + z(14 + z)

)
log(z0/z)

2κ2(1 + z)4θ

+
(z − z0)

[
− 3z0 + z

(
5 + z(4 + z) + 24z0 + z(17 + 4z)z0 − 2(8 + z)z20 − 2z20

)]

4κ2(1 + z)4z20θ
, (52)

and

H1 =

(
2− z(2 + z)

)
log(z0/z)

κ3(1 + z)4θ2
+

8z(2 + z)z0 − 12(1 + z)z20 + 8z30 + z40 − z2(2 + z)2

4κ3(1 + z)4z20θ
2

. (53)

It can be quickly checked that when B = 0, H0 = H1 = 0, as we would expect from Proposi-

tion 1.

In the 3/2 model we above, since vt is always positive, the function m2(x) = x2 is one-to-

one. Therefore, another approach we could have taken is to use Ito’s lemma to write down

the dynamics of Vt and use the result in Proposition 1.11 This is a valid alternative approach.

11The dynamics of Vt is given by

dVt = Vt

(
2κθ − (2κ− η2)

√
Vt

)
dt+ 2ηV 5/4 dW v

t . (54)

Notice that both the drift and diffusion functions involve η. Also, the drift is not mean-reverting unless 2κ > η2.
This condition is not needed for the volatility process vt to be mean-reverting. However, in practice, such a condition
might be attractive to have to make the variance process also mean-reverting.
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The current approach of using vt as the state variable is slightly simpler because both the

drift and diffusion functions of Vt involve the parameter η, and therefore the perturbation

using Vt as the state variable is a little bit more involved. In general, however, m2 might not

be one-to-one, and the filtration generated by Xt might be strictly larger than m2(Xt). In

these cases, we will have to use the generalization above and Equation (40) since the filtration

generated by m2(Xt) might not be sufficient to determine τB. Below we consider such a

model.

This second model we consider is a “signed” stochastic volatility in the same spirit of Stein

and Stein (1991) and Schöbel and Zhu (1999). The “signed” volatility vt is modeled as

dvt = κvt(θ
2 − v2t ) dt+ η dW v

t , (55)

where κ > 0, θ > 0 and η are constant parameters. This process has a state space (−∞,∞).

We see that the drift function is positive for very negative vt, and is negative for very pos-

itive vt. Therefore, the process is globally mean-reverting. However, the drift function has

three zeros at −θ, 0, and θ. It has a tendency to return to either −θ or θ when |vt| > θ,

and has a tendency to further drift away from 0 when |vt| < θ. The stationary density of vt

is bimodal with the two modes at −θ and θ. Similar processes have been used to study the

bifurcation behavior in nonlinear dynamics.12 Let v0 = v. If η = 0, the process is always

nonnegative or nonpositive and is given by the solution:

vt = v

√
θ2

v2 + (θ2 − v2)e−2κθ2t
. (56)

As t goes to infinity, it either goes to −θ or θ depending on the sign of v. We are still interested

in the hitting time of integrated variance process ξt where dξt = v2t dt. The function T0 can

be obtained by solving the following ODE:

v2T0,ξ + kv(θ2 − v2)T0,v + 1 = 0, (57)

with the boundary condition T0(B, v) = 0. Or it can be solved by inverting the relation

∫ T0

0
v2u du = B − ξ. (58)

In any case, the result is given by (for simplicity, we let ξ = 0 so B is the remaining budget)

T0 =
1

2κθ2
logR, (59)

12Readers with a physics background will recognize that the drift is the negative of the gradient of double-well
potential U(r) = κr4/r − κθ2r2/2. Double-well potentials have deep connections to bifurcation phenomenons such
as superconductivity, Higgs mechanism and spontaneous symmetry breaking, and have found applications to protein
folding in biology.
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where

R ≡ v2 + (e2κB − 1)θ2

v2
. (60)

Notice that R ≥ 1 so T0 ≥ 0. The functions H0 and H1 are given by

H0 =
(R− 1)

(
(1−R)v2 + (R− 2)θ2

)
+
(
(R− 1)v2 + θ2

)
R logR

4κ2R2v2θ6
, (61)

H1 =
(R− 1)

(
2(1 +R)θ2 − (1 + 5R)v2

)
+ 2R

(
(2 +R)v2 − 2θ2

)
logR

8κ3R2v2θ8
. (62)

As a quick sanity check, we see that H0 = H1 = 0 when B = 0. The approximate mean and

variance of τB are then given by the last two equations in Proposition 1.

3 Applications to Derivatives Pricing

In what follows, we consider several examples to illustrate the potential usefulness of the dis-

tributional approximation developed in the previous section. We consider a general stochas-

tic volatility framework. The types of derivative securities we consider include: a variance

derivative whose payoff is a function of the realized variance, plain-vanilla European option,

a perpetual timer forward contract, and a perpetual timer option. We reduce the prices of

these derivatives to either a simple one-dimensional numerical integration or a closed-form

expression. Numerical study using the Heston model is also carried out to demonstrate the

accuracy of the approximations.

3.1 Variance Derivatives Pricing

Variance derivatives are derivatives written on the realized accumulated variance, which is

usually computed as

N∑

i=1

[
log

(
Sti
Sti−1

)]2
, (63)

where N is the number of days until maturity T , and Stj ’s are the stock prices on day j. Notice

that the summation goes from 1 to N since we set TN = T . One standard approach is to

model the underlying and instantaneous variance as following a standard stochastic volatility

model in the risk-neutral measure Q:

dSu = (r − δ)Su du+
√
VuSu dW

S
u , (64)

dVu = a(Vu) du+ ηb(Vu) dW
V
u , (65)
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where r is the constant risk-free interest rate, δ is the constant dividend yield, and WS
u and

W V
u are two standard Brownian motions with a constant correlation ρ. The daily accumulated

variance is usually modeled using its continuous counterpart ξt, which is defined as

ξt =

∫ t

0
Vu du. (66)

We are interested in computing quantities of the following form

G = E0[g(ξT )]. (67)

For example, for g(x) = x/T or g(x) =
√
x/T , G is the annualized variance swap rate or the

volatility swap rate. Without loss of generality, we assume that g(0) = 0. Otherwise, we can

always define g̃(x) = g(x) − g(0) and G = g(0) + E0[g̃(ξT )]. We also assume that g satisfies

suitable integrability and differentiability conditions.

If we assume that η is small, we can approximate G using Proposition 1. After integration

by parts, the result is given as a one-dimensional numerical integration

G =

∫
∞

0
(1− FξT (B))g′(B) dB ≈

∫
∞

0
N

(
T − µ(B)

σ(B)

)
g′(B) dB. (68)

Given a stochastic volatility model with drift and diffusion functions a(V ) and b(V ), the task

is then to compute the approximate mean µ(B) and approximate standard deviation σ(B) of

the hitting time in Proposition 1. For the Heston model and the 3/2 model, these expressions

can be computed easily from T0, H0 and H1 given in Examples 1 and 2.

Below we examine the accuracy of the above approximation for the volatility swap rate in

the Heston model. That is, g(x) =
√
x/T . To remove the singularity at B = 0 in g′(B), it is

useful to perform a change of variable y =
√
B in Equation (68) to get

GApprox =
1√
T

∫
∞

0
N

(
T − µ(y2)

σ(y2)

)
dy. (69)

The above approximation is valid for any a(V ) and b(V ) functions. In our numerical

analysis, we consider the popular Heston model. In this model, the volatility swap rate can be

computed using the known moment generating function of ξT which provides us a benchmark

to check for accuracy. Specifically, we have

GNI =
1√
T
E0

[√
ξT

]
=

1

2
√
π
√
T

∫
∞

0

1−MξT (−λ)
λ3/2

dλ, (70)

where the subscript NI stands for numerical inversion, andMξT (−λ) is the moment generating

function MξT (−λ) ≡ E[e−λξT ]. We call this method numerical inversion because it involves

numerically inverting from the Laplace transform of ξT to get the half-integer moment. Notice
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that the usual Laplace inverse transformation will involve contour integration in the complex

plane. Equation (70) is very nice because it is an inversion on the real line. This is a well-

known result in mathematics and has connections to fractional calculus, see Wolfe (1975).

In finance, this inversion trick has been popularized by Schürger (2002) and subsequently by

Gatheral (2006), among others. In the Heston model, MξT is given explicitly by (see Cox,

Ingersoll and Ross (1985))

MξT (−λ) = eφ−λψV0 , (71)

with

φ = φ(λ) =
κθ

η2
(κ+ γ)T − 2κθ

η2
log

(
1 +

(γ + κ)(eγT − 1)

2γ

)
, (72)

ψ = ψ(λ) =
2(1− e−γT )

(γ + κ)(1− e−γT ) + 2γe−γT
, (73)

and

γ = γ(λ) =
√
κ2 + 2λη2. (74)

While theoretically very pleasing, in the actual implementation, some care is needed for

the numerical integration in Equation (70) because of the singularity at λ = 0 and the slow

decay rate as λ goes to infinity. This slow decay becomes very challenging in practice when

V0 or ψ is small because a very wide integration region needs to be used to approximate the

positive half real line. In these cases, one needs to either come up with some transformation

which regularizes the integral, or dramatically increase the number of evaluation points used

in the integration which has a negative impact on the computational speed. In contrast, the

numerical integration in Equation (69) is more well-behaved. The integrand is bounded from 0

to 1. Also, although the integration region is from 0 to ∞, in practice only a small region

needs to be integrated over because the cumulative distribution function is very close to 0 for

relatively large y. Of course, Equation (70) is exact theoretically, while Equation (69) is an

approximation that is accurate when η is small. We note also that somewhat ironically a näıve

implementation of Equation (70) will break down for very small η since φ in Equation (72)

can evaluate to infinity for zero η. In this case, one needs to treat the η dependence of φ

very carefully in Equation (72) for small η. Alternatively, Equation (69) can act as a drop-in

replacement for Equation (70) when η is small.

Table 1 shows the volatility swap rates for both our approximation (Approx) and the

benchmark (NI) from numerical inversion. Three numerical integration routines in MATLAB

are employed to cross-verify the results from numerical integration: quad which uses the

adaptive Simpson quadrature method, quadl which uses the adaptive Lobatto quadrature
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method, and quadgk which uses the adaptive Gauss-Kronrod quadrature method. To the

accuracy reported in Table 1, all three routines give identical results. We vary the maturity T ,

the current instantaneous variance V0, and the volatility coefficient η. The mean-reversion

strength κ is fixed at 2.0, and the long-run variance θ is fixed at 0.09. Feller’s condition

requires η < 0.6. Therefore, we consider the three η values in the table. All volatility swap

rates reported are in percentage terms. It is interesting to notice that the volatility swap

rate in the Heston model with the given parameters is a decreasing function of the volatility

coefficient η.13 As we see, the approximation is very accurate in general, and especially when

the volatility coefficient η is small or when the maturity T is large.

3.2 European Option Pricing

We now consider the pricing of European-style options under general stochastic volatility

models specified in Equations (64) and (65). We consider the special case of ρ = 0. The

current approximation technique does not readily generalize itself to nonzero ρ. By the mixing

technique in Hull and White (1987), the price of a European call option with strike K and

maturity T can be computed as

Cvanilla =

∫
∞

0
CBS(S0,K, r, δ, T, x) dFξT (x), (75)

where CBS is the Black-Scholes price given by

CBS(S0,K, r, δ, T, x) = S0e
−δTN(d1(x))−Ke−rTN(d2(x)), (76)

with

d1(x) =
log(S0e

(r−δ)T /K)√
x

+

√
x

2
, (77)

d2(x) =
log(S0e

(r−δ)T /K)√
x

−
√
x

2
. (78)

By integration by parts, we can rewrite Cvanilla as

Cvanilla =
(
S0e

−δT −Ke−rT
)+

+ S0e
−δT

∫
∞

0

(
1− FξT (y

2)
)
n
(
d1(y

2)
)
dy, (79)

where n(·) is the standard normal probability density function. The above formula is exact

and expresses Cvanilla as the sum of two components. The first component is the value of

the option if the price process is deterministic and grows to the forward price. The second

component is a strictly positive adjustment due to the fact that the stock process is stochastic.

13This is to be expected. The variance swap rate in the Heston model does not depend on η for fixed κ and θ.
The fact that volatility swap rate is decreasing in η for fixed κ and θ is due to convexity of the square-root function.
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By using the approximation for the cumulative distribution function FξT (·) in the last

section, we can approximate the European call option price as

Cvanilla ≈
(
S0e

−δT −Ke−rT
)+

+ S0e
−δT

∫
∞

0
N

(
T − µ(y2)

σ(y2)

)
n
(
d1(y

2)
)
dy. (80)

The above approximation works for any Heston-like stochastic volatility model as long as

we can compute the functions µ(·) and σ(·). In the case of the Heston model, it offers an

alternative to the volatility of volatility expansion in Lewis (2000) and Lipton (2001). It is

interesting to notice that the expansion there was developed using complex Fourier inversion

while we have worked strictly in the original real space. Also, while it is possible for the price

expansion in Lewis (2000) and Lipton (2001) to be negative, the approximate price above is

always positive. The integrand is also very well-behaved and decays very fast. A shortcoming

is that the current approximation only works for zero correlation.

The complex Fourier inversion is theoretically exact, but its implementation has a number

of pitfalls and is far from trivial, especially when maturity is very short or very large, or when

the option is far-away from the money. See for example, Carr and Madan (1999), and Kahl

and Jäckel (2005). One advantage of Equation (80) is that it is a very simple integral in the

real space. The integrand is bounded in value, and in practice only a limited region needs

to be integrated over due to the fact that the integrand decreases exponentially for large y.

Our implementation shows that it is extremely fast with a computational time well below one

second. Of course, the downside is that it is an approximation, accurate when η is small.

We use the Heston model to test the accuracy of the approximation for the European call

price in Equation (80). The parameters used are: κ = 2.0, θ = 0.09, S0 = 100, r = 0.03, and

δ = 0. We vary the option maturity T , the instantaneous variance V0, the strike price K,

and the volatility coefficient η. The results are reported in Table 2. The exact prices (FI)

are computed from numerical Fourier inversion using the known characteristic function for

the log stock price under the Heston model. See for example, Lewis (2000). Again, three

numerical integration routines quad, quadl and quadgk in MATLAB are used to cross-verify

the numerical integration results. As we see from Table 2, the approximation is very accurate

for all parameter combinations of (T, V0,K, η) we have considered.

3.3 Perpetual Timer Forward Pricing

Here we illustrate the usage of the perturbation result obtained in previous section with a

perpetual timer forward. This is a contract to exchange one share of the underlying with K

units of cash at a random future date τB at which the daily accumulated realized variance

first exceeds a predefined variance budget B.
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We use the same general stochastic volatility framework in the last subsection. By risk-

neutral pricing, the price Π of the timer forward contract is given by

Π = Π(S0, ξ, V ) = E0[e
−rτB (SτB −K)] . (81)

Notice that because of the perpetual nature, Π does not depend on the calendar time t.

In Appendix, we show that we can simplify the above expectation to be the following

Π = Π(S0, ξ, V ) = S0 Ẽ0

[
e−δτ

B]−K E0

[
e−rτ

B]
, (82)

where Ẽ0 is taken under the measure Q̃ in which the instantaneous variance process follows

dV = ã(V )dt+ ηb(V )dW̃ . (83)

Here the modified drift function is given by

ã(V ) ≡ a(V ) + ρη
√
V b(V ), (84)

and W̃ is a Brownian motion under measure Q̃.

Equation (82) is exact and allows us to use the asymptotic expansion in Proposition 1.

This gives the following approximation for Π:

Π ≈ S0e
−δµ̃(B)+ 1

2
δ2σ̃2(B) −Ke−rµ(B)+ 1

2
r2σ2(B), (85)

where µ(B) and σ2(B) are the approximate mean and variance of τB under measure Q, and

µ̃(B) and σ̃2(B) are the approximate mean and variance of τB under measure Q̃. All four

quantities can be computed using the method of characteristics illustrated in Appendix. For

practical purposes, it is often easier to assume that ã(V ) has no explicit η dependence. That

is, we absorb the η dependence into other model parameters in ã(V ). In many cases, ã(V )

turns out to be formally identical to a(V ) so no additional effort is needed to compute µ̃(B)

and σ̃2(B). This absorbing approach will produce a generalized asymptotic expansion series

instead of the usual power series asymptotic expansion. It gives slightly different formulas

for µ̃(B) and σ̃2(B), but to second order in η the results are equivalent. Notice that by

Proposition 1, Π given above satisfies the pricing PDE to second order in η:

VΠξ + a(V )ΠV +
1

2
η2b2(V )ΠV V + (r − δ)SΠS + ρη

√
V b(V )ΠSV +

1

2
V S2ΠSS − rΠ = o(η2),

(86)

with the boundary condition Π(S,B, V ) = S − K. Therefore, for η not too large, the ap-

proximation in Equation (85) should be very accurate. Compared with the complicated PDE
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above, the advantage of Equation (85) is obvious. While a typical implementation of a three-

dimensional PDE can take multiple seconds14, the approximation in Equation (85) takes less

than 10−4 seconds given the access of a fast algorithm for the product-log function needed

in the Heston model. Fast algorithms for the product-log function are readily available in

many software products. For example, in Mathematica, a single evaluation of the product-log

function ProductLog takes about the same time as a cumulative normal distribution function.

From the above approximation, we can approximate the fair delivery price K∗ as

K∗ = S0e
−δµ̃(B)+ 1

2
δ2σ̃2(B)erµ(B)− 1

2
r2σ2(B) + o(η2). (87)

This is the delivery price that makes the forward contract to have value Π = 0 today.

For the Heston model and the 3/2 model, the computation of µ̃(B) and σ̃2(B) requires no

extra effort once we have computed µ(B) and σ2(B), which are given in Examples 1 and 2 in

the last section. This is because ã(V ) takes exactly the same parametric form as a(V ) once

we absorb the η dependence. For example, in the Heston model, we have

ã(V ) = κ(θ − V ) + ρηV = κ̃(θ̃ − V ), (88)

where κ̃ = κ− ρη, and θ̃ = κθ/κ̃. The adjustment for the 3/2 model turns out to be identical.

This is not a coincidence since the instantaneous variance process in the 3/2 model is the

reciprocal of that in the Heston model. Since ã(V ) is formally identical to a(V ) except with

different parameters, µ̃(B) and σ̃(B) are also formally identical to µ(B) and σ(B). All we

need to do to get µ̃(B) and σ̃(B) is to replace κ with κ̃, and θ with θ̃ in Examples 1 and 2.

By absorbing a linear η term into ã(V ), µ̃(B) and σ̃(B) are now in the form of generalized

asymptotic series.

We again carry out a numerical study for the accuracy of the timer forward fair delivery

price using the Heston model. For simplicity we assume δ = 0. The reason we choose this

special case is that in this case we do not need to solve the three-dimensional PDE in Equation

(86). Instead, the exact fair delivery price is computed by numerically solving the PDE that

the quantity Υ(ξ, V ) ≡ E0[e
−rτB ] satisfies:

VΥξ + a(V )ΥV +
1

2
η2b2(V )ΥV V − rΥ = 0, (89)

with the boundary condition Υ(B, V ) = 1. The fair delivery price is given by

K∗ =
S0
Υ
. (90)

14Of course, this number is only a rough estimate. It depends heavily on the accuracy goal and on how sophisticated
the implementation is, for example, whether GPU is used, or whether special structure of a PDE is exploited, etc.
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This is easy to show from Equation (81) since in this zero-dividend case E0[e
−rτBSτB ] = S0.

To avoid implementation errors, we employ the standard routine NDSolve in Mathematica,

which uses many different methods to numerically solve PDEs, including method of lines,

implicit backward differentiation, Runge-Kutta methods, etc. We use a precision goal of 10−8.

Parameters such as step size are automatically chosen by the internal algorithms of NDSolve.

The results are reported in Table 3. We vary r, V0 and η as in the table. Other parameters

we use are S0 = 100, κ = 2.0, θ = 0.09, and B = 0.09. For each combination of parameter

values (r, V0, η), we report both the exact fair delivery price (PDE) and the approximated one

(Approx) in Equation (87). As we see in Table 3, the approximation is very accurate for all

combinations of parameter values (r, V0, η).

3.4 Perpetual Timer Option Pricing

The perturbation developed in the last section can also be used to price more complicated

derivatives. Here we demonstrate this by considering the pricing of perpetual timer call

options in the Heston model with ρ = 0. We consider this special case since this is a nice

application of the approximation we have developed.15

A perpetual timer call option pays (SτB −K)+ and is only exercisable at time τB, where

B is a contractual variance budget. Timer options have been studied in Bick (1995), Bernard

and Cui (2011), Liang, Lemmens, and Tempere (2011), Li (2013), and Li and Mercurio (2013a,

2013b).

By risk-neutral pricing, the price of a timer call is given by

Cperp = E0

[
e−rτ

B

(SτB −K)+
]
. (91)

By Ito’s lemma, we have

logSt = logS0 + (r − δ)t− 1

2

∫ t

0
Vudu+

∫ t

0

√
VudW

S
u . (92)

Let FV be the filtration generated by the stochastic process Vu. That is, FV = σ(Vu : u ≥ 0).

Notice τB is measurable in FV . Conditioning on FV , logSτB is normally distributed with

mean logS0 + (r− δ)τB − 1
2B and variance B. Integrating out the randomness due to WS

u in

Equation (91) then gives

Cperp = E0

[
E0[e

−rτB (SτB −K)+ | FV
]
= E0

[
CBS(S0,K, r, δ, τ

B, B)
]
, (93)

15Readers interested in extensions are referred to Li and Mercurio (2013a, 2013b), where the authors have devel-
oped approximations for both perpetual and finite-maturity timer options with general values of ρ. The approxima-
tions are found to be very accurate through extensive numerical study.
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where CBS is the Black-Scholes price defined in Equation (76).

So far the analysis is exact. We can now approximate Cperp by using the approximate

distribution for τB in Proposition 1 to get

Cperp ≈
∫

∞

−∞

CBS(S0,K, r, δ, u,B) n(u;µ(B), σ2(B)) du. (94)

This integral can be evaluated in closed form to get (see, for example, Appendix of Li, Deng

and Zhou (2008) for evaluating the integral)

Cperp ≈ S0 · J
(
a+, b,−δ, µ(B), σ2(B)

)
−K · J

(
a−, b,−r, µ(B), σ2(B)

)
, (95)

where

a± =
log(S0/K)√

B
±

√
B

2
, (96)

b =
r − δ√
B
, (97)

and the function J is given by

J
(
a, b, s,m,Σ) = ems+Σs2/2 ·N

(
a+ b(m+ sΣ)√

1 + b2Σ

)
. (98)

Interestingly, the timer call price approximation in Equation (95) resembles the Black-Scholes

formula for plain-vanilla European-style options. It also has many attractive properties. First,

when r = δ = 0, the formula reduces to known exact result for timer call price. Second, when

η = 0 so that the exercise time is deterministic, the formula reduces to the Black-Scholes

formula for plain-vanilla options. Third, the Black-Scholes form makes it easier to compute

the Greeks of the timer call option due to the following symmetry:

S0
∂

∂S0
J
(
a+, b,−δ, µ(B), σ2(B)

)
= K

∂

∂S0
J
(
a−, b,−r, µ(B), σ2(B)

)
. (99)

This can be verified by tedious but straightforward calculation. For example, by using the

above symmetry, the Delta is given by the following simple expression

∆Cperp
≈ J

(
a+, b,−δ, µ(B), σ2(B)

)
. (100)

Notice that the right-hand-side is always positive. Therefore, the approximated timer call price

is always positive and strictly increasing in S0, as it should be. Similarly, the Gamma can also

be easily computed and seen to be positive. Finally, we emphasize that our formula is in closed

form and therefore extremely fast to evaluate. When implemented in both Mathematica and

MATLAB, our program takes less than 10−4 seconds to evaluate one timer option price.
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We test the accuracy of the timer call price approximation in Equation (95) using the

Heston model. The results are reported in Table 4. The fixed parameters are: r = 0.03,

δ = 0, S0 = 100, κ = 2.0, θ = 0.09, and B = 0.09. We vary the instantaneous variance V0,

the strike K, and the volatility coefficient η. We use Monte Carlo prices (MC) as benchmarks.

The standard errors from Monte Carlo simulations are all in the order of 10−3 or smaller.

We use 4 million sample paths with a time step of every two hours. Only the instantaneous

variance process needs to be simulated since the Brownian motion WS
u can be integrated out.

See Bernard and Cui (2013) for more details and for a more sophisticated implementation.

The integrated variance ξT is used as a control variate for variance reduction, whose mean

is given analytically in the Heston model. Our implementation takes about 30 minutes for

each simulation with the desired accuracy goal. As we see, for all parameter combinations

(V0,K, η), the approximation is extremely accurate. Unlike some approximation method such

as moment matching, the approximation in Equation (95) is accurate for all values of K. In

fact, when δ = 0, the approximation goes to the correct limit 0 when K goes to infinity, and

goes to the correct limit S0 when K goes to 0.

4 Conclusion

Many derivatives products are directly or indirectly associated with integrated diffusion pro-

cesses. The hitting time of such an integrated diffusion process plays an very important role

in pricing those derivative products. Through perturbation technique, we show that for any

diffusion processes, this hitting time is approximately normally distributed when the diffusion

coefficient is small. This distributional approximation of the hitting times enables us to reduce

many pricing problems to simpler one-dimensional expectations. We illustrate the generality

and accuracy of this probabilistic approach using several examples.

The approach has several limitations which we acknowledge here. It cannot handle time-

varying drift and diffusion functions right now. It also cannot handle jumps. It also requires

that the diffusion coefficient be small which might not be satisfied in some practical applica-

tions. Also, although the method in principle works for any drift and diffusion functions, to

render it effective in practice we still needs these functions to be simple to obtain closed-form

formulas. Also, only Heston model with a limited set of parameters has been tested in this

paper. To implement our approximation in product-quality code, extensive testing needs to

be carried out beforehand, especially on the greeks.

There are several future research directions one can follow. First, it is useful to work out the

approximation for more diffusion processes and find more interesting applications. Second, we

have focused on small diffusion coefficient in this paper which could be a limitation in actual
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applications. It would therefore be useful to derive other approximations under different

assumptions such as strong or weak mean reversions in the drift. For specific models where

some parameters can be assumed to be small, one might be able to develop approximations

using the perturbation technique we have developed.
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Appendix

Proof of Proposition 1:

Let X∗ > 0 be an arbitrary integration limit. Define two dimensionless variables z0 and z as

follows

z0 =
X −X∗

X∗
, (101)

z = Φ

(
B − ξ +

∫ X

X∗

u

a(u)
du

)
. (102)

We remark that in a concrete model, it might be easier to just use z0 = X −X∗ without the

scaling or simply z0 = X. The function Φ is most conveniently chosen to be

Φ(x) =
f−1(x)−X∗

X∗
, (103)

where f−1(x) is the inverse of the function

f(X) =

∫ X

X∗

u

a(u)
du. (104)

With this choice of Φ, it is easy to see that z = z0 when ξ = B. This allows us to write the

solution of the ordinary differential equation in simple integral form, as we will see below.

The purpose of the above definitions is to change the coordinates from (ξ, V ) to the

characteristic coordinate (z0, z). Let us express p in terms of the characteristic coordinates z

and z0:

p(ξ,X) = p̃(z, z0). (105)

It is easy to check that

Xzξ + a(X)zX = 0. (106)

By utilizing the above equation and chain differential rule, to zeroth-order in η, the PDE for

p(ξ,X) simplifies to an ODE for p̃(z, z0) due to cancelation of the p̃z terms:

ã(z0)p̃z0 + λ = 0, (107)

where ã(z0) ≡ a(X), and with the boundary condition

p̃(z0, z0) = 0. (108)

Therefore, the zeroth-order approximation is given by a simple integral

p0(ξ,X) = p̃(z, z0) =

∫ z

z0

λ

ã(u)
du ≡ λT0(ξ,X). (109)
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When η = 0, the processXt is deterministic, and the quantity T0(ξ,X) is just the deterministic

time to exceed the budget B. Therefore, we have T0(ξ,X) ≥ 0 with T0(ξ,X) = 0 if and only

if ξ = B. Notice that the solution of T0 is given by

T0(ξ,X) =

∫ z

z0

1

ã(u)
du. (110)

To second order in η, the second-order PDE for p(ξ,X) can be approximated by a first-

order ODE for p̃(z, z0) as follows

ã(z0)p̃z0 + λ+
1

2
η2 b̃ 2(z0)

[
p̃0,XX + (p̃0,X)

2
]
= 0. (111)

Here b̃(z0) ≡ b(X), and p̃0,X denotes the partial derivative of p0(ξ,X) with respect to X,

but expressed in terms of the characteristic coordinates z and z0. Similarly for p̃0,XX . The

solution of p(ξ,X) to second order in η is then given by a simple integral

p(ξ,X) = p̃(z, z0) =

∫ z

z0

λ+ 1
2η

2 b̃ 2(u)
[
λT̃0,XX + λ2(T̃0,X)

2
]

ã(u)
du+ o(η2) (112)

≡ λ[T0 + η2H0] + λ2η2H1 + o(η2). (113)

By comparing the last two equalities, the functions H0 and H1 are given by the following

integrals

H0 =

∫ z

z0

b̃ 2(u)T̃0,XX
2ã(u)

du, (114)

H1 =

∫ z

z0

b̃ 2(u)(T̃0,X)
2

2ã(u)
du. (115)

This proves that E0[e
λτB ] possesses an asymptotic expansion as follows

E0[e
λτB ] = eλ[T0+η

2H0]+λ2η2H1 + o(η2). (116)

Since by assumption E0[e
λτBτB] and E0[e

λτBτ2B] are finite for a range of real λ values containing

0, differentiating the above expansion series once and twice and setting λ = 0 gives the

asymptotic expansion series for the first two moments of τB as follows

E0[τ
B] = T0 + η2H0 + o(η2), (117)

E0[(τ
B)2] = (T0 + η2H0)

2 + 2η2H1 + o(η2). (118)

Therefore, the variance of τB has the following asymptotic expansion series

Var
(
τB
)
= 2η2H1 + o(η2). (119)
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Dividing both sides by η2 and taking the limit of η → 0+, we see that H1 ≥ 0. Furthermore,

H1 = 0 if and only if Var(τB) = 0.

Proof of Equation (82):

This is essentially a change of measure technique. See Li and Mercurio (2013a). However,

because random time is involved, it is more elementary to prove the equation from the PDE

perspective. To show Equation (82), let

Φ(S, ξ, V ) = SΨ(ξ, V ) ≡ E0

[
e−rτ

B

SτB
]
. (120)

Notice that Ψ does not depend on S because of the homogeneity of the payoff e−rτ
B
SτB and

the homogeneity of the stock process. By the Feynman-Kac theorem applied using the exit

time τB, Φ(S, ξ, V ) satisfies the following PDE

V Φξ + a(V )ΦV +
1

2
η2b2(V )ΦV V + (r − δ)SΦS + ρη

√
V b(V )ΦSV +

1

2
V S2ΦSS − rΦ = 0,

(121)

with the boundary condition Φ(S,B, V ) = S, and where we use subscripts to denote par-

tial derivatives. Since Φ(S, ξ, V ) = SΨ(ξ, V ), we can easily show that Ψ(ξ, V ) satisfies the

following PDE

VΨξ + ã(V )ΨV +
1

2
η2b2(V )ΨV V − δΨ = 0, (122)

with the boundary condition Ψ(B, V ) = 1. A reverse application of the Feynman-Kac theorem

using again the exit time τB now shows that

Ψ(ξ, V ) = Ẽ0

[
e−δτ

B]
. (123)
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Table 1: Volatility Swap Rates in the Heston Model

We report the volatility swap rates for both our approximation (Approx) and the benchmark (NI)
from numerical inversion. We vary T and V0. The other parameters used are: κ = 2.0 and θ = 0.09.
All volatility swap rates reported are in percentage terms.

η = 0.125 η = 0.250 η = 0.375

T V0 Approx NI Approx NI Approx NI

0.5 0.04 24.10 24.10 23.95 23.93 23.73 23.65
0.09 29.95 29.94 29.82 29.78 29.67 29.52
0.16 36.59 36.59 36.52 36.45 36.44 36.21

1.0 0.04 26.09 26.07 25.90 25.90 25.62 25.61
0.09 29.94 29.92 29.76 29.76 29.47 29.47
0.16 34.62 34.60 34.45 34.45 34.16 34.17

1.5 0.04 27.83 27.83 27.67 27.68 27.41 27.44
0.09 29.95 29.95 29.79 29.80 29.53 29.56
0.16 32.69 32.69 32.53 32.54 32.27 32.31
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Table 2: European Call Price in the Heston Model

We report call prices from both our approximation (Approx) and the benchmark (FI) from Fourier
inversion. We vary T , V0, K and η. The other parameters used are: κ = 2.0, θ = 0.09, S0 = 100,
r = 0.03, and δ = 0.

η = 0.125 η = 0.250 η = 0.375

T V0 K Approx FI Approx FI Approx FI

0.5 0.04 80 21.76 21.76 21.77 21.77 21.82 21.80
100 7.51 7.51 7.45 7.46 7.40 7.38
120 1.61 1.61 1.60 1.60 1.63 1.60

0.09 80 22.42 22.42 22.44 22.43 22.48 22.44
100 9.13 9.13 9.10 9.09 9.06 9.02
120 2.81 2.81 2.81 2.80 2.82 2.78

0.16 80 23.41 23.41 23.42 23.40 23.45 23.40
100 10.98 10.98 10.96 10.94 10.93 10.87
120 4.38 4.38 4.38 4.36 4.39 4.33

1.0 0.04 80 24.39 24.39 24.39 24.39 24.40 24.39
100 11.77 11.77 11.70 11.70 11.59 11.59
120 4.86 4.86 4.82 4.82 4.76 4.75

0.09 80 25.28 25.28 25.27 25.27 25.25 25.25
100 13.26 13.26 13.19 13.19 13.08 13.08
120 6.27 6.27 6.22 6.22 6.14 6.14

0.16 80 26.47 26.47 26.45 26.45 26.41 26.41
100 15.07 15.07 15.00 15.00 14.88 14.89
120 8.05 8.05 7.99 8.00 7.90 7.91

1.5 0.04 80 26.97 26.97 26.95 26.95 26.92 26.92
100 15.24 15.24 15.16 15.16 15.03 15.04
120 8.01 8.01 7.94 7.94 7.83 7.84

0.09 80 27.83 27.83 27.80 27.81 27.76 27.77
100 16.53 16.53 16.45 16.45 16.31 16.33
120 9.33 9.33 9.26 9.26 9.13 9.15

0.16 80 28.98 28.98 28.95 28.95 28.88 28.90
100 18.16 18.16 18.08 18.08 17.94 17.96
120 11.01 11.01 10.94 10.94 10.80 10.83
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Table 3: Timer Forward Fair Delivery Price in the Heston Model

We report the timer forward prices for both our approximation (Approx) and the benchmark (PDE)
from numerical PDE solutions. We vary r, V0 and η. The other parameters used are: κ = 2.0,
θ = 0.09, S0 = 100, and B = 0.09.

η = 0.125 η = 0.250 η = 0.375

r V0 Approx PDE Approx PDE Approx PDE

0.03 0.04 103.89 103.89 104.03 104.03 104.27 104.24
0.09 103.09 103.09 103.24 103.23 103.49 103.44
0.16 102.18 102.19 102.31 102.31 102.52 102.50

0.06 0.04 107.92 107.94 108.21 108.21 108.71 108.63
0.09 106.28 106.28 106.59 106.56 107.09 106.99
0.16 104.41 104.42 104.67 104.66 105.10 105.06
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Table 4: Timer Call Price in the Heston Model

We report the timer option prices for both our approximation (Approx) and the benchmark (MC)
from Monte Carlo simulations. We vary V0, K, and η. The other parameters used are: κ = 2.0,
θ = 0.09, S0 = 100, r = 0.03, δ = 0, and B = 0.09. Standard errors from Monte Carlo simulations
are all in the order of 10−3 or smaller.

η = 0.125 η = 0.250 η = 0.375

V0 K Approx MC Approx MC Approx MC

0.04 80 25.76 25.76 25.85 25.84 25.99 25.96
100 13.67 13.66 13.73 13.73 13.85 13.83
120 6.54 6.54 6.58 6.58 6.66 6.65

0.09 80 25.31 25.31 25.40 25.39 25.54 25.51
100 13.31 13.31 13.38 13.37 13.49 13.47
120 6.31 6.31 6.35 6.35 6.43 6.41

0.16 80 24.79 24.79 24.87 24.86 24.99 24.98
100 12.90 12.89 12.95 12.95 13.05 13.05
120 6.04 6.04 6.08 6.08 6.14 6.14
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Figure 1: Approximated and simulated distributions of the accumulated variance ξT .

The left two plots are the probability density and cumulative distribution function from the ap-
proximation. The right two plots are the histogram and empirical distribution function from Monte
Carlo simulation.
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