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1 Introduction

In 2007, Société Générale Corporate and Investment Banking introduced a new variance deriva-

tive to the market called “timer options” (See Sawyer (2007)). A timer option is similar to a

plain-vanilla option, except that the expiry is not deterministic. Rather it is specified as the

first time when the accumulated realized variance exceeds a given budget. See Hawkins and

Krol (2008), Carr and Lee (2010) and Lee (2012) for some insights on why such a product

can be attractive to investors. Interestingly, timer options were studied many years ago by

Neuberger (1990) and Bick (1995) when such security did not even exist in the market place.

Sawyer (2008) also reported that Société Générale Corporate and Investment Banking started

to sell other timer-style options such as “timer out-performance options” and “timer swaps”.

The pricing of timer options is usually done through Monte Carlo simulation. A naive

implementation can take tens of hours to get a reasonably accurate estimate of the option price.

See C.X. Li (2010, 2013) and Bernard and Cui (2011) for techniques to speed up the simulation.

Another approach is to compute the timer option price exactly through multidimensional

numerical integration. See Liang, Lemmens and Tempere (2011) where the authors provide

such an integration for the Heston model and the 3/2 model. One shortcoming besides being

complex and slow is that this method works for a limited set of models. A third approach is

to approximate timer option prices through methods such as perturbation. Saunders (2010)

considers an asymptotic expansion for stochastic volatility models under fast mean-reversion.

Another paper in this category which is very closely related to the current one is Li and

Mercurio (2013). The method in Li and Mercurio (2013) is extremely fast and very accurate,

with percentage errors in the order of 0.01% for the Heston model for the parameters they

used.

However, the method in Li and Mercurio (2013) is designed to work for perpetual timer

options. In practice, a timer option often has a contractual maximum maturity. The current

paper aims at developing an approximation which works for finite-maturity timer options.

Unlike some previous papers which focus on a particular model, we assume a general stochastic

volatility framework with a nonzero dividend rate. Our approach is carried out in two steps.

We first develop the approximation assuming a zero correlation between the two Brownian

motions. We then build upon this result to price timer options under nonzero correlation.

Under zero correlation, we reduce the finite-maturity timer option prices to simple uni-

variate expectations. Those expectations are taken over the accumulated variance and the

random variance budget exceeding time. Li and Mercurio (2013) shows that the variance bud-

get hitting times are approximately normal in both the Heston and 3/2 models under small

volatility of variance. M. Li (2013) generalizes this result to show that it holds for all Heston-

like stochastic volatility models. A duality result between the cumulative distribution functions
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of the variance budget exceeding time and accumulated variance then allows one to obtain an

approximation for the latter. Utilizing these distribution approximations, the finite-maturity

timer option price is expressed as a sum of two components, one coming from exercising the

option when the maximum maturity is reached, and another coming from exercising when the

variance budget is exceeded.

For nonzero correlation, we take a simple approach by assuming that the finite-maturity

timer option price is a linear combination of the corresponding perpetual timer option and

plain-vanilla option prices, where the weights are simultaneously replaced by their zero-correlation

counterparts. This approximation has an attractive feature that it reduces to the correct price

when the maximum maturity is much larger than the target exercise time implied by the

variance budget, or vice versa. Therefore, it matches the asymptotic correlation behavior in

these two extreme cases. By construction, this approximation is exact when the correlation

coefficient is zero. It is also exact when the variance process is deterministic.

The proposed method for pricing finite-maturity timer options has several attractive prop-

erties. First, the method is extremely fast. Most of the computational cost is a one-dimensional

numerical integration. Second, numerical study shows that the approximate timer option prices

are fairly accurate. The approximation is extremely accurate when the volatility of variance

is small or when the maximum expiry is not tightly binding. Third, the approximate prices

reduce to the correct exact formulas under many limiting cases. Finally, the method in prin-

ciple works for any Heston-like stochastic volatility model. For any such model, the task is to

compute the approximate mean and variance of the random variance budget exceeding time.

Once these two quantities are computed, it becomes mechanical to just plug them into our

approximation formula to compute the timer option price.

There are however some limitations in the current paper. First, although the method works

for any Heston-like model, in practice it is attractive for the variance process to be simple so

that the approximate mean and variance of the hitting time can be computed in closed form.

Second, our approximation is derived under the assumption of a small diffusion coefficient,

which might not be available in some real-life applications. Finally, in this paper, only the

Heston model with a limited set of parameters has been tested for accuracy.1

The rest of the paper is organized as follows. Section 2 describes the model setup and

develops the approximation for finite-maturity timer option prices, first under the assumption

of a zero correlation and then for general nonzero correlations. Section 3 performs a numerical

study on the accuracy of the approximation. Section 4 concludes.

1Some sensitivity analysis has been carried out in the numerical analysis section by varying individual parameters.
See this section for the parameter ranges we have tested. We also remark that Li and Mercurio (2013) have tested
the accuracy of the hitting time approximation in the case of perpetual timer options for Heston model with different
parameters, and for the 3/2-model. The results are found to be fairly accurate.
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2 Pricing Timer Options

2.1 The Model Setup

We consider a general time-homogenous stochastic volatility framework. Under the risk-neutral

measure, the stock process Su and instantaneous variance process Vu evolve as

dSu = (r − δ)Su du+
√

VuSu dW
S
u , (1)

dVu = a(Vu) du+ ηb(Vu) dW
V
u . (2)

Here we assume that the interest rate r and dividend rate δ are both constants, and the

two Brownian motions WS
u and W V

u are correlated with constant coefficient ρ. The functions

a(V ) and b(V ) are assumed to be such that the process Vu has a domain (0,∞), and does

not explode to either 0 or ∞. We have isolated out the volatility of variance coefficient η

in the diffusion function. Similar setup for pricing timer options is also used in Li (2010),

Bernard and Cui (2011), as well as Liang, Lemmens and Tempre (2011). However, unlike in

these papers, we assume a nonzero dividend rate δ which is more relevant in practice. This

framework incorporates the Heston model (Heston 1993) and the 3/2-model as special cases.

Now define the accumulated variance process to be

ξu = ξ +

∫ u

0
Vs ds. (3)

Here ξ0 = ξ is the accumulated variance at time 0. Let τB be the random time remaining for

a pre-specified variance budget B > 0 to be exceeded. That is,

τB ≡ inf {u > 0 : ξu = B} = inf

{
u > 0 :

∫ u

0
Vs ds = B − ξ

}
. (4)

A finite-maturity timer call option has a mandated maximum maturity T . The option matures

when the variance budget is exhausted, but no later than the prescribed maximum maturity T .

That is, the finite-maturity timer option is exercisable at the random time τ , where

τ = τB ∧ T ≡ min(τB, T ). (5)

When the option is exercised at random time τ , the buyer of the option receives a payoff

(Sτ −K)+ where K is the strike price specified in the contract. Similarly, a timer put option

pays (K − Sτ )
+ when exercised at time τ . A perpetual timer option is similar to a finite-

maturity timer option except that there is no contractual maximum maturity. So a perpetual

timer option is exercisable at exactly the random time τB.

In practice, the realized variance up to day N is computed using the daily closing prices

as follows:
N∑

i=1

[
log

(
Sti

Sti−1

)]2
. (6)
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This daily accumulated variance is used in the timer option contract to determine the random

exercise time. The approximation of using ξu instead of the above discrete sum is standard

in the variance derivative pricing literature. The discretization bias induced is usually very

small with daily accumulation. The variance budget B is usually quoted according to a target

expiration Ttarget as B = σ2
impTtarget, where σimp is the implied volatility for a European option

on the underlying with maturity Ttarget and the same strike K. On contract initiation for a

finite-maturity timer option, the maximum maturity T is usually much larger than Ttarget. In

the term sheets we have seen, it can be as large as six times the target expiration.

Assume that the current time is 0. For notational simplicity, we will assume that ξ = 0 so

that B should be interpreted as the remaining variance budget B − ξ. Let the current stock

price be S0 and the current instantaneous variance be V0. Let Cfin denote the timer call option

price with a remaining maximum maturity T > 0 and a remaining variance budget B > 0.

Similarly for Pfin. By risk-neutral pricing, we have

Cfin = E0

[
e−rτ (Sτ −K)+

]
. (7)

For the put, we have Pfin = E0 [e
−rτ (K − Sτ )

+] . The perpetual option prices are given by

Cperp = E0

[
e−rτB (SτB −K)+

]
, Pperp = E0

[
e−rτB (K − SτB )

+
]
. (8)

If one has the joint distribution of (τ, Sτ ) or (τB, SτB ), the pricing of timer option is a

simple two-dimensional integration. In practice, such a joint distribution is often not readily

available. This makes the pricing of timer options a difficult problem.

Another approach is through solving the partial differential equations the timer option

prices satisfy. For the finite-maturity timer option price, a simple application of the general

Feynman-Kac theorem using the exit time τ gives the following equation

Ct + V Cξ + a(V )CV +
1

2
η2b2(V )CV V + (r − δ)SCS +

1

2
V S2CSS + ρη

√
V b(V )SCSV − rC = 0,

(9)

with the boundary conditions C(T, S, ξ, V ) = (S −K)+, and C(t, S,B, V ) = (S −K)+. Here

for simplicity, we have written the timer call price as C(t, S, ξ, V ) and dropped the dependence

on other parameters. The equation for the timer put is identical but with boundary conditions

replaced by (K − S)+. A similar application of the general Feynman-Kac theorem using the

exit time τB gives the partial differential equation for the perpetual timer call:

V Cξ + a(V )CV +
1

2
η2b2(V )CV V + (r − δ)SCS +

1

2
V S2CSS + ρη

√
V b(V )SCSV − rC = 0,

(10)

with the boundary condition C(S,B, V ) = (S −K)+.
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2.2 Approximating the Distributions of ξT and τB

Li and Mercurio (2013) develops an approximation for pricing perpetual timer options by

perturbing the partial differential equation it satisfies under the assumption that η is small.

The approximation is found to be extremely fast and accurate. Therefore, in this paper, we

focus on approximating the finite-maturity timer option prices. We use the same assumption

that η is small as in Li and Mercurio (2013). It turns out to be difficult to extend the method

in Li and Mercurio (2013) directly to finite-maturity timer options because the finite-maturity

timer option prices satisfy a higher-dimensional partial differential equation. Therefore, we

take a different and more probabilistic approach below.

We start by approximating the probability densities of τB and ξT under the assumption

that η is small. We then use these densities approximations to approximate the timer option

prices. Small η expansion is also considered for plain-vanilla options in Lewis (2000) and

Lipton (2001). We make an important remark that here by small η, we do not mean that η

has to be smaller than 1. Rather by the loose term “small η”, we mean that the effect of η is

small. We will comment more on this point later.

In Li and Mercurio (2013), it is shown that for the Heston model and the 3/2 model, τB

is approximately normally distributed for small η. M. Li (2013) shows that this is true for

the integrated process of any time-homogeneous diffusion process. The result is summarized

below. Readers interested should refer to M. Li (2013) for a detailed proof.

Proposition 1. Assume that η is small in dVu = a(Vu) du + ηb(Vu) dW
V
u . Assume further

that E0e
λτB , E0[e

λτBτB] and E0[e
λτB (τB)2] are finite for any λ ∈ R. The moment generating

function of τB has the following asymptotic expansion form

MτB (λ) ≡ E0e
λτB = eλ(T0+η2H0)+λ2η2H1 + o(η2), (11)

where T0, H0 and H1 are deterministic functions of B and V0, and not functions of λ or η.

Furthermore, we have T0 ≥ 0 and H1 ≥ 0 with equality if and only if B = 0. Therefore, for

B > 0, τB is approximately normally distributed with mean µ(B) and variance σ2(B), where

µ(B) and σ2(B) are given by

µ(B) = T0 + η2H0, σ2(B) = 2η2H1. (12)

For any T > 0, the cumulative distribution function FξT (x) ≡ P(ξT < x) of the accumulated

variance ξT can be approximated as:

FξT (x) ≈ F̃ξT (x) ≡ N

(
µ(x)− T

σ(x)

)
. (13)
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Equation (13) follows rigorously from the small-η perturbation in Appendix of M. Li (2013),

and there is no additional distribution approximation here. Also, while the distribution of τB

is approximately normal, the distribution of ξT obtained from duality is not normal even

though it has a form of cumulative normal distribution function. In fact, in the Heston

model, numerically we find that the approximate distribution of ξT above looks like a shifted

noncentral-chi-squared distribution, and matches the true distribution very well.

For small η, the above approximation is reasonably good and captures some important

features of the simulated distribution of ξT . Notice that in the limit η = 0 so that the

instantaneous variance process is deterministic, MτB reduces to that of a Dirac-delta function

at T0, as it should be.

The approximate mean µ(B) and variance σ2(B) are functions of V0 and other parameters.

For notational simplicity, we only emphasize their dependence on B above. M. Li (2013) shows

a procedure to compute µ(B) and σ(B). We first compute the characteristic coordinates, and

then T0, H0 and H1 needed for µ(B) and σ(B) are simply given by integrals involving the

characteristic coordinates. For many models, the integrals can be done explicitly. We give

two examples below.2 Readers interested in the details of the calculation are referred to Li

and Mercurio (2013) or M. Li (2013). For simplicity, we assume that currently ξ = 0 so the

quantity B in formulas below should be interpreted as the remaining variance budget B − ξ.

Example 1: (Heston model where dV = κ(θ − V )dt+ η
√
V dW V )

We assume Feller condition is satisfied. The functions T0, H0 and H1 are given by

T0 =
1

κ
logR, (14)

H0 =
(R− 1)

[
2R2z2 +R(2− 5z − 2z2)− 2− z

]

4κ2R2(1 + z)3θ
+

3z logR

2κ2(1 + z)3θ
, (15)

H1 =
(R− 1)(1 + 2R2z +R(2z − 3))

4κ3R2(1 + z)2θ
− (2z − 1) logR

2κ3(1 + z)2θ
, (16)

with

R = ez−z0+κB

θ , z0 ≡
V0 − θ

θ
, z ≡ W

(
z0e

z0 · e−κB

θ

)
, (17)

where W (·) is Lambert’s product log function defined implicitly as x = W (x)eW (x).

Since R ≥ 1, T0 is nonnegative. Notice also that T0 is the implicit solution of

θT0 + (V0 − θ)
1− e−κT0

κ
= B. (18)

2We emphasize that Proposition 1 is valid for any drift and diffusion functions. However, for complicated models,
we might not be able to compute µ(B) and σ(B) in closed form. In these cases, µ(B) and σ(B) can still be computed
numerically from their integral representations, as shown in Appendix of M. Li (2013).
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This is exactly the deterministic time when ξT0
= B for η = 0. The easiest way to see that

H1 ≥ 0 is through numerical plotting. A three-dimensional plotting is possible because the

denominators of both H0 and H1 are both positive, and the numerators of both H0 and H1

can be written as a function of the two variables z0 and κB/θ.

Example 2: (3/2 model where dV = κV (θ − V ) dt+ ηV
3

2 dW V )

See Ahn and Gao (1999) for some univariate analysis on the 3/2 model. In this model, T0, H0

and H1 are given by

T0 =
1

κθ
log

(
V0 + θ(eκB − 1)

V0

)
, (19)

H0 =
4V0

[
1 +

(
logR− 1

)
R
]
+ θ

[
− 3 + (4− 4 logR)R+ (2 logR− 1)R2

]

4κ2 [V0 + θ(R− 1)]2
, (20)

H1 =
4R− [3− 2 logR]R2 − 1

4κ3 [V0 + θ(R− 1)]2
, (21)

with R = eκB. Since R ≥ 1, it is very easy to check that T0 ≥ 0 and H1 ≥ 0.

We make an important remark on the value of η in the 3/2-model here. Because the

function b(V ) = V 3/2 is typically very small since the instantaneous variance V is usually

much smaller than 1, η will usually be large when compared with 1. However, the effect of η

can still be small. That is, a Heston model and a 3/2-model with very different values of η

can have similar level of variability in the instantaneous variance process. Take the following

Heston model parameters for example: κH = 2, θH = 0.09, and ηH = 0.375 (we have added a

subscript H to indicate that these are Heston parameters, similarly for the 3/2 parameters).

When calibrated to the same set of market data, the parameters of Heston model and 3/2

model should have roughly the same mean-reverting strength near the mode of the invariant

distribution, roughly the same long-run mean level, and roughly the same long-run variance.

By the results in Ahn and Gao (1999) and Cox, Ingersoll and Ross (1985), these three heuristic

criteria give three equations:

κ 3

2

θ 3

2

= κH ,
2κ 3

2

θ 3

2

2κ 3

2

+ η23
2

= θH ,
2κ 3

2

θ23
2

η23
2(

2κ 3

2

+ η23
2

)2 =
η2HθH
2κH

. (22)

Solving these three equations, we get approximately that θ 3

2

= 0.125, κ 3

2

= 15.980, and

η 3

2

= 3.533. Notice here η 3

2

is much larger than 1, but still its effect is roughly comparable to

an η of 0.375 in the Heston model. Intuitively, it is clear that the accuracy of our approximation

depends on the level of fluctuations in the instantaneous variance (a good measure is the long-

run variance), rather than on the nominal values of η’s in different models.3 It is conceivable

3Li and Mercurio (2013) have studied the accuracy of the approximation in Proposition 1 in the context of
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that our method should yield qualitatively similar degrees of accuracy when applied to different

instantaneous variance models that behave very similarly on the macro scale, that is, having

roughly the same mean-reverting strength on average, roughly the same long-run mean, and

roughly the same long-run variance. This should be the case if two stochastic volatility models

are calibrated properly using the same option price data from the market.

2.3 Approximating Timer Option Prices for Zero ρ

We consider the simpler problem in this subsection where we assume ρ = 0. The starting

point of our approach is to write the timer option price as a mixing of Black-Scholes prices.

Similar mixing idea was used to price European-style plain-vanilla options in Hull and White

(1987), Romano and Touzi (1997), and Lewis (2000), among many others. Lipton (2001) also

contains a discussion on this approach.

Let us focus on finite-maturity timer call options first. The pricing of timer puts in our

approach requires little additional effort and will be discussed later. Notice that we can always

decompose the timer call option price into two components as follows:

Cfin = CB
fin + CT

fin, (23)

with

CB
fin = E0

[
e−rτ (Sτ −K)+ · 1τ=τB

]
, (24)

CT
fin = E0

[
e−rτ (Sτ −K)+ · 1τ=T

]
. (25)

We will use N(·) to denote the cumulative normal distribution function and n(·) to denote

the standard normal probability density function. The notation n(· ;m,Σ2) will be used to

denote the normal probability density function with mean m and variance Σ2.

The following proposition shows that we can also express each of the two components of

the timer call option price as a mixing of Black-Scholes prices.

Proposition 2. Under zero correlation, the two components CB
fin and CT

fin are given by a

mixing of the Black-Scholes prices. More specifically, we have

CB
fin = E0

[
CBS(S0,K, r, δ, τB, B) · 1τB<T

]
, (26)

CT
fin = E0

[
CBS(S0,K, r, δ, T, ξT ) · 1ξT<B

]
, (27)

perpetual timer options. For the 3/2 model, a value of 8.56 for η is used. The resulting approximate prices are still
found to be very accurate. The percentage errors however are slightly larger than the corresponding ones for the
Heston model. This is because with η = 8.56, the effective long-run variance in the 3/2 model is larger than that in
the Heston model. Had we used an η of about 3.533, the accuracy of the two models would be very similar. This is
strong indication that the methodology in this paper should work equally well for the 3/2-model.
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where CBS is the Black-Scholes price given by

CBS(S0,K, r, δ, t, I) = S0e
−δtN(d1)−Ke−rtN(d2), (28)

with

d1 = d1(t, I) =
log(S0e

(r−δ)t/K)√
I

+

√
I

2
, (29)

d2 = d2(t, I) =
log(S0e

(r−δ)t/K)√
I

−
√
I

2
. (30)

Proof: By Ito’s lemma, we have

logSt = logS0 + (r − δ)t− 1

2

∫ t

0
Vudu+

∫ t

0

√
VudW

S
u . (31)

Let FV
t be the filtration generated by the process Vu from time 0 to time t. Conditioning on

FV
t , logSt is normally distributed with mean logS0 + (r − δ)t− 1

2ξt and variance ξt.

Consider the CT
fin term first. By law of iterated expectation, we have

CT
fin = E0

[
E0

[
e−rT (ST −K)+

∣∣FV
T

]
· 1τB>T

]
(32)

= E0

[
CBS(S0,K, r, δ, T, ξT ) · 1ξT<B

]
. (33)

The proof of the CB
fin term is similar by noticing that conditioning on FV

τB
, logSτB is

normally distributed with mean logS0 + (r − δ)τB −B/2 and variance B.

By integration by parts, we can also express CB
fin and CT

fin as follows:

CB
fin = CBS(S0,K, r, δ, T,B)FτB (T )−∆CB

fin, (34)

CT
fin = CBS(S0,K, r, δ, T,B)FξT (B)−∆CT

fin, (35)

with

∆CB
fin =

∫ T

0
FτB (x)C

BS
x (S0,K, r, δ, x,B) dx, (36)

∆CT
fin =

∫ B

0
FξT (y)C

BS
y (S0,K, r, δ, T, y) dy. (37)

Here FτB (x) is the cumulative distribution function of τB, and CBS
x (S0,K, r, δ, x,B) and

CBS
y (S0,K, r, δ, T, y) are partial derivatives given by

CBS
x (S0,K, r, δ, x,B) = −δS0e

−δxN(d1(x,B)) + rKe−rxN(d2(x,B)), (38)

CBS
y (S0,K, r, δ, T, y) = S0e

−δT n(d1(T, y))

2
√
y

. (39)
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Since by definition FτB (T )+FξT (B) = 1, by summing up Equation (34) and (35), an equivalent

way of writing the finite-maturity timer option price is

Cfin = CBS(S0,K, r, δ, T,B)−∆CB
fin −∆CT

fin. (40)

This equation is exact with no approximation used. It is easier to understand this equation

assuming δ = 0. In this case, CBS(S0,K, r, δ, T,B) is an upper bound for Cfin, and the last

two terms correct for the fact that the realized variance of a timer option is not necessarily

the upper bound B (the vega correction), and the exercise time is not necessarily the upper

bound T (the theta correction).

Although our actual implementation uses Cfin = CB
fin + CT

fin, the above equation is very

important in understanding the performance of the final approximation. The distribution

approximation in the last subsection was based on an asymptotic expansion of the moment

generating function of τB. Because it is not a direct approximation of the distribution function

itself, the quantiles FτB (T ) and FξT (B) are not necessarily approximated very accurately.

However, the above representation shows that Cfin is not directly a function of those quantiles.

Because ∆CB
fin and ∆CT

fin are usually much smaller than CBS(S0,K, r, δ, T,B) and integrals

of the quantiles are involved in the two correction terms rather than particular quantiles, a

mildly accurate approximation in the quantiles might give fairly accurate approximation for

Cfin. As we will see in the numerical analysis section, this is indeed the case.

Proposition 2 is exact with no approximation made. Notice that CB
fin is given by a univariate

expectation over τB, while CT
fin is given by a univariate expectation over ξT . Therefore, if we

want to compute the timer option price through Monte Carlo simulation, Proposition 2 allows

us to just simulate the one-dimensional process Vu instead of the joint process (Su, Vu). Later

on, we will compute the benchmark timer option prices in our numerical analysis using this

approach. We remark that although Proposition 2 reduces the computational time of Monte

Carlo simulation significantly, it can still be computationally very costly.

Proposition 2 is very useful when the distributions of τB or ξT are known in closed form or

can be computed relatively easily. Unfortunately, the distributions of τB or ξT are usually not

easy to obtain or computationally costly. Therefore, it is useful to develop a fast and accurate

approximation. Proposition 1 now becomes handy since it gives us the explicit approximate

densities need in Proposition 2. The result is given in the next proposition. The CB
fin term is

given explicitly in terms of bivariate normal distribution functions while the CT
fin term is given

as a one-dimensional integration involving the cumulative distribution function FξT (x).

Proposition 3. Assume that ρ = 0. Then CB
fin can be approximated as follows:

CB
fin ≈ S0 · I

(
a+, b,−δ, µ(B), σ(B), T

)
−K · I

(
a−, b,−r, µ(B), σ(B), T

)
, (41)

11



where µ(B) and σ2(B) are given in Proposition 1, and

a± =
log(S0/K)√

B
±

√
B

2
, b =

r − δ√
B

. (42)

The function I is given by

I
(
a, b, s,m,Σ, β) = ems+Σ2s2/2 ·N2

(
β − (m+ sΣ2)

Σ
,
a+ b(m+ sΣ2)√

1 + b2Σ2
;− bΣ√

1 + b2Σ2

)
, (43)

where N2(z1, z2; ρ) is the cumulative bivariate normal distribution function with correlation

coefficient ρ. The CT
fin term can be approximated as

CT
fin ≈ CBS(S0,K, r, δ, T,B) · F̃ξT (B)− S0e

−δT ·
∫ √

B

0
n
(
d1(T, y

2)
)
F̃ξT (y

2) dy, (44)

where F̃ξT (·) is the approximate cumulative distribution function of the accumulated variance

ξT given in equation (13).

Proof: Consider the CB
fin term first. From Proposition 1, τB is approximately normally

distributed with mean µ(B) and variance σ2(B). Therefore, by Proposition 2,

CB
fin ≈

∫ T

−∞
S0e

−δxN

(
log(S0/K) + (r − δ)x√

B
+

1

2

√
B

)
n
(
x;µ(B), σ2(B)

)
dx

−
∫ T

−∞
Ke−rxN

(
log(S0/K) + (r − δ)x√

B
− 1

2

√
B

)
n
(
x;µ(B), σ2(B)

)
dx. (45)

The above integrals can be performed explicitly by using the following identity (see, for exam-

ple, Appendix B of Toft (1996) for a proof)

∫ β

−∞
N(a+ bx)esxn(x;m,Σ2) dx = I(a, b, s,m,Σ, β), (46)

where the expression of I is given in Proposition 3.

For the CT
fin term, let fξT (x) denote the true density of ξT . Then, by Proposition 2,

CT
fin =

∫ B

0
CBS(S0,K, r, δ, T, x)fξT (x) dx. (47)

Integration by parts, we get

CT
fin = CBS(S0,K, r, δ, T,B) · FξT (B)−

∫ B

0
S0e

−δTn
(
d1(T, x)

) 1

2
√
x
FξT (x) dx. (48)

A change of variable y =
√
x in addition to substituting FξT (x) with F̃ξT (x) gives the expression

in the Proposition. This change of variable is helpful in performing the integral numerically

as it avoids the singularity at x = 0.
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So far we have focused on pricing timer call options. Our approximation method can also

be applied to price timer put options. Notice that Proposition 2 requires little modification.

We give the results below. Proof is very similar to that of timer calls and omitted.

Proposition 4. Assume that ρ = 0. The price of a timer put can be decomposed into two

components as follows:

Pfin = PB
fin + P T

fin, (49)

where

PB
fin = E0

[
e−rτ (K − Sτ )

+ · 1τ=τB
]
= E0

[
PBS(S0,K, r, δ, τB, B) · 1τB<T

]
, (50)

P T
fin = E0

[
e−rτ (K − Sτ )

+ · 1τ=T

]
= E0

[
PBS(S0,K, r, δ, T, ξT ) · 1ξT<B

]
. (51)

Here PBS is the usual Black-Scholes formula for plain-vanilla put options.

The PB
fin component can be approximated as

PB
fin ≈ K · I

(
−a−,−b,−r, µ(B), σ(B), T

)
− S0 · I

(
−a+,−b,−δ, µ(B), σ(B), T

)
. (52)

The P T
fin component can be approximated as

P T
fin ≈ PBS(S0,K, r, δ, T,B) · F̃ξT (B)− S0e

−δT ·
∫ √

B

0
n
(
d1(T, y

2)
)
F̃ξT (y

2) dy. (53)

Notice that the second and computationally more expensive term in P T
fin is exactly the

same as the second term in CT
fin. Therefore, if we need to simultaneously compute the timer

call and timer put prices, it only needs to be computed once. Also, due to the symmetry in

the Black-Scholes formula, an equivalent alternative expression is

P T
fin ≈ PBS(S0,K, r, δ, T,B) · F̃ξT (B)−Ke−rT ·

∫ √
B

0
n
(
d2(T, y

2)
)
F̃ξT (y

2) dy. (54)

The proposed formulas for timer calls and puts have the attractive property that they

reduce to the correct limits under various special parameter values. First, when K = 0 and

δ = 0, we have Cfin = S0 and Pfin = 0 as they should be. To see this is the correct limit, notice

that e−rtSt is a martingale in this case assuming suitable integration conditions are satisfied.

Similarly, when S0 = 0 and r = 0, we have the correct limit Cfin = 0 and Pfin = K.

When B goes to 0, the finite-maturity timer call price in Proposition 3 reduces to the correct

final payoff (S0−K)+, and similarly for the put in Proposition 4. The math is straightforward

but very tedious, and we omit the details here.
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When B goes to +∞, the finite-maturity timer options become plain-vanilla European-

style options. It is easy to check that CB
fin and PB

fin go to 0 in this case, so that Proposition 2

for timer options becomes a statement for plain-vanilla European-style options:

Cvanilla = lim
B→+∞

Cfin =

∫ ∞

0
CBS(S0,K, r, δ, T, x)fξT (x) dx (55)

=
(
S0e

−δT −Ke−rT
)+

+ S0e
−δT

∫ ∞

0

(
1− FξT (y

2)
)
n
(
d1(T, y

2)
)
dy. (56)

In the second equation above we have performed an integration by parts. The put option price

is approximated as

Pvanilla = lim
B→+∞

Pfin =

∫ ∞

0
PBS(S0,K, r, δ, T, x)fξT (x) dx (57)

=
(
Ke−rT − S0e

−δT
)+

+ S0e
−δT

∫ ∞

0

(
1− FξT (y

2)
)
n
(
d1(T, y

2)
)
dy. (58)

The above formulas for plain-vanilla option prices are exact with no approximations made.

One can also check that they satisfy the usual put-call parity for plain-vanilla options. With

the approximate expression for FξT in equation (13), the above equations offer an alternative to

Lewis’s (2000) small volatility of variance expansion for the Heston model with zero correlation.

In unreported numerical study, we see that the above equations with the approximated F̃ξT

are extremely accurate when η is relatively small.

Another remark is that when η = 0, our approximation reduces to the exact formula

Cfin = CBS(S0,K, r, δ, τ, ξτ ). (59)

Similarly for the timer put. Here the exercise time τ ≡ T ∧ T0 is deterministic and is either

the variance budget exceeding time τB = T0 or the maximum maturity T , depending on which

one is smaller. The realized variance budget ξτ at the exercise time τ in the formula above for

η = 0 is deterministic and easy to compute. To see that it reduces to this limit, it is easy to

check that either CB
fin or CT

fin is zero, depending on whether τ = T or τ = T0. For the C
B
fin term,

notice that when η = 0, we have σ(B) = 0, and I(a, b, s,m, 0+, β) = emsN(a + bm) · 1m<β .

Therefore,

CB
fin = CBS(S0,K, r, δ, T0, ξT0

) · 1T0<T . (60)

For the CT
fin term, notice that fξT (x) = δ(ξT − x) when η = 0 in equation (47) so that

CT
fin = CBS(S0,K, r, δ, T, ξT ) · 1T<T0

. (61)

Although we focus on finite-maturity timer options in this paper, under zero correlation,

we can approximate the perpetual timer option prices by taking the limit of T → +∞ in the
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above propositions for finite-maturity timer options. The limit is very easy to take and the

result is given below

Cperp ≈ S0 · J
(
a+, b,−δ, µ(B), σ(B)

)
−K · J

(
a−, b,−r, µ(B), σ(B)

)
, (62)

Pperp ≈ K · J
(
−a−,−b,−r, µ(B), σ(B)

)
− S0 · J

(
−a+,−b,−δ, µ(B), σ(B)

)
, (63)

where a± and b are given in Proposition 3, and the function J is given by

J
(
a, b, s,m,Σ) = ems+Σ2s2/2 ·N

(
a+ b(m+ sΣ2)√

1 + b2Σ2

)
. (64)

The perpetual timer option prices above are given in closed form which resembles the

Black-Scholes formula, and is therefore extremely fast to compute. It is also very similar to

the perpetual timer option approximation in Li and Mercurio (2013). Indeed, setting ρ = 0 in

the formula in Li and Mercurio (2013) and performing a Taylor series expansion on η shows

that the approximation above agrees with the formula in Li and Mercurio (2013) to first-

order in η. It is also easy to check that the above formula has the attractive property that

it reduces to the correct limits under various special parameter values. We omit the details

here. For actual implementation of perpetual timer option approximation, we recommend Li

and Mercurio (2013) because the formula there is applicable for any value of ρ.

One final remark is that the current method for finite-maturity options can be roughly

thought of as a sophisticated moment matching method, where the first two moments of τB are

matched very accurately. Because in the Heston model, the first two moments of ξT is known

explicitly, an alternative method is to use these moments to approximate a normal density, and

then use this normal density to approximate the timer option price. In unreported analysis, we

see that this approximation is not as accurate as the current approximation, especially when

T is large. The reason is that the current approximation is more than just simple moment

matching. As T becomes large, the current approximation has an additional property that it

satisfies the pricing PDE to first order in η. As η approaches 0, not only are the moments

matched more and more accurately, but also the whole distribution as well.

2.4 Approximating Timer Option Prices for Nonzero ρ

Li and Mercurio (2013) provides an accurate and extremely fast approximation for pricing

perpetual timer options under general stochastic volatility models. In particular, the method

works for any correlation coefficient ρ. However, the method cannot be easily extended to

finite-maturity timer options.

In developing the approximation for finite-maturity timer options in the last subsection, a

crucial step is Proposition 2, where we reduce the pricing problem to two univariate expecta-
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tions. This is feasible because ρ = 0. For nonzero ρ, by Ito’s lemma, we have

St = S̃t e
(r−δ)te−

1

2
(1−ρ2)

∫
t

0
Vu du+

√
1−ρ2

∫
t

0

√
Vu dW⊥

u , (65)

where W⊥
u is a standard Brownian motion perpendicular to W V

u , and

S̃t ≡ S0 e
− 1

2
ρ2

∫
t

0
Vu du+ρ

∫
t

0

√
Vu dWV

u . (66)

Proposition 2 can be generalized to give the following

CB
fin(ρ) = E0

[
CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B) · 1τB<T

]
(67)

= E0

[
CBS(S0e

− 1

2
ρ2Beρ

∫
τ
B

0

√
Vu dWV

u ,K, r, δ, τB, (1− ρ2)B) · 1τB<T

]
, (68)

CT
fin(ρ) = E0

[
CBS(S̃T ,K, r, δ, T, (1− ρ2)ξT ) · 1ξT<B

]
(69)

= E0

[
CBS(S0e

− 1

2
ρ2ξT eρ

∫
T

0

√
Vu dWV

u ,K, r, δ, T, (1− ρ2)ξT ) · 1ξT<B

]
. (70)

To emphasize the ρ dependence, we have explicitly written these prices as functions of ρ.

The proof of the above equations is very similar to that of Proposition 2. Conditioning on

the filtration generated by Vu and integrating out the randomness of W⊥
u gives the pricing

formulas above.

By taking the limit T → +∞, the finite-maturity timer option becomes a perpetual timer

option, and we get from Equations (67) and (69) that

CB
perp(ρ) = lim

T→+∞
CB
fin(ρ) + lim

T→+∞
CT
fin(ρ) = E0

[
CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B)

]
, (71)

where CB
perp(ρ) is the price of a perpetual timer option with variance budget B when the

correlation is ρ. This result was used in Bernard and Cui (2011) to perform Monte Carlo

simulations for perpetual timer options. Similarly, we can take the limit B → +∞ in Equations

(67) and (69). The finite-maturity timer option becomes a plain-vanilla European call option

in this case and we get

CT
vanilla(ρ) = E0

[
CBS(S̃T ,K, r, δ, T, (1− ρ2)ξT )

]
, (72)

where CT
vanilla(ρ) denotes the plain-vanilla European-style call option price with correlation

ρ and maturity T . This is the mixing formula in Hull and White (1987) when ρ ̸= 0. The

above two equations will be used later in developing an approximation for finite-maturity timer

option prices.

The above representation is useful in Monte Carlo simulation as it reduces the simulation

to a univariate diffusion process. Instead of separating into two components, it is easier for

Monte Carlo purpose to use the following

Cfin(ρ) = E0

[
CBS(S̃τ ,K, r, δ, τ, (1− ρ2)ξτ )

]
. (73)
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This equation is easily seen by summing up CB
fin(ρ) in Equation (68) and CT

fin(ρ) in Equation

(70). In the numerical analysis, we use the above representation to simulate the timer option

prices as benchmarks for the approximation we develop in this paper. Notice that all quantities

needed above can be computed by just simulating the instantaneous variance process Vu. For

each simulated sample path, we just need to record τ , ξτ , as well as
∫ τ
0

√
Vu dW

V
u .

Equations (68) and (70) can be used to simulate the two components CB
fin(ρ) and CT

fin(ρ)

of the finite-maturity timer option price. This turns out to be useful when we examine the

accuracy of our finite-maturity timer option price approximation. Similarly, Equations (71)

and (72) can be used to simulate the perpetual timer option price CB
perp(ρ) and the European-

style plain-vanilla call price CT
vanilla(ρ). For all four quantities, only the instantaneous variance

process needs to be simulated since the randomness from W⊥
u has been integrated out.

For the purpose of developing an approximation, however, the existence of the term∫ τ
0

√
Vu dW

V
u in S̃τ in Equations (68) and (70) prevents us from reducing the two expecta-

tions to univariate ones. Therefore, we take a different approach by building upon Li and

Mercurio (2013) to price finite-maturity timer options under nonzero ρ.

The approach we take is very much in the same spirit of the method of matched asymptotic

expansions in solving ordinary differential equations involving two time scales. The starting

point of a matched asymptotic expansions is to find an independent variable in the problem.

The idea is to find valid solutions for the problem when the independent variable is very large

or very small. One then somehow pastes these two solutions up in a smooth way that preserves

the asymptotic behavior. For an introduction to method of matched asymptotic expansions,

see Chapter 4 of Nayfeh (2000).

Such an independent variable is clearly present in the problem of pricing finite-maturity

timer options, which can be taken to be either the maximum maturity T or the variance

budget B. For definiteness, we take the independent variable to be T . Notice that a finite-

maturity timer option behaves much like a plain-vanilla option when the target exercise time

implied by the variance budget B is much larger than T . On the other hand, it behaves

like a perpetual timer option when T is much larger than the target exercise time implied

by B. Therefore, a simple approach is to paste these two asymptotic behavior together to

approximate the ρ dependence of finite-maturity timer option prices. The separation of timer

option prices into two components due to hitting B and hitting T allows us to do this pasting

easily.

Notice that there exists a measure Q̂ρ such that we can separate the product inside the

expectation in CB
fin(ρ) in Equation (68):

CB
fin(ρ) = E0

[
CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B) · 1τB<T

]
(74)

= E0

[
CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B)

]
· Êρ

0 [1τB<T ] , (75)
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where Ê
ρ
0 is taken under the measure Q̂ρ, defined by the Radon-Nikodym derivative

dQ̂ρ

dQ
=

CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B)

E0

[
CBS(S̃τB ,K, r, δ, τB, (1− ρ2)B)

] . (76)

This Radon-Nikodym derivative is well-defined since it is strictly positive, and integrates to 1

under the risk-neutral measure Q.4 For an introduction on Radon-Nikodym derivative and

measure change, see Royden (1988) or Folland (1999). Therefore, by Equation (71), we have

CB
fin(ρ) = CB

perp(ρ) · Êρ
0 [1τB<T ] . (77)

Similarly, we can separate the two terms in the expectation for CT
fin by taking the expectation

of 1ξT<B under a different measure Q̌ρ:

CT
fin(ρ) = E0

[
CBS(S̃T ,K, r, δ, T, (1− ρ2)ξT )

]
· Ěρ

0 [1ξT<B] = CT
vanilla(ρ) · Ěρ

0 [1ξT<B] , (78)

where the new measure Q̌ρ is defined by the following Radon-Nikodym derivative:

dQ̌ρ

dQ
=

CBS(S̃T ,K, r, δ, T, (1− ρ2)ξT )

E0

[
CBS(S̃T ,K, r, δ, T, (1− ρ2)ξT )

] . (79)

The characterization results in Equations (77) and (78) are theoretically very pleasing

because they reduce the pricing of finite-maturity timer options to the evaluation of cumulative

distribution functions of τB under measure Q̂ρ and that of ξT under measure Q̌ρ. In practice,

however, the Radon-Nikodym derivatives are complicated, and it is very difficult to characterize

the two new measures to compute these cumulative distribution functions. Our approach

therefore is to approximate these two probabilities. The starting point is the following trivial

observation:

Cfin(ρ) = CB
perp(ρ)

CB
fin(ρ)

CB
perp(ρ)

+ CT
vanilla(ρ)

CT
fin(ρ)

CT
vanilla(ρ)

. (80)

From Equations (77) and (78), we see that the ratios in Equation (80) are probabilities:

Ê
ρ
0 [1τB<T ] =

CB
fin(ρ)

CB
perp(ρ)

, Ě
ρ
0 [1ξT<B] =

CT
fin(ρ)

CT
vanilla(ρ)

. (81)

Recall that µ(B) is the deterministic time to exercise the perpetual timer option when η

is 0. When T ≪ µ(B), the finite-maturity timer option becomes similar to a plain-vanilla

European-style option, so we have

Ê
ρ
0 [1τB<T ] ≈ Ê0

0 [1τB<T ] ≈ 0, Ě
ρ
0 [1ξT<B] ≈ Ě0

0 [1ξT<B] ≈ 1. (82)

4Notice that here we are dealing with two random variables CBS(S̃τB ,K, r, δ, τB , (1− ρ2)B) and τB , rather than
two stochastic processes. The measure Q in the Radon-Nikodym derivative should be interpreted as the restriction
of the risk-neutral measure to the probability space generated by these two random variables. Only real analysis is
used here, and no stochastic calculus.
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On the other hand, when T ≫ µ(B), the finite-maturity timer option becomes similar to a

perpetual timer option, so we have

Ê
ρ
0 [1τB<T ] ≈ Ê0

0 [1τB<T ] ≈ 1, Ě
ρ
0 [1ξT<B] ≈ Ě0

0 [1ξT<B] ≈ 0. (83)

This suggests that when T ≪ µ(B) or T ≫ µ(B), we can make the following approximations:

Ê
ρ
0 [1τB<T ] ≈ Ê0

0 [1τB<T ] , Ě
ρ
0 [1ξT<B] ≈ Ě0

0 [1ξT<B] . (84)

These approximations become exact in the two limits T → 0 and T → +∞. The interesting

question is how accurate they are when T is reasonably different from µ(B), but the difference

is not extremely large. To analyze this, we perform a Monte Carlo study on these ratios

CB
fin(ρ)/C

B
perp(ρ) and CT

fin(ρ)/C
T
vanilla(ρ) as functions of ρ in these two limiting cases. We use

the Heston model with κ = 2, θ = 0.09 and η = 0.250. We use 5 values of ρ: −0.5, −0.25, 0,

0.25 and 0.5. We let V0 = B = 0.087, implying a µ(B) of about 1 year. We use two values

of T , 0.5 years and 2 years, corresponding to two cases: T is relatively smaller than µ(B), and

T is relatively larger than µ(B). All four quantities needed in these two ratios are computed

through Monte Carlo simulation. We use 4 million sample paths with a time step of two hours.

The results are plotted in Figure 1. The two left subplots are the probabilities Êρ
0 [1τB<T ] for

T = 2 years and T = 0.5 years, respectively. The two right subplots are the probabilities

Ě
ρ
0 [1ξT<B] for T = 2 years and T = 0.5 years, respectively. The three curves in each subplot

correspond to three different values of the strike price K: 90 (dotted line), 100 (solid line),

and 110 (dashed line). Monte Carlo simulation is performed to compute these probabilities.

We see that these probabilities have weak ρ dependence when the difference of T and µ(B)

are relatively large.

The above analysis shows that when the difference of T and µ(B) is reasonably large, the

following is a good approximation

Cfin(ρ) ≈ CB
perp(ρ)

CB
fin(0)

CB
perp(0)

+ CT
vanilla(ρ)

CT
fin(0)

CT
vanilla(0)

. (85)

By design, in the limits of T ≪ µ(B) or T ≫ µ(B), this approximation approaches the correct

corresponding limits and becomes exact.

The approximation in Equation (85) turns out to be accurate even when T and µ(B) are of

comparable magnitude. This might be at first sight very surprising, because the probabilities

Ê
ρ
0 [1τB<T ] and Ě

ρ
0 [1ξT<B] have very strong ρ dependence individually in this case, as depicted

by Figure 2, which plots the two probabilities Êρ
0 [1τB<T ] and Ě

ρ
0 [1ξT<B] again, but this time

with T = 1 year. We see that Êρ
0 [1τB<T ] changes from 0.27 to 0.70 as we vary ρ from −0.5 to

0.5. Similarly, Ěρ
0 [1ξT<B] changes from 0.70 to 0.27 in this range of ρ.

The reason that the approximation in Equation (85) is still very accurate when T ≈ µ(B)

despite the strong ρ dependence of the probabilities is the following. Notice that when η = 0,
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the perpetual timer option is exercised at a fixed time µ(B), and is therefore equivalent to a

plain-vanilla option. In turn, if η is small, for any ρ and any B, we have

CB
perp(ρ) ≈ C

µ(B)
vanilla(ρ). (86)

Comparing Equations (85) and (80), we see that in this case, in order for the approximation to

work well, we do not need the individual probabilities to have weak dependence on ρ. Rather,

when CB
perp(ρ) ≈ CT

vanilla(ρ) or equivalently T ≈ µ(B), as long as the sum

Ê
ρ
0 [1τB<T ] + Ě

ρ
0 [1ξT<B] (87)

has weak dependence on ρ, the approximation in Equation (85) would be very accurate because

of Equation (86). Essentially, when T ≈ µ(B), the plain-vanilla option price and the perpetual

timer option price are very close, and as long as the sum of the two probabilities is relatively

constant as a function of ρ, it does not matter what value we assign to each of the two

probabilities.

Unfortunately, it is theoretically very challenging to analyze the sum of these two proba-

bilities under general ρ. Notice that the probabilities are taken under two different measures

Q̂ρ and Q̌ρ. These two measures are related to the risk-neutral measure Q through the two

Radon-Nikodym derivatives defined earlier. We caution that even in the special case ρ = 0,

the measures Q̂0, Q̌0 and Q are still all different. To establish the weak dependence of the sum

in Equation (87) on ρ when T ≈ µ(B), we resort to Monte Carlo analysis again. We still use

the Heston model with the same parameters, and plot the sum in Equation (87) as a function

of ρ for T = 1 year. The result in Figure 3 clearly shows the weak dependence of the sum on

ρ when T ≈ µ(B).

In view of this analysis, the approximation in Equation (85) should not be thought of as

simply freezing the individual probabilities Ê
ρ
0 [1τB<T ] and Ě

ρ
0 [1ξT<B] at their corresponding

ρ = 0 values. Rather, it is crucial that we replace these two probabilities with their ρ = 0

counterparts simultaneously. When T is comparable to µ(B), the bias induced by overestimat-

ing one of the two probabilities is offset to a great extend by the underestimating of the other

probability. In summary, the accuracy of the approximation is safeguarded by the fact that it

is exact in the limits T ≪ µ(B) and T ≫ µ(B), and that sum in Equation (87) is stable when

T ≈ µ(B). Since both sides of Equation (85) are smooth functions of T , it is understandable

that the approximation should be accurate for other values of T , by continuity.

We assume that CT
vanilla(ρ) can be readily computed in closed form or by methods such

as analytical approximation, Fourier inversion, etc. The quantities CB
fin(0) and CT

fin(0) can be

computed by Proposition 3. The perpetual prices CB
perp(ρ) and CB

perp(0) can be computed very

reliably using the approximations in Li and Mercurio (2013). We remark also that the weights

CB
fin(0)/C

B
perp(0) and CT

fin(0)/C
T
vanilla(0) do not in general sum up to 1.
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The finite-maturity timer puts under nonzero ρ can be approximated in a similar fashion:

Pfin(ρ) ≈ PB
perp(ρ)

PB
fin(0)

PB
perp(0)

+ P T
vanilla(ρ)

P T
fin(0)

P T
vanilla(0)

. (88)

Besides being accurate for T ≫ µ(B), T ≪ µ(B), and T ≈ µ(B), the above approximations

are exact when ρ = 0 by construction. They are also trivially exact when η = 0 because in

this case, ρ is irrelevant for the pricing of both finite-maturity and perpetual timer options,

as well as plain-vanilla options. Therefore, by continuity, the approximation should also be

reasonably accurate for small η.

In actual implementation, the above matched asymptotics approximation contains two

sources of errors. One error is the intrinsic error due to the approximation by matching the ρ

behavior asymptotically for T ≪ µ(B) and T ≫ µ(B). The other error comes from approx-

imating the quantities involved in the equations. In the Heston model, since the perpetual

price approximation in Li and Mercurio (2013) is very accurate, and the vanilla prices can

be computed very accurately using Fourier inversion, the main source of error is the compu-

tation of CB
fin and CT

fin, or PB
fin and P T

fin. As we have commented earlier, these quantities are

relatively inaccurate compared to other quantities due to the fact that the quantile FξT (B)

is not as accurately approximated. If the weights can be computed accurately, the above ap-

proximation should be very accurate when the maximum maturity is much larger than the

target exercise time implied by the variance budget, or vice versa. The matched asymptotic

correlation behavior safeguards the cases with medium maximum maturity values. As we will

see in the numerical analysis below that despite of the simplicity, this matched asymptotic

approximation is reasonably accurate.

2.5 A Comparison of Different Analytic Methods

Now that we have derived the approximation for the finite-maturity timer option price, we

make some comparison with other direct analytic methods. This will allow us to see more

clearly the advantages of the proposed method over other methods, as well as its limitations.

At first glance, it seems that the finite-maturity timer option price can be obtained through

the knowledge of the joint moment generating function of (VT , ξT ), which is known in some

models such as the Heston model. This is unfortunately not the case. While this joint dis-

tribution is useful for obtaining European-style option prices because of fixed maturity T , for

perpetual timer options we need the joint distribution of τB and
∫ τB

0

√
Vu dW

V
u , where τB is

the random time for ξt to hit B.5 For finite-maturity timer options, we need the joint dis-

tributions of τ and
∫ τ
0

√
Vu dW

V
u , where τ = min(τB, T ). This is a completely new problem

5One way to see this is through Equation (71). We do not need to consider the random variable SτB because we
can perform a conditioning on the filtration generated by Vu.
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from the joint distribution of (VT , ξT ) and is mathematically very challenging, even for the

perpetual timer option case.

As far as we know, the only model in which the joint distribution of τB and
∫ τB

0

√
Vu dW

V
u

has been worked out explicitly is the Heston model (see C.X. Li (2013)). The Heston model

is very special since in this model
∫ τB

0

√
Vu dW

V
u can be expressed as a simple linear function

of VτB and τB. C.X. Li (2013) utilizes a time-change technique and relies crucially on known

results for Bessel processes. The joint density of τB and VτB is given by a complex Laplace

inverse transformation in Proposition 3 of C.X. Li (2013), where the integrand involves modified

Bessel functions with complex arguments. Special attention needs to be paid to the winding

of the Bessel argument. The final pricing formula in Equation (5.3) of their paper is also

fairly complicated. We emphasize again that the method only works for the Heston model

and perpetual timer options. The author also only considers the zero dividend case. Nonzero

dividend makes the analysis more complicated because the combination SτBe
−δτB appears

after we condition on the filtration generated by Vu. This combination involves two correlated

random variables, which increases complexity of the analysis. This situation differs from the

European-style plain-vanilla options case, where it is easy to take into account a nonzero

dividend rate because there e−δT is just a deterministic number.

To our knowledge, the only other analytic method that has been proposed for finite-

maturity timer option prices under nonzero interest rate besides the current paper is Liang et

al (2011). This paper utilizes the known results on path integrals of the Morse and Kratzer

potentials in quantum field theory to study the Heston and 3/2 models. The method works for

both perpetual and finite-maturity timer options. The authors only consider the zero dividend

case. The math is extremely difficult. The handling of finite-maturity feature in Liang et al

(2011) is highly nontrivial and requires the ability to Fourier inverse transform the marginal

propagator of the stock price (Equation (35) in their paper).

In Table 1, we summarize the applicability of the three methods: C.X. Li (2013), Liang

et al (2011), and the method in this paper. While C.X. Li (2013) only deals with perpetual

timer options and technically is not a competitor of our approximation method, we include

it because it is closely related. We notice that our method is the only method that can be

applied to nonzero dividend case without any additional effort, and the only method that can

be applied to models beyond the Heston model or the 3/2 model.6 In this sense, rather than

being competitors, our method and the methods in C.X. Li (2013) and Liang et al (2011) are

complementary to each other. The limitation of our method is also clear: it is an approximation

derived under the assumption of a small eta in the diffusion function. It is an empirical question

6While it should be possible to extend C.X. Li (2013) to finite-maturity timer options, or to extend both Liang et
al (2011) and C.X. Li (2013) to nonzero dividend case, the amount of math or physics knowledge required and the
amount of effort required is nontrivial.
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as to how small the parameter eta needs to be in individual models, and numerical analysis

needs to be carried out for any production level implementation.

In Table 2, we compare the implementation aspects of the three methods, as well as their

performance. While it is highly nontrivial to implement both C.X. Li (2013) and Liang et al

(2011), it is fairly easy to implement our approximation method. The complications in the

former two methods include: high-dimensional numerical integration, integration in complex

plane where one needs to pay special attention to branch cuts and poles, oscillatory integrand

which can potentially be slowly decaying, and the involvement of special functions such as

modified Bessel function, Airy function, gamma function, and confluent hypergeometric func-

tion. As for performance, the method in C.X. Li (2013) requires about 60 seconds to price

one perpetual timer option with a percentage of about 0.05%. Due to the high dimension

of integration involved, to reach higher accuracy would require considerably more time. No

information on speed is provided in Liang et al (2011), but it is conceivable that it would take

somewhat longer time because of the added complexity to handle the finite-maturity feature.

To contrast, the approximation method in Li and Mercurio (2013) takes about 10−4 seconds

for perpetual timer options and in this paper the method takes about 10−2 seconds for a finite-

maturity option.7 In terms of accuracy, both C.X. Li (2013) and Liang et al (2011) report an

average percentage error of about 0.05%. These papers only test a few parameter values and

do not systematically study the error as a function of T or η. The errors of our approximation

will be reported in more detail in the numerical analysis section. The average percentage error

for finite-maturity option prices is about 0.5%. The error becomes considerably smaller when

η is small or when T is large compared to µ(B).

One additional attractive property of our method manifests itself when we need to value

a far-way-from-the-money timer option for which the strike K is much smaller or much larger

than the current stock price S0. It is well-known that the usual Fourier inversion for European-

style options becomes inaccurate numerically due to the oscillatory integrand. It is conceivable

that similar difficulty will also arise in the timer option case with complex inversion methods.

To contrast, when dividend rate is zero, our approximation approaches the correct no-arbitrage

limit prices when K → 0 or K → ∞, therefore providing robustness for the method.

3 Numerical Analysis

Below we examine the accuracy of our pricing approximation numerically. We do this by first

looking at the performance for the zero correlation case, and then for the nonzero correlation

7The approximation method has an additional attractive property in that µ(B) and σ(B) do not depend on K,
S0, or T . Therefore, if one needs to value many finite-maturity timer options with different S0, K or T (one possible
situation is to compute greeks using finite difference), we just need to value µ(B) and σ(B) once.
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case. For both cases, we examine the performance for both timer calls and puts.

Table 3 reports the performance of our approximation for timer call options under the

Heston model with zero correlation. Parameters used here are the same ones as in Liang,

Lemmens and Tempere (2011): V0 = 0.087, κ = 2, θ = 0.09, r = 0.015, S0 = 100, and δ = 0.

The variance budget B equals V0, implying a target exercise maturity of about 1 year. We vary

the value of the maximum maturity T to be 0.5, 1.0, 1.5, 2.0, and 10 years, and volatility of

variance coefficient η to be either 0.125, 0.250, or 0.375, ranging from small to relatively large.

Monte Carlo prices are simulated based on Proposition 2 using 4,000,000 sample paths with a

time step of every 2 hours and the terminal accumulated variance as the control variate. The

unreported standard errors from simulation are all in the order of 10−4 or smaller. Each Monte

Carlo simulation takes about 20 to 40 minutes for the desired accuracy. The approximated

prices are computed using Proposition 3 with the quantities µ(B) and σ(B) given in Example 1.

The percentage errors are computed using the Monte Carlo prices as benchmarks.

With the given parameters, when η = 0.125, the random budget exceeding time τB is

approximately normally distributed with µ
.
= 0.9969 and σ

.
= 0.1255. When η = 0.250, we

have µ
.
= 1.0445 and σ

.
= 0.2510. When η = 0.375, we have µ

.
= 1.1239 and σ

.
= 0.3765.

The range of maximum maturities we use therefore covers situations where the cutoff is very

stringent to where it is very loose. In terms of the timer call price decomposition, the relative

magnitude of CB
fin and CT

fin therefore ranges from very small to very large. This wide range of

T allows us to look at the accuracy of our approximation more comprehensively.

As we see in Table 3, our approximation is fairly accurate in general. For the relatively

small value of η = 0.125, our approximation is extremely accurate, with percentage errors

all in the order of 0.01%. We also see that a maximum maturity of 2 years or more puts

effectively no constraint on the timer option. The approximation is still very accurate for the

medium value of η = 0.250. The relatively large percentage errors occur when η is large and

the maximum maturity is stringent, that is, when η = 0.375 and T < 2.0. When η = 0.375 but

the maximum maturity is less stringent, we see that the percentage errors get much smaller.

We also remark that in practice, when a timer option contract is first initiated, the maximum

maturity is usually fairly loose, with typical maximum maturity 3 or 6 times the target exercise

maturity. However, a timer option on an existing trade book could have a stringent maximum

maturity cutoff as time progresses.

The effect of η on the timer call option prices is complex. If we focus on the timer call

options with T less than 2.0 years, we see from Table 3 that the timer option prices with the

same K and T are generally decreasing as η increases. This is because a large η shortens the

effective exercise time, which usually implies a smaller option price. However, when T equals 2

years so that the maximum maturity cutoff becomes loose, we see the timer call option prices

are increasing in η. This phenomenon is very similar to knock-out barrier call options where
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a large volatility gives more optionality to exercise the option, but also increases the risk that

the option becomes knocked-out.

Table 4 reports the performance of our approximation for timer put options under zero

correlation. The parameters used are exactly the same ones as in Table 3. In contrast to

Table 3, Table 4 shows that the timer put prices are all decreasing in η regardless of the values

of T and K. The general patterns of pricing errors are the same as in Table 3 so we do not

discuss the details here. The approximation is again extremely accurate when the maximum

maturity cutoff is less stringent, and when η is not large.

One question is whether the accuracy of our approximation is due to the particular pa-

rameter vector we have used. In unreported analysis, we have performed extensive sensitivity

analysis. The following is a partial set of what we have done.

1. We change the interest rate r to be either 0 or 3%.

2. We change the value of B to be twice of or half of the value we use right now.

3. We change the value of V0 to be either 25% or 4 times the value we use right now.

4. We examine a much wide range of strikes, from K = 50 to K = 150.

In virtually all those cases, the accuracy of our approximation in terms of percentage errors

remains the same. The only exception is when the option is deeply out-of-the-money, so the

percentage error gets large, but the absolute error is still small. That the approximation works

for a wide range of strikes makes it more useful in real applications.

Tables 5 and 6 report the performance of our approximation under the Heston model with

nonzero correlation for finite-maturity timer call and put options, respectively. The parameters

used are still the same ones as in Liang, Lemmens and Tempere (2011). Same as in Liang,

Lemmens and Tempere (2011), we consider two values of nonzero ρ, namely −0.5 and 0.5. We

consider three values of T : 0.5, 1.0, and 1.5 years. The maturities T are chosen to cover the

three cases that T is smaller than, roughly equal to, and larger than the target exercise time

implied by B. Again, three values of η are considered, ranging from small to relatively large.

The benchmark prices are obtained from Monte Carlo using Equation (73) with 4,000,000

sample paths and a time step of every 2 hours. Not surprisingly, with nonzero ρ, the accuracy

of Monte Carlo decreases. However, the results are still very accurate, with standard errors

all in the order of 10−3 or smaller.

Before we look at the accuracy of our approximation, it is interesting to point out that

the finite-maturity timer option price depends on η in a more complicated way for nonzero

correlation than for zero correlation. For example, when ρ = −0.5 and T = 0.5, the simulated

in-the-money (K = 90) timer call option price decreases as we increase η, but the out-of-the-

money (K = 110) timer call price increases. For another example, when ρ = −0.5 and T = 1.5,

the out-of-the-money (K = 110) timer call option price first increases, and then decreases. Our
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approximation in general follows the Monte Carlo prices closely and also exhibits those complex

η dependencies.

In both Tables 5 and 6, we see that our simple approximation is fairly accurate, especially

when η is small, or when T is large. We see that for all entries with η = 0.125 or T = 1.5,

the percentage errors are all smaller than −0.50% for both calls and puts. For η = 0.250,

we see that the errors are larger for T = 1.0, where the constraints due to T and B are of

comparable magnitudes. The accuracy decreases significantly for η = 0.375. One reason is

that CB
fin and CT

fin needed in the approximation become less accurate for large η. For example,

in Table 5, when ρ = 0.5 and η = 0.375, the percentage errors for the three different strikes are

−0.50%, −1.11%, and −2.41%. Had we used the values of CB
fin and CT

fin from Monte Carlo, the

three errors would have been −0.01%, −0.06%, and −0.19%. This suggests that if accurate

values of CB
fin and CT

fin are available through other means, then the performance of the matched

asymptotic approximation can be improved, especially for relatively small or relatively large T .

4 Conclusion

In this paper, we develop an approximation for pricing finite-maturity timer options under

general stochastic volatility models. The method works for both timer calls and timer puts.

For zero correlation between the Brownian motions, we use the results in M. Li (2013) to

approximate the probability densities we need and obtain analytic expressions for the timer

option prices. For nonzero correlation, we use a linear combination approximation which

matches the asymptotic correlation behavior when the maximum maturity is much larger

than the target exercise time implied by the variance budget, or vice versa.

Numerical study using the Heston model shows that the approximate timer option prices

under zero and nonzero correlations are fairly accurate. The approximation is more accurate

when the volatility of variance is small or when the maximum expiry is not tightly binding.

There are many future directions one can go from this paper. It would be very useful to

further increase the accuracy of the current approximation while keeping its analytic tractabil-

ity, especially for relatively large values of volatility of variance and stringent maximum expiry.

Also, our approximation for nonzero correlation leaves room for improvements. It is also useful

to explore other applications of the approximation technique we have developed, such as other

financial products with timer features. We leave these to future research.
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Toft, K.B. 1996. On the mean-variance tradeoff in option replication with transactions costs.

Journal of Financial and Quantitative Analysis 31(2), 233–263.

28



Table 1: Applicability of Different Analytic Methods

C.X. Li (2013) Liang et al (2011) This paper

Applicable
models

Heston only Heston and 3/2 only Any Heston-like models in
principle.
Requires small η

Option types Perpetual only Perpetual and
finite-maturity

Perpetual and
finite-maturity

Dividend Only zero dividend case
treated.
Extending to nonzero
dividend nontrivial

Only zero dividend case
treated.
Extending to nonzero
dividend nontrivial

Any dividend rate value
allowed

Extensibility Difficult to extend to
other models since relying
crucially on known math
result of Bessel processes

Difficult to extend to
other models since relying
crucially on solvability of
the Morse and Kratzer
potentials

M. Li (2013) extends the
method to Stein-Stein
type stochastic volatility
models
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Table 2: Implementation and Performance of Different Analytic Methods

C.X. Li (2013) Liang et al (2011) This paper

Complexity of
final formula

High High Low

Ease of code
implementation

Nontrivial Nontrivial Fairly easy

Dimension of
numerical
integration

3 (Method can only
handle perpetual)

3 (Finite-maturity involves
extra high-dimensional
integration)

No integration for
perpetual.
1 for finite-maturity

Property of
integrand

Complex. Oscillatory. Complex. Oscillatory. Real. Non-oscillatory.
Bounded

Special
functions in
integrand

Modified Bessel function.
Hyperbolic functions.
Airy function (analytic
continuation involved)

Modified Bessel function.
Hyperbolic functions.
Gamma function and
confluent hypergeometric
function (3/2 only)

Product-log function for
Heston.
None for 3/2

Other
considerations

Abate-Whitt algorithm
with empirical damping
factor and truncation.
Need to properly handle
winding numbers.
Small B and
far-away-from-the-money
K pose numerical issues

No implementation details
provided. Presumably the
same complications as in
C.X. Li (2013) also present
here.
Small η and
far-away-from-the-money
K pose numerical issues

Method approaches
correct limits when option
is far-away from money,
where inversion methods
might have difficulties

Computational
time

About 60 seconds per
perpetual timer

Information not provided.
Presumably similar to
C.X. Li (2013) for
perpetual timers due to
similar degree of
complexity and longer for
finite-maturity

About 10−4 seconds for
perpetual (slightly slower
than Black-Scholes).
About 10−2 seconds for
finite-maturity

Average
percentage error

Around 0.05% (can only
handle perpetual).
Only tested two η values.

Around 0.05%.
Only tested one η and T .
Error dependence on η or
T not studied

Around 0.05% for
perpetual and 0.5% for
finite-maturity when
η = 0.375 in Heston.
Error depends on η and T
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Table 3: Accuracy of Timer Call Price Approximation for Zero Correlation ρ

Parameters used here are the same ones as in Liang, Lemmens and Tempere (2011): V0 = 0.087,
κ = 2, θ = 0.09, B = 0.087, ξ = 0, r = 0.015, S0 = 100, and δ = 0. We vary the value of maximum
maturity T and volatility of variance coefficient η. Monte Carlo prices are simulated based on
Proposition 2 using 4,000,000 sample paths with a time step of every 2 hours and the terminal
accumulated variance as control variate. The unreported standard errors are all in the order of
10−4 or smaller. The approximated prices are computed using Propositions 3.

η = 0.125 η = 0.250 η = 0.375

T K Approx MC Error Approx MC Error Approx MC Error

0.5 90 14.3518 14.3500 0.01% 14.3162 14.3236 −0.05% 14.1972 14.2718 −0.52%
100 8.6915 8.6894 0.02% 8.6356 8.6436 −0.09% 8.4768 8.5579 −0.95%
110 4.8922 4.8901 0.04% 4.8461 4.8541 −0.16% 4.7033 4.7851 −1.71%

1.0 90 17.3675 17.3649 0.01% 17.0573 17.0596 −0.01% 16.7334 16.7550 −0.13%
100 12.1068 12.1038 0.03% 11.7531 11.7546 −0.01% 11.3766 11.3978 −0.19%
110 8.1948 8.1919 0.04% 7.8432 7.8459 −0.03% 7.4690 7.4938 −0.33%

1.5 90 17.6277 17.6275 0.00% 17.6527 17.6299 0.13% 17.6137 17.5384 0.43%
100 12.3947 12.3945 0.00% 12.4128 12.3882 0.20% 12.3544 12.2728 0.67%
110 8.4786 8.4784 0.00% 8.4906 8.4667 0.28% 8.4238 8.3452 0.94%

2.0 90 17.6277 17.6277 0.00% 17.6662 17.6635 0.02% 17.7265 17.6995 0.15%
100 12.3947 12.3947 0.00% 12.4276 12.4252 0.02% 12.4783 12.4512 0.22%
110 8.4786 8.4786 0.00% 8.5052 8.5032 0.02% 8.5455 8.5204 0.29%

10.0 90 17.6277 17.6278 0.00% 17.6662 17.6637 0.01% 17.7305 17.7193 0.06%
100 12.3947 12.3948 0.00% 12.4276 12.4255 0.02% 12.4827 12.4732 0.08%
110 8.4786 8.4786 0.00% 8.5052 8.5035 0.02% 8.5498 8.5422 0.09%
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Table 4: Accuracy of Timer Put Price Approximation for Zero Correlation ρ

Parameters used here are the same ones as in Liang, Lemmens and Tempere (2011): V0 = 0.087,
κ = 2, θ = 0.09, B = 0.087, ξ = 0, r = 0.015, S0 = 100, and δ = 0. We vary the value of
maximum maturity T and volatility of variance coefficient η. Monte Carlo prices are simulated
based on Proposition 2 using 4,000,000 sample paths with a time step of every 2 hours and the
terminal accumulated variance as control variate. The unreported standard errors are all in the
order of 10−4 or smaller. The approximated prices are computed using Propositions 4.

η = 0.125 η = 0.250 η = 0.375

T K Approx MC Error Approx MC Error Approx MC Error

0.5 90 3.6793 3.6775 0.05% 3.6455 3.6511 −0.15% 3.5349 3.6001 −1.81%
100 7.9443 7.9422 0.03% 7.8904 7.8964 −0.08% 7.7410 7.8115 −0.90%
110 14.0703 14.0682 0.01% 14.0264 14.0322 −0.04% 13.8939 13.9642 −0.50%

1.0 90 6.0963 6.0943 0.03% 5.8233 5.8289 −0.10% 5.5219 5.5522 −0.55%
100 10.6944 10.6920 0.02% 10.3819 10.3871 −0.05% 10.0305 10.0614 −0.31%
110 16.6412 16.6389 0.01% 16.3350 16.3416 −0.04% 15.9884 16.0237 −0.22%

1.5 90 6.2921 6.2920 0.00% 6.2588 6.2461 0.20% 6.1520 6.1147 0.61%
100 10.9107 10.9106 0.00% 10.8640 10.8505 0.13% 10.7302 10.6909 0.37%
110 16.8461 16.8461 0.00% 16.7870 16.7751 0.07% 16.6372 16.6051 0.19%

2.0 90 6.2921 6.2921 0.00% 6.2677 6.2690 −0.02% 6.2251 6.2222 0.05%
100 10.9107 10.9106 0.00% 10.8738 10.8757 −0.02% 10.8100 10.8097 0.00%
110 16.8461 16.8461 0.00% 16.7960 16.7987 −0.02% 16.7104 16.7148 −0.03%

10.0 90 6.2921 6.2921 0.00% 6.2678 6.2695 −0.03% 6.2274 6.2348 −0.12%
100 10.9107 10.9107 0.00% 10.8738 10.8764 −0.02% 10.8125 10.8236 −0.10%
110 16.8461 16.8463 0.00% 16.7960 16.7995 −0.02% 16.7126 16.7275 −0.09%
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Table 5: Accuracy of Timer Call Price Approximation for Nonzero ρ

Parameters used here are the same ones as in Liang, Lemmens and Tempere (2011): V0 = 0.087,
κ = 2, θ = 0.09, B = 0.087, ξ = 0, r = 0.015, S0 = 100, and δ = 0. We vary the value of instanta-
neous correlation ρ and volatility of variance coefficient η. Three values of maximum maturity T

are used. Monte Carlo prices are simulated based on equation (73) using 4,000,000 sample paths
with a time step of every 2 hours and the terminal accumulated variance as control variate. The
unreported standard errors are all in the order of low 10−3 or smaller. The approximated prices
are computed using the linear combination approximation.

η = 0.125 η = 0.250 η = 0.375

ρ K Approx MC Error Approx MC Error Approx MC Error

T = 0.5

−0.5 90 14.4296 14.4286 0.01% 14.4664 14.4734 −0.05% 14.4072 14.4973 −0.62%
100 8.6748 8.6739 0.01% 8.6055 8.6101 −0.05% 8.4366 8.5172 −0.95%
110 4.7757 4.7750 0.01% 4.6195 4.6191 0.01% 4.3889 4.4388 −1.12%

0.5 90 14.2685 14.2693 −0.01% 14.1484 14.1535 −0.04% 13.9478 14.0177 −0.50%
100 8.7059 8.7067 −0.01% 8.6637 8.6737 −0.12% 8.5100 8.6056 −1.11%
110 5.0035 5.0041 −0.01% 5.0603 5.0758 −0.31% 4.9898 5.1128 −2.41%

T = 1.0

−0.5 90 17.4176 17.4437 −0.15% 17.1582 17.2215 −0.37% 16.8805 16.9877 −0.63%
100 12.1074 12.1391 −0.26% 11.7432 11.8188 −0.64% 11.3494 11.4771 −1.11%
110 8.1446 8.1683 −0.29% 7.7223 7.7779 −0.71% 7.2700 7.3645 −1.28%

0.5 90 17.3141 17.3394 −0.15% 16.9412 16.9940 −0.31% 16.5479 16.6375 −0.54%
100 12.1047 12.1335 −0.24% 11.7554 11.8151 −0.51% 11.3837 11.4810 −0.85%
110 8.2429 8.2668 −0.29% 7.9541 8.0100 −0.70% 7.6432 7.7422 −1.28%

T = 1.5

−0.5 90 17.6572 17.6590 0.01% 17.7127 17.7036 0.05% 17.7069 17.6824 0.14%
100 12.4284 12.4302 −0.01% 12.4748 12.4665 0.07% 12.4175 12.3985 0.15%
110 8.5127 8.5144 −0.02% 8.5480 8.5367 0.13% 8.4527 8.4199 0.39%

0.5 90 17.5981 17.5938 0.02% 17.5914 17.5712 0.12% 17.5090 17.4679 0.24%
100 12.3608 12.3574 0.03% 12.3499 12.3335 0.13% 12.2837 12.2467 0.30%
110 8.4443 8.4419 0.03% 8.4323 8.4191 0.16% 8.3876 8.3551 0.39%
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Table 6: Accuracy of Timer Put Price Approximation for Nonzero ρ

Parameters used here are the same ones as in Liang, Lemmens and Tempere (2011): V0 = 0.087,
κ = 2, θ = 0.09, B = 0.087, ξ = 0, r = 0.015, S0 = 100, and δ = 0. We vary the value of instanta-
neous correlation ρ and volatility of variance coefficient η. Three values of maximum maturity T

are used. Monte Carlo prices are simulated based on equation (73) using 4,000,000 sample paths
with a time step of every 2 hours and the terminal accumulated variance as control variate. The
unreported standard errors are all in the order of low 10−3 or smaller. The approximated prices
are computed using the linear combination approximation.

η = 0.125 η = 0.250 η = 0.375

ρ K Approx MC Error Approx MC Error Approx MC Error

T = 0.5

−0.5 90 3.7567 3.7565 0.01% 3.7943 3.8047 −0.27% 3.7353 3.8258 −2.37%
100 7.9275 7.9271 0.01% 7.8604 7.8668 −0.08% 7.7014 7.7711 −0.90%
110 13.9541 13.9535 0.00% 13.7980 13.8010 −0.02% 13.5676 13.6181 −0.37%

0.5 90 3.5956 3.5949 0.02% 3.4794 3.4817 −0.07% 3.2973 3.3441 −1.40%
100 7.9587 7.9575 0.01% 7.9184 7.9272 −0.11% 7.7736 7.8573 −1.06%
110 14.1819 14.1803 0.01% 14.2422 14.2546 −0.09% 14.1913 14.2899 −0.69%

T = 1.0

−0.5 90 6.1447 6.1711 −0.43% 5.9174 5.9879 −1.18% 5.6547 5.7831 −2.22%
100 10.6954 10.7253 −0.28% 10.3734 10.4484 −0.72% 10.0063 10.1389 −1.31%
110 16.5886 16.6133 −0.15% 16.2043 16.2708 −0.41% 15.7669 15.8925 −0.79%

0.5 90 6.0449 6.0689 −0.40% 5.7153 5.7638 −0.84% 5.3561 5.4331 −1.42%
100 10.6920 10.7219 −0.28% 10.3830 10.4482 −0.62% 10.0350 10.1430 −1.06%
110 16.6916 16.7140 −0.13% 16.4549 16.5063 −0.31% 16.1825 16.2705 −0.54%

T = 1.5

−0.5 90 6.3216 6.3196 0.03% 6.3183 6.3197 −0.02% 6.2417 6.2573 −0.25%
100 10.9444 10.9423 0.02% 10.9263 10.9289 −0.02% 10.7954 10.8152 −0.18%
110 16.8803 16.8782 0.01% 16.8433 16.8453 −0.01% 16.6581 16.6784 −0.12%

0.5 90 6.2625 6.2627 0.00% 6.1982 6.1964 0.03% 6.0533 6.0482 0.08%
100 10.8768 10.8779 −0.01% 10.8008 10.8050 −0.04% 10.6577 10.6688 −0.10%
110 16.8119 16.8140 −0.01% 16.7296 16.7369 −0.04% 16.6078 16.6189 −0.07%
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Figure 1: Probabilities as functions of ρ when difference of T and µ(B) is relatively large.

The Heston model is used with the following parameters: S0 = 100, r = 0.015, κ = 2, θ = 0.09,
B = V0 = 0.087, η = 0.250, corresponding to µ(B) of about 1 year. The two left subplots are the
probabilities Êρ

0 [1τB<T ] for T = 2 years and T = 0.5 years, respectively. The two right subplots are
the probabilities Ěρ

0 [1ξT<B] for T = 2 years and T = 0.5 years, respectively. The three curves in each
subplot correspond to three different values of the strike price K: 90 (dotted line), 100 (solid line),
and 110 (dashed line). Monte Carlo simulation is performed to compute these probabilities. We
see that these probabilities have weak ρ dependence when the difference of T and µ(B) is relatively
large.
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Figure 2: Probabilities as functions of ρ when T ≈ µ(B). The Heston model is used with
the following parameters: S0 = 100, r = 0.015, κ = 2, θ = 0.09, B = V0 = 0.087, η = 0.250,
corresponding to µ(B) of about 1 year. We use T = 1 year. The left subplot is the probability
Ê
ρ
0 [1τB<T ] and the right subplot is the probability Ě

ρ
0 [1ξT<B]. The three curves in each subplot

correspond to three different values of the strike price K: 90 (dotted line), 100 (solid line), and 110
(dashed line). Monte Carlo simulation is performed to compute these probabilities. We see that
these probabilities now have relatively strong ρ dependence when T ≈ µ(B).
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Figure 3: Sum of probabilities Ê
ρ
0 [1τB<T ] and Ě

ρ
0 [1ξT<B] as a function of ρ when T ≈ µ(B).

The Heston model is used with the following parameters: S0 = 100, r = 0.015, κ = 2, θ = 0.09,
B = V0 = 0.087, η = 0.250, corresponding to µ(B) of about 1 year. The value of T is set to be
1 year. The three curves correspond to three different values of the strike price K: 90 (dotted
line), 100 (solid line), and 110 (dashed line). Monte Carlo simulation is performed to compute the
probabilities. We see that the sum of the two probabilities have very weak ρ dependence when
T ≈ µ(B), even though each probability depends strongly on ρ as seen in Figure 2.
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