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Abstract 

 

This paper extends the standard model of optimum commodity taxation (Ramsey (1927) 

and Diamond-Mirrlees (1971)) to a competitive economy in which markets are inefficient 

due to asymmetric information. Insurance markets are prime examples: consumers 

impose varying costs on suppliers but firms cannot associate costs with individual 

customers and consequently all are charged equal prices. In such a competitive pooling 

equilibrium, the price of each good is equal to the average of individual marginal costs 

weighted by equilibrium quantities. We derive modified Ramsey-Boiteux Conditions for 

optimum taxes in such an economy and show that, in addition to the standard formula, 

they include first-order effects which reflect the deviations of prices from marginal costs 

and the response of equilibrium quantities to the taxes levied. An explanation of the 

additional terms is provided. It is shown that a condition on the monotonicity of demand 

elasticities enables to sign the direction of the deviations from the standard case. 
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I. Introduction 

The setting of the standard theory of optimum commodity taxation (Ramsey (1927), 

Diamond and Mirrlees (1971), Salanie (2003)) is a competitive equilibrium which attains 

an efficient resource allocation. In the absence of lump-sum taxes, the government wishes 

to raise revenue by means of distortive commodity taxes and the theory develops the 

conditions that have to hold for these taxes to minimize the deadweight loss (the 

'Ramsey-Boiteux Conditions'). The analysis was extended in some directions to allow for 

an initial inefficient allocation of resources. In such circumstances, aside from the need to 

raise revenue, taxes/subsidies may serve as means to improve welfare due to market 

inefficiencies. The rules for optimum commodity taxation, therefore, mix considerations 

of shifting an inefficient market equilibrium in a welfare enhancing direction and the 

distortive effects of gaps between consumer and producer marginal valuations generated 

by commodity taxes. 

Two major extensions of the standard model have been explored. First, the 

inclusion of externalities and the need to finance public goods (Sandmo (1975), Stiglitz 

and Dasgupta (1971), Lau, Sheshinski and Stiglitz (1978)). While specific assumptions 

about the form of externalities (e.g. 'atmosphere externalities') or about the form of 

preferences for public goods (e.g. weak separability), as well as the absence of 

distributional considerations, were needed to obtain transparent results, these 

contributions are quite general and the results seem robust. The second extension is to 

allow for imperfect competition (Auerbach and Hines (2001), Guesnerie and Laffont 

(1978), Myles (1987, 1989)). Here the results seem to depend more crucially on 

particular assumptions about the definition of the imperfectly competitive equilibrium, 

about the number of firms in oligopoly markets, about the type of taxes (specific or ad-

valoren) and about the presence or absence of uncertainty (making the availability or 

unavailability of insurance critical). Although these papers provide valuable insight about 

optimum taxation in specific circumstances, no broad rules seem to emerge. 

This paper goes in a different direction. Markets are assumed to be perfectly 

competitive but there is asymmetric information between firms and consumers about 

'relevant' characteristics which affect the costs of firms, as well as consumer preferences. 

Leading examples are in the field of insurance. Expected costs of medical insurance 

depend on the health characteristics of the insured as does the value of such insurance to 

the purchaser. Similarly, the costs of an annuity depend on the expected payout which, in 

turn, depends on the holder's survival prospects. Naturally, these prospects also affect the 

value of the annuity to the individual's expected lifetime utility. Other examples where 

personal characteristics affect costs are rental contracts (e.g. cars) and fixed-fee contracts 

for the use of facilities (sports and other clubs). 

When firms are able to identify customers' relevant characteristics (in insurance 

parlance, 'risk class'), competitive pressures equate prices to marginal costs for each 
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customer type, and the competitive equilibrium is efficient. Such identification, however, 

may not be possible or is imperfect and costly because it requires monitoring of activities, 

including the amounts purchased (Rothschild-Stiglitz (1976)), and the collection of 

information available at a multitude of firms. In these circumstances, commodities are 

sold at the same prices to different types of consumers, mostly to all consumers without 

distinction. This is called a pooling-equilibrium. Zero profits in a competitive pooling 

equilibrium imply that the price of each good is equal to the average of individual 

marginal costs weighted by the equilibrium quantities purchased by all consumers. 

This paper analyses the conditions for optimum commodity taxes in pooling market 

equilibria. The modeling of preferences and of costs is general, allowing for any finite 

number of markets. We obtain surprisingly simple modified Ramsey-Boiteux Conditions 

and explain the deviations from the standard formulas. Broadly, the additional terms that 

emerge reflect the fact that the initial producer price of each commodity deviates from 

each consumer's marginal costs, being only equal to these costs on average. Each levied 

specific tax affects all prices (a general-equilibrium effect), and, consequently, a small 

increase in any tax level affects the quantity-weighted gap between producer prices and 

individual marginal costs, the direction depending on the relation between demand 

elasticities and costs. 

After developing general formulas (Section 3), we briefly analyze (Section 4) an 

example of a three-good economy and show how optimum tax rates depend on the 

familiar substitution/complementary with the untaxed good(s) as well as deviations of 

costs from prices.  

 

II. Equilibrium with Asymmetric Information 

A representative individual consumes n goods, ,iX  ni ,..,2,1=  and a numeraire, Y. 

Preferences are represented by a linearly separable utility function, U  

 ,+= yuU ),( αx  (1) 

where ),..,,( 21 nxxx=x , ix  is the quantity of good i  and y is the quantity of the 

numeraire consumed by the individual. The utility function, u, is assumed to be strictly 

concave and differentiable in x. Linear separability is assumed to conveniently eliminate 

income effects in the demand for x
1
.  

                                                 
1 As is well-known, a non-separable utility function leads (via the Slutsky conditions) to the same results as 

below. Non-separability becomes important, though, when dealing with income distribution effects on 

optimum tax rates. We have a good idea how to incorporate income heterogeneity (e.g. Salanie (2003)) and 

focus here on efficiency aspects. 
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The parameter α  is a personal attribute which is singled out because it has cost 

effects. Specifically, it is assumed that the unit costs of good i  consumed by individuals 

with a given α  ('type α ') is )(αic . Leading examples are health and longevity 

insurance. The health status of an individual affects both his consumption preferences and 

the costs to the medical insurance provider. Similarly, the payout of annuities (e.g. 

retirement benefits) is contingent on survival and hence depends on the individual's 

relevant mortality function. Other examples are car rentals and car insurance, whose costs 

and value to consumers depend on driving patterns and other personal characteristics
2
.  

It is assumed that α  is continuously distributed in the population, with a 

distribution function, )(αF , over a finite interval, ],[ ααα ∈ , αα > .  

The economy has a given amount of resources, R > 0. With unit costs of 1 (in terms 

of R) for the numeraire, Y, the aggregate resource constraint is written  

 RdFy =+∫
α

α

αααα )()]()()([ xc  (2) 

where ))(),..,(),(()( 21 αααα nccc=c , ))(),..,(),(()( 21 αααα nxxx=x , )(αix  being the 

quantity of iX  and )(αy  the quantity of Y consumed by type α  individuals.  

The First-Best allocation is obtained by maximization of a utilitarian welfare 

function, W,  

 ∫ +=
α

α

αα )());(( dFyuW x  (3) 

s.t. the resource constraint (2). The F.O.C. for an interior solution equates marginal 

utilities and costs for individuals of the same type
3
. That is, for each α ,  

 ,0)(),( =− αα ii cu x    ni ,..,2,1=  (4) 

where 
i

i
x

u
u

∂
∂

= . The unique solution to (4), denoted ),..,(),(()( *

2

*

1

* ααα xx=x  )),(* αnx  

and the optimum level of the numeraire, *
y , is determined by the resource constraint, 

∫−=
α

α

ααα )()()( **
dFRy xc .  

    The First-Best allocation can be supported by competitive markets with 

individualized prices equal to marginal costs. That is, if ip  is the price of good i , then 

efficiency is attained when type α  individuals face the price )()( αα ii cp = .  

                                                 
2 Representation of these characteristics by a single parameter is, of course, a simplification.  
3 Thus, it is assumed that R yields .0* >y  
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    When α  is private information, unknown to suppliers (and not verifiable by 

monitoring individuals' purchases), then for each good firms will charge the same price to 

all individuals. This is called a (Second-Best) Pooling Equilibrium.  

 

Pooling Equilibrium 

 

Good iX  is offered at a common price ip  to all individuals, ni ,..,2,1= . The 

competitive price of the numeraire is 1. The individual maximizes utility, (1), subject to 

the budget constraint  

 Ry =+px . (5) 

It assumed that for all α , the level of R yields interior solutions. The F.O.C. are  

 0);( =− ii pu αx ,   ni ,..,2,1=  (6) 

the unique solutions to (6) are the compensated demand functions 

));(ˆ),..,;(ˆ),;(ˆ();(ˆ
21 αααα ppppx nxxx= . For each α , the optimum level of Y, )(ˆ αy , is 

obtained from the budget constraint (5), );(ˆ);(ˆ αα ppp xRy −= , assumed to be positive 

for all α .  

Let )(piπ  be total profits in the production of good i :  

 ∫−=
α

α

αααπ )();(ˆ)()(ˆ)( dFxcxp iiiii ppp ,   ni ,..,2,1=  (7) 

where ∫=
α

α

αα )();(ˆ)(ˆ dFxx ii pp  is the aggregate demand for good i .  

 

Definition
4
. A pooling-equilibrium is a vector of prices, p̂ , which satisfies 

0)ˆ( =piπ ,  ni ,..,2,1=  or  

 

∫

∫
= α

α

α

α

αα

ααα

)();ˆ(ˆ

)();ˆ(ˆ)(

ˆ

dFx

dFxc

p

i

ii

i

p

p

,   ni ,..,2,1= . (8) 

Equilibrium prices are weighted averages of marginal costs, the weights being the 

equilibrium quantities purchased by the different α  types. Writing (7) in matrix form:  

 ∫ =−=
α

α

ααα 0)();ˆ(ˆ)()ˆ(ˆ)ˆ( dFpXcpXppπ ,   ni ,..,2,1=  (9) 

                                                 
4 For general analyses of pooling equilibria see, for example, Laffont and Martimort (2002) and Salanie 

(1997). 
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where ))ˆ(),..,ˆ(),ˆ(()ˆ( 21 ppppπ nπππ= ,  

   

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

);ˆ(ˆ0

0);ˆ(ˆ

);ˆ(ˆ

1

α

α

α

p

p

pX

nx

x

  (10) 

),();ˆ()ˆ(ˆ αα
α

α

dFpXpX ∫=  ))(),..,(),(()( 21 αααα nccc=c , and 0 is n×1  zero vector 

)0,..,0,0(=0 . Let )ˆ(ˆ pK  be the nn×  matrix with elements ijk̂ ,  

 ∫ −=
α

α

ααα )();ˆ())(ˆ()ˆ(ˆ dFscpk ijiiij pp ,   nji ,..,2,1, =  (11) 

where 
j

i

ij
p

x
s

∂
∂

=
);ˆ(ˆ

);ˆ(
α

α
p

p  are the substitution terms.  

     

We can now state:  

 

Proposition 1. When )(ˆ)(ˆ pKpX +  is positive-definite for any p , then there exist unique 

and globally stable prices, p̂ , which satisfy (9).  

 

Proof. Appendix A.  

 

We shall assume throughout that the condition in Proposition 1 is satisfied. Note 

that when costs are independent of α , ,0ˆ =− ii cp  ni ,..,2,1= , 0ˆ =K  and the condition 

in Proposition 1 is trivially satisfied.  

 

III. Optimum Commodity Taxation 

Suppose that the government wishes to impose specific commodity taxes on iX , 

ni ,..,2,1= . Let the unit tax (subsidy) on iX  be it  so that its (tax inclusive) consumer 

price is iii tpq += , ni ,..,2,1= . Consumer demands, );(ˆ αpix , are now functions of 

these prices, tpq += , ),..,,( 21 nttt=t .  

As before, equilibrium consumer prices, q̂ , are determined by zero-profits 

conditions:  
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∫

∫ +

= α

α

α

α

αα

ααα

)();ˆ(ˆ

)();ˆ(ˆ))((

ˆ

dFx

dFxtc

q

i

iii

i

p

p

,   ni ,..,2,1=  (12) 

or, in matrix form,  

 ∫ =+−=
α

α

ααα 0qXtcqXqqπ )();ˆ(ˆ))(()ˆ(ˆˆ)ˆ( dF ,   ni ,..,2,1=  (13) 

where );ˆ(ˆ αqX  and )ˆ(ˆ qX  are the diagonal nn×  matrices defined above, with q̂  

replacing p̂ .  

Note that each element in )ˆ(ˆ qK , ∫ −=
α

α

ααα )();ˆ())(ˆ()ˆ( dFscpk ijiiij qq , also depends 

on iii tqp −= ˆˆ  which depends on t directly and though q. It is assumed that )ˆ(ˆ)ˆ(ˆ qKqX +  

is positive definite for all q. Hence, given t, there exist unique prices, q̂  (and the 

corresponding t-qp ˆˆ = ), which satisfy (13).  

Observe that each equilibrium price, iq̂ , depends on the whole vector of tax rates, t. 

Specifically, differentiating (13) w.r.t. the tax rates, we obtain:  

 )ˆ(ˆˆ))ˆ(ˆ)ˆ(ˆ( qXQqKqX =+  (14) 

where Q̂  is the nn×  matrix whose elements are 
j

i

t

q

∂
∂ ˆ

, nji ,..,2,1, = .  

All principal minors of KX ˆˆ +  are positive and it has a well-defined inverse.  

Hence, from (14),  

 XKXQ ˆ)ˆˆ(ˆ 1−+= . (15) 

It can be deduced from (15) that equilibrium consumer prices rise w.r.t. an increase 

in own tax rates:  

 
KX

KX
q

ˆˆ

ˆˆ

)ˆ(ˆ
ˆ

+

+
=

∂
∂ ii

i

i

i x
t

q
 (16) 

where KX ˆˆ +  is the determinant of KX ˆˆ + , and 
ii

KX ˆˆ +  is the principal minor obtained 

by deleting the i-th row and the i-th column. In general, the sign of cross-price effects due 

to tax rate increases is indeterminate, depending on substitution and complementarity 

terms. When all costs are independent of customer type, that is, 0=− ii cp , ni ,..,2,1= , 

then 0ˆ =K , and 1
ˆ
=

∂
∂

i

i

t

q
, and 0

ˆ
=

∂
∂

j

i

t

q
, ji ≠ , nji ,..,2,1, = .  
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From (1) and (3), social welfare in the pooling equilibrium is written  

 ∫ +−=
α

α

αααα RdFuW )()];ˆ(ˆ)());ˆ(ˆ([)( pxcpxt  (17) 

The problem of optimum commodity taxation can now be stated: the government 

wishes to raise a given amount, T, of tax revenue:  

 T=)ˆ(ˆ qxt   (18) 

by means of taxes, t, that maximize )(tW .  

Maximization of (17) s.t. (18) and (15) yields, after substitution of 0=− ii qu , 

ni ,..,2,1= , from individual F.O.C., that optimum tax levels, denoted t̂ , satisfy:  

 X̂ˆˆˆˆˆ)1( 1QK1QSt λλ −=++   (19) 

where Ŝ  is the nn×  aggregate substitution matrix whose elements are =)ˆ(qijs  

),();ˆ( αα
α

α

dFsij q∫=  1 is the n×1  unit vector, )1,..,1,1(=1 , and 0>λ  is the Lagrange 

multiplier of constraint (18).  

Rewrite (19) in the more familiar form:  

 ]ˆ)ˆˆˆ([
1

1ˆ 1−+
+

−= QQKX1St λ
λ

   

substituting from (15)  

 ]ˆ)ˆˆˆ([
1

1ˆ 1−+
+

−= QQKX1St λ
λ

  (20) 

Equation (20) is our fundamental result. Let us examine these optimality conditions 

w.r.t. a particular tax, it :  

 ∑∑
==

−
+

−=
n

j

ji

n

j

ijij kxst
11

ˆ)ˆ(ˆ
1

)ˆ(ˆ qq
λ

λ
  (21) 

Denoting aggregate demand elasticities by 
)(ˆ

)(
)(

q

q
q

i

ijj

ijij
x

sq
== εε , nji ,..,2,1, = , 

and using symmetry, )()( qq jiij ss =  for any q , (21) can be rewritten in elasticity form:  

 ∑∑
==

−−=
n

j

ji

n

j

jij kt
1

'

1

' ˆ)ˆ(ˆ θε q  ,   ni ,..,2,1=  (22) 

where jjj qtt ˆ/ˆˆ ' = , nj ,..,2,1=  are the optimum ratios of taxes to consumer prices, 

λ
λθ
+

=
1

,  
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 ∫ −=
α

α

ααεαα )();ˆ();ˆ())(ˆ(
)ˆ(ˆ

1ˆ '
dFxcp

xq
k jijjj

ii

ji qq
q

 (23) 

where 
);ˆ(

);ˆ(ˆ
);ˆ(

α
α

αε
q

q
q

j

jii

ji
x

sq
= , nji ,..,2,1, = .  

Compared to the standard case, 0ˆˆ ' == jiji kk , nji ,..,2,1, = , the modified Ramsey-

Boiteux Conditions have the additional terms, ∑
=

n

j

jik
1

ˆ  or ∑
=

n

j

jik
1

'ˆ , in (21) or (22). Before 

discussing these terms, we want to show that their sign depends on the relation between 

demand elasticities and costs.  

 

Proposition 2.   (I) Suppose that )(αjc  increases with α . Then )0(0ˆ ' ><jik  when jiε  

increases (decreases) with α . (II) Suppose that )(αjc  decreases with α . Then 

)0(0ˆ ' <>jik  when jiε  increases (decreases) with α . 

 

Proof: Appendix B. 

 

One implication of Proposition 2 is that when all demand elasticities are constant 

(logarithmic or power utility) then 0ˆˆ ' == jiji kk , nji ,..,2,1, = , and (21) or (22) become 

the standard Ramsey-Boiteux Conditions, solving for the same optimum tax rates. This 

observation provides a clue to the interpretation of the term 'ˆ
jik .  

Consider expression (23). The term );ˆ(ˆ))(ˆ( αα qjjj xcp −  is the gap between the 

(before-tax) consumer price and marginal costs times the quantity purchased of good j by 

an α  -type. When this gap is positive, social welfare would benefit from an increase in 

the quantity of good j. The elasticity );ˆ( αε qji  is the relative change in the quantity of 

good j due to a small increase in the price of good i . Hence, if its sign is positive this 

should make for a larger tax on good i . The opposite holds when jiε  is negative. This 

argument is reversed when )(ˆ αjj cp −  is negative. When )(αjc  is monotone in α , 

);ˆ(ˆ))(ˆ( αα qjjj xcp −  changes sign once and its integral is equal to zero over ],[ αα . 

Hence, for 0>jiε , the tax on good i  should be larger if the positive )(αjj cp −  are 

multiplied by large jiε  and the negative )(αjj cp −  by small jiε . Proposition 2 formally 

states these considerations.  

Following the argument above, since the L.H.S. of (22) can be shown to be equal 

(approximately) to the relative reduction in the quantity of good i  due to the imposition 

of t̂ , when ∑
=

<
n

j

jik
1

' 0ˆ , this reduction, and the corresponding it̂ , is made smaller 
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compared to the standard formula. A simple case is when 0=jiε , ij ≠ . Since 0<iiε , 

0' >iik  if iiε  is large (small in absolute value) when 0)( <− αjj cp  and small when 

0)( >− αjj cp . That is, quantity reductions of good i  are larger when ii cp −  is positive 

compared to those when ii cp −  is negative. This tends to make the optimum tax on good 

i  smaller.  

 

IV. A Three-Good Example 

The above discussion can be further highlighted with a three good example. Let there be 

two goods iX , 2,1=i . The untaxed numeraire, Y, is numbered 0. Using the identities 

0210 =++ iii εεε , 2,1=i , (22) can be solved for '

2

'

1
ˆ/ˆ tt :  

 

20

1

22

1

11

2

202211

10

2

22

1

11

2

102211

'

2

'

1

ˆˆˆ)(

ˆˆˆ)(

ˆ

ˆ

εεεεεεθ
εεεεεεθ

kkk

kkk

t

t

+++++

+++++
=   (24) 

where '

2

'

1

' ˆˆˆ
ii kkk += , 2,1=i , and '

jik , 2,1, =ji , are defined in (23).  

As seen in (24), the standard model )0ˆˆ( 21 == kk  has a higher tax rate for the good 

which is more complementary with the untaxed good. This familiar conclusion has to be 

modified to include the interaction factors, 10

2ˆ εk  and 20

1ˆ εk , in a pooling equilibrium. For 

example, when 02010 >> εε  and 12 ˆˆ kk > , then the previous conclusion carries over. 

Clearly, though, other cases may affect '

2

'

1
ˆ/ˆ tt  in the opposite direction. In general, in a 

pooling equilibrium, complementarity with the untaxed good is not the only factor that 

determines the ratio of optimum taxes. The other factor is the effect of different tax 

changes on the average gap between prices and costs.  
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Appendix A 

 

An interior pooling equilibrium, p̂ , is defined by the system of equations  

 ∫ =−=
α

α

ααα 0)();ˆ(ˆ)()ˆ(ˆ)ˆ( dFpXcpXppπ   (A.1) 

where ))ˆ(),..,ˆ(),ˆ(()ˆ( 21 ppppπ nπππ= , )ˆ,..,ˆ,ˆ(ˆ
21 nppp=p , )ˆ(ˆ pX  is the diagonal nn×  

matrix:  

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)ˆ(ˆ0

0)ˆ(ˆ

)ˆ(ˆ

1

p

p

pX

nx

x

 (A.2) 

while );( αpX  is the diagonal nn×  matrix:  

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

);ˆ(ˆ0

0);ˆ(ˆ

);ˆ(ˆ

1

α

α

α

p

p

pX

nx

x

  (A.3) 

and ))(),..,(),(()( 21 αααα nccc=c .  

It is well known from general equilibrium theory (e.g. Arrow and Hahn (1971)) that 

a sufficient condition for p̂  to be unique is that the nn×  matrix )(ˆ)(ˆ pKpX +  be positive 

definite, where )ˆ(ˆ pK  is the nn×  matrix whose elements are 

),();ˆ())(ˆ(ˆ ααα
α

α

dFscpk ijiiij p∫ −=  
j

i

ij
p

x
s

∂
∂

=
);ˆ(ˆ

);ˆ(
α

α
p

p , nji ,..,2,1, = .  

Furthermore, if the price of each good is postulated to change in opposite direction 

to the sign of profits derived from this good, then this condition also implies that price 

dynamics are globally stable, converging to a unique p̂ .  

Intuitively, as seen from (A.1), an upward perturbation of 1p  raises 1π  iff  

0)()ˆ(ˆ
11111 >−+ ∫ α

α

α

dFscpx , leading to a decrease in 1p . A simultaneous upward 

perturbation of 1p  and 2p  raises 1π  and 2π  if the 22×  upper principal minor of ∆  is 

positive, and so on. Convexity of profit functions is the standard assumption in general 

equilibrium theory.  
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Appendix B. 

 

Proof of Proposition 1. 

 

Suppose that 
);ˆ(ˆ

);ˆ(ˆ
);ˆ(

α
α

αε
q

q
q

j

jii

ji
x

sq
=  ( 0<jjε , 0or≤≥jiε , ij ≠ ) increases with α . Since 

in equilibrium  

 0)();ˆ(ˆ))(ˆ( =−∫ ααα
α

α

dFxcp jjj q   (B.1) 

Assume that )(αjc  increases with α . Then, )(ˆ αjj cp −  changes sign once over ],[ αα , 

say at α~ :  

 αααα ~as,0);ˆ(ˆ))(ˆ( qjjj xcp −  (B.2) 

Hence,  

 );ˆ(ˆ))(ˆ(
ˆ

)~;ˆ(
);ˆ())(ˆ( αα

αε
αα q

q
q jjj

i

ji

jijj xcp
q

scp −<−  (B.3) 

for all ],[ αααε . Integrating on both sides of (B.3), using (B.1),  

 0)();ˆ(ˆ))(ˆ(
ˆ

)~;ˆ(
)()())(ˆ( =−<− ∫∫ ααα

αε
ααα

α

α

α

α

dFxcp
q

dFscp jjj

i

ji

jijj q
q

  (B.4) 

Hence, jik̂  in (21) or 'ˆ
jik  in (23), is negative. The inequality in (B.4) is reversed 

when );ˆ( αε qji  decreases with α  or when )(αjc  decreases with α .  
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