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Abstract

Conventional threshold models contain only one threshold
variable. This paper provides the theoretical foundation for thresh-
old models with multiple threshold variables. The new model is
very different from a model with a single threshold variable as sev-
eral novel problems arisefrom having an additional threshold vari-
able. First, the model is not analogous to a change-point model.
Second, the asymptotic joint distribution of the threshold esti-
mators is difficult to obtain. Third, the estimation time increases
exponentially with the number of threshold variables. This paper
derives the consistency and the asymptotic joint distribution of
the threshold estimators. A fast estimation algorithm to estimate
the threshold values is proposed. We also develop tests for the
number of threshold variables. The theoretical results are sup-
ported by simulation experiments. Our model is applied to the
study of currency crises.
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1 Introduction

Threshold regression models have developed rapidly over the three decades
since the seminal work of Tong (1983). Some later extensions of the
model include the smooth transition threshold model (Chan and Tong,
1986), the functional-coefficient autoregressive model (Chen and Tsay,
1993) and the nested threshold autoregressive model (Astatkie, Watts
and Watt, 1997). Hansen (1999) develops a threshold model for non-
dynamic panels with individual fixed-effects. Tsay (1998) and Gonzalo
and Pitarakis (2002) study models with multiple threshold values.
Most of these studies, however, focus on models with only one thresh-

old variable and have limited applications when two or more threshold
variables are needed. For instance, it has long been observed that the
foreign debt level and interest rate cross certain threshold values before
a currency crisis occurs. Studies in the literature of currency crises, such
as those of Eichengreen, Rose and Wyplosz (1995), Frankel and Rose
(1996), Kaminsky (1998) and Edison (2000) also suggest that the oc-
currence of a currency crisis depends critically on the values of multiple
factors. However, none of these papers has estimated and tested those
important threshold values, due to the lack of proper modelling tech-
niques in the literature. To our knowledge, very few studies have been
devoted to models with multiple threshold variables1, and no theoreti-
cal results on the consistency and the asymptotic joint distribution of
the threshold estimators in the general threshold regression model are
available in the related literature.2

This paper explores the estimation and inference of a threshold model
with multiple threshold variables. This model is not a simple exten-
sion of the model with a single threshold variable. The inclusion of
an additional threshold variable increases the complexity of the model.
Tsay (1998) suggests that a threshold model can be transformed into a
change-point model by re-indexing the threshold variable. This analogy,
however, cannot generally be carried over to cases involving more than
one threshold variable, which this paper explores. Second, the asymp-
totic joint distribution of the threshold estimators is difficult to obtain.
Third, since the threshold estimates are obtained by grid search, the
estimation time increases exponentially with the number of threshold
variables. The contributions of this paper are two-fold. First, the paper
provides the estimation and distributional theories for threshold mod-
els with multiple threshold variables. Second, it develops a test for the

1Some related studies in this regard include Astatkie, Watts and Watt (1997), Xia
and Li (1999) and Xia, Li and Tong (2004) and Chen et al. (2012).

2Chen et al. (2012) provide theoretical results on the consistency and the asymp-
totic joint distribution of the threshold estimators for TAR models.

2



number of threshold variables.
We apply our model to the study of currency crises in 16 countries.

We take the threshold variables implied by the three generations of cur-
rency crisis models, and test for the existence of threshold effects. If
there is evidence of a threshold effect, we estimate the threshold values
using panel data from the 16 countries. We find overwhelming evidence
of threshold effects in the ratio of short-term external liabilities to re-
serves and the lending rate differential, which is consistent with the
implications of the currency crisis models. Our empirical study provides
useful estimates of the joint threshold values that can be adopted as
policy guidelines in the regulation of short-term external borrowing and
interest rate differentials.
The rest of the paper is organized as follows. Section 2 presents the

model and the major assumptions. The consistency and the asymptotic
distribution of the threshold estimators are established. Section 3 pro-
poses a fast estimation algorithm. The model is extended in Section
4 to allow for panel data. Section 5 develops a sequential test for the
number of threshold variables and an LR test for the threshold values.
Asymptotic distributions of these tests are obtained. Section 6 pro-
vides experimental evidence to support our theory. Section 7 provides
an empirical application of our new model. The last section concludes
the paper and discusses directions for future research. All proofs are
relegated to the Appendices.
Before proceeding to the next section, we present the mathematical

notation that is frequently used in this paper. [] denotes the greatest

integer ≤  The symbol ‘
→’ represents convergence in probability, ‘ →’

represents convergence in distribution, and ‘⇒’ signifies weak conver-
gence in  [0 1] : see Billingsley (1968) and Pollard (1984). All limits
are as the sample size  →∞ unless otherwise stated.

2 The Model

To begin with, consider the following model:

 = 01 + (
0
2 − 01)Ψ

¡
0 

¢
+  (1)

where 1 and 2 are the pre-shift and post-shift regression slope
parameters respectively, with  = (1 2  )

0 being a  by 1
vector of true parameters,  = 1 2;

 is the dependent variable.
 is a  by 1 vector of covariates.
(1 2   )

0 is a  by 1 vector of error term  with  ||
4  ∞

for some   1. The errors are assumed to be independent of both the
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regressors and the threshold variables.
 = (1  ) is a vector of threshold variables, where 0   

∞.
0 =

¡
01

0


¢
∈ Π

=1

h
 

i
is a vector of  true threshold para-

meters to be estimated.
The observations {  }


=1 are real-valued.

Ψ (0 ) is an indicator function, which equals one when the thresh-
old variables satisfy some required conditions, and equals zero otherwise.
For example, if the parameters change when all of the threshold variables
exceed some critical values, then we have:

Ψ
¡
0 

¢
= 

¡
1  01    0

¢
 (2)

In the scenario of currency crises, imposing such a threshold condi-
tion implies that the crisis will not be triggered until all the threshold
variables exceed the critical thresholds.3 For illustration purposes, we
will study the case where  = 2. The methods extend in a straight-
forward manner to models with more than two threshold variables. For
notational simplicity, we let

Ψ

¡
0
¢
= Ψ

¡
0 

¢
= 

¡
1  01 2  02

¢
 (3)

Define

 (1 2) = Pr (1 ≤ 1 2 ≤ 2) (4)

and

 () = Pr ( ≤ )  ( = 1 2)  (5)

We assume that the joint distribution of 1 and 2 is continuous and
differentiable with respect to both variables, and that:

(a)
1



P
=1  (1  1 2  2)

→ Pr (1  1 2  2)

=  (1 2) ;

(b)
1



P
=1  (1  1)

→ Pr (1  1)

=  1 (1) ;

(c)
1



P
=1  (2  2)

→ Pr (2  2)

=  2 (2).

Define

  =



 (1 2)  ( = 1 2)  (6)


0

 =  

¡
01 

0
2

¢
 ( = 1 2)  (7)

3If the condition states that at least one threshold variable exceeds the critical
value, then Ψ

¡
0 

¢
= 1− 

¡
1 ≤ 0

1
   ≤ 0

¢
.
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Define the moment functionals:

 = (1 2) =  (
0
 (1  1 2  2))  (8)

0 =
¡
01 

0
2

¢
 (9)

 =  (
0
)  (10)

 =  (1 2) =  (
0
|1 = 1 2 = 2)  (11)

 = 
¡
01 

0
2

¢
 (12)

 (1 2) = 
¡


0

2
 |1 = 1 2 = 2

¢
 (13)

 = 
¡
01 

0
2

¢
 (14)

 (1 2) =−1 (1 2)  (15)

We impose the following assumptions:

(1) (  ) is strictly stationary, ergodic and -mixing, with -

mixing coefficients satisfying
P∞

=1 
1

2

 ∞;
(2)  (|=−1) = 0;
(3)  ||

4 ∞ and  ||
4 ∞;

(4) For all  ∈ Γ and  = 1 2, 
¡
||

4 | = 
¢
,   (1 2) are

bounded;
(5) At  = 0 and  = 1 2,  ,  and  (1 2) are continuous;

(6)  = 2 − 1 = − where  6= 0 and 0   
1

2
;

(7) 0, 0 , 
0

1 and 
0

2 are positive;
(8)    (1 2)  0 for all  ∈ Γ

(1) implies that all of the regressors are stationary and ergodic. It
is used to establish the uniform convergence result, and will be auto-
matically satisfied for i.i.d observations. (2) requires that model (1) is
correctly specified. Assumptions (3) and (4) are conditional and un-
conditional moment bounds. (5) requires the threshold variable to have
a continuous distribution and excludes regime-dependent heteroskedas-
ticity. (6) assumes that the parameter change is small and converges
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to zero at a slow rate when the sample size is large. This assumption
and (7) are needed in order for the threshold estimators to have a non-
degenerating distribution. (8) is the conventional full-rank condition
which excludes multicollinearity.
We will derive the least squares estimators of 1, 2 and 0. Given

 = (1 2), the estimators for  are

b01 () =
X

=1


0
 (1−Ψ ())

Ã
X

=1


0
 (1−Ψ ())

!−1
(16)

and

b02 () =
X

=1


0
Ψ ()

Ã
X

=1


0
Ψ ()

!−1
 (17)

Define

 () =
X

=1

³
 − b

0

1 () −
³
b02 ()− b

0

1 ()
´
Ψ ()

´2
 (18)

b = (b1b2) = arg min
(12)∈Γ

 (1 2)  (19)

where

Γ = Π2=1

³h
 

i
∩ {1  }

´
 (20)

The final structural estimators are then defined as

b1 (b1b2)
and

b2 (b1b2) 
The behavior of the b1 () and b2 () will be affected by the pair-

wise relationship between , 1 and 2. To give a simple illustration,
consider the case of a single regressor where

 = 
¡
2
¢
 (21)

 (1 2) =



 (22)

Note from Appendix A1 that
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b1
¡
12

¢
=1 +  ×
P

=1 
2
 [ (1  01 2  02)−  (1  max {

0
1 1}  2  max {

0
2 2})]P

=1 
2
 (1−  (1  1 2  2))

+ (1)  (23)

Similarly, we have

b2
¡
12

¢
=2 −  ×
P

=1 
2
 [ (1  1 2  2)−  (1  max {

0
1 1}  2  max {

0
2 2})]P

=1 
2
  (1  1 2  2)

+ (1)  (24)

We can partition the space of  into four regions and discuss four
separate cases:

Case 1: 1 ≤ 01 2 ≤ 02

b1
¡
12

¢ → 1 (25)

b2
¡
12

¢ → 2 − 

µ
1−  (01 

0
2)

 (1 2)

¶
 (26)

Case 2: 1  01 2 ≤ 02

b1
¡
12

¢ → 1 + 
 (01 

0
2)− (1 

0
2)

1− (1 2)
 (27)

b2
¡
12

¢ → 2 − 

µ
1−  (1 

0
2)

 (1 2)

¶
 (28)

Case 3: 1 ≤ 01 2  02

b1
¡
12

¢ → 1 + 
 (01 

0
2)− (01 2)

1− (1 2)
 (29)

b2
¡
12

¢ → 2 − 

µ
1−  (01 2)

 (1 2)

¶
 (30)
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Case 4: 1  01 2  02

b1
¡
12

¢ → 1 + 
 (01 

0
2)− (1 2)

1− (1 2)
 (31)

b2
¡
12

¢ → 2 (32)

Note that b
¡
01

0
2

¢ → ,  = 1 2. This implies that the structural
estimators can be consistently estimated if the threshold estimators are
super-consistent.

2.1 Asymptotic behavior of
1

 1−2
( ()− 0)

To study the behavior of the residual sum of squares, let

 () = Ψ () (33)

and let  and  be  by  matrices formed by stacking the vectors
0 and  ()

0 
Thus, our model can be rewritten as

 = 1 +δ +  (34)

The residual sum of squares can also be written as

 ()=
³
 −b1 ()−

bδ ()
´0 ³

 −b1 ()−
bδ ()

´

= 0 ( − ) (35)

where

 = e

³
e 0

e

´−1 e 0


e =
£


¤


As  −1 −δ and  lies in the space spanned by ,

 ()− 0 = −0+ 2δ
0 0

0 ( − ) + δ
0 0

0 ( − )0δ

and

1

 1−2
( ()− 0) =

1


0 0

0 ( − )0+ (1) 

where 0 = 0 

FromAppendix B, in each of the following four cases,
1

 1−2
( ()− 0)

→
 ()  with  (0) = 0,  = 1 2 3 4

8



Case 1: 1 ≤ 01 2 ≤ 02 1 () = 0
³
0 −0

−1
 0

´
 ≥ 0



1
1 () = 00

−1
  1

−1
 0 ≤ 0



2
1 () = 00

−1
  2

−1
 0 ≤ 0

Case 2: 1  01 2 ≤ 02

2 ()

= 0

Ã
0 −

¡
0 − (1 

0
2)
¢ ¡

 −

¢−1 ¡
0 − (1 

0
2)
¢

− (1 
0
2)

−1
  (1 

0
2)

!


 0

Case 3: 1 ≤ 01 2  02

3 ()

= 0

Ã
0 −

¡
0 − (01 2)

¢ ¡
 −

¢−1 ¡
0 − (01 2)

¢

− (01 2)
−1
  (01 2)

!


 0

Case 4: 1  01 2  02

4 () = 0
³
 −0 −

¡
 −0

¢ ¡
 −

¢−1 ¡
 −0

¢´




1
4 ()=−0

¡
 −0

¢ ¡
 −

¢−1
 1

¡
 −

¢−1 ¡
 −0

¢


 0



2
4 ()=−0

¡
 −0

¢ ¡
 −

¢−1
 2

¡
 −

¢−1 ¡
 −0

¢


 0

The threshold estimators are consistent because all of the four func-
tions are minimized at the true thresholds, and it can be shown that
 () 6=  (0) iff  6= 0 for  = 1 2 3 4.
If  are independent of 1 and 2, we can express 1 () to 4 ()

by the joint distribution of the threshold variables. Consider the case in
which there is only one regressor. We have

 = 
¡
2
¢
 (1 2)

and

9



 (1 2) =  (1 2) 

1 (1 2) = 2
¡
01 

0
2

¢µ
1−  (01 

0
2)

 (1 2)

¶


2 (1 2) = 2

"

¡
01 

0
2

¢
−
¡
 (01 

0
2)−  (1 

0
2)
¢2

1−  (1 2)
−  (1 

0
2)
2

 (1 2)

#


3 (1 2) = 2

"

¡
01 

0
2

¢
−
¡
 (01 

0
2)−  (01 2)

¢2

1−  (1 2)
−  (01 2)

2

 (1 2)

#


4 (1 2) = 2
¡

¡
01 

0
2

¢
−  (1 2)

¢ 1−  (01 
0
2)

1−  (1 2)


2.2 Asymptotic joint distribution of b1 and b2 when
1 and 2 are independent

The threshold estimator is analogous to the change-point estimator in
the structural-change model. The distribution of the change-point esti-
mator will degenerate to the true change point for any fixed magnitude
of change because of the superconsistency of the change-point estimator
(Chong, 2001). Thus, to obtain a non-degenerate distribution, one needs
to let the magnitude of change go to zero at an appropriate rate. For
the threshold model, in order to obtain the distribution of the threshold
estimators, we also let the threshold effect go to zero at a certain rate.
The distribution of the threshold estimator for small threshold effect has
been obtained by Hansen (1999, 2000) for the case of a single threshold
variable. In our case of two threshold variables, the following theorem
states the joint distribution of the threshold estimators. The details can
be found in Appendix C.

Theorem 1 Under assumptions (A1)-(A8),

 1−2
(0)2

0 

³¡
b1 − 01

¢

0

1
¡
b2 − 02

¢

0

2

´

=(b1 b2)
→ argmax
(12)∈2

2X

=1

µ
−1
2
||+ ()

¶
 (36)

10



where (),  = 1 2, are double-sided independent standard Brown-
ian motion on (−∞∞) 
For 1  0 and 2  0, the above joint distribution equals

(12) (1 2)

=Π2=1

µ
1 +

r

2
exp

³
−
8

´
+
3

2
exp ()Φ

µ
−3
√


2

¶
−  + 5

2
Φ

µ
−
√


2

¶¶


(37)

where Φ (·) is the cdf of a standard normal distribution.
The joint density function, which is depicted in Figure 4b, can be

shown as

(12) (1 2) = Π2=1

µ
3

2
exp ()Φ

µ
−3
√


2

¶
− 1
2
Φ

µ
−
√


2

¶¶


(38)
For cases where some of the   0, we can replace those items in the

above expression by  () = 1−  (−) and  () =  (−).
Corollary 2 In general, if we have  threshold variables,

− 1−2 (
0)2

0 
(b − 0)◦

 (01  
0
)


→ argmax
(1)∈

X

=1

µ
−1
2
||+ ()

¶


(39)
where ◦ is the Hadamard product operator that multiplies on an

element by element basis, and

(1) (1  )

=Π
=1

µ
1 +

r

2
exp

µ−
8

¶
+
3 exp ()

2
Φ

µ−3√
2

¶
−  + 5

2
Φ

µ−√
2

¶¶


(40)

(1) (1  ) = Π
=1

µ
3

2
exp ()Φ

µ
−3
√


2

¶
− 1
2
Φ

µ
−
√


2

¶¶


(41)
It should be noted that if the threshold variables are dependent, the

consistency and the joint distribution of the threshold estimators might
be difficult to obtain. For example, if 2 = −1, we might not be able
to partition the data into four groups according to the values of the two
threshold variables, and the above distributional result will not hold.
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3 A Fast Estimation Algorithm for  when x, z1
and z2 are Independent

The threshold values are obtained by grid search, which implies that the
estimation time increases exponentially with the number of threshold
variables. We propose a fast estimation method when the regressors and
the threshold variables are all mutually independent. Consider the fol-
lowing simple model with a single regressor and two threshold variables:

 = 1 + Ψ

¡
0
¢
+  (42)

Note that the asymptotic results are the same as the case where all
 = 1. From Appendix A2, it can be shown that

sup
(12)∈2

¯̄
¯̄ 1


¡
12

¢
−  (1 2)

¯̄
¯̄ =  (1)  (43)

Let

 (1 2) =  2
¡
 (1 2)− 2

¢
for  = 1 2 3 4 (44)

When , 1 and 2 are independent, the following can be shown.

Case 1: 1 ≤ 01 2 ≤ 02

1 (1 2) = 2 1

¡
01
¢
 2

¡
02
¢µ
1−  1 (

0
1) 2 (

0
2)

 1 (1) 2 (2)

¶
 (45)

1 (1 2)

1
= −2 1 (

0
1)
2
 2 (

0
2)
2

 1 (1) 2 (2)
1 (1) ≤ 0 (46)

1 (1 2)

2
= −2 1 (

0
1)
2
 2 (

0
2)
2

 1 (1) 2 (2)
2 (2) ≤ 0 (47)

where 1 (1) and 2 (2) are the hazard functions of 1 and 2
respectively.

Case 2: 1  01 2 ≤ 02

2 (1 2) = 2 2

¡
02
¢2
Ã
 1 (

0
1)

 2 (02)
−  1 (1)

 2 (2)
−
¡
 1 (

0
1)−  1 (1)

¢2

1−  1 (1) 2 (2)

!


(48)

2 (1 2)

1
= 2

 1 (
0
1)
2

 2 (2)

µ
1−  1 (

0
1) 2 (2)

1−  1 (1) 2 (2)

¶2
1 (1)  0 (49)
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2 (1 2)

2

=−2 2

¡
02
¢2
µ

 1 (
0
1)−  1 (1)

1−  1 (1) 2 (2)
+

1

 2 (2)

¶
1−  1 (

0
1) 2 (2)

1−  1 (1) 2 (2)
 1 (1)2 (2)

 0 (50)

Case 3: 1 ≤ 01 2  02

3 (1 2) = 2 1

¡
01
¢2
Ã
 2 (2)

 1 (1)
−  2 (

0
2)

 1 (01)
−
¡
 2 (

0
2)−  2 (2)

¢2

1−  1 (1) 2 (2)

!


(51)

3 (1 2)

1

=−2 1

¡
01
¢2
µ

 2 (
0
2)−  2 (2)

1−  1 (1) 2 (2)
+

1

 1 (1)

¶
1−  2 (

0
2) 1 (1)

1−  1 (1) 2 (2)
 2 (2)1 (1)

 0 (52)

3 (1 2)

2
= 2 1

¡
01
¢2
µ

 2 (
0
2)−  2 (2)

1−  1 (1) 2 (2)
− 1

 1 (1)

¶2
 1 (1) 2 (2)  0

(53)

Case 4: 1  01 2  02

4 (1 2) = 2
¡
1−  1

¡
01
¢
 2

¡
02
¢¢µ

1− 1−  1 (
0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶
 (54)

4 (1 2)

1
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 2 (2) 1 (1)  0 (55)

4 (1 2)

2
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 1 (1) 2 (2)  0 (56)

Note that given 2, the value of  (1 2) reduces whenever 1 ap-
proaches 01 from both directions. Similarly, given 1, the value of
 (1 2) reduces whenever 2 approaches 

0
2. This implies that

min
1∈

 (1 2) = 01 ∀2 (57)
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and

min
2∈

 (1 2) = 02 ∀1 (58)

Thus, if , 1 and 2 are independent, we can search for the critical
threshold value of one threshold variable by assigning an arbitrary value
to another threshold estimate. This will dramatically shorten the time
of estimation.

4 Model with Panel Data

In this section, we consider a model for a balanced panel with  individ-
uals over  periods. We assume that the threshold values are the same
across individuals for each of the threshold variables. In the panel model
here,  is the cross-sectional sample size. The analysis is asymptotic with
fixed  and as →∞
We let

Ψ () =  (1  1 2  2) 

The observations are divided into two regimes depending on whether
the threshold variable vector satisfies the threshold conditions. We as-
sume that  and  are not time invariant. The model is

 =  + 01 +  Ψ () = 0 (59)

 =  + 02 +  Ψ () = 1 (60)

The following assumptions are imposed:

(1) For each , (  ) are i.i.d. across .
(2) For each ,  is i.i.d. over , is independent of { }


=1,

and  () = 0;
(3) For each  = 1  , Pr

¡
1 = 2 =  = 

¢
 1, where 

is the th element of 
(4)  ||

4 ∞ and  ||
4 ∞;

(5)  = − where  6= 0 and 0   
1

2
;

(6) At  = 0 and  = 1 2,   (1 2),  and  (1 2) are
continuous;
(7) 0   ∞;
(8) For   , | (01 

0
2|

0
1 

0
2)  ∞, where | (01 02|01 02) is

the value of the conditional joint density of  evaluated at the true
thresholds given that  equals the true thresholds.
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Assumptions (1)-(4) are standard for fixed effect panel models
with exogenous regressors. Assumption (5) implies that the threshold
effect tends to zero at a specified rate, which gives a well-defined distri-
bution of the threshold estimators. Assumption (6) excludes thresh-
old effects that occur simultaneously in the marginal distribution of the
regressors and in the regression function. Assumption (7) excludes
continuous threshold models (Chan and Tsay, 1998). (8) rules out the
possibility that all observations of the threshold variables equal the true
threshold values.
Let

 () = Ψ ()  (61)

 =  + 01 + 0Ψ () +  (62)

Averaging the above panel equation over , we have

 =  + 01 + 0 () +  (63)

where

 =
1



X

=1

 (64)

 =
1



X

=1

 (65)

 () =
1



X

=1

Ψ ()  (66)

 =
1



X

=1

 (67)

Taking the difference, we have

∗ = 01
∗
 + 0∗ () + ∗ (68)

where

∗ =  −  (69)

∗ =  −  (70)
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∗ () =  ()−  ()  (71)

∗ =  −  (72)

Let

∗ =

⎡
⎢⎣
∗2
...
∗

⎤
⎥⎦  ∗ =

⎡
⎢⎣
∗2
...

∗

⎤
⎥⎦  ∗ () =

⎡
⎢⎣
∗2 ()
...

∗ ()

⎤
⎥⎦  ∗ =

⎡
⎢⎣
∗2
...
∗

⎤
⎥⎦

denote the stacked data and errors for an individual, with one time
period deleted. Let  ∗, ∗ () and ∗ denote the data that is stacked
over all individuals, i.e.,

 ∗ =

⎡
⎢⎢⎢⎢⎢⎣

∗1
...
∗
...
∗

⎤
⎥⎥⎥⎥⎥⎦
 ∗ =

⎡
⎢⎢⎢⎢⎢⎣

∗1
...
∗
...
∗

⎤
⎥⎥⎥⎥⎥⎦
∗ () =

⎡
⎢⎢⎢⎢⎢⎣

∗1 ()
...

∗ ()
...

∗ ()

⎤
⎥⎥⎥⎥⎥⎦
 ∗ =

⎡
⎢⎢⎢⎢⎢⎣

∗1
...
∗
...
∗

⎤
⎥⎥⎥⎥⎥⎦


Thus, our model becomes

 ∗ = ∗1 +∗ () δ + ∗ (73)

As the panel model can be rewritten in the form given in Section
(21), with  corresponding to  , and as assumption set B is weaker than
assumption set A, the estimation method and the asymptotic results in
the previous section apply in the panel model. Thus, we have

 () = ( −∗1 −∗ () δ)0 ( −∗1 −∗ () δ)

b = (b1b2) = arg min
∈Γ

 (1 2)  (74)

Γ = Π2=1

³h
 

i
∩ (∪=1 {1  })

´
(75)

The final structural estimators are then defined as

b1 (b1b2)
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and

b2 (b1b2) 
and the residual variance is

b2 = 1

 ( − 1) (b)  (76)

5 Inference

5.1 Testing the number of threshold variables

We start with a threshold model without thresholds, and sequentially
test whether this model can be rejected in favor of a threshold model
with one additional threshold variable. For the test of no threshold
against one threshold variable,

0 : = 0

1 : = 1

Define

 (0 1 1) = 
 (−∞−∞)−  (b1−∞)

 (b1−∞)
 (77)

 (0 1 2) = 
 (−∞−∞)−  (−∞b2)

 (−∞b2)
 (78)

where
 (−∞−∞) is the residual sum of squares from the regression with-

out any threshold variable;
 (b1−∞) is the residual sum of squares from the regression with-

out the second threshold variable; and
 (−∞b2) is the residual sum of squares from the regression with-

out the first threshold variable.
For the notation  (· · ·), the first entry in the parenthesis stands

for the value of  under the null hypothesis, the second represents the
value of  under the alternative hypothesis, and the last indicates that
the test is on the  threshold variable.
If the null cannot be rejected for both threshold variables, then we

conclude that there is no threshold effect. If the null is rejected for at
least one of the threshold variables, then we proceed to the second step
of testing one threshold variable against two threshold variables:
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0 : = 1

1 : = 2

Define

 (1 2 1) = 
 (b1−∞)−  (e1e2)

 (e1 e2)
 (79)

 (1 2 2) = 
 (−∞b2)−  (e1e2)

 (e1 e2)
 (80)

where  (e1e2) is the residual sum of squares from the regression
by imposing both threshold variables. If the null is rejected in both
cases, then we conclude that there are two threshold variables. If we
reject the null in the first step for the first threshold variable and cannot
reject it in the second test, then the first variable is the only threshold
variable. A similar argument applies to the second threshold variable.
The problem arises when we reject the null in the first step but accept
it in the second step for both variables, which should not occur in large
samples. In a finite sample where such a situation occurs, we choose the
threshold variable that best fits the model.
The asymptotic distributions of the above tests are non-standard.

For the case of 0:  = 0 against 1:  = 1, the bootstrapping
method in Hansen (1999) is conducted for each potential candidates of
threshold variables. For the tests in the following steps, first we treat
the regressors and the threshold variables as given, holding their values
fixed in repeated bootstrap samples. We then use the regression resid-
uals under 1 as the empirical distribution. A sample of size  with
replacement is drawn from this empirical distribution and the errors are
used to create a bootstrap sample under 0 The values of structural
and threshold parameters are fixed at their estimated values under 0.
We repeat this procedure for a large number of times and calculate the
percentage of draws for which the simulated statistic exceeds the actual.
This is the bootstrap estimate of the asymptotic p-value under 0. The
null is rejected if the p-value is too small.
For illustration, consider a panel model, we test

0 : = 1

1 : = 2

We estimate the threshold model with two threshold variables, take
its residuals and draw the bootstrapb∗ residuals from them ( = 1 2  ;
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 = 1 2   ). We then use the bootstrap residuals along with the es-
timated threshold model with one threshold variable to generate the
bootstrap dependent variable:

∗ = b
0

1
∗
 +

³
b02 − b

0

1

´
∗Ψ (b1) +b∗  (81)

Using the set of dependent and independent variables
©
x∗ 

∗


ª
, we

can estimate the model under the alternative hypothesis (in this case,
a threshold model with two threshold variables) and compute its sum

of squared residuals 
³
e1e2

´
 The sum of squared residuals under

the null is  (b1−∞) =
P
=1

P
=1

³
b∗
´2

 The test statistic for testing

two threshold variables under the alternative hypothesis against the null
hypothesis that only the first threshold variable should appear in the
model is

 (1 2 1) = 
 (b1−∞)− 

³
e1e2

´


³
e1e2

´  (82)

For testing whether only the second threshold variable should appear
in the model, the test statistic is

 (1 2 2) = 
 (−∞b2)− 

³
e1e2

´


³
e1e2

´  (83)

5.2 Testing the threshold values

After obtaining the number of threshold variables, we proceed to test
the hypothesis that

0 :  = 0

Under the assumption that  is i.i.d.  (0 2), we have

 (1 2) = 
 (1 2)−  (b1b2)

 (b1b2)
 (84)

0 is rejected for a large  (
0
1 

0
2) 

If the threshold variables are independent, one can show that



¡
01 

0
2

¢ → 2 (85)

where

 = 1 + 2 (86)
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1 = max
−∞1∞

(− |1|+ 21 (1))  (87)

2 = max
−∞2∞

(− |2|+ 22 (2)) (88)

and

2 =
0 

20
 (89)

The distribution of  ( = 1 2) is

Pr ( ≤ ) =
³
1− −

1

2

´2

 (90)

 () =
³
1− −

1

2

´
−

1

2
 (91)

Thus,

Pr ( ≤ )=Pr (1 + 2 ≤ )

=

Z 

0

Pr (1 ≤ − ) 2 () 

=1− (+ 5) − − 2 (− 2) − 1

2
 (92)

The density function is given by

 () = (+ 4) 
− + (− 4) − 1

2
 (93)

For  = 3, we have

Pr ( ≤ )=Pr (1 + 2 + 3 ≤ )

=

Z 

0

Pr (1 + 2 ≤ − ) 3 () 

=
1

2
−2

³
62 + 14 + 22 + 2 − 64 32 + 16 32 − 22 32

´

and

 () =
1

2
−2

³
48

3

2
 − 12 − 2 − 48 − 12 32 + 2

3

2

´


In our case, we do not have a closed form solution to compute the
critical values analogous to those in Table 1 of Hansen (2000). We solve
the critical values by simulations. The values are tabulated in Table A:
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Pr ( ≤ ) 0800 085 090 0925 095 0975 099
 = 2 833 913 1021 1096 1198 1368 1585
 = 3 1195 1290 1417 1503 1620 1812 2055
 = 4 1547 1654 1796 1892 2021 2232 2496
 = 5 1893 2010 2165 2269 2410 2638 2920
 = 6 2234 2361 2528 2639 2790 3032 3333
 = 7 2571 2707 2885 3004 3163 3420 3735
 = 8 2906 3050 3238 3363 3531 3800 4131
 = 9 3239 3390 3588 3719 3895 4176 4521
 = 10 3570 3728 3935 4072 4255 4548 4906

Table A: Asymptotic Critical Values 

In general, if there are  threshold variables, we can derive the dis-
tribution function of  uniquely from the moment generating function

 () =

µ
1

(1− ) (1− 2)

¶

for   05 (94)

For the estimation of the nuisance 2, we can extend the results of
Hansen (2000). In our case for  = 2, it can be estimated via a poly-
nomial regression with (1 21  2 

2
2  12) as the set of regressors, or via

the the Nadaraya-Watson kernel estimator with a bivariate Epanech-
nikov kernel.

6 Simulations

In all of the experiments below, we set  = 1 for all , so that the model
becomes

 = 1 + Ψ () + 

We simulate the case where Ψ () = Π2=1
¡
  

¢


 is set to be   (0 1)  01 = 0, 02 = 0 1 = 1  = 1000
(sample size);  = 10000 (number of replications);  ∼ . (0 1),

 = 1,  =
1

8
. All of the simulations are done in GAUSS. The codes are

available from the authors upon request.

Experiment A. This experiment simulate the behavior of the resid-
ual sum of squares and the distribution of b1 (b) and b2 (b) for a fixed
break with 1 = 1 2 = 2. We estimate the following model:

 = 1 + Ψ () + 
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Figure 1a plots the 3D graph of
1



¡
12

¢


Figure 1b plots the 3D graph of 
¡
12

¢


FIGURES 1a and 1b HERE

Figure 2a plots the distribution of  12
³
b1
¡
b1b2

¢
− 1

´


Figure 2b plots the distribution of  12
³
b2
¡
b1b2

¢
− 2

´


Figure 2c plots the 3D distribution of  12
³
b1
¡
b1b2

¢
− 1 b2

¡
b1b2

¢
− 2

´


FIGURES 2a− 2c HERE
Experiment B. This experiment studies the distribution of b for a

shrinking break. Let  = 2 − 1 = −
1

8 .
In this case, we have

(b1b2) = arg min
(12)∈Γ


¡
12

¢
= arg min

(12)∈Γ

£

¡
12

¢
− 

¡
01

0
2

¢¤


From Appendix A3, for 1 = 01+
1

 1−2
, 2 = 02+

2
 1−2

, [1 2] ∈
2, we have


¡
12

¢
− 

¡
01

0
2

¢


= − 0

1

⎛
⎝1 + 2

−
|1|2X

=1



⎞
⎠− 

0

2

⎛
⎝2 + 2

−
|2|2X

=1



⎞
⎠ 

where  and  are independent. Let

1 = − 0

11

2 = − 0

22

When 1 and 2 are independent, we have:

 1−2
¡
1
¡
01
¢
 2

¡
02
¢ ¡
b1 − 01

¢
 2
¡
02
¢
 1

¡
01
¢ ¡
b2 − 02

¢¢

→ argmax
(12)∈2

2X

=1

µ
−1
2
||+ ()

¶


Under this setting, we have
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1
¡
01
¢
= 2

¡
02
¢
= 1 (0) =

1√
2



 1

¡
01
¢
=  2

¡
02
¢
=  1 (0) =

1

2


Figure 3a plots the distribution of  341 (01) 2 (
0
2) (b1 − 01) when

2 − 1 = −18
Figure 3b plots the distribution of  342 (02) 1 (

0
1) (b2 − 02) when

2 − 1 = −18

FIGURES 3a and 3b HERE

Figure 4a plots the 3D distribution of

 1−2
¡
1
¡
01
¢
 2

¡
02
¢ ¡
b1 − 01

¢
 2
¡
02
¢
 1

¡
01
¢ ¡
b2 − 02

¢¢

when 2 − 1 = −18
Figure 4b plots the joint density (12) (1 2)  the definition of

which is provided in eqt.(38).

FIGURES 4a and 4b HERE

Experiment C. This experiment studies the distribution of the LR
test and plot the confidence interval around the estimated thresholds for
shrinking break with  = 2 − 1 = −

1

8 .
Figure 5a plots the finite sample distribution of the LR statistics



¡
01 

0
2

¢
= 

 (
0
1 

0
2)−  (b1b2)

 (b1b2)
 (95)

FIGURE 5a HERE

With  = 1,  = 1000, and using the 95% critical value obtained
from Table 1 for  = 2, Figure 5b plots the simulated 95% confi-
dence interval for (1 2) around the estimated thresholds such that
 (1 2) = 1198

FIGURE 5b HERE
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7 Empirical Application

The empirical relevance of our findings is studied through an applica-
tion to the currency crisis models. The threshold model is particularly
appropriate for the currency crisis issue as all the relevant models in
the literature suggest that there are significant threshold effects in the
crisis indicators. Identifying critical thresholds in the crisis indicators
has important policy implications as the thresholds provide guidelines
for policy makers, allowing them to formulate regulatory policies to min-
imize the stampede of currency crises.
Much of the empirical work on currency crises is concerned with

finding relevant crisis indicators (Kaminsky, Lizondo and Reinhart, 1997;
Kaminsky, 1998; Hali, 2000). While it is helpful to understand the
relevance of different crisis indicators, it is equally important for policy
makers to know the critical thresholds of the indicators, above which
the economy is unable to sustain a stable exchange rate amidst high
pressure in the foreign exchange market. Based on the theory developed
in this paper, we can estimate the joint threshold values of several crisis
indicators simultaneously. We apply our model to the study of currency
crises in 16 countries. It is specified as follows:

 =  + 01 + (
0
2 − 01) Ψ (zγ) +  (96)

for  = 1 2 16, where

Ψ
¡
z 

0
¢
= Π

=1
¡
z  0

¢
 (97)

for  = 1 2 
A currency crisis will not be triggered until all of the threshold vari-

ables exceed the critical thresholds. The number of threshold variables
() to be included in the model is determined by the tests that have
been discussed in Section 5.1. The fixed effect transformation described
in Section 4 is used to remove the individual-specific means from the
panel data.

7.1 Exchange market pressure index as the depen-

dent variable 

In the threshold model, the dependent variable  is taken to be the
exchange market pressure index (), which is measured as the
weighted average of the percentage change in the nominal exchange rate,
the change in the differential between the domestic and foreign discount
rate (the “policy rate”), and the percentage change in the foreign ex-
change reserves of a country. This index has been employed in a number
of studies, including those of Eichengreen, Rose and Wyplosz (1996),
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Frankel and Rose (1996), Sachs, Tornell and Velasco (1996), and Gold-
stein, Kaminsky and Reinhart (2000). The exchange market pressure
index is defined as:

 ≡ [(1 %∆) + (2 ∆( − ))− (3 %∆)] (98)

where
%∆ denotes the percentage change in the exchange rate of country

i with respect to the U.S. dollar at time ;
∆(−) denotes the change in the differential between the short-

term discount rate in country  and the US at time ;
%∆ denotes the percentage change in the foreign exchange reserves

of country  at time ; and
1 2 and 3 are the weights that are defined as the inverse of the

standard deviations of the respective components over the past ten years.
The weights are assigned in order to equalize the volatilities of these three
components.

7.2 Choice of the threshold variables  and regres-
sors 

The threshold variables  should be exogenous indicators of currency
crisis, and they are selected based on the insights from the three genera-
tions of currency crisis model. The first generation model (Krugman,
1979; Flood and Garber, 1984) suggests that exogenous government
budget deficits lie at the root of balance of payment crises. The em-
pirical implication of this is that the pressure on the foreign exchange
market becomes significantly higher once the fiscal deficit exceeds a cer-
tain threshold. Second generation models (Obstfeld, 1986) formulate the
possibility of a self-fulfilling currency crisis. In this model, there can be
multiple equilibria in the foreign exchange market, and the change from
the good equilibrium to the bad equilibrium is self-fulfilling. Threats
of attacks generate expectation-driven increases in interest rates. The
second generation model implies that one should see a drastic increase
in the domestic interest rate before the attack. As a result, the rele-
vant threshold variable is the differential between the domestic interest
rate and the foreign interest rate. The third generation model suggests
that international illiquidity in a country’s financial system precipitates
the collapse of the exchange rate. A financial system is internationally
illiquid if its short-term foreign currency obligations exceed the amount
of foreign currency to which it can have access within a short period of
time. The empirical implication of the third generation model is that
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external illiquidity is a crucial threshold variable in financial and cur-
rency crises (McKinnon and Huw, 1996; Chang and Velasco, 1998a and
1998b). Given the implications of these theories, an important empirical
question should be whether there are threshold effects in the threshold
variables and, if so, what the threshold values are.
Table 1 summarizes the threshold variables  for the three gen-

erations of currency crisis models. The ratio of fiscal deficit to GDP
is measured as the total government expenditure minus the total gov-
ernment revenue, normalized by GDP. The interest rate differential is
constructed as the difference between the 3-month domestic and the US
lending rates. Short-term external liabilities are measured as the sum
of the short-term external debt, the cumulative portfolio liabilities and
six-month imports. When the values of these threshold variables are too
high, the economy enters into an unstable state and the risk of currency
depreciation is imminent.
We include two fundamentals as the explanatory variables () in

the threshold regression model. These variables include the real ex-
change rate and the ratio of domestic credit to GDP (Edwards, 1989;
Dornbusch, Goldgajn and Vald̌s, 1995; Frankel and Rose, 1996; Sachs,
Tornell and Velasco, 1996), both in natural log. The real exchange rate
index measures the change in the real exchange rate relative to the base
period (1986 Q1) and is employed to capture the degree of exchange rate
misalignment over the sample period. In the literature, it is presumed
that a large cumulative appreciation in the real exchange rate index sig-
nifies a high possibility that the real exchange rate is overvalued; hence,
there is a stronger pressure for the real exchange rate to revert to the
mean. This measure of misalignment is only an indirect measure and
does not control for long-run productivity changes; nevertheless, it re-
mains common in the literature because it helps to identify countries
that have experienced extreme overvaluations.
The domestic credit variable is defined as the claims on the private

sector by deposit money banks and monetary authorities. It reflects
the vulnerability of the banking sector to non-performing loans. As
there are no internationally comparable ratios of non-performing loans
to total assets, the ratio of domestic credit to GDP is utilized because
it is presumed that a sharp bank lending boom over a short period
reduces the banks’ ability to screen out marginal projects. This makes
the banks vulnerable to the vagaries of economic fluctuations. To avoid
the endogeneity problem in the estimation, we use the average of the
lags in the previous four quarters for all of the regressors and threshold
variables. Appendix D provides a detailed description of the sources of
the variables.
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Crisis models z

First generation ratio of fiscal deficits to GDP
crisis model
Second generation differentials between the domestic
crisis model interest rate and foreign interest rate
Third generation ratio of short-term external liabilities
crisis model to foreign exchange reserves

Table 1: Threshold variables implied by the three generations of currency
crisis models

7.3 Testing the number of threshold variables

In this section, we apply the tests described in Section 5.1 to test for the
presence of threshold effects. The asymptotic distribution of the test sta-
tistic is non-standard and generally depends on the moments of the sam-
ple. We conduct a bootstrap procedure as follows: First, we estimate the
model under the alternative hypothesis. Then, we group the regression
residuals (after fixed-effect transformation) b∗ by individual b∗ =(b∗
b∗2....., b∗ ) and draw, with replacement, error sample of individual i
b∗ ( = 1 2   ) from this empirical distribution b∗  This gives the
bootstrap errors. The bootstrap dependent variable ∗ is then generated
based on the estimates b and b of the threshold model under the null hy-
pothesis. From the bootstrap sample

©
∗ 

∗


ª
, the test statistic is calcu-

lated. This procedure is repeated a large number of times and the p-value
of the test statistic is calculated as  = 1



P
=1 

©
    

ª
where

  is the test statistic computed from one bootstrap sample,   is
the test statistic computed from the actual data, and B is the number
of bootstrap replications. In this paper, 300 bootstrap replications are
used for each of the tests. The null hypothesis is rejected if the p-value
is smaller than the desired significance level.
The test statistics and p-values for testing zero against one, one

against two, and two against three threshold variables are performed.
The results are reported in Tables 2(a), 2(b) and 2(c). The tests for zero
against one threshold variable are all highly significant, with p-values
of 0.000, 0.014 and 0.000 when the threshold variable is fiscal deficits,
short-term external liabilities and the lending rate differentials, respec-
tively.
The tests for one against two threshold variables are statistically sig-

nificant for almost all of the cases, with p-values close to 0, except for
the cases where the fiscal deficit variable is dropped from the pair of fis-
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0 :  = 0
1 :  = 1 1 :  = 1 1 :  = 1
(fiscal deficit) (short liability) (lending rate diff.)

F 51.7909 30.0459 50.1684
p-value 0.0000** 0.0140* 0.0000**
Note: The numbers in parentheses are the p-values. “**” means the test statistic
is significant at the 5% level and “*” means the test statistic is significant at the
1% level. 300 bootstrap replications are used for each of the test.

Table 2: (a) Testing one threshold variable against no threshold variable

cal deficit and short-term external liabilities, and from the pair of fiscal
deficit and the lending rate differential under the alternative hypothe-
sis. The p-values for these two cases are 0.9667 and 1. When testing
two against three threshold variables, the null hypothesis that the fiscal
deficit variable can be dropped from the list of three is not rejected and
the p-value is 0.9866. Based on these results, we conclude that there
is strong evidence for two threshold variables in the regression relation-
ship, namely, the ratio of short-term external liabilities to reserves and
the lending rate differential. For the remainder of the paper we work
with a threshold model with these two threshold variables.
An explanation for the absence of a threshold effect in the fiscal

deficit variable is that fiscal deficits are often closely related in practice
to interest rate differentials; hence, only one of these two needs to be
included as the threshold variable. One reason for this is that large fiscal
deficits are commonly financed by excessively expansionary monetary
policies, which drive up the risk premium of the domestic currency and
widen the interest rate differential. In addition, if a large fiscal deficit is
accompanied by a high public debt, the government can only roll over
its short-term public debt by offering a higher domestic interest rate,
which results in a larger interest rate differential.
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0 :  = 1 0 :  = 1
(fiscal deficit) (short liabilities)

1 :  = 2
(fiscal deficit, short liabilities)

F 27.1031 5.3490
p-value 0.0000** 0.9667

0 :  = 1 0 :  = 1
(fiscal deficit) (lending rate diff.)

1 :  = 2
(fiscal deficit, lending rate diff.)

F 62.0889 0.3865
p-value 0.0000** 1.0000

0 :  = 1 0 :  = 1
(short liabilities) (lending rate diff.)

1 :  = 2
(short liabilities, lending rate diff.)

F 91.0530 22.8329
p-value 0.0000** 0.0000**

Table 2: (b) Testing two threshold variables against one threshold vari-
able

0 :  = 2 0 :  = 2 0 :  = 2
(fiscal deficit, (fiscal deficit, (short liabilities,
short liabilities) lending diff.) lending diff.)

1 :  = 3
(fiscal deficit, short liabilities, lending rate diff.)

F 96.1324 21.9379 1.1477
p-value 0.0000** 0.0153* 0.9866

Table 2: (c) Testing three threshold variables against two threshold vari-
ables
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7.4 Estimation Results

In this section, we estimate the threshold values for the ratio of short-
term external liabilities to reserves and the lending rate differential. To
allow for different thresholds for countries in different geographical re-
gions, we divide the sample countries into the Asian and Latin American
regions. The estimation results are represented in Table 3. The point
estimates of the ratio of short-term external liabilities to reserves for
the Asian and Latin American countries are 3.1758 and 3.9851 respec-
tively. The point estimates for the lending rate differential for the Asian
and Latin American countries are 2.0566 and 21.8866 percentage points
(or 205.66 and 2188.66 basis points) respectively. The test statistics for
0 :  = 0 against 1 :  = 2 are highly significant for countries
in both regions. The test statistic, along with the p-value, are 33.8296
and 0.0000 for the Asian countries and 34.0269 and 0.0000 for the Latin
American countries. The p-values obtained using the bootstrap proce-
dure discussed in Section 7.3 give strong evidence of threshold effects.
When both threshold variables exceed their critical thresholds, the risk
of currency depreciation is imminent. These threshold estimates can be
used to formulate regulatory policies to reduce the risk of a currency
crisis.
The coefficients of the ratio of domestic credit to GDP for both the

Asian and the Latin American countries are significantly positive when
both threshold variables surpass the critical thresholds (that is, when
Ψ (zγ) = 1). This indicates that the vulnerability of the banking
sector is a crucial factor in determining the exchange market pressure
under this regime.

7.5 A Graphical Analysis of the Threshold Effects
We analyse how well these threshold values can be used to distinguish
the normal regime from the crisis regime in foreign exchange markets.
Given (1) the threshold estimates of 3.1758 for the short-term external
liability variable and 2.0566 for the lending rate differential variable for
Asian countries, and (2) the estimates of 3.9851 and 21.8866 for the
Latin American countries, we define crisis episodes as extreme values of
the exchange market pressure index,

=1 if    + 3

=0 otherwise
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y ≡ exchange market pressure index ()
z ≡ { short term external liabilities

reserves , lending rate differentials}
x ≡ {1 real exchange rate appreciation index, Domestic creditGDP }

Asian countries Latin American countries
() () () ()

Explanatory variables Ψ (zγ)= 0 Ψ (zγ)= 1 Ψ (zγ)= 0 Ψ (zγ)= 1
Constant -0.1989 0.0512 0.2281 0.3692

(-0.9436) (0.6371) (1.5579) (1.1598)
Real exch. rate appreciation -2.7235 1.7293 -0.6257 3.8072

(-1.8493) (6.2783)** (-1.7762) (1.4069)
Domestic credit

GDP 0.0588 1.7464 1.0528 3.4369
(0.0442) (6.0512)** (1.7287) (3.0245)**
threshold estimates

Short term external liabilities
Reserves 3.1758 3.9851

Lending rate differentials 2.0566 21.8866
 stat 33.8296 34.0269
p value 0.0000** 0.0000**

Observations 641 379
Note: The numbers in parentheses are the t-statistics. “**” means that the t statistic is
significant at the 5% level and “*” means that the t statistic is significant at the 1% level.

Table 3: Estimates of the threshold models with two threshold variables
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where  and  are, respectively, the mean and standard
deviation of the exchange market pressure index for country i at time t.
The dates of the crisis episodes in the sample are reported in Table 4.
The threshold effects are illustrated in Figures 6 and 7, which show

the values of the threshold variables (represented by the bars in the fig-
ures), the critical thresholds (the dashed lines), and the exchange market
pressure index (the solid lines) of the Latin American and Asian coun-
tries. The crisis episodes are shaded in grey. The figures indicate that
the threshold variables perform reasonably well in predicting the regime
shifts. For instance, Figures 6(c) and 6(d) show that the ratio of short-
term external liabilities to reserves and the lending rate differentials in
Indonesia and South Korea started to exceed the critical thresholds less
than two years before the 1997 financial crisis, and remained above the
thresholds at the outbreak of the crisis. Figure 6(f) indicates that the
1997 currency crisis in the Philippines occurred as soon as the short-
term external liabilities exceeded the critical threshold, given that the
lending rate differential had already surpassed the threshold prior to the
crisis. Figure 7(b) indicates that both the ratio of short-term external
liabilities to reserves and the lending rate differential started to go above
the critical thresholds less than one year prior to the Brazilian crisis of
2000, and remained above the thresholds throughout the crisis. Figure
7(g) shows that the 1994 Venezuelan crisis broke out as soon as the
short-term external liabilities moved above the critical threshold, given
that the lending rate differential had, at that time, already gone above
the critical threshold.
Nevertheless, we observe two false alarms in our sample. These oc-

curred in the Philippines in 1990-92 and in Mexico in 1999. One explana-
tion is that the Philippine government adopted a tight monetary policy,
aggressively cut government spending and raised indirect taxes during
that period to reduce the downward pressure in the foreign exchange
market. This effectively steered the economy away from a currency cri-
sis, despite the high values of the threshold variables (Bautista, 2000).
Mexico was in the middle of a capital liberalization process during 1999,
which significantly raised the amount of capital inflow into the coun-
try. This helped lower the downward pressure in the foreign exchange
market.
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Countries Crisis Episodes
1. Argentina 2001Q4
2. Brazil 1998Q3-1999Q1, 2000Q2
3. Chile 1990Q4
4. China 1992Q3-1993Q2
5. Colombia None
6. Hong Kong None
7. Indonesia 1997Q3-1998Q2
8. S. Korea 1997Q4
9. Malaysia 1997Q3-Q4, 1998Q2
10. Mexico 1994Q4
11. Philippines 1984Q1, 1997Q3
12. Singapore 1997Q3-Q4, 1998Q2
13. Taiwan 1997Q4
14. Thailand 1981Q3, 1997Q3-Q4
15. Uruguay 1994Q3-1995Q2
16. Venezuela 1994Q2
Note: Crisis episodes that occurred within one year of each other
in the same country are considered as one continuous episode.

Table 4: Dates of Crisis Episodes

8 Conclusion

Threshold regression models have been widely studied in various acad-
emic disciplines. However, conventional threshold models only contain
one threshold variable and thus have limited applications when two or
more threshold variables are needed. Thus far, little is known about the
estimation and inference in models with multiple threshold variables.
This paper presents a new model that allows for more than one multiple
threshold variable. The asymptotic estimation and testing theories are
derived for this model. These asymptotic results are supported by sim-
ulation evidence. We apply our model to the study of currency crises
in 16 countries. The selection of the threshold variables in this study is
closely guided by the premises of the three generations of currency crisis
models. The first generation model suggests that the pressure on the for-
eign exchange market becomes significantly higher once the fiscal deficit
exceeds a certain threshold. The second generation model suggests that
an economy switches from a good equilibrium (a non-crisis equilibrium)
to a bad equilibrium (a crisis equilibrium) once the expectation-driven
increases in domestic interest rates relative to the foreign interest rates
exceed a certain threshold. The third generation model indicates that
short-term external liabilities relative to reserves is one crucial threshold
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variable in currency crises. We find overwhelming evidence of threshold
effects in the ratio of short-term external liabilities to reserves and in the
lending rate differential. Our finding provides strong empirical support
for the currency crisis models in the literature. More importantly, our
estimates of the joint threshold values can be adopted as policy guide-
lines in the regulation of short-term external borrowing and interest rate
differentials. Pre-emptive measures might be taken to prevent these vari-
ables from crossing the critical threshold values, in order to prevent a
currency crisis from happening. Finally, it should be mentioned that the
applicability of our new model extends beyond the scope of economics.
It can also serve as a foundation for further studies.
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Appendix A1: Asymptotic behavior of the OLS estimators
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0)−  (01 
0
2)

 (1 2)
Ψ ()

¶2
+ 2 +  (1)

= 2
1



P
=1Ψ (

0) + 2
µ
 (01 

0
2)

 (1 2)

¶2
1



P
=1Ψ ()

−22 (
0
1 

0
2)

 (1 2)

1



P
=1Ψ (

0)Ψ () + 2 +  (1)

= 2 (01 
0
2)+ 2

µ
 (01 

0
2)

 (1 2)

¶2
 (1 2)−22

 (01 
0
2)

 (1 2)
 (01 

0
2)

+2 +  (1)
→  (1 2) 
where

 (1 2) = 2 + 2
¡
01 

0
2

¢µ
1−  (01 

0
2)

 (1 2)

¶
≥ 

¡
01 

0
2

¢
= 2

 (1 2)

1
= 2

µ
 (01 

0
2)

 (1 2)

¶2
 1 ≤ 0

 (1 2)

2
= 2

µ
 (01 

0
2)

 (1 2)

¶2
 2 ≤ 0

Case 2: 1  01 2 ≤ 02

b1
¡
12

¢
=1 + 

P
=1  (

0
1  1 ≤ 1 2  02)P

=1 (1−  (1  1 2  2))
+  (1)

→ 1 + 
 (01 

0
2)−  (1 

0
2)

1−  (1 2)

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b2
¡
12

¢
=2 − 

P
=1 [ (1  1 2  2)−  (1  1 2  02)]P

=1  (1  1 2  2)
+  (1)

→ 2 − 

µ
1−  (1 

0
2)

 (1 2)

¶


Note that

b → 
 (1 

0
2)−  (01 

0
2) (1 2)¡

1−  (1 2)
¢
 (1 2)

1



¡
12

¢

= 2
1



P
=1

⎛
⎜⎜⎜⎝

 (1 
0
2)−  (01 

0
2)

1−  (1 2)
+Ψ (

0)

− (1 
0
2)−  (01 

0
2) (1 2)¡

1−  (1 2)
¢
 (1 2)

Ψ ()

⎞
⎟⎟⎟⎠

2

+2+ (1)

= 2
1



P
=1

µ
− (

0
1 

0
2)−  (1 

0
2)

1−  (1 2)
(1−Ψ ()) +Ψ (

0)−  (1 
0
2)

 (1 2)
Ψ ()

¶2

+2 +  (1)

= 2
µ
 (01 

0
2)−  (1 

0
2)

1−  (1 2)

¶2
1



P
=1 (1−Ψ ())+

2 1



P
=1Ψ (

0)

+2
µ
 (1 

0
2)

 (1 2)

¶2
1



P
=1Ψ ()−2

 (01 
0
2)−  (1 

0
2)

1−  (1 2)
2
1



P
=1 (1−Ψ ())Ψ (

0)

−22 (1 
0
2)

 (1 2)

1



P
=1Ψ (

0)Ψ () + 2 +  (1)

= 2
µ
 (01 

0
2)−  (1 

0
2)

1−  (1 2)

¶2 ¡
1−  (1 2)

¢
+2 (01 

0
2)+

2

µ
 (1 

0
2)

 (1 2)

¶2
 (1 2)

−2 (
0
1 

0
2)−  (1 

0
2)

1−  (1 2)
2
1



P
=1 ( (1  01 2  02)−  (1  1 2  02))

−22 (1 
0
2)

 (1 2)

1



P
=1  (1  1 2  02) + 2 +  (1)

= 2
¡
 (01 

0
2)−  (1 

0
2)
¢2

1−  (1 2)
+ 2 (01 

0
2) + 2

 (1 
0
2)
2

 (1 2)

−2 (
0
1 

0
2)−  (1 

0
2)

1−  (1 2)
2
¡
 (01 

0
2)−  (1 

0
2)
¢
−22 (1 

0
2)

 (1 2)
 (1 

0
2)

+2 +  (1)
→  (1 2) 
where
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 (1 2) = 2+2

"

¡
01 

0
2

¢
−
¡
 (01 

0
2)−  (1 

0
2)
¢2

1−  (1 2)
−  (1 

0
2)
2

 (1 2)

#


Rewrite

 (1 2) = 2 + 2
∙
(− )

1− − + 

1− 
+ 

− 



¸


where

 = 
¡
1 

0
2

¢


 =  (1 2) 

 = 
¡
01 

0
2

¢


Using the fact that   ,    and + −   1, we have

 (1 2)  
¡
01 

0
2

¢
= 2

Case 3: 1 ≤ 01 2  02

b1
¡
12

¢
=1 + 

P
=1 [ (1  01 2  02)−  (1  01 2  2)]P

=1 (1−  (1  1 2  2))
+  (1)

→ 1 + 
 (01 

0
2)−  (01 2)

1−  (1 2)


b2
¡
12

¢
=2 − 

P
=1 [ (1  1 2  2)−  (1  01 2  2)]P

=1  (1  1 2  2)
+  (1)

→ 2 − 

µ
1−  (01 2)

 (1 2)

¶


Note that

b → 
 (01 2)−  (1 2) (

0
1 

0
2)

 (1 2)
¡
1−  (1 2)

¢ 

1



¡
12

¢

= 2
1



P
=1

Ã
 (01 2)−  (01 

0
2)

1−  (1 2)
+Ψ (

0)−  (01 2)−  (1 2) (
0
1 

0
2)

 (1 2)
¡
1−  (1 2)

¢ Ψ ()

!2
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+2 +  (1)

= 2
1



P
=1

µ
 (01 2)−  (01 

0
2)

1−  (1 2)
(1−Ψ ()) +Ψ (

0)−  (01 2)

 (1 2)
Ψ ()

¶2

+2 +  (1)

= 2
µ
 (01 2)−  (01 

0
2)

1−  (1 2)

¶2
1



P
=1 (1−Ψ ())+

2 1



P
=1Ψ (

0)

+2
µ
 (01 2)

 (1 2)

¶2
1



P
=1Ψ ()+2

2 (
0
1 2)−  (01 

0
2)

1−  (1 2)

1



P
=1 (1−Ψ ())Ψ (

0)

−22 (
0
1 2)

 (1 2)

1



P
=1Ψ (

0)Ψ () + 2 +  (1)

= 2
µ
 (01 2)−  (01 

0
2)

1−  (1 2)

¶2 ¡
1−  (1 2)

¢
+ 2 (01 

0
2)

+2
µ
 (01 2)

 (1 2)

¶2
 (1 2)

+22
 (01 2)−  (01 

0
2)

1−  (1 2)

1



P
=1 ( (1  01 2  02)−  (1  01 2  2))

−22 (
0
1 2)

 (1 2)

1



P
=1  (1  01 2  2) + 2 +  (1)

= 2
¡
 (01 2)−  (01 

0
2)
¢2

1−  (1 2)
+ 2 (01 

0
2) + 2

 (01 2)
2

 (1 2)

−22
¡
 (01 2)−  (01 

0
2)
¢2

1−  (1 2)
−22 (

0
1 2)

 (1 2)
 (01 2)+2+ (1)

→  (1 2) 

where

 (1 2) = 2+2

"

¡
01 

0
2

¢
−
¡
 (01 

0
2)−  (01 2)

¢2

1−  (1 2)
−  (01 2)

2

 (1 2)

#


Rewrite

 (1 2) = 2 + 2
∙
(− )

1− − + 

1− 
+ 

− 



¸

where

 = 
¡
01 2

¢


Use the facts that   ,    and + −   1, we have

 (1 2)  
¡
01 

0
2

¢
= 2
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Case 4: 1  01 2  02

b1
¡
12

¢
=1 + 

P
=1 [ (1  01 2  02)−  (1  1 2  2)]P

=1 (1−  (1  1 2  2))
+  (1)

=1 + 
 (01 

0
2)−  (1 2)

1−  (1 2)
+  (1)

b2
¡
12

¢
= 2 +  (1)

Note that

b → 
1−  (01 

0
2)

1−  (1 2)


Ψ ()Ψ

¡
0
¢
= Ψ () 

1



¡
12

¢

= 2
1



P
=1

µ
− (

0
1 

0
2)−  (1 2)

1−  (1 2)
+Ψ (

0)− 1−  (01 
0
2)

1−  (1 2)
Ψ ()

¶2

+2 +  (1)

= 2
1



P
=1

µ
− (

0
1 

0
2)−  (1 2)

1−  (1 2)
(1−Ψ ()) +Ψ (

0)−Ψ ()

¶2

+2 +  (1)

= 2
µ
 (01 

0
2)−  (1 2)

1−  (1 2)

¶2
1



P
=1 (1−Ψ ())

+2
1



P
=1Ψ (

0) + 2
1



P
=1Ψ ()

−22 (
0
1 

0
2)−  (1 2)

1−  (1 2)

1



P
=1 (1−Ψ ())Ψ (

0)

−22 1


P
=1Ψ (

0)Ψ () + 2 +  (1)

= 2
µ
 (01 

0
2)−  (1 2)

1−  (1 2)

¶2 ¡
1−  (1 2)

¢

+2 (01 
0
2) + 2 (1 2)

−22 (
0
1 

0
2)−  (1 2)

1−  (1 2)

¡
 (01 

0
2)−  (1 2)

¢

−22 1


P
=1Ψ () + 2 +  (1)

= 2

Ã
 (01 

0
2)−  (1 2)−

¡
 (01 

0
2)−  (1 2)

¢2

1−  (1 2)

!
+2+ (1)

→  (1 2)
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where

 (1 2) = 2+2
¡

¡
01 

0
2

¢
−  (1 2)

¢ 1−  (01 
0
2)

1−  (1 2)
 

¡
01 

0
2

¢
= 2

 (1 2)

1
= −2

µ
1−  (01 

0
2)

1−  (1 2)

¶2
 1  0

 (1 2)

2
= −2

µ
1−  (01 

0
2)

1−  (1 2)

¶2
 2  0
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Appendix A2: Asymptotic behavior of the OLS estimators

and
1



¡
12

¢
when  = 1 and threshold variables are inde-

pendent

When threshold variables are independent, we have

b1
¡
12

¢
=1 +  ×
P

=1 [ (1  01)  (2  02)−  (1  max {
0
1 1})  (2  max {

0
2 2})]P

=1 (1−  (1  1)  (2  2))

+ (1) 

Similarly, we have

b2
¡
12

¢
=2 −  ×
P

=1 [ (1  1)  (2  2)−  (1  max {
0
1 1})  (2  max {

0
2 2})]P

=1  (1  1)  (2  2)

+ (1)

Case 1: 1 ≤ 01 2 ≤ 02

b1
¡
12

¢
= 1 +  (1) 

b2
¡
12

¢
= 2 − 

µ
1−  1 (

0
1) 2 (

0
2)

 1 (1) 2 (2)

¶
+  (1) 

b = b2
¡
12

¢
− b1

¡
12

¢ → 
 1 (

0
1) 2 (

0
2)

 1 (1) 2 (2)


 (1 2) = 2 + 2 1

¡
01
¢
 2

¡
02
¢µ
1−  1 (

0
1) 2 (

0
2)

 1 (1) 2 (2)

¶


 (1 2)

1
= −2 1 (

0
1)
2
 2 (

0
2)
2

 1 (1) 2 (2)
1 (1) ≤ 0

 (1 2)

2
= −2 1 (

0
1)
2
 2 (

0
2)
2

 1 (1) 2 (2)
2 (2) ≤ 0

where 1 (1) and 2 (2) are the hazard functions of 1 and 2
respectively.
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Case 2: 1  01 2 ≤ 02

b1
¡
12

¢ → 1 + 

¡
 1 (

0
1)−  1 (1)

¢
 2 (

0
2)

1−  1 (1) 2 (2)


b2
¡
12

¢ → 2 − 

µ
1−  2 (

0
2)

 2 (2)

¶


b → 
 2 (

0
2)
£
1−  1 (

0
1) 2 (2)

¤

 2 (2)
£
1−  1 (1) 2 (2)

¤ 

 (1 2) = 2+2 2

¡
02
¢2
"
−
¡
 1 (

0
1)−  1 (1)

¢2

1−  1 (1) 2 (2)
+

 1 (
0
1)

 2 (02)
−  1 (1)

 2 (2)

#


 (1 2)

1
= 2 2

¡
02
¢2
µ

 1 (
0
1)−  1 (1)

1−  1 (1) 2 (2)
− 1

 2 (2)

¶2
 2 (2) 1 (1)

 0

 (1 2)

2
=−2 2

¡
02
¢2
∙
 1 (

0
1)−  1 (1)

1−  1 (1) 2 (2)
+

1

 2 (2)

¸
×

1−  1 (
0
1) 2 (2)

1−  1 (1) 2 (2)
 1 (1)2 (2)

 0

Case 3: 1 ≤ 01 2  02

b1
¡
12

¢ → 1 + 
 1 (

0
1)
¡
 2 (

0
2)−  2 (2)

¢

1−  1 (1) 2 (2)


b2
¡
12

¢ → 2 − 

µ
1−  1 (

0
1)

 1 (1)

¶


b → 
 1 (

0
1)
£
1−  1 (1) 2 (

0
2)
¤

 1 (1)
£
1−  1 (1) 2 (2)

¤ 

 (1 2) = 2+2 1

¡
01
¢2
"
−
¡
 2 (

0
2)−  2 (2)

¢2

1−  1 (1) 2 (2)
+

 2 (
0
2)

 1 (01)
−  2 (2)

 1 (1)

#

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 (1 2)

1
=−2 1

¡
01
¢2
µ

 2 (
0
2)−  2 (2)

1−  1 (1) 2 (2)
+

1

 1 (1)

¶

×
1−  1 (1) 2 (

0
2)

1−  1 (1) 2 (2)
 2 (2)1 (1)

 0

 (1 2)

2
= 2 1

¡
01
¢2
µ

 2 (
0
2)−  2 (2)

1−  1 (1) 2 (2)
− 1

 1 (1)

¶2
 1 (1) 2 (2)  0

Case 4: 1  01 2  02

b1
¡
12

¢ → 1 + 
 1 (

0
1) 2 (

0
2)−  1 (1) 2 (2)

1−  1 (1) 2 (2)


b2
¡
12

¢
= 2 +  (1) 

b → 
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)


 (1 2) = 2 + 2
¡
1−  1

¡
01
¢
 2

¡
02
¢¢µ

1− 1−  1 (
0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶


 (1 2)

1
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 2 (2) 1 (1)  0

 (1 2)

2
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 1 (1) 2 (2)  0
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Appendix A3: Distribution of b1 and b2 when  = 1

Define

(b1b2) = argmin
¡
12

¢
= argmin

£

¡
12

¢
− 

¡
01

0
2

¢¤


To derive the limiting distribution of b for a shrinking break, we let
 = −, 0    1

2
, we have

 (1 2) =  (01 
0
2) + (1 − 01)

0

1 + (2 − 02)
0

2 +  (1) 

 (1 
0
2) =  (01 

0
2) + (1 − 01)

0

1 +  (1) 

 (01 2) =  (01 
0
2) + (2 − 02)

0

2 +  (1) 

Thus,

¡
12

¢
− 

¡
01

0
2

¢

=
P

=1

³
Ψ (

0) +  − bΨ ()
´2
−P

=1

³
Ψ (

0) +  − b
0
Ψ (

0)
´2

+ (1)

= 
P

=1 (Ψ (
0) + 2 − Ψ ()) (Ψ (

0)−Ψ ()) +  (1)

= 2
P

=1 (Ψ (
0)−Ψ ())

2
+ 2

P
=1  (Ψ (

0)−Ψ ()) +  (1)

In the neighborhood of the true thresholds, where 1 = 01 +
1

 1−2
,

2 = 02+
2

 1−2
, all estimators can be approximated by the true values,

so we have the following:

Case 1: 1 ≤ 0 2 ≤ 0


¡
12

¢
− 

¡
01

0
2

¢

= −2
¡
 (1 2)−  (01 

0
2)
¢

+2−
P
(1101 and 0

2
2) or (2202 and 0

1
1)or (2202 and 11

0

1)


+ (1)

=  1−2
³
(1 − 01)

0

1 + (2 − 02)
0

2

´

+2−
P
(1101 and 0

2
2) or (2202 and 0

1
1)  +  (1)


= 1

0

1 + 2
0

2

+2−
P Pr(1101 and 0

2
2)

=1 +2
−P Pr(2202 and 0

1
1)

=1 

= 1

0

1 + 2
−P−12 01

=1  + 2
0

2 + 2
−P−2 2 02

=1  
where  and  are independent.
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Case 2: 1  0 2 ≤ 0 
¡
12

¢
− 

¡
01

0
2

¢

= −2
¡
 (01 2)−  (1 

0
2)
¢

+2−
P
(0111 and 0

2
2) or (2202 and 11) or (2202 and 0

1
11) 

+ (1)

= −2
³
(2 − 02)

0

2 − (1 − 01)
0

1

´

+2−
P

0
1
11 and 0

2
2

+2
−P

22
0

2
and 11

+  (1)

= 2

0

2 − 1
0

1

+2−
P Pr(0111 and 0

2
2)

=1 +2
−P Pr(2202 and 11)

=1 

= −1 0

1 + 2
−P−12 01

=1  + 2
0

2 + 2
−P−2 202

=1  

Case 3: 1 ≤ 0 2  0


¡
12

¢
− 

¡
01

0
2

¢

= −2
¡
 (1 

0
2)−  (01 2)

¢

+2−
P
(1101 and 22) or (0222 and 0

1
1) or (1201 and 0

2
12) 

+ (1)

=  1−2
³
(1 − 01)

0

1 − (2 − 02)
0

2

´

+2−
P
(1101 and 22) or (0222 and 0

1
1)  + (

−2)

= 1

0

1 − 2
0

2

+2−
P Pr(1101 and 22)

=1 +2
−P Pr(0222 and 0

1
1)

=1 

= 1

0

1 + 2
−P−12 01

=1  − 2
0

2 + 2
−P−22 02

=1  

Similarly, we have

Case 4: 1  0 2  0


¡
12

¢
− 

¡
01

0
2

¢


= −1 0

1 + 2
−P−12 01

=1  − 2
0

2 + 2
−P−22 02

=1  

Let

1 = − 0

11

2 = − 0

22

We have
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− 1−2
³¡
b1 − 01

¢

0

1
¡
b2 − 02

¢

0

2

´

→ arg max
−∞1∞−∞2∞

µ
−1
2
|1|+1 (1)−

1

2
|2|+2 (2)

¶


When 1 and 2 are independent, we have


0

1 = −1
¡
01
¢
 2

¡
02
¢

and


0

2 = −2
¡
02
¢
 1

¡
01
¢


Thus,

 1−2
¡
1
¡
01
¢
 2

¡
02
¢ ¡
b1 − 01

¢
 2
¡
02
¢
 1

¡
01
¢ ¡
b2 − 02

¢¢

→ arg max
(12)∈2

µ
−1
2
|1|+1 (1)−

1

2
|2|+2 (2)

¶

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Appendix B: Asymptotic behavior of 
¡
12

¢
for vector 

Let 0 = 0. As  −1 −δ and  lies in the space spanned

by  = e

³
e 0

e

´−1 e 0
,

 ()− 0
=  0 ( − ) − 0
= (1 +0δ + )0 ( − ) (1 +0δ + )− 0
= −0+

0
1

0 ( − )1+2δ
0 0

0 ( − ) +δ
0 0

0 ( − )0δ
+201

0 ( − )0δ + 2
0
1

0 ( − ) 
= −0+ 2δ

0 0
0 ( − ) + δ

0 0
0 ( − )0δ

Let  =





1

 1−2
( ()− 0) =

1


0 ( 0

0 ( − )0) + (1) 

The projection  can be written as the projection onto [ −]
where  − is a matrix whose  row is 0 (1−Ψ ()). Observe that
( −)

0 = 0

 = ( −)

µ
( −)

0 ( −) 0
0  0



¶−1
( − )

0

= ( −)
£
( −)

0 ( −)
¤−1

( −)
0 +

¡
 0



¢−1
 0



 0
00 =  0

0 ( −)
£
( −)

0 ( −)
¤−1

( −)
00+

0
0

¡
 0



¢−1
 0

0

We discuss four cases:

Case 1: 1 ≤ 01 2 ≤ 02 In this case, we have
 0

0 =  0
00;

( −)
00 = 0;

 0
00 =  0

00

¡
 0



¢−1
 0
00

Thus, we have
1

 1−2
( ()− 0)

=
1


0 0

0 ( − )0+ (1)

= 0
³
 (0)− (0)

−1
 () (0)

´


→ 0
³
0 −0

−1
 0

´


≡ 1 () 
As


1
 (1 2) =  1 ≤ 0
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

2
 (1 2) =  2 ≤ 0

Thus,


1
1 () = 00

−1
  1

−1
 0 ≤ 0



2
1 () = 00

−1
  2

−1
 0 ≤ 0

Case 2: 1  01 2 ≤ 02 In this case, we have
1


 0

0
→ (1 

0
2) ;

1


( −)

00
→0 − (1 

0
2) ;

1


 0
00

→
¡
0 − (1 

0
2)
¢ ¡

 −

¢−1 ¡
0 − (1 

0
2)
¢

+ (1 
0
2)

−1
  (1 

0
2) 

Then, we have
1

 1−2
( ()− 0)

→ 0

Ã
0 −

¡
0 − (1 

0
2)
¢ ¡

 −

¢−1 ¡
0 − (1 

0
2)
¢

− (1 
0
2)

−1
  (1 

0
2)

!


≡ 2 ()  2 (0) = 0
as  0

0 ( − )0 =  0
0 ( − )

0 ( − )0 which is positive semi-
definite.

Case 3: 1 ≤ 01 2  02 In this case, we have
1


 0

0
→ (01 2)

1


( −)

00
→0 − (01 2) 

1


 0
00

→
¡
0 − (01 2)

¢ ¡
 −

¢−1 ¡
0 − (01 2)

¢

+ (01 2)
−1
  (01 2) 

Then we have
1

 1−2
( ()− 0)

→ 0

Ã
0 −

¡
0 − (01 2)

¢ ¡
 −

¢−1 ¡
0 − (01 2)

¢

− (01 2)
−1
  (01 2)

!


≡ 3 ()  3 (0) = 0
as  0

0 ( − )0 =  0
0 ( − )

0 ( − )0, which is positive semi-
definite.
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Case 4: 1  01 2  02 In this case, we have
 0

0 =  0
;

( −)
00 =  0

00 − 0


Then, we have
1

 1−2
( ()− 0)

→ 0
³
0 − −

¡
0 −

¢ ¡
 −

¢−1 ¡
0 −

¢´


= 0
³
0 − −

¡
0 − + −

¢ ¡
 −

¢−1 ¡
0 − + −

¢´


= 0
³
 −0 −

¡
 −0

¢ ¡
 −

¢−1 ¡
 −0

¢´


≡ 4 () 
Thus,



1
4 ()=−0

³¡
 −0

¢ ¡
 −

¢−1
 1

¡
 −

¢−1 ¡
 −0

¢´


 0



2
4 ()=−0

³¡
 −0

¢ ¡
 −

¢−1
 2

¡
 −

¢−1 ¡
 −0

¢´


 0

As all of the four functions are minimized at the true thresholds, and
it can be shown that  () 6=  (0) iff  6= 0 for  = 1 2 3 4, the
threshold estimators are consistent.
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Appendix C: Distribution of b1 and b2 for vector x

To derive the limiting distribution of b for a shrinking break, we let
 = −,   1

2
, and we have

b1 =
¡
 0 − 0



¢−1
( −)

0  0

= 1+
¡
 0 − 0



¢−1 ¡


0

00 −0

¢
+
¡
 0 − 0



¢−1
( −)

0 

b1 − b
0

1=
¡
 0 − 0



¢−1 ³


0

00 − 0
0

´


+
¡
 0 − 0



¢−1
( −)

0 − ( 0 − 0
00)

−1
( −0)

0 

=
¡
 0 − 0



¢−1 ³


0

00 − 0
0

´
 +

¡
 0 − 0



¢−1
(0 −)

0 

+

µ
1

 1−

¶

=

µ
1

 1−

¶
+

µ
1

 1−

¶
+ 

µ
1

 1−

¶

=

µ
1

 1−

¶


b =
¡
 0



¢−1
 0

 − b1

b −  = 

µ
1

 1−

¶



¡
12

¢
=
³
 −b1 −

bδ
´0 ³

 −b1 −
bδ
´

= 0 − 2 0
³
b1 +

bδ
´
+
³
b1 +

bδ
´0 ³

b1 +
bδ
´


In the neighborhood of the true thresholds, where 1 = 01 +
1

 1−2
,

2 = 02 +
2

 1−2
, we have:


¡
12

¢
− 

¡
01

0
2

¢

= 2 0
³
b01 +0

bδ0
´
−2 0

³
b1 +

bδ
´
+
³
b1 +

bδ
´0 ³

b1 +
bδ
´

−
³
b01 +0

bδ0
´0 ³

b01 +0
bδ0
´

= −2 (1 +0δ + ε)
0
³

³
b1 − b

0

1

´
+

bδ −0
bδ0
´

+
³
b1 +

bδ +b01 +0
bδ0
´0 ³

b1 +
bδ −b01 −0

bδ0
´

= −2 (1 +0δ + ε)
0
³

bδ −0

bδ0
´
+
³
b1 +

bδ +b01 +0
bδ0
´0 ³


bδ −0

bδ0
´
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+ (1)

= −2ε0 ( −0) δ+
³
b1 +b01 − 21 +δ −0δ

´0
( −0) δ

+ (1)

= −2ε0 ( −0) δ+δ
0 ( −0)

0 ( −0) δ+
³
b1 + b

0

1 − 21
´0
 0 ( −0) δ

+ (1)
= −2ε0 ( −0) δ + δ

0 ( −0)
0 ( −0) δ +  (1)

= −2−P
=1 

0 (Ψ ()−Ψ (
0))+

P
=1 (

0)
2 |Ψ ()−Ψ (

0)|
+ (1) 
Now, using

 (1 2) =0 +
¡
1 − 01

¢


0

1 +
¡
2 − 02

¢


0

2 +  (1) 

Case 1: 1 ≤ 0 2 ≤ 0 In this case, we have
 0

0 =  0
00;


¡
12

¢
− 

¡
01

0
2

¢

= 2ε0 (0 −)  + 0
¡


0

00 −
0



¢
 +  (1)

= 2ε0 (0 −) 
− + 0

¡
0 −

¢
 1−2 +  (1)

= −2−P(1101 and 0
2
2) or (2202 and 0

1
1) or (2202 and 11

0

1)


0


− 1−20
³
(1 − 01)

0

1 + (2 − 02)
0

2

´
+  (1)

= −2−P(1101 and 0
2
2) or (2202 and 0

1
1) 

0
−0

³
1

0

1 + 2
0

2

´


+ (1)

= −01
0

1 − 2−
P

11
0

1
and 0

2
2

0 − 02
0

2

−2−P22
0

2
and 0

1
1

0 +  (1) 
Note that
−

P
11

0

1
and 0

2
2


0
 converge in distribution to1 (), which

is a vector Brownian motion with covariance matrix 
¡
1 (1)1 (1)

0¢ =
−  0

1
−

P
22

0

2
and 0

1
1


0
 converge in distribution to2 (2), which

is a vector Brownian motion with covariance matrix 
¡
2 (1)2 (1)

0¢ =
−  0

2, where 1 and 2 are independent.
Thus, in the neighborhood of the true threshold values, the above is

equal in distribution to

= −01

0

1 − 201 ()− 02
0

2 − 202 (2) 

We apply the same arguments to the following cases:
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Case 2: 1  0 2 ≤ 0 We have

¡
12

¢
− 

¡
01

0
2

¢

= −2ε0 ( −0) 
−+ 1−20

¡
 +0 − 2 (1 

0
2)
¢0
+ (1)

= −2ε0 ( −0) 
−

+ 1−20
³
0 + (1 − 01)

0

1 + (2 − 02)
0

2 +0 − 2
³
0 + (1 − 01)

0

1

´´0


+ (1)

= −2ε0 ( −0) 
−+ 1−20

³
(2 − 02)

0

2 − (1 − 01)
0

1

´0


+ (1)

= −2ε0 ( −0) 
− + 0

³
2

0

2 − 1
0

1

´0
+  (1)


= −01

0

1 + 2
01 (1) + 02

0

2 − 202 (2) 

Similarly, we have

Case 3: 1 ≤ 0 2  0


¡
12

¢
− 

¡
01

0
2

¢

= −01

0

1 − 201 (1) + 02
0

2 + 2
02 (2) 

Case 4: 1  0 2  0


¡
12

¢
− 

¡
01

0
2

¢

= 01

0

1 + 2
01 (1) + 02

0

2 + 2
02 (2) 

Making the change of variables
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We have
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To find the close-form joint distribution, note that the selection of 1
does not depend on the choice of 2 and vice versa, so we have
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According to Bhattacharya and Brockwell (1976), for 1  0 and

2  0, the above joint distribution equals
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where Φ (·) is the cdf of a standard normal distribution.

Thus, using the fact that  () =
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For cases where some of the   0, we can replace those items in the
above expression by  () = 1−  (−) and  () =  (−).
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Appendix D: data description

The sample data consists of quarterly data from 1982 Q1 through
2001 Q4 of the following economies: Argentina, Brazil, Chile, Colom-
bia, Mexico, Uruguay and Venezuela in Latin America, and Mainland
China, Hong Kong, Indonesia, South Korea, Malaysia, the Philippines,
Singapore, Taiwan and Thailand in Asia.
The primary data sources are International Financial Statistics (IFS),

and the websites of both the Asian Development Bank (ADB) and the
Bank of International Settlements (BIS). The following table gives the
sources and definitions of the variables:

.

Predictors Sources and Definitions

1. Ratio of fiscal deficits Fiscal deficit is taken from IFS line 80 and GDP is
to GDP taken from IFS line 99B.
2. Ratio of short-term The short-term external debt data is obtained
external liabilities to from the Asian Development Bank (ADB)
foreign exchange website and the Bank of International
reserves Settlements (BIS) website. The cumulative

portfolio liabilities data is constructed as the
cumulative sum of the portfolio liabilities flow
data obtained from IFS line 78BGD. The import
data is from IFS line 98C. The foreign exchange
reserve data is from IFS line 1L.

3. Lending rate The lending rate differential is constructed as
differential the difference between the 3-month domestic lending

rate and that of the US. The lending interest rate is
taken from IFS line 60P.

4. Real exchange rate The exchange rate data is obtained from
appreciation index IFS line ..AE..ZF. The exchange rate of China

before 1994 Q1 is the swap rate obtained from
Global Financial Data. The nominal exchange rate is
deflated by the Wholesale Price Index (WPI), which
is taken from IFS line 63..ZF, and then the real exchange
rate is normalized to 1986 Q1=1.

5. Ratio of domestic The domestic credit data is taken from IFS line 32.ZF
credit to GDP and the GDP data is from IFS line 99B.
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Figure 1a: 
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Figure 2a: Distribution of  12
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Figure 2c: Joint Distribution of  12
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Figure 3a: Distribution of  341 (01) 2 (
0
2) (b1 − 01)

Figure 3b: Distribution of  342 (02) 1 (
0
1) (b2 − 02)
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Figure 4a: Joint Distribution of
 1−2
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Figure 4b: Joint Density of (12) (1 2)
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Figure 5a: Distribution of the  Statistic

Figure 5b: 95% Confidence Region for 1 and 2
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Figure 6: Threshold Effects and Exchange Market Pressure Index of
selected Asian Countries

(a): China (b): Hong Kong
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Figure 6: Threshold Effects and Exchange Market Pressure Index of
selected Asian Countries (Continued)

(c): Indonesia (d): S. Korea
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Figure 6: Threshold Effects and Exchange Market Pressure Index of
selected Asian Countries (Continued)

(e): Malaysia (f): Philippines
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Figure 6: Threshold Effects and Exchange Market Pressure Index of
selected Asian Countries (Continued)

(g): Singapore (h): Taiwan
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Figure 6: Threshold Effects and Exchange Market Pressure Index of
selected Asian Countries (Continued)

(i): Thailand
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Figure 7: Threshold Effects and Exchange Market Pressure Index of
selected Latin American Countries

(a): Argentina (b): Brazil
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Figure 7: Threshold Effects and Exchange Market Pressure Index of
selected Latin American Countries (Continued)

(c): Chile (d): Colombia
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Figure 7: Threshold Effects and Exchange Market Pressure Index of
selected Latin American Countries (Continued)

(e): Mexico (f): Uruguay
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Figure 7: Threshold Effects and Exchange Market Pressure Index of
selected Latin American Countries (Continued)

(g): Venezuela
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