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Abstract

This paper proposes conditions for the existence and uniqueness of solutions to
systems of linear differential or algebraic equations with delays or advances, in
which some variables may be non-predetermined. These conditions represent the
counterpart to the Blanchard and Kahn conditions for the functional equations
under consideration. To illustrate the mathematical results, applications to an
overlapping generations model and a time-to-build model are developed.
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1 Introduction

Two common characteristics of many dynamic models in economics are that

the initial values of some variables are unknown and that certain asymptotic

properties—notably convergence toward a steady state—must be accounted for.

Mathematically, these are boundary value problems. The analytical resolution

method consists of projecting the trajectory onto the stable eigenspace of the dy-

namic system. By comparing the dimensions of the space of non-predetermined

variables with those of the unstable eigenspace, one can deduce the properties of

the existence and determinacy of a solution to the system under consideration

(Blanchard and Khan, 1980; Buiter, 1984). The equilibrium is said to be in-

determinate when there is more than one solution, potentially causing sunspot

fluctuations to appear (Azariadis, 1981; Benhabib and Farmer, 1999). However,

the mathematical theorems that characterize these properties were only estab-

lished for systems of finite dimensions comprising ordinary differential equations

(ODEs) or difference equations. In this paper, we generalize these theorems

to include some systems of delay or advanced differential equations (DDEs or

ADEs).

As Burger (1956) pointed out, many dynamic systems in economics can be

written as DDEs. Since his work, DDEs have been used in the demographic

economics, vintage capital, time-to-build, and monetary policy literatures (see

Boucekkine et al., 2004 for an excellent survey of the use of DDEs in economics).

However, for want of a theorem, researchers have had to either confine their

work to very specific cases where the stability properties of the dynamics can be

proven1 or use numerical methods or other mathematical tools (most notably

optimal control with the Hamilton-Jacobi-Bellman equation).2

1See, among others, Gray and Turnovsky (1979); Boucekkine et al. (2005); Bambi (2008);
Augeraud-Véron and Bambi (2011); and d’Albis et al. (2012).

2See Fabbri and Gozzi (2008); Freni et al. (2008); Boucekkine et al. (2010); Federico et
al. (2010); and Bambi et al. (2012).
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DDE systems, which are characterized by a stable manifold of infinite di-

mensions, have generated an abundance of mathematical literature (see the

textbooks by Bellman and Cooke, 1963; and Diekmann et al. 1995). However,

the existing theorems are only valid for systems where all the variables are pre-

determined and defined as continuous functions. Our first objective is to extend

these theorems to cases where some variables are non-predetermined (i.e., their

past values are given but their value when the system is initiated is unknown)

and to cases where some predetermined variables are discontinuous. To do so,

we use the mathematical results of d’Albis et al. (2012). In that paper, we

defined an operator that acts on a multivalued space and studied its properties.

In the present paper, we use the properties of this operator to rewrite a spectral

projection formula according to the initial conditions and compute the jump

made by non-predetermined variables. We set the projection on the unstable

manifold to zero and deduce the magnitude of the jump that nullifies the pro-

jection on the unstable manifold. The spectral projection formula then enables

us to establish the conditions for the existence and uniqueness of a solution.

Most notably, we prove that it is possible to come to a conclusion by comparing

the dimensions of the space of the unknown initial conditions to those of the

unstable eigenspace. Our results also apply to systems of algebraic equations

with delays if their th derivative is a DDE. In this case, the constraints im-

posed by such equations must be accounted for by the conditions for existence

and uniqueness.

Our second objective is to extend these theorems to differential equations

with advances. Systems of ADEs are more similar to ODE systems as they have

a stable eigenspace of finite dimensions. We demonstrate that the solution is

generated by a finite number of eigenvalues simply by projecting the trajectory

onto the stable eigenspace. Conditions for existence and determinacy are ob-
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tained by comparing the number of roots with negative real parts to the number

of initial conditions. We further study the case of systems that include algebraic

equations and define the additional constraints that must be considered.

In Section 2, we present the kind of equations we are interested in and

relate them to the literature in economics. In Section 3, our main theorems

are presented. The conditions for the existence and uniqueness of solutions to

systems of DDEs are in Section 3.1, whereas those of systems of ADEs are in

Section 3.2. In Section 4, we solve two economic models in order to illustrate

our results and show how to apply our theorems. An overlapping generations

model whose dynamics are given by an algebraic equation with delay is studied

in Section 4.1 and the decentralized economy of a time-to-build model that can

be written with a system of DDEs is studied in Section 4.2. Section 5 concludes.

2 Presentation of the problem

To fix matters, we consider a DDE. Letting  ∈ R+ denote time, the dynamic

problem can be written as:

⎧
⎨
⎩

0() =
R 
−1  (− ) () 

 () = ̄ () given for  ∈ [−1 0] ,
(1)

where  is a variable with initial value given by a continuous function over the

interval [−1 0], 0 denotes its derivative with respect to time, and  is a measure

on [−1 0]. Equation (1) features dynamics that depend on past variables (i.e.,

delays) on the interval [− 1 ].3 In economics, the Johansen (1959) and Solow

(1960) vintage capital models are well know examples of dynamic problems

described by (1). Classical results for such dynamics are presented in Diekmann

et al. (1995).

In economic models, we may have other types of systems. Herein, we will

3Note that the largest delay is normalized to one even though it could be any positive real
number. However, we do not consider systems with infinite delays as their characteristic roots
may not be isolated.
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consider three dynamics that differ from (1). First, we study algebraic equations

with delay that reduce to DDEs upon (a finite number of) differentiations with

respect to time. This problem can be written as:

⎧
⎨
⎩

() =
R 
−1  (− ) () 

 () = ̄ () given for  ∈ [−1 0] .
(2)

The main difference with the DDE presented above comes from a discontinuity

that is allowed at time  = 0:  (0+) is given but may be different from  (0−).

Indeed,  (0+) is given through the algebraic equation:

(0+) =

Z 0

−1
 () ()  (3)

To summarize, the initial value is provided by  (0+) and a continuous function

over the interval [−1 0) where  (0−) exists. In both problems (1) and (2), the

variable is predetermined and is usually backward-looking. Examples of such

dynamics are given in Benhabib (2004) and d’Albis et al. (2014) for interest

rate policy models and by de la Croix and Licandro (1999) and Boucekkine et

al. (2002) for vintage human capital issues. We will study the latter as an

illustrative example in Section 4.1.

The second kind of dynamics we consider allows for non-predetermined vari-

ables (i.e., forward-looking variables) that do not have a given initial value at

time  = 0. For a DDE, this dynamic problem can be written as:

⎧
⎨
⎩

0() =
R 
−1  (− ) () 

 () = ̄ () given for  ∈ [−1 0).
(4)

The initial value is now given by a function that is continuous on [−1 0) and

bounded in 0. Growth theory examples of such dynamics can be found in d’Albis

et al. (2012) and Bambi et al. (2012). An example for vintage capital theory

can be found in Jovanovic and Yatsenko (2012).

Finally, the third type of dynamics considers equations with advances rather
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than delays. For instance, an ADE can be written as:

0() =

Z +1



 (− ) ()  (5)

ADEs appear as the Euler equation of some vintage capital models studied using

optimal control (Boucekkine et al., 2005) or dynamic programming (Boucekkine

et al., 2010). Depending on whether or not  (0) is given, the dynamics char-

acterize a backward-looking or a forward-looking variable. Finally, algebraic

equations with advances can also be considered in monetary theory models, as

in d’Albis et al. (2014).

3 Main theorems

In this section, we study functional differential-algebraic systems with delays

and then we study those with advances.

3.1 Functional systems with delays

Let us consider the following linear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x00() =
R 
−1 ̄1 (− ) () 

x1() =
R 
−1 ̄2 (− ) () 

y0() =
R 
−1 ̄3 (− ) () 

x () = x̄ () given for  ∈ [−1 0] and  = {0 1} 

y () = ȳ () given for  ∈ [−1 0)

(6)

Here, x0 ∈ R


is a vector of  backward variables whose dynamics are char-

acterized by DDEs and x00 denotes its gradient. x1 ∈ R

1 is a vector of 1

backward variables characterized by an algebraic equation with delays. y ∈ R

is a vector of  forward variables characterized by a DDE and y0 denotes its

gradient. The x̄ are continuous on [−1 0] and ȳ () is continuous on [−1 0)

and bounded in 0. Moreover,  = (x0x1y) is a vectorial function.
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We assume there exists a steady-state normalized to zero. We define a

solution to system (6) as a function  () whose restriction for positive time

belongs to  ([0+∞)), satisfies (6), and has lim→+∞ () = 0.

Note that the results presented below can be easily extended to study solu-

tions that converge to a Balanced Growth Path (BGP) where all variables grow

asymptotically at a given growth rate by considering the detrended variables.

Let + denote the number of eigenvalues with positive real parts of the

characteristic function of system (6). Further, let  be the number of indepen-

dent adjoint eigenvectors of the characteristic function generated by the +

eigenvalues. By definition,  ≤  + 1 +  .

Assumption H1. There are no eigenvalues with real parts equal to zero and

all eigenvalues are simple.

These restrictions are often assumed for ordinary differential equations; the

absence of pure imaginary roots excludes a central manifold while simple roots

imply a one-dimensional Jordan block. System (6) displays a configuration with

a stable manifold of infinite dimension and an unstable manifold of dimension

. Hence, provided that  ≥ 1, the configuration has a saddle point but multiple

solutions may emerge. By multiple solutions, we implicitly mean an infinity of

solutions since it features a continuum of initial values for forward variables that

initiate a trajectory satisfying system (6) and converging to the steady-state.

Assumption H2. The stable manifold is not transverse to the (0 1) coor-

dinates.

This second assumption implies that the projection of initial conditions on

the unstable manifold encounters the stable manifold. Using it, we conclude

that  ≤ min
©
+ 

ª
. Then, we obtain the following result.

6



Theorem 1. Let H1 and H2 prevail. There exists a solution to system (6) if

+ =  and there may be no solution if +  . Upon existence, a solution is

unique if and only if  = .

Proof. Given the assumption that algebraic equations reduce to DDEs when

differentiated a finite number of times, system (6) can be rewritten as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0() =
R 
−1 1 (− ) () 

y0() =
R 
−1 2 (− ) () 

x () = x̄ () given for  ∈ [−1 0] 

y () = ȳ () given for  ∈ [−1 0)

(7)

where x ∈ R− is a vector of backward variables (with  ≡ +1+ ), y ∈

R
 is a vector of forward variables, and  = (xy). Let us first rewrite system

(7) in a compact way using the linear operator − acting on ([−1 0]R) and

defined as follows:

− ( ()) =
Z 1

0

 () (− ) 

To study system (7), which incorporates forward variables, d’Albis et al. (2012)

suggest extending the set of initial conditions to ([−1 0]R)×R. A solution

to (7) is defined as a function  () ∈  where:

 =  ([−1 0] R)× { ∈  ([0∞)R) : k k∞ ∞}

with initial conditions (x̄ ()  ȳ ()) defined on  ([−1 0] R) by ȳ (0) = ȳ (0−)

and where  () satisfies (7). Note that the solution may be multivalued at

 = 0 as y (0+) may be different from ȳ (0−). D’Albis et al. (2012) further

allows one to consider a problem where an initial jump is possible; to compute

a possible jump at  = 0, we modify the definition of − to make it act on

([−1 0]R)×R:

− ( ()  ) =
Z 1

0

 () (− ) +
¡

¡
0+
¢
− 

¡
0−
¢¢

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Moreover, the initial conditions  = (x̄ ()  ȳ ()  (x (0+) y (0+))) now belong

to ([−1 0]R)×R.

Information concerning the local existence and multiplicity of solutions is

contained in the characteristic function. Let ∆− () =  −
R 0
−1  () 



denote the characteristic function of (7). It can be computed as follows:

∆− () =


1Y

=1

(− ) − () 

where − () is the characteristic function of system (6) and where the ()1≤≤
1

denote the  
1 roots that appear as a consequence of the differentiation of the

algebraic equations of system (6). If an algebraic equation reduces to a differ-

ential equation when differentiated once with respect to time,  
1 = 1. If this

reduction needs more than one differentiation,  
1  1 but 


1 conditions are

now provided at  = 0.

Let () be the spectral projection on the vector space spanned by 
.

Then () =  ()  where:

 () = (x(0
+)y(0+)) +

3X

=1

Z 0

−1
̄ () 



Z 0



−̄ () (x̄() ȳ())

and where  is a matrix such that ∆− () = ∆− () = 0. The

computation of  () (see Theorem 3.16 in d’Albis et al., 2012) shows

that it is proportional to:

x1(0)−
Z 0

−1
̄2 () () 

This implies that  () = 0.

Let us assume in what follows that ∆− () = 0 has no roots with real part

equal to 0 and let + denote the number of roots with positive real parts that

are distinct to any .

If + = 0, there is no unstable manifold, implying that the set of initial

conditions leading to a solution is ([−1 0]R)×R For any initial condition
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(x () y ()) ∈ ([−1 0]R), with y (0) = y (0−), and any (x (0+) y (0+)), a

continuous and bounded solution can be found.

If +  0, there exists an unstable manifold and one must use the spectral

projection formula to describe the solutions to system (7). Let ()1≤≤+ be the

characteristic roots with positive real part of − () = 0. The spectral projec-

tion  () on the vector space spanned by  is  () =  ()

where:

 () = (x(0
+)y(0+)) +

2X

=1

Z 0

−1
 () 



Z 0



− () (x̄() ȳ())

and where  satisfies ∆− () = ∆− () = 0. As the dynamics

belong to the stable manifold, the projection on the unstable manifold should

be null:

 () = 0 (8)

We thus obtain a system of + equations with  unknowns, which are given by

y(0+). Since eigenvectors may be linearly dependent, system (8) can be decom-

posed into two parts: a system of  equations with  unknowns, and (+ − )

conditions on the initial known conditions (x̄ ()  ȳ ()), where x̄ (0−)  x̄ (0+) and

ȳ (0−) are given. As the adjoint eigenvectors (denoted ( ∗ )1≤≤) are linearly

independent, we can write this formally as:

 ∗
¡
0y

¡
0+
¢
− ȳ

¡
0−
¢¢
= (x̄ ()  ȳ ()) for 1 ≤  ≤ 

and

0 = (x̄ ()  ȳ ()) for + 1 ≤  ≤ +

where  (x̄ ()  ȳ ()) is an operator acting on the initial conditions, which is

defined using the fact that the spectral projection on the unstable manifold has

to be null. The first equation implies that  ∗ should not be colinear to the

-axis if we want to avoid degeneracies. As the  ∗ are orthogonal to the stable
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manifold, the stable manifold should not be orthogonal to the -axis. If    ,

there are multiple solutions as some components of (0+) can be freely chosen to

have a solution. If +  , there is no solution generically; whatever (0+) the

system of + equations with  unknowns cannot be solved unless the initial

condition happens to satisfy the conditions, which is not guaranteed. If  =  ,

the system for y (0+)− ȳ (0−) has the same number of equations as unknowns.

Thus, as the  ∗ are linearly independent, if a solution exists, it is unique. ¤

Corollary 1. Provided that adjoint eigenvectors are linearly independent, the

following holds. If   +, system (6) may have no solution. If  = +,

the system always has a unique solution. If   +, it always has multiple

solutions.

To establish a rule for existence and uniqueness, the proof of Theorem 1 finds

initial conditions for forward variables (i.e., y (0+)) such that the projection of

the dynamics on the unstable manifold is the null vector. In our case, the

number of unknowns has the same dimension as y. The number of forward

variables is hence compared to the number of conditions obtained by setting

the considered projection to zero; these conditions are linked to the number

of eigenvalues with positive real parts. Conversely, as the dimensions of the

stable manifold and the set of initial conditions are infinite, the information on

the number of backward variables is not involved in the argument. As in finite

dimensional system, multiple solutions implies indeterminacy.
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3.2 Functional systems with advances

Let us now study a linear system written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0() =
R +1


̄1 (− ) () 

y00() =
R +1


̄2 (− ) () 

y1() =
R +1


̄3 (− ) () 

x (0) = x̄ (0) given,

(9)

where x ∈ R is a vector of  backward variables whose dynamics are charac-

terized by ADEs and where x0 denotes its gradient. Here y0 ∈ R


and y1 ∈ R

1

are vectors of  and 1 forward variables characterized, respectively, by differ-

ential and algebraic equations with advances. Moreover,  = (x0y0y1) is a

vectorial function. A solution is defined as in the previous section.

Let − denote the number of eigenvalues with negative real parts of the

characteristic function of system (9) and let  be the number of independent

eigenvectors of the characteristic function generated by the − eigenvalues. As-

suming H1 and provided that  ≥ 1, system (9) displays a saddle point configu-

ration with an unstable manifold of infinite dimension and a stable manifold of

dimension .

Assumption H3. The unstable manifold is not transverse to the (0 1) co-

ordinates.

We obtain the following result.

Theorem 2. Let H1 and H3 prevail. There exists a solution to system (9) if

 =  and there may be no solution if   . A solution is unique if and only

if − = .

Proof. Since algebraic equations reduce to ADEs when differentiated a finite
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number of times, system (9) can be rewritten as:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0() =
R +1


1 (− ) () 

y0() =
R +1


2 (− ) () 

 (0) = ̄ (0) given,

where x ∈ R is a vector of backward variables, y ∈ R− is a vector of forward

variables (with  ≡  + 1 +  ), and  = (xy). Let − be the number

of eigenvalues with negative real parts, and let  be the number of linearly

independent eigenvectors. Any element of the stable space can be written as:

 () =
−X

=0


 (10)

where the ()1≤≤− are eigenvalues with negative real parts, the ()1≤≤−

are eigenvectors, and the ()1≤≤− are residues.

Evaluating system (10) implies solving a system with − unknowns and 

equations. Since the ()1≤≤− may be linearly dependent, the system can

be split into two parts. Let ()1≤≤ be the family of linearly independent

eigenvectors. The first subsystem we obtain can be rewritten as:

−X

=0

 = x̄ (0) 

yielding a system of  unknown ()1≤≤ and  constraints. And, when the

()1≤≤ are defined, we obtain a second system that can be rewritten as:

−X

=0

 =
X

=0

 

yielding a system of  equations and − unknowns, namely the ()1≤≤− . ¤

Corollary 2. Given linearly independent eigenvectors, the following hold. If

−  , system (9) may have no solution. If − = , the system always has

a unique solution. And if −  , it always has multiple solutions.

12



Here, the rule that establishes the existence and uniqueness of solutions is

different from that presented in Theorem 1. With advances, as the dimension of

the unstable manifold is infinite, the idea is to find initial conditions for forward

variables that permit one to write the dynamics on the stable manifold. This

is why we use the number of eigenvalues with negative real parts to determine

whether the solution exists and is unique. Since we rewrite the system as a finite

dimensional system, the proof of Theorem 2 is similar to what can be found for

ordinary differential equations.

4 Economic examples

In this section, we solve two economic models that give rise to the kind of

equations we are interested in. The first, due to Boucekkine et al. (2002),

is an overlapping generations model in which the dynamics of human capital

is characterized by an algebraic equation with delay. The second considers the

decentralized economy of a time-to-build model. The dynamics are characterized

by a two-dimensional system with both a backward and a forward variable.

4.1 A scalar algebraic equation with a backward variable

Boucekkine et al. (2002) consider an overlapping generations model where

agents make schooling and retirement decisions. By summing individual hu-

man capital accumulation over cohorts, the authors find that the aggregate

human capital, denoted  (), is given by:

 () = 

Z −

−
 (− ) ()  (11)

where   0 denotes the product of a scaling parameter of the production

function and the birth rate,   0 is the age at which the agent leaves school,

and    is the age at retirement.4  (− ) is a survival function, which

4See equation (25) in Boucekkine et al. (2002).
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is parameterized in Boucekkine et al. (2002), but that we keep general in the

following. We simply assume  ()  0 and 0 ()  0 for all  ∈ [ ].

Equation (11) is an algebraic equation with delay. Moreover,  () is a

backward variable and its initial condition can be written as  () = ̄ ()

where  ∈ [− 0) and ̄ () ∈  ([− 0)). Note that ̄ (0−) can be different

from  (0), which is given by:

 (0) = 

Z −

−
 (−) ̄ ()  (12)

Boucekkine et al. (2002) propose an analytical study of the BGP and a

numerical stability assessment. Below, we prove the existence and uniqueness

of a trajectory that converges to the BGP.

Lemma 1. There exists a unique solution to equation (11).

Proof. To study the dynamic properties of  () for  ≥ 0 we consider the

characteristic equation  () = 0, where  () is defined by:

 () = 1−

Z 



 () −

Studying the real roots is straightforward; since 0  0, lim→−∞  () = −∞

and lim→∞  () = 1, there exists a unique real root  that is positive if and

only if 1  
R 

 ()  This root represents the growth rate of the BGP. The

existence and uniqueness of trajectories that converge to the BGP depends on

the number of complex roots with real parts greater than . Let us now prove

that no complex root, denoted  =  + , exists that satisfies    Suppose

the contrary—that such a root exists. As Re ( (+ )) = 0, we would have:

1 = 

¯̄
¯̄
¯

Z 



 () − cos () 

¯̄
¯̄
¯
 

Z 



 () −

which contradicts the fact that   0 for   . Consequently, + = 0 and we

use Theorem 1 to conclude. ¤
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Lemma 1 and its proof demonstrate that our theorems can be easily ap-

plied to a given economic problem. It shows that the solution of the problem

considered by Boucekkine et al. (2002) always exists, even when a general

survival function is considered. Further, note that the dynamics of  () will

be characterized by short term fluctuations generated by the complex roots of

the characteristic equation. These fluctuations are a natural output of models

featuring a realistic age structure of the population and can be found in the

pioneering works on stable population theory of Lotka (1939) and Feller (1941).

4.2 A two-dimensional system with a DDE and a forward

variable

We now consider a neoclassical model with a time-to-build assumption, meaning

that new investments take time to become productive capital. Most of the earlier

contributions in continuous time (El Hodiri et al., 1972; Asea and Zak, 1997;

and Bambi, 2008) focused on optimal paths. Recently Bambi et al. (2012) also

considered the decentralized economy of an endogenous growth model. Below

we study the decentralized economy of a neoclassical growth model.

The representative agent is infinitely lived and solves the following problem:

max
R +∞
0

− ( ()) 



¯̄
¯̄
¯̄

0 () =  ()  () +  ()−  () 

 (0) given, lim→+∞ −
 
0
() () ≥ 0

(13)

where  () is consumption at time ,  () is financial wealth (and 0 () its

derivative with respect to time),  () is the interest rate,  () is the wage, and

  0 is the discount rate. The utility function is given by:

 () =
1−

1
 − 1

1− 1


 (14)

where   0 is the elasticity of intertemporal substitution. The optimal path of

consumption is given by the traditional Euler equation:

0 () =  [ ()− ]  ()  (15)
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Markets are perfectly competitive and, in particular, firms have access to a

competitive rental market for capital goods.  () denotes the stock of capital

and  ( ()) is output, with  0  0 and  00  0. The optimization problem of a

representative firm is static and the optimal behavior is to equalize the marginal

productivity of each factor to its cost. One obtains:

 0 ( ()) =  () +  and  ( ())−  ()  0 ( ()) =  ()  (16)

where  ≥ 0 is the rate of depreciation.

The time-to-build assumption means that the stock of capital at time  is

the aggregation of all investments made before time −  :

 () =  (0) +

Z −

0

−(−−) ()  (17)

This implies that the law of motion for capital is written as:

0 () =  (− )−  ()  (18)

where  (− ) is the investment made at time −  and where  ≥ 0 is the time

lag. Obviously, for  = 0 one has the standard neoclassical model.

The market clearing condition on the goods market is given by:

 ( ()) =  () +  ()  (19)

The market clearing condition on the asset market is:

 () =  () +

Z 

−
 ()  (20)

Investment is valued on the asset market, as it has already been transformed

into capital or is not yet productive. By differentiating (20) with respect to time

and substituting (18) and (16), one obtains the differential equation on assets

given by (13).
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Substituting (16) into (15) and (19) into (18), the problem can be written

as the following two-dimensional system:
⎧
⎨
⎩

0 () =  [ 0 ( ())−  − ]  () 

0 () =  ( (− ))−  (− )−  () 
(21)

Since  () = ̄ () for  ∈ [− 0] is given, there is one forward variable,  (),

and one backward variable,  (). We obtain the following result.

Lemma 2. For  sufficiently small, there exists a unique solution to system

(21).

Proof. Let the pair (∗ ∗) denote the steady state of system (21). The char-

acteristic function, denoted ∆ (), is the determinant of the Jacobian matrix of

the system linearized in the neighborhood of the steady state. Simple algebra

gives:

∆ () = 2 + + − [−  (+ )]  (22)

with  := ∗ 00 (∗). According to Theorem 1, there exists a unique solution to

the system if ∆ () = 0 has one root with positive real part. It is simple to prove

that ∆ () = 0 has, at least, one positive real root. We indeed have ∆ (0)  0

and lim→+∞∆ () = +∞ We now want to establish conditions under which

the latter root is the only one with a positive real part. We proceed in three

steps.

Step 1. We show that for  = 0, there is only one positive root. As

∆ ()|=0 = 2 − +, the proof is immediate.

Step 2. We give conditions for the existence of pure imaginary roots, denoted

0. Using (22), such roots solve ∆ (0) = 0, where:

∆ (0) = −20 + 0 + [cos (0)−  sin (0)] [− 0 (+ )] 

By separating the real and the imaginary parts, one finds that 0 must solve:⎧
⎨
⎩

20 = cos (0)− sin (0) 0 (+ ) 

0 = cos (0) 0 (+ ) + sin (0)
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or, equivalently:

40 + 20

h
2 − (+ )

2
i
−2 = 0 (23)

We show that there exists a positive 0 that solves (23) by setting 
2
0 =  and

studying the equation Φ () = 0, where Φ () = 2+
h
2 − (+ )2

i
−2We

let 0 denote the lowest positive  associated with 0.

Step 3. We show that   0 for  = 0. Applying the implicit function

theorem to ∆ () = 0 gives:




=

µ
 + − (+ )

2 (+ )
− 


− 2

2

¶−1


This expression is then evaluated for  = 0. Using (23), one obtains:





¯̄
¯̄
=0

=
2 + 20
1 + 2

4
0



which is positive.

We conclude that for all  ∈ [0 0), ∆ () = 0 has a unique root with positive

real part. ¤

According to Lemma 2, the length of time between when the investment ex-

penditure is made and when the invested goods are transformed into productive

capital is crucial for the existence of an intertemporal equilibrium. If it takes

too much time to produce capital, the equilibrium may not exist. Moreover,

multiple solutions cannot arise in such an economy, as there always exists at

least one positive eigenvalue. But, as in the previous example, the dynamics

are characterized by fluctuations whose magnitude decreases with time. These

fluctuations are due to the time-to-build assumption, and can be explained by

an over-investment made at date 0 to adjust to a capital stock that is too low.

Oscillations in investment thus have the effect of generating cycles, which in

turn trigger an “echo effect” (Boucekkine et al., 1997) or “wave-like" business

fluctuations (Bambi et al., 2012).
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5 Conclusion

This paper proposes theorems for the existence and uniqueness of solutions to

systems of differential or algebraic equations with delays or advances. These

theorems propose conditions that link the space of unknown initial conditions

to the sign of the roots of the characteristic equation, just like the well-known

Blanchard-Kahn conditions. They could therefore encourage the use of DDEs

and ADEs in economics, which would enable the analytical study of many phe-

nomena. However, certain economic dynamics are characterized by differential

equations that have both delays and advances. In such cases, both the sta-

ble and unstable manifolds are of infinite dimensions and hence the theorems

developed in this paper do not apply. We leave this problem for future research.
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