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Abstract

This paper considers the impact of using the regularisation techniques for the
analysis of the extended skew-normal distribution. The approach is estimated using
a number of techniques and compared to OLS based LASSO and ridge regressions
in addition to non- constrained skew-normal regression.

1 Introduction & Motivation

The use of regularisation in econometrics is far from widespread, however the use is
more commonplace in the statistics literature. This paper addresses the issue raised
by Bühlmann [2013] of the lack of non-Gaussian distributions using the regularisation
methods. The problem of variable selection is commonly side-stepped with legitimate
appeals to theoretical frameworks. Indeed multi-factor models used in finance (for ex-
ample Chen et al. [1986]) face a variable selection problem, which can be solved using
Principal Components or a priori judgements. The regularisation approach gives an
alternative to these within a standard regression framework.

This paper extends this to consider situations where theory is not prescriptive and
into situations where one might be tempted into using hypothesis tests to determine the
independent variables in one’s analyses. The use of these machine learning techniques
is far from a carte blanche for mindless data mining. The use and selection of relevant
data is still driven by theoretical foundations. However it informative to ascertain which
variables are driving the underlying relationships and thus the problem of variable selec-
tion continues to exist. This means that the standard approach of ordinary least squares
is not feasible without some form of variable selection.

The literature on the use and abuse of stepwise regression is significant. The situation
of ‘excessive data’ can be dealt with by the regularised regressions, such as the LASSO
and elastic net, for example Zou and Hastie [2005] & Zou [2005] where it is possible
to have more independent variables than observations, unlike the situation in standard
OLS. It is common that approaches such as the Aikake or Schwartz Information criteria
are used in the variable selection problem (Akaike [1974] amongst others) albeit less
so than stepwise regression techniques. These can further be contrasted with subset
regressions, which take the various permutations of individual variables to find the best
model. These forms of modelling can lead to issues such as inflated R2, F statistics (as
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discussed in, for example, Pope and Webster [1972]) and biases within the estimated
parameters.

In the majority of cases, the use of the regularisation techniques are based upon
Gaussian distributed errors and Ordinary Least Squares. Though in many cases this
is sufficient, there are many cases such as those in finance where normality is not an
appropriate assumption. This paper looks to add to the regularisation literature by
extending the LASSO (Tibshirani [1996]) to accommodate shrinkage within the higher
moments via the use of the extended skew-normal based regression model (Adcock &
Shutes [2001] & Shutes [2005]). The method proposed here uses the technique of the
LASSO, i.e. the introduction of ℓ1 norms, but in contrast to the literature based on
Gaussian regression, a further norm is introduced, that of the skewness parameter . This
will imply that in addition to the variable selection made via the standard approach the
method also performs a selection of non-normality as the extra parameters control the
skewness and kurtosis. It is not necessary to constrain the location of the truncating
variable it is only estimated when the skewness parameter is non-zero.

The rest of the paper is organised as follows. A consideration of the extended skew-
normal and the LASSO is presented with the relevant estimation and an example to
conclude. A standard data set from the machine learning literature, that of diabetes
patients is used (see Efron et al. [2004] where it is fully described).

2 Literature Review & Definitions

2.1 Regularization

Within the econometric literature, regularisation has a limited history. Ridge regression
is perhaps the best known example (for example Hoerl & Kennard[1970]), where the
problem of multicollinearity is dealt with by the imposition of a constraint on the coef-
ficients of the regressions. This estimator is known to be biased however it is the case
that the approach gives estimators with lower standard errors. The penalised function
for the estimation is given by:

βR = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. βTβ ≤ ǫ (1)

= argmin
β

N
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + ν

∑

β2j

= argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

+ νβTβ

=
(

XTX + νI
)−1

XT y

This approach does not perform any form of variable selection as, although it does
shrink coefficients, it does not shrink them to 0. The ν parameter1 acts as the shrinkage

1Traditionally the Lagrangean multiplier is denoted λ, however due to the use of λ as the skewness
parameter in the distribution, the Lagrangean is denoted ν.
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control with ν = 0 being no shrinkage and therefore ordinary least squares. This can
be compared to the Least Absolute Shrinkage & Selection Operator (LASSO). In this
case the penalty is based on the ℓ1 norm rather than the ℓ2 norm of the ridge approach.
Hence the problem becomes:

βR = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. || β ||1≤ ǫ (2)

= argmin
β

N
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + ν

∑

|| βj ||

= argmin
β

(

Yi − β0 −X
T
i β
)T (

Yi − β0 −X
T
i β
)

+ ν | βT | 1

There is a well-known mapping between the multiplier ν and the constraint of the sums
of the coefficients ǫ. In general the constant is not shrunk and remains at ȳ.

The variable selection property is clearly shown graphically when considering two pa-
rameter estimates, with the LASSO (black) and ridge (red). The estimator loss functions
are shown as ellipses. The point of tangency are the estimates for each technique. The

β^

-2.5

0.0

2.5

5.0

7.5

-2.5 0.0 2.5 5.0

β1

β
2

Figure 1: Differences Between LASSO & Ridge Regressions

LASSO shrinks β1 to 0, whereas the ridge regression approaches it. The OLS estimator
is given as β̂. The parameter ν controls the amount of penalty applied to the parameters
for the LASSO. Fu and Knight[2000] show that under certain regularity conditions, the
estimates β̂ are consistent & that these estimates will have the same limiting distribution
as the OLS estimates.
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There is a generalisation such that the γ-th norm is used. This is the bridge estimator.
There are a number of similarities between the bridge estimator with 1 < γ < 22 however
the elastic net approach has non-differentiable corners at the axes (Hastie, Tibshirani,
and Friedman[2008]). This therefore implies that the bridge regression, despite first
impressions will not select variables unless γ < 1 in which case the penalty function is
non-concave and the estimates may not be unique, though they may be set at zero. The
γ-th norm is defined as:

|| β ||γ=
(

∑

| βi |
γ
) 1

γ
(3)

These estimators, Lasso, bridge and ridge are all forms of Bayesian estimator with priors
based on a LaPlace or variants of this based on a log exponential function.

2.2 The Skew-Normal Distribution

The skew-normal distribution has become increasingly well used within a number of
fields since its initial description by Azzalini [1985]. A particularly attractive feature of
the distribution is that it includes the Gaussian as a limiting case. In its simplest form
the distribution is described by the following density function:

h (y) = 2φ (y) Φ (λy) (4)

−∞ < λ <∞

−∞ < y <∞

with λ controlling the degree of skewness of the distribution. The case λ=0 will lead
to a standard normal distribution. As λ increases in absolute value, the weighting on
Φ function increases. This leads to the limiting case being the half or folded normal
distribution. Graphically the impact of λ can be seen from the Figure 2.

Azzalini ([1985] & [1986]) proposes that the skew-normal distribution is best thought
of as a combination of a symmetric element and a skewing element, which is a truncated
normal distribution with mean of 0. This is generalised in Arnold & Beaver [2000] and
Adcock & Shutes [2001] where the truncated normal has a mean of τ . Thus the density
function can be written as:

f (r) =
1

Φ (τ)
φ
(

r;µ+ λτ, σ2 + λ2
)

Φ





τ + λ
σ2 (r − µ)
√

1 + λ2

σ2



 (5)

where φ and Φ are the probability density and cumulative functions of the normal
distribution respectively.

2The limits here are LASSO and ridge regressions.
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Figure 2: The Skew-Normal Distribution λ = 0, 2, 6
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It is possible to use the following parameterization, with γ and ω2 being the mean
and the variance of the normal part of the distribution respectively:

γ = µ+ λτ (6)

ω2 = σ2 + λ2

ψ =
√

σ2 + λ2
λ

σ
= ω

λ

σ

ψ2

ω2
=

λ2

σ2

This parameterisation allows a simpler description of the distribution. This is not a
unique transformation. However the definitions used are easily extendable to the multi-
variate distribution. The probability density function can be expressed in terms of these
parameters as:

fR(r) =
1

Φ(τ)
φ(r; γ, ω2)Φ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(r − γ)

)

(7)

where φ(x;µ, σ2) is the probability density function of a normally distributed variable
with mean µ and variance σ2. This gives an extension to the standard skew-normal
distribution.

The application of the LASSO type approach to the skewed family of distributions
is limited. Wu et al. [2012] consider the variable selection problem for the skew-normal
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family. However they use a fixed but estimated skewness parameter in essence removing
the skewness problem in conjunction with a quadratic expansion of the penalised like-
lihood to give a tractable solution. Their focus is very much on the location and scale
parameters rather than the skewness with a view to modelling the variance as an entity
as well as the mean i.e. regression style models. The penalised likelihood approach used
both in Wu and here is found in Fan and Li [2001]. This allows both the estimation and
standard errors to be estimated despite the singularity introduced by the constraint.

3 Likelihood Functions

In order to use the LASSO style estimators, it is necessary to consider the relevant
likelihood estimators in light of the constraints. We can think of the constrained like-
lihood as having two elements, the objective and the constraint. Thus we can exploit
the first order conditions of the standard skew-normal family to derive the LASSO so-
lution path for various values of the constraint. This is not unlike a co-ordinate descent
approach as discussed in Friedman et al. [2007]. Thus the LASSO estimator is broken
into h(β, λ) = f(β, λ) + g(β, λ, ν) where f(β) is the standard MLE estimator of the
skew-normal regression and g(β, λ, ν) the constrained element.

The likelihood function of the extended skew-normal distribution is somewhat non-
linear. Using the specification above, the likelihood is given by:

ℓi(y; τ, γ, β, ψ, ω
2) = − lnΦ(τ)−

1

2
lnω2 −

1

2
ln 2π −

1

2ω2
(yi − β0 − βxi − γ)

2 (8)

+ lnΦ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(yi − β0 − βxi − γ)

)

+ ν1 (|| β ||1 + || ψ ||1)

f(•) = − lnΦ(τ)−
1

2
lnω2 −

1

2
ln 2π −

1

2ω2
(yi − β0 − βxi − γ)

2

+ lnΦ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(yi − β0 − βxi − γ)

)

g(•) = ν1 (|| β ||1 + || ψ ||1)

This is the standard log-likelihood function for the extended skew-normal with the ad-
dition of the LASSO penally for the coefficients and the skewness parameter. Given the
formulation of the regression problem, the likelihood of a number of the parameters are
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identical to those of the non-penalised regression model. Hence:

∂ℓ

∂τ
=
∂f

∂τ
= −ζ1(τ) + ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)
√

1 +
ψ2

ω2
(9)

∂ℓ

∂γ
=
∂f

∂γ
=

1

ω2
(y − βx− γ)−

ψ

ω2
ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

(10)

∂ℓ

∂ω2
=

∂f

∂ω2
= −

1

2ω2
+

1

2ω4
(y − βx− γ)2 (11)

−
ψ

ω4
ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)(

τψ

2

(

1 +
ψ2

ω2

)−1/2

+ (y − βx+ γ)

)

The coefficients where the constraints can potentially bind are given below.

∂ℓ

∂β
=
∂f

∂β
+
∂g

∂β
=

x

ω2
(y − βx− γ)−

ψ

ω2
xζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

+ sgn(β)ν1

(12)

∂ℓ

∂ψ
=
∂f

∂ψ
+
∂g

∂ψ
=

1

ω2
ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

(13)

(

y − βx− γ + τψ

(

1 +
ψ2

ω2

)−1/2
)

+ sgn(ψ)ν1

4 Estimation

It is possible to leverage the co-ordinate descent approach to update the estimates of
the relevant coefficients until convergence to the LASSO solution occurs. Assuming
uncorrelated predictors, the updating procedure can be based on the product of the
residuals and the relevant predictors and the value of the Lagrange multiplier. Thus
following Friedman et al. [2007] we can write:

β̃j(γ)← S
(

β̃j(γ) +
∑

xijǫi, γ
)

j = 1, 2, . . . , p (14)

This produces a whole path solution with the different solutions for the problem pro-
viding the starting point for the next optimisation thus reducing the issues with conver-
gence3 and speed. The estimations here are for the Azzalini form of the distribution i.e.
τ=0.

3As noted in Azzalini and Capitanio [1999] the likelihood function of the skew-normal is not convex
in its standard form, thus a slight re-formulation not dissimilar to the one presented above is more stable
and robust.
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4.1 Estimation with Maximum Likelihood

Estimation was performed using a maximum likelihood approach with the nuisance pa-
rameter, ν being based on a grid in the first case and then cross validation being used to
optimise the choice of this parameter. Using the non-constrained maximum likelihood
estimates as the initial points to aid in convergence, the estimations were performed
with a transformation of the parameter ν to exp(ν). This lead to more satisfactory con-
vergence of the algorithms and allowed a greater range of the parameter than a simple
linear constraint would allow.

4.2 Estimation MCMC with LaPlace Priors

Using the approach of Park and Casella [2008], a Markov Chain Monte Carlo approach
is proposed. The main estimated parameters, β & λ are all given Laplace prior distri-
butions. The LASSO parameter can be given a diffuse hyperprior based on the gamma
distribution or chosen by techniques such as cross-validation. The former approach is
taken here. The prior for regression coefficients, β and the LASSO parameter, νi is
based, as suggested by Park & Casella on

g(β | σ2) =
∏p

j=1
ν

2
√
σ2

exp−ν|βj |
√
σ2

(15)

f(ν2 | ξ, θ) = θξ

Γ(ξ)(ν
2)ξ−1 exp(−θν2) (16)

The square ensures a proper posterior distribution. Estimation itself is undertaken using
R [2008] and Stan [2013a]4. The priors of the regression coefficients are centred at zero
and have a variance proportional to ν, the langrange multiplier. This gives the variable
selection effect. The hyperprior is paramterized as Γ(1, b) where b is estimated. This
is a somewhat hybrid approach. From the estimation underlying posterior generated is
demonstrated in Figure 3.

5 Data & Results

The data used was a standard machine learning example, the diabetes dataset. The
summary statistics are presented below. There are 442 observations with the first non-
interaction terms were used. Though this is not a p >> n situation it serves to demon-
strate the technique and places this in the corpus of penalised regression. The estimation
was performed using RStan [2013a] & [2013b]. There are a number of convergence (in
distribution) issues with shorter chains however using 5 chains with 5000 iterations gave
convergence according to the potential scale reduction, R̂ statistic. This statistic mea-
sures the average ratio of the variances within chains to the pooled average variance.
The estimation converges to R̂=1 supporting convergence in distribution in the chains.
The estimation coefficients and associated intervals are given in Table 1.

The MLE approach used a grid of Lagrange multipliers and the coefficients from each
of these values are recorded. These are presented as a proportion of the unconstrained

4Code for replicating the results are available from the corresponding author.
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Figure 3: The Posterior Distribution of ν2
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maximum likelihood estimates5. As can be seen the estimates converge to zero as the
penalty increases. A number of coefficients were somewhat unstable. It is believed that
this is due to the correlations between the variables that makes identification difficult in
addition to the relative smoothness of the likelihood functions under specific conditions
(examples are given in Azzalini and Capitanio [1999]). The path of the coefficients is
given in Figure 4 using a rather course path. These are given as a proportion of the
unconstrained estimates (with a sign modification to aid visualisation). This diagram
shows the variable selection power of the LASSO, where the variable hits the zero level
the variable is not included in the regression.

The skewness parameter has a tendency not to shrink, rather it compensates and
becomes more important as the model becomes more parsimonious. It appears to have
the impact of dealing with the missing variables’ form and the non-normality that this
creates. This is demonstrated in Figure 5, with the leap in the value occurring where
there is the most obvious increase in parsimony.

Using a 10-fold cross validation, the estimates of each of the parameters were plotted
to consider the stability of the algorithm. These plots further demonstrate the shrinkage
of the coefficients with the increase of the LASSO parameter. We can see that the
regression coefficients all shrink towards zero, as does the location parameter, though
the skewness parameter, γ increases. This data set therefore trades off the explanatory

5Given the the LASSO parameter is re-parameterized as expν , the unconstrained optimum is given
as a small step away from the start of the grid search in order to demonstrate the shrinkage across the
range.
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Figure 4: Path of SN Lasso Coefficients by ν
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Figure 5: Path of SN Lasso Skewness Coefficients by ν
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power of the regression for increasing the skewness parameter of the distribution.
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Figure 6: Variation of the Estimates of the Regression Coefficients by ν

It should be noted that the Bayesian estimates are not point estimates and so there
is only limited levels of variable selection- the selection comes through the median being
sufficiently close to 0 and the penalty not being as extreme as in the case of the Gaussian
LASSO. Following Gelman et al. Gelman et al. [2003], the zero point estimate is not
considered as a ‘conceptual advantage’. The cross validated (Leave one out) LASSO
coefficients are also given in Table 1. These were estimated using glmnet (Friedman
et al. [2010]) in R. It is noticeable that those variables that the Gaussian LASSO drops
are close to zero and certainly within 1.5 standard error of 0 with the exception of β8
which in both the SN and SN-LASSO has a large positive coefficient. OLS and SN-MLE
estimates are almost identical due to the low levels of skewness. For a further comparison
the OLS based ridge regression is included.The penalty is selected using the approach
of Cule and De Iorio [2012] based on cross-validation.

It is clear that in general there is a significant shrinkage in the estimators. Though
for β6 and β7 (See Figure 7), this appears to have lead to estimates with the opposite
sign; this might be best explained by the relatively high (negative) correlation between
the two variables, thus the LASSO does not assign the correct sign as there are known
issues with LASSO estimators and highly correlated variables. This is supported by the
negative sign on β7 in the LASSO estimation with the Gaussian errors. The MLE point
estimates for the Skew Normal regression are included in the Figure as dashed lines. In
addition to the fifth and ninety fifth percentiles, the median (red) and mode (blue) are
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Table 1: Estimates of the Skew Normal LASSO for Diabetes Data

Parameters Bayesian Estimation Results SN MLE LASSO Ridge OLS

Mean SEmean SD 2.5% 25% 50% 75% 97.5% neff R̂ SN SE CV.LASSO Ridge Ridge SE OLS SEOLS

µ 139.713 0.569 26.289 98.850 117.375 136.296 161.432 188.949 2135 1.002 152.1335 2.544 152.133 152.133 NA 152.133 2.576
β1 -0.207 0.308 28.125 -55.341 -18.665 0.056 18.247 55.503 8313 1.000 -10.012 59.297 - -4.816 57.599 -10.012 59.749
β2 -204.564 0.696 61.678 -325.125 -245.895 -204.606 -163.353 -83.008 7845 1.000 -239.819 61.070 -196.053 -228.124 58.710 -239.819 61.222
β3 519.982 0.698 64.968 392.485 475.125 519.840 563.844 646.636 8660 1.000 519.840 65.816 522.070 515.391 63.156 519.840 66.534
β4 302.573 0.722 64.189 174.912 260.153 302.613 345.071 429.464 7896 1.000 324.390 64.804 296.268 316.125 62.340 324.390 65.422
β5 -171.805 3.015 170.602 -545.363 -269.538 -152.920 -53.057 113.150 3203 1.001 -792.184 414.036 -102.047 -206.171 102.045 -792.184 416.684
β6 -2.543 2.136 140.929 -260.592 -90.274 -11.062 70.895 309.779 4354 1.001 476.746 337.776 - 13.835 99.620 476.746 339.035
β7 -148.884 1.622 111.349 -363.936 -224.283 -150.324 -72.536 64.882 4715 1.001 101.045 209.892 -223.27 -150.203 91.810 101.045 212.533
β8 98.629 1.502 116.604 -113.953 18.056 90.506 173.942 343.605 6027 1.001 177.064 159.876 - 115.787 114.508 177.064 161.476
β9 517.542 1.482 96.397 335.271 453.122 513.998 580.021 715.689 4229 1.001 751.279 170.958 513.684 518.312 76.632 751.279 171.902
β10 60.728 0.631 59.268 -52.527 20.130 58.964 100.316 180.243 8826 1.000 67.625 65.334 53.937 75.172 63.061 67.625 65.984

ν2 58.665 0.692 51.188 12.698 28.214 44.535 71.663 185.667 5469 1.000
ν 7.665
λ 0.356 0.016 0.731 -0.973 -0.215 0.376 0.914 1.700 2147 1.002 0.005 0.101
σ 61.377 0.117 6.704 52.316 56.035 59.934 65.563 76.970 3275 1.001 53.476 1.799
b 0.054 0.001 0.062 0.004 0.017 0.035 0.069 0.221 6136 1.000
lp -2053.50 0.041 2.781 -2059.88 -2055.12 -2053.14 -2051.48 -2049.12 4695 1.000

Key:
Bayesian Estimation Results= Estimation of MCMC Skew Normal LASSO
SN MLE= Estimation of Skew Normal by MLE
LASSO= Gaussian based LASSO with penalty parameter estimated using Cross Validation
Ridge= Gaussian based Ridge with penalty parameter estimated using Cross Validation
OLS= Gaussian based regression
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also shown. Gelman et al. [2003] suggest that in the case of the LASSO the mode is an
useful statistic to use as the coefficient. Though these estimates show little difference
from the mean in many cases. The OLS ridge regression also shrinks the coefficients
towards 0 however this is not as extreme as that of the LASSO in both the Gaussian
and non- Gaussian scenarios.

Figure 7: The Posterior Distribution of Parameters, β6 & β7
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Note that ν2 is the LASSO tuning parameter with the associated gamma distribution
with parameters 1 and b. The parameter b supports a posterior not dissimilar to that
of Figure 3, though the mode is at 0. This gives a posterior distribution of the LASSO
tuning parameter as seen in Figure 8. The 5th and 95th quantiles are marked in red,
the median in blue.

It is noticeable that the skewness parameter under the Skew Normal estimation is
small and insignificant. The posterior of the λ is seen in Figure 9. The bimodality of
the distribution can be traced to the problems associated with the specification of the
skewed normal distribution in the centred manner as discussed in Azzalini [1985]. This
also agrees with the maximum likelihood estimate of the skewness being near zero.

6 Conclusions

The skew normal is an example of a well developed class of asymmetric distributions.
This paper has shown that it is possible to adapt the estimation of regressions based on
this distribution to include a LASSO type penalty. This is seen to shrink the estimates
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Figure 8: The Posterior Distribution of the LASSO Parameter
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Figure 9: The Posterior Distribution of the Skewness Parameter, λ
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in most cases and to generate posterior estimates of the parameters of the regressions.
These are similar in sign to those of the maximum likelihood with exceptions being
potentially driven by high levels of correlation in variables. This behaviour requires
further examination.
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