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Abstract

This paper considers the impact of using the regularisation techniques for the
analysis of the (extended) skew-normal distribution. The models are estimated using
Maximum Likelihood and Bayesian estimation techniques and compared to OLS
based LASSO and ridge regressions in addition to non- constrained skew-normal
regression. The LASSO is seen to shrink the model’s coefficients away from the
unconstrained estimates and thus select variables in a non- Gaussian environment.

1 Introduction & Motivation

Variable selection is an important issue for many fields. Further it is noticeable that not
all data conforms to the standard of normality. This paper addresses the issue raised by
Bühlmann [2013] of the lack of non-Gaussian distributions using the regularisation meth-
ods. Within the statistics literature there are many applications of penalised regressions.
There are other fields such as finance and econometrics where these approaches are less
common. Indeed multi-factor models used in finance (for example Chen et al. [1986])
face a variable selection problem, which can be solved using Principal Components or a
priori judgements. The regularisation approach gives an alternative to these within a
standard regression framework.

This paper extends this to consider situations where theory is not prescriptive and
into situations where one might be tempted into using hypothesis tests to determine the
independent variables in one’s analyses. The use of these machine learning techniques
is far from a carte blanche for mindless data mining. The use and selection of relevant
data is still driven by theoretical foundations. However it is informative to ascertain
which variables are driving the underlying relationships and thus the problem of variable
selection continues to exist. This means that the standard approach of ordinary least
squares is not feasible without some form of variable selection.

The literature on the use and abuse of stepwise regression is significant. It is common
that approaches such as the Aikake or Schwartz Information criteria are used in the
variable selection problem (Akaike [1974] amongst others) albeit less so than stepwise
regression techniques. These can further be contrasted with subset regressions, which
take the various permutations of individual variables to find the best model. These
forms of modelling can lead to issues such as inflated R2, F statistics (as discussed in,
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for example, Pope and Webster [1972]) and biases within the estimated parameters.
The situation of ‘excessive data’ can be dealt with by the regularised regressions, such
as the Least Absolute Shrinkage & Selection Operator (henceforth LASSO) and elastic
net, for example Zou and Hastie [2005] & Zou [2005] where it is possible to have more
independent variables than observations, unlike the situation in standard OLS.

In the majority of cases, the use of the regularisation techniques are based upon
Gaussian distributed errors and Ordinary Least Squares. Though in many cases this
is sufficient, there are many cases such as those in finance where normality is not an
appropriate assumption. This paper looks to add to the regularisation literature by
extending the LASSO (Tibshirani [1996]) to accommodate shrinkage within the higher
moments via the use of the extended skew-normal based regression model (Adcock &
Shutes [2001] & Shutes [2004]). The method proposed here uses the technique of the
LASSO, i.e. the introduction of ℓ1 norms, but in contrast to the literature based on
Gaussian regression, a further norm is introduced, that of the skewness parameter . This
will imply that in addition to the variable selection made via the standard approach the
method also performs a selection of non-normality as the extra parameters control the
skewness and kurtosis. It is not necessary to constrain the location of the truncating
variable it is only estimated when the skewness parameter is non-zero.

The rest of the paper is organised as follows. A consideration of the extended skew-
normal and the LASSO is presented with the relevant estimation and an example to
conclude. A standard data set from the machine learning literature, that of diabetes
patients is used (see Efron et al. [2004] where it is more fully described). All estimation
was performed in R [2008] with package Azzalini [2013] and RStan [2013a] & [2013b]1.

2 Literature Review & Definitions

2.1 Regularization

Within the econometric literature, regularisation has a limited history, though in many
other fields it is a well established technique. In circumstances of ill-formed problems,
such as multi-collinearity or non-full rank in the independent variable matrix, it is possi-
ble to use to use these approaches. Ridge regression is perhaps the best known example
(for example Hoerl & Kennard[1970]), where the problem of multicollinearity is dealt
with by the imposition of a constraint on the coefficients of the regressions. This esti-
mator is known to be biased however it is the case that the approach gives estimators

1Code for replicating the results are available from the corresponding author.
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with lower standard errors. The penalised function for the estimation is given by:

βR = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. βTβ ≤ ǫ (1)

= argmin
β

N
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + ν

∑

β2j

= argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

+ νβTβ

=
(

XTX + νI
)−1

XT y

This approach does not perform any form of variable selection as, although it does
shrink coefficients, it does not shrink them to 0. The ν parameter2 acts as the shrinkage
control with ν = 0 being no shrinkage and therefore ordinary least squares. This can
be compared to the Least Absolute Shrinkage & Selection Operator (LASSO). In this
case the penalty is based on the ℓ1 norm rather than the ℓ2 norm of the ridge approach.
Hence the problem becomes:

βL = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

s.t. || β ||1≤ ǫ (2)

= argmin
β

N
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + ν

∑

|| βj ||

= argmin
β

(

Yi − β0 −XT
i β
)T (

Yi − β0 −XT
i β
)

+ ν | βT | 1

There is a well-known mapping between the multiplier ν and the constraint of the sums
of the coefficients ǫ. In general the constant is not shrunk and remains at ȳ.

The variable selection property is clearly shown graphically when considering two
parameter estimates, with the LASSO (black) and ridge (red). The estimator loss func-
tions are shown as ellipses. The point of tangency are the estimates for each technique.
The LASSO shrinks β1 to 0, whereas the ridge regression approaches it. The OLS es-
timator is given as β̂. The parameter ν controls the amount of penalty applied to the
parameters for the LASSO. Fu and Knight [2000] show that under certain regularity
conditions, the estimates β̂ are consistent & that these estimates will have the same
limiting distribution as the OLS estimates.

There is a generalisation such that the γ-th norm is used. This is the bridge estimator.
There are a number of similarities between the bridge estimator3 with 1 < γ < 2 however
the elastic net approach has non-differentiable corners at the axes (Hastie, Tibshirani,
and Friedman[2008]). This therefore implies that the bridge regression, despite first
impressions will not select variables unless γ < 1 in which case the penalty function is
non-concave and the estimates may not be unique, though they may be set at zero. The
γ-th norm is defined as:

2Traditionally the Lagrangean multiplier is denoted λ, however due to the use of λ as the skewness
parameter in the distribution, the Lagrangean is denoted ν.

3The limits here are LASSO and ridge regressions.
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Figure 1: Differences Between LASSO & Ridge Regressions

|| β ||γ=
(

∑

| βi |
γ
) 1

γ
(3)

These estimators, Lasso, bridge and ridge are all forms of Bayesian estimator with priors
based on a LaPlace or variants of this based on a log exponential function.

2.2 The Skew-Normal Distribution

The skew-normal distribution has become increasingly well used within a number of
fields since its initial description by Azzalini [1985]. A particularly attractive feature of
the distribution is that it includes the Gaussian as a limiting case. In its simplest form
the distribution is described by the following density function:

h (y) = 2φ (y) Φ (λy) (4)

−∞ < λ <∞

−∞ < y <∞

with λ controlling the degree of skewness of the distribution. The case λ=0 will lead
to a standard normal distribution. As λ increases in absolute value, the weighting on
Φ function increases. This leads to the limiting case being the half or folded normal
distribution. Graphically the impact of λ can be seen from the Figure 2.
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Figure 2: The Skew-Normal Distribution λ = 0, 2, 6
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Azzalini [1985] & [1986] proposes that the skew-normal distribution is best thought
of as a combination of a symmetric element and a skewing element, which is a truncated
normal distribution with mean of 0. This is generalised in Arnold & Beaver [2000] and
Adcock & Shutes [2001] where the truncated normal has a mean of τ . Thus the density
function can be written as:

f (r) =
1

Φ (τ)
φ
(

r;µ+ λτ, σ2 + λ2
)

Φ





τ + λ
σ2 (r − µ)
√

1 + λ2

σ2



 (5)

where φ and Φ are the probability density and cumulative functions of the normal
distribution respectively.

It is possible to use the following parameterization, with γ and ω2 being the mean
and the variance of the normal part of the distribution respectively:

γ = µ+ λτ (6)

ω2 = σ2 + λ2

ψ =
√

σ2 + λ2
λ

σ
= ω

λ

σ

ψ2

ω2
=

λ2

σ2

This parameterisation allows a simpler description of the distribution. This is not a
unique transformation. However the definitions used are easily extendable to the multi-
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variate distribution. The probability density function can be expressed in terms of these
parameters as:

fR(r) =
1

Φ(τ)
φ(r; γ, ω2)Φ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(r − γ)

)

(7)

where φ(x;µ, σ2) is the probability density function of a normally distributed variable
with mean µ and variance σ2. This gives an extension to the standard skew-normal
distribution.

The application of the LASSO type approach to the skewed family of distributions
is limited. Wu et al. [2012] consider the variable selection problem for the skew-normal
family. However they use a fixed but estimated skewness parameter in essence removing
the skewness problem in conjunction with a quadratic expansion of the penalised like-
lihood to give a tractable solution. Their focus is very much on the location and scale
parameters rather than the skewness with a view to modelling the variance as an entity
as well as the mean i.e. regression style models. The penalised likelihood approach used
both in Wu and here is found in Fan and Li [2001]. This allows both the estimation and
standard errors to be estimated despite the singularity introduced by the constraint.

3 Likelihood Functions

In order to use the LASSO style estimators, it is necessary to consider the relevant
likelihood estimators in light of the constraints. We can think of the constrained like-
lihood as having two elements, the objective and the constraint. Thus we can exploit
the first order conditions of the standard skew-normal family to derive the LASSO so-
lution path for various values of the constraint. This is not unlike a co-ordinate descent
approach as discussed in Friedman et al. [2007]. Thus the LASSO estimator is broken
into h(β, λ) = f(β, λ) + g(β, λ, ν) where f(β) is the standard MLE estimator of the
skew-normal regression and g(β, λ, ν) the constrained element.

The likelihood function of the extended skew-normal distribution is somewhat non-
linear. Using the specification above, the likelihood is given by:

ℓi(y; τ, γ, β, ψ, ω
2) = − lnΦ(τ)−

1

2
lnω2 −

1

2
ln 2π −

1

2ω2
(yi − β0 − βxi − γ)2 (8)

+ lnΦ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(yi − β0 − βxi − γ)

)

− ν1 (|| β ||1 + || ψ ||1)

f(•) = − lnΦ(τ)−
1

2
lnω2 −

1

2
ln 2π −

1

2ω2
(yi − β0 − βxi − γ)2

+ lnΦ

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(yi − β0 − βxi − γ)

)

g(•) = ν1 (|| β ||1 + || ψ ||1)

This is the standard log-likelihood function for the extended skew-normal with the ad-
dition of the LASSO penally for the coefficients and the skewness parameter. Given the
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formulation of the regression problem, the likelihood of a number of the parameters are
identical to those of the non-penalised regression model. Hence:

∂ℓ

∂τ
=
∂f

∂τ
= −ζ1(τ) + ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)
√

1 +
ψ2

ω2
(9)
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∂γ
=
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=

1

ω2
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ω2
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τ
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ψ2

ω2
+

ψ
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)

(10)
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∂ω2
=
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= −

1

2ω2
+

1

2ω4
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−
ψ

ω4
ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)(

τψ

2

(

1 +
ψ2

ω2

)−1/2

+ (y − βx+ γ)

)

The coefficients where the constraints can potentially bind are given below.

∂ℓ

∂β
=
∂f

∂β
+
∂g

∂β
=

x

ω2
(y − βx− γ)−

ψ

ω2
xζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

− sgn(β)ν1

(12)

∂ℓ

∂ψ
=
∂f

∂ψ
+
∂g

∂ψ
=

1

ω2
ζ1

(

τ

√

1 +
ψ2

ω2
+

ψ

ω2
(y − βx)

)

(13)

(

y − βx− γ + τψ

(

1 +
ψ2

ω2

)−1/2
)

− sgn(ψ)ν1

4 Estimation

For Gaussian based estimations. it is possible to leverage the co-ordinate descent ap-
proach to update the estimates of the relevant coefficients until convergence to the
LASSO solution occurs. Assuming uncorrelated predictors, the updating procedure can
be based on the product of the residuals and the relevant predictors and the value of the
Lagrange multiplier. This produces a whole path solution with the different solutions
for the problem providing the starting point for the next optimisation thus reducing the
issues with convergence4 and speed.

The estimations here are for the Azzalini form of the distribution i.e. τ = 0.

4.1 Estimation with Maximum Likelihood

Estimation was performed using a maximum likelihood approach with the nuisance pa-
rameter, ν being based on a grid in the first case and then cross validation being used to
optimise the choice of this parameter. Using the non-constrained maximum likelihood

4As noted in Azzalini and Capitanio [1999] the likelihood function of the skew-normal is not convex
in its standard form, thus a slight re-formulation not dissimilar to the one presented above is more stable
and robust.
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estimates as the initial points to aid in convergence, the estimations were performed with
a transformation of the parameter ν to exp(ν). This leads to more satisfactory conver-
gence of the algorithms and allowed a greater range of the parameter than a simple
linear constraint would allow.

4.2 Estimation MCMC with LaPlace Priors

Using the approach of Park and Casella [2008], a Markov Chain Monte Carlo approach
is proposed. The main estimated parameters, β & λ are all given Laplace prior distri-
butions. The LASSO parameter can be given a diffuse hyperprior based on the gamma
distribution or chosen by techniques such as cross-validation5. The former approach
is taken here. The prior for regression coefficients, β and the LASSO parameter, νi is
based, as suggested by Park & Casella, on

g(β | σ2) =
∏p

j=1
ν

2
√
σ2

exp−ν|βj |
√
σ2

(14)

f(ν2 | ξ, θ) = θξ

Γ(ξ)(ν
2)ξ−1 exp(−θν2) (15)

The square ensures a proper posterior distribution. The priors of the regression coeffi-
cients are centred at zero and have a variance proportional to ν, the Lagrange multiplier.
This gives the variable selection effect. The hyperprior is paramterized as Γ(1, b) where
b is estimated. This is a somewhat hybrid approach.

5 Data & Results

The data used was a standard machine learning example, the diabetes dataset. These
relate the progress of diabetes over a year to the age, weight, BMI and various serum
measurements. There are 442 observations with the first non-interaction terms used.
The data are standardised to have 0 mean and an unit ℓ2-norm. Though this is not a
p >> n situation it serves to demonstrate the technique and places this approach in the
corpus of penalised regression.

There are two elements to the results, the frequentist and the Bayesian analyses. The
Maximum Likelihood approach used a grid of Lagrange multipliers and the coefficients
from each of these values are recorded. These are presented in Table 2 and graphically in
Figure 3 with the coefficients presented as a proportion of the unconstrained maximum
likelihood estimates6. As can be seen the estimates converge to zero as the penalty
increases. A number of coefficients were somewhat unstable. It is believed that this
is due to the correlations between the variables that makes identification difficult in
addition to the relative smoothness of the likelihood functions under specific conditions

5In the case of estimation of an elasticnet problem, a modified prior including a term in || β ||22 is
used in addition to that of the L1 norm.

6Given that the LASSO parameter is re-parameterized as expν , the unconstrained optimum is given
as a small step away from the start of the grid search in order to demonstrate the shrinkage across the
range.

8



Pr
el
im
in
ar
y
D
ra
ft

(examples are given in Azzalini and Capitanio [1999]). The path of the coefficients is
given in Figure 3 using a rather course path. These are given as a proportion of the
unconstrained estimates (with a sign modification to aid visualisation). This diagram
shows the variable selection ability of the LASSO. Table 1 shows the convergence (and
implicitly the speed of the convergence to 0). If the mean and median are both close
to 0, the coefficient is constrained early in the path and remains at or near 0 for the
path. Otherwise there is a substantial range in which the variable appears in the model.
It is noticeable that the location and dispersion parameter vary; this is related to the
variation in the skewness parameter- in certain cases the skewness increases to fit the
model and this has an impact (especially on the dispersion, σ).

µ σ λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Min. 98.05 100.00 -519.40 -0.05 -0.00 -0.00 0.00 -0.00 -0.00 -119.40 -12.61 0.00 0.00
1st Qu. 99.34 100.20 147.50 -0.00 -0.00 0.00 0.00 -0.00 0.00 -65.55 0.00 0.00 0.00
Median 99.58 105.00 295.70 -0.00 0.00 90.44 53.36 0.00 0.00 -13.94 0.00 57.30 0.03

Mean 99.54 117.00 278.40 1.67 25.31 61.49 42.20 21.10 21.00 -28.96 12.89 47.95 24.16
3rd Qu. 99.62 144.00 462.60 2.23 78.20 95.41 89.73 71.48 72.36 -0.00 47.33 90.85 67.06

Max. 100.80 144.00 1259.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 109.10

Table 1: Summary of Convergence of Coefficients
100% represents equality to unconstrained MLE

For the Bayesian approach, there are a number of convergence (in distribution) issues
with shorter chains however using 10 chains with 7500 iterations gave convergence ac-
cording to the potential scale reduction, R̂ statistic. This statistic measures the average
ratio of the variances within chains to the pooled average variance. The estimation con-
verges to R̂=1 supporting convergence in distribution in the chains, indeed all are less
than 1.05 which is considered a practical level of the measure. The estimation coefficients
and associated intervals are given in Table 2.

The skewness parameter has a tendency not to shrink, rather it compensates and
becomes more important as the model becomes more parsimonious. It appears to have
the impact of dealing with the missing variables’ form and the non-normality that this
creates. This is demonstrated in Figure 4, with the leap in the value occurring where
there is the most obvious increase in parsimony.

Using a 10-fold cross validation, the estimates of each of the parameters were plotted
to consider the stability of the algorithm. There is some variability in the estimation
of the regression coefficients at small penalties (i.e. near unconstrained solutions), but
this is reduced as the constraint is more strongly enforced. In contrast the location and
skewness parameter variability increases in value as the penalty increases. These plots
further demonstrate the shrinkage of the coefficients with the increase of the LASSO
parameter. We can see that the regression coefficients all shrink towards zero, as does
the location parameter, though the skewness parameter, γ increases. This data set
therefore trades off the explanatory power of the regression for increasing the skewness
parameter of the distribution.

It should be noted that the Bayesian estimates are not point estimates and so there
is only limited levels of variable selection- the selection comes through the median being
sufficiently close to 0 and the penalty not being as extreme as in the case of the Gaussian
LASSO. Following Gelman et al. [2013], the zero point estimate is not considered as a
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‘conceptual advantage’.
The (leave one out) cross validated LASSO gaussian (OLS) coefficients are also given

in Table 2. These were estimated using glmnet (Friedman et al. [2010]) in R. It is
noticeable that those variables that the Gaussian LASSO drops are close to zero and
certainly within 1.5 standard error of 0 with the exception of β8 which in both the SN
and SN-LASSO has a large positive coefficient. OLS and SN-MLE estimates are almost
identical due to the low levels of skewness. For a further comparison the OLS based
ridge regression is included. The penalty is selected using the approach of Cule and De
Iorio [2012] based on cross-validation.

It is clear that in general there is a significant shrinkage in the estimators, with
the variable selection demonstrated by the comparison of the coefficients of β6 and
β3 as shown in Figure 6. The first is reduced towards zero in comparison with its
unconstrained Maximum Likelihood Estimator, whereas that of β3 remains near the ML
estimate under this approach. This bears out the frequentist MLE where the coefficient
β3 remains relatively large over much of the path. The 5th and 95th quantiles are marked
in red, the median in blue. For coefficients β6 and β7 (See Figure 7), the shrinkage

Figure 6: The Posterior Distribution of Parameters, β3 & β6

appears to have led to estimates with the opposite sign; this might be best explained
by the relatively high (negative) correlation between the two variables, thus the LASSO
does not assign the correct sign as there are known issues with LASSO estimators and
highly correlated variables. This is supported by the negative sign on β7 in the LASSO
estimation with the Gaussian errors. The MLE point estimates for the Skew Normal
regression are included in the figure as dashed lines, and it should be noted that the
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Table 2: Estimates of the Skew Normal LASSO for Diabetes Data

Parameters Bayesian Estimation Results SN MLE LASSO Ridge OLS

Mean SEmean SD 2.5% 25% 50% 75% 97.5% neff R̂ SN SE CV.LASSO Ridge Ridge SE OLS SEOLS

µ 138.804 0.305 26.168 99.076 116.685 134.873 160.292 188.557 7376 1.002 152.1335 2.544 152.133 152.133 NA 152.133 2.576
β1 -0.439 0.181 27.541 -54.742 -18.563 -0.503 17.496 54.207 23066 1.000 -10.012 59.297 - -4.816 57.599 -10.012 59.749
β2 -204.579 0.397 60.746 -325.125 -245.895 -204.606 -163.353 -83.008 23371 1.000 -239.819 61.070 -196.053 -228.124 58.710 -239.819 61.222
β3 520.142 0.403 65.989 389.406 476.073 520.622 564.471 648.292 26823 1.000 519.840 65.816 522.070 515.391 63.156 519.840 66.534
β4 302.730 0.406 64.373 176.437 259.475 302.902 346.036 428.455 25090 1.000 324.390 64.804 296.268 316.125 62.340 324.390 65.422
β5 -169.967 1.717 169.493 -553.173 -266.653 -151.408 -52.354 110.4963 9750 1.001 -792.184 414.036 -102.047 -206.171 102.045 -792.184 416.684
β6 -4.908 1.316 140.106 -261.343 -90.961 -12.553 67.062 309.328 11338 1.001 476.746 337.776 - 13.835 99.620 476.746 339.035
β7 -148.517 0.968 110.571 -362.968 -224.255 -148.753 -72.136 63.029 13039 1.000 101.045 209.892 -223.27 -150.203 91.810 101.045 212.533
β8 99.930 0.902 115.514 -109.083 18.142 91.136 175.254 344.467 16399 1.000 177.064 159.876 - 115.787 114.508 177.064 161.476
β9 515.742 0.809 96.940 332.851 450.464 513.426 577.528 714.491 14373 1.001 751.279 170.958 513.684 518.312 76.632 751.279 171.902
β10 61.216 0.384 59.344 -49.782 20.012 58.940 100.863 181.131 23945 1.000 67.625 65.334 53.937 75.172 63.061 67.625 65.984

ν2 58.326 0.412 50.850 12.279 28.207 44.386 71.11 188.332 15247 1.000
ν 7.637
λ 0.382 0.008 0.729 -0.954 -0.185 0.414 0.942 1.694 7424 1.002 0.005 0.101
σ 61.508 0.065 6.744 52.361 56.100 60.051 65.881 76.906 10668 1.001 53.476 1.799
b 0.055 0.0004 0.063 0.004 0.017 0.036 0.069 0.223 20109 1.000
lp -2053.46 0.024 2.726 -2059.69 -2055.07 -2053.12 -2051.49 -2049.15 13097 1.001

Key:
Bayesian Estimation Results= Estimation of MCMC Skew Normal LASSO
SN MLE= Estimation of Skew Normal by MLE
LASSO= Gaussian based LASSO with penalty parameter estimated using Cross Validation
Ridge= Gaussian based Ridge with penalty parameter estimated using Cross Validation
OLS= Gaussian based regression
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standard error on this coefficient is relatively large, thus the coefficient may actually be
negative and within the estimate of the posterior. In addition to the fifth and ninety
fifth percentiles, the median (red) and mode (blue) are also shown. Gelman et al. [2013]
& Hastie et al. [2008] suggest that in the case of the LASSO the posterior mode is an
useful measure to use as the coefficient, rather than the posterior mean in the case of the
ridge estimator. Though these estimates show little difference from the mean in many
cases. The OLS ridge regression also shrinks the coefficients towards 0 however this is
not as extreme as that of the LASSO in both the Gaussian and non- Gaussian scenarios.

Figure 7: The Posterior Distribution of Parameters, β6 & β7
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Note that ν2 is the LASSO tuning parameter with the associated gamma distribution
with parameters 1 and b. This gives a posterior distribution of the LASSO tuning
parameter as seen in Figure 8.

It is noticeable that the skewness parameter under the Skew Normal estimation is
small and insignificant. The posterior of the λ is seen in Figure 9. The bimodality of
the distribution can be traced to the problems associated with the specification of the
skewed normal distribution in the centred manner as discussed in Azzalini [1985]. This
also agrees with the maximum likelihood estimate of the skewness being near zero.

6 Conclusions

The skew normal is an example of a well developed class of asymmetric distributions.
This paper has shown that it is possible to adapt the estimation of regressions based on
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Figure 8: The Posterior Distribution of the LASSO Parameter
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Figure 9: The Posterior Distribution of the Skewness Parameter, λ
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this distribution to include a LASSO type penalty. This is seen to shrink the estimates of
regression coefficients and thus perform a variable selection role. The shrinkage occurs in
both Bayesian and frequentist paradigms. It is possible to generate posterior estimates
of the parameters of the regressions. These are similar in sign to those of the maxi-
mum likelihood with exceptions being potentially driven by high levels of correlation in
variables.

Natural extensions from this work include a generalisation from the skew normal
distribution to include other, spherically symmetric distributions. These such as the skew
Student distribution would increase the application of these approaches to situations
where higher moments are critical such as finance.
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