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Abstract

We study a variant of the repeated Prisoner’s Dilemma with uncertain horizon, in which each player

chooses his foresight ability: that is, the timing in which he is informed about the realized length of

the interaction. In addition, each player has an independent probability to observe the opponent’s

foresight ability. We show that if this probability is not too close to zero or one, then the game admits

an evolutionarily stable strategy, in which agents who look one step ahead and agents who look three

steps ahead co-exist. Moreover, this is the unique evolutionarily stable strategy in which players

play efficiently at early stages of the interaction. We interpret our results as a novel evolutionary

foundation for limited foresight, and as a new mechanism to induce cooperation in the repeated

Prisoner’s Dilemma.

KEYWORDS: Limited foresight, Prisoner’s Dilemma, limit ESS. JEL Classification: C73, D03.

1 Introduction

Experimental evidence suggests that people have limited foresight. For example, players usually

defect only at the last couple of stages when playing a finitely repeated Prisoner’s Dilemma

game (see, e.g., Selten and Stoecker, 1986), and they ignore future opportunities that are more

than a few steps ahead when interacting in sequential bargaining (Neelin et al., 1988). A second

stylized fact is the heterogeneity of the population: some people systematically look fewer steps

ahead than others (see, e.g., Johnson et al., 2002).1

∗I thank the editor, George Mailath and two anonymous referees for useful comments and suggestions. I
would like also to express my deep gratitude to Itai Arieli, Vince Crawford, Eddie Dekel, Erik Mohlin, and
Peyton Young, for many useful comments, discussions, and ideas.

1 Similar stylized facts are also observed with respect to the number of strategic iterations in static games,
as suggested by the “level-k” models (e.g., Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes et al., 2001.
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2 1 Introduction

These observations raise two related evolutionary puzzles. In many games, the ability to look

ahead by one more step than your opponent can give a substantial advantage. As the cognitive

cost of an additional step is moderate in relatively simple games (see, e.g., Camerer, 2003,

Section 5.3.5), it is puzzling why there has not been an “arms race” in which people learn to

look many steps ahead throughout the evolutionary process (the so called “red queen effect”;

Robson, 2003). The second puzzle is how “naive” people in a heterogeneous population, who

systematically look fewer steps ahead, survive.

In this paper we present a reduced form static analysis of a dynamic evolutionary process

of cultural learning in a large population of agents who play the repeated Prisoner’s Dilemma.

Each agent is endowed by a type which determines his foresight ability and his behavior in

the game. Most of the time agents follow the foresight ability and strategy that they have

inherited. Every so often, a few agents experiment with a different type. The frequency of

types evolves according to a payoff-monotonic selection dynamic: more successful types become

more frequent. Our main results characterize a stable heterogeneous population in which some

agents look one step ahead and the remaining agents look three steps ahead, and show that this

is the unique stable population in which players cooperate at early stages of the interaction.

Our static analysis focuses on a symmetric two-player game, in which the set of actions of

each player is the set of feasible types in the population. A mixed equilibrium in this auxiliary

game describes a distribution of types in the population. It is well known (see, e.g., Nachbar,

1990) that a distribution of types is dynamically stable only if its corresponding mixed strategy

is a symmetric Nash equilibrium.

The auxiliary game includes an initial round in which players choose their foresight ability

and T rounds of repeated Prisoner’s Dilemma, where T is geometrically distributed with a

continuation probability close to one (i.e., a high enough expected length). At stage 0, each

player chooses a foresight ability (abbreviated, ability) from the set {L1, L2, ..., Lk, ...}. A player

with ability Lk is privately informed at round T − k about the realization of T. We interpret

k as the horizon (i.e., number of remaining steps) in which a player with ability Lk becomes

aware of the strategic implications of the final period. We discuss this interpretation in Section

8.1. In addition, choosing ability Lk bears a cognitive cost of c (Lk), which is weakly increasing

in k (non-monotonic costs are discussed in Section 8.2).

Each player obtains a private signal about his opponent’s ability (à la Dekel et al., 2007):

(1) the signal reveals the opponent’s ability with probability p, and (2) it is non-informative

otherwise (independently of the signal that is observed by the opponent). Our interpretation

is that each player may observe his opponent’s behavior in the past or a trait that is correlated

with foresight ability, and he uses such observations to assess his opponent’s ability.2

2 In Appendix A we relax the assumption that p is exogenous, and allow players to influence the probability
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Tab. 1: Payoff at the symmetric stage game Prisoner’s Dilemma (A > 1).

The payoffs and actions at stages 1 ≤ t ≤ T are described in Table 1: Mutual cooperation

yields A > 1, mutual defection gives 1, and if a single player defects, he obtains A + 1 and his

opponent gets 0.3 The total payoff of the game is the undiscounted sum of payoffs.

We begin by characterizing a specific symmetric Nash equilibrium, σ∗, for every p that is

not too close to zero and one (and the width of this interval is increasing in A). The support of

σ∗ includes two abilities (dubbed, incumbents): L1 and L3, where µ (L1) is increasing in A and

p. Strategy σ∗ induces a simple deterministic play: when the horizon is still uncertain players

follow a “perfect” variant of “tit-for-tat” (dubbed, pavlov): defect if and only if players have

played different actions in the previous round.4 Everyone defects at the last round. A player

with ability L3 defects also at the penultimate round, and his behavior at the previous round

(i.e., stage T − 2) depends on the signal about the opponent’s ability: he follows pavlov if it is

either L1 or unknown, and defects otherwise.

Intuitively, the equilibrium relies on two observations: (1) if p is not too low, there is a

unique frequency, µ (L1), that induces a balance between the direct disadvantage of having

ability L1 (loosing one point by cooperating at horizon 2), and its indirect “commitment”

advantage (when an L3 opponent observes ability L1, it induces him to cooperate an additional

round); and (2) if p is not too high, then it is optimal to follow pavlov at stage T − 3 also when

a player has higher ability than L3.

Nash equilibria may be dynamically unstable. Maynard Smith and Price (1973) refine it

as follows: Nash equilibrium σ is an evolutionarily stable strategy (abbreviated, ESS) if it

is a better reply against any other best-reply strategy σ′ (u (σ′, σ) = u (σ, σ) ⇒ u (σ, σ′) >

u (σ′, σ′)). The motivation is that an ESS, if adopted by a population of players, cannot be

invaded by any alternative strategy that is initially rare. Repeated games rarely admit an

of observing the opponent’s ability.
3 We assume that defection yields the same additional payoff (relative to cooperation) regardless of the

opponent’s strategy to simplify the presentation of the result and their proofs. The results remain qualitatively
similar also without this assumption. Besides this assumption, the table represents a general Prisoner’s Dilemma
game (up to an affine normalization).

4 The name “Pavlov” (Kraines and Kraines, 1989; Nowak and Sigmund, 1993) stems from the fact that it
embodies an almost reflex-like response to the payoff of the previous round: it repeats its former move if it was
rewarded by a high payoff (A or A + 1), and it switches if it was punished by receiving a low payoff (0 or 1).
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ESS due to “equivalent” strategies that differ only in off-equilibrium paths. In particular, the

repeated Prisoner’s Dilemma does not admit any ESS (Lorberbaum, 1994).

Selten (1983) adapts the notion of ESS to extensive-form games as follows. A perturbation

is a function that assigns a minimal probability to play each action at each information set.

Strategy σ is a limit ESS if it is the limit of ESS of a sequence of perturbed games when the

perturbations converge to 0.5 Observe that any ESS is a limit ESS, and that any limit ESS is a

symmetric perfect equilibrium (Selten, 1975, see Corollary 1). Our first main result (Theorem

2) shows that σ∗ is a limit ESS.6

Similar to other repeated games, the interaction admits many stable strategies. In Section

5, we present a “folk theorem” result: for any k, m and n, there exists a limit ESS in which

everyone has ability Lk, and as long as the horizon is uncertain, players repeat cycles in which

they cooperate m times and defect n times.

Thus, uniqueness is possible only when focusing on a subset of stable strategies. We shall

say that a strategy is early-nice if players cooperate when: (1) the horizon is sufficiently large,

and (2) no one has ever defected in the past. Empirical evidence suggests that focusing on

early-nice strategies is plausible: Selten and Stoecker (1986) experimentally demonstrate that

most subjects satisfy early-niceness when playing the repeated Prisoner’s Dilemma in the lab,7

and the tournaments of Axelrod (1984) and Wu and Axelrod (1995) suggest that “niceness”

(not being the first to defect) might be a necessary requirement for evolutionary success. In

Section 6 we adapt the results of Fudenberg and Maskin (1990) and show that all the non-

early-nice strategies of the above “folk theorem” result become unstable when the continuation

probability converges to one (while the early-nice strategy σ∗ remains stable).

Our second main result (Theorem 5) shows that, if A > 3, then any early-nice limit ESS

is equivalent to σ∗: it induces the same distribution of abilities and the same play on the

equilibrium path. In Section 7 we extend the uniqueness result to weaker solution concepts: a

neutrally stable strategy and a perfect equilibrium. Figure 1 graphically summarizes our main

results for different values of A and p. Observe that no early-nice stable strategies exist if p is

close to either zero or one.

The intuition of Theorem 5 is as follows. Let Lk be the lowest incumbent ability. Observe

that everyone must defect during the last k rounds because the event of reaching the kth to last

5 A few examples for applications of limit ESS are: Samuelson (1991); Kim (1993, 1994); Bolton (1997);
Leimar (1997).

6 Moreover, we show that σ∗ is the limit of ESS of every sequence of perturbed games (strict limit ESS).
7 Selten and Stoecker (1986) experimentally study how people play a repeated Prisoner’s Dilemma with 10

rounds (see similar results in Andreoni and Miller (1993); Cooper et al. (1996); Bruttel et al. (2012)). They
show that: (1) there is usually mutual cooperation in the first six rounds, (2) players begin defecting only during
the last four rounds, and (3) if any player defected, then almost always both players defect at all remaining
stages. Johnson et al. (2002)’s findings suggest that limited foresight is the main cause for this behavior.
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Fig. 1: Summary of Main Results

round is common knowledge among the players. If Lk is the unique incumbent ability, then

“mutants” with ability Lk+1 outperform the incumbents by defecting one stage earlier. If there

are two consecutive abilities, then the lower ability is outperformed by the higher one. If there

is a gap of more than two steps between the lowest and the highest ability in the population

and A is sufficiently large, then it turns out that the strategy is unstable to small perturbations

in the frequencies of the different abilities in between. Thus the support must be
{

Lk, Lk+2

}

for some k. If Lk > L1 then “mutants” with ability L1 can induce additional rounds of mutual

cooperation and outperform the incumbents. Finally, stability fails if p is too close to 0 because

the indirect advantage of having a low ability is too small, and it fails if p is close to one because

players are “trapped” in an “arms race” towards earlier defections and higher abilities.

Our formal analysis deals only with the repeated Prisoner’s Dilemma. It is relatively simple

to extend the results to other games in which looking far ahead decreases efficiency, such

as “centipede” (Rosenthal, 1981). Such interactions are important both in primitive hunter-

gatherer societies (representing sequential gift exchange, see, e.g., Haviland et al., 2007, p. 440),

as well as in modern societies.

We conclude by briefly surveying the related literature. Our paper is related to the literature

that studies the stability of cooperation in the repeated Prisoner’s Dilemma (e.g., the seminal

work of Axelrod, 1984, and the recent work of van Veelen and García, 2010). Several aspects of

our proofs rely on ideas from Kim (1994), Lorberbaum (1994), and Lorberbaum et al. (2002),

which have been extended to the current setup with foresight abilities. Another related paper is

the seminal work of Kreps et al. (1982), which shows that if one of the players may be committed
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to “tit-for-tat” behavior (and the commitment is unobservable by the opponent), then players

mutually cooperate until the last few rounds in any equilibrium. One can interpret ability L1

in our model as a similar commitment device. A key difference between the two models is

that in Kreps et al. (1982) a committed player achieves a strictly lower payoff relative to a non

committed player, while in our model L1 players achieve the maximal payoff.

A closely related paper is Jehiel (2001), which assumes a fixed level of limited foresight in

the infinitely repeated Prisoner’s Dilemma, and shows that in all equilibria, players cooperate

at all stages except the first few rounds.8 The key difference between our paper and Jehiel

(2001) is that we obtain limited foresight as a result, rather than assuming it. That is, in our

model players can acquire long foresight abilities with low costs (or without costs at all), and

yet there is a stable state (unique under the additional assumption of early-niceness) in which

everyone chooses to look only a few steps ahead. In addition, the current paper presents a

novel notion of limited foresight, which may be of independent interest (see Section 8.1).

Geanakoplos and Gray (1991) study complex sequential decision problems and describe

circumstances under which looking too far ahead in a decision tree leads to poor choices. Stahl

(1993), Stennek (2000) and Mohlin (2012) present evolutionary models of bounded strategic

reasoning (“level-k”), which are related to our model when p is equal to zero or one. This

paper is novel in introducing partial observability in this setup, and showing that it yields

qualitatively different results. Crawford (2003) studies zero-sum games with “cheap talk” and

shows that naive and sophisticated agents may co-exist and obtain the same payoff.

The paper is structured as follows. Section 2 presents the model. In Section 3, we char-

acterize the symmetric Nash equilibrium σ∗. Section 4 shows that strategy σ∗ is a limit ESS.

Section 5 presents a “folk-theorem” result. Section 6 shows that σ∗ is essentially the unique

early-nice limit ESS, and Section 7 extends it to weaker solution concepts. In Section 8 we

discuss the interpretation of limited foresight and sketch a few extensions and variants. Finally,

Appendix B includes the formal proofs.

2 Model

As mentioned in the Introduction, we are interested in characterizing dynamically stable states

in a large population of agents, where each agent is endowed with a type that determines his

ability and his behavior. We do so by studying an auxiliary static symmetric two-player game

8 Recently, Mengel (2012) obtains a similar result for the finitely repeated Prisoner’s Dilemma while using
stochastic stability as the solution concept. Two other related papers are Samuelson (1987) and Neyman (1999),
which show that if the (exogenous) information structure slightly departs from common knowledge about the
final period, then there is an equilibrium in which players almost always cooperate in the finitely repeated
Prisoner’s Dilemma.
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in which the set of actions of each player is the set of feasible types of the agents.

2.1 Abilities and Signals

The interaction includes an initial round in which players choose their foresight ability and T

rounds of repeated Prisoner’s Dilemma. Random variable T − 2 is geometrically distributed

with parameter 1 − δ, where 0 < δ < 1 describes the continuation probability at each stage:

δ = Pr (T > k|T = k) (for each k > 2).9 We focus on the case of δ close to 1.

At stage 0 each player i ∈ {1, 2} chooses his ability from the set L = {L1, L2.L3, ..., Lk, ...}.10

We shall say that Lk is larger (resp., weakly larger, smaller) than Lk′ if k > k′ (resp., k ≥ k′

k < k′). Let L≥k denote the set of abilities weakly larger than Lk. Intuitively, the ability

of a player determines when he will become aware of the realized length of the interaction

and its strategic implications. Formally, a player with ability Lk privately observes at round

max (T − k, 0) the realization of T. In Section 8.1 we discuss the interpretation of the abilities

and the uncertain length.

Players partially observe the ability of the opponent as follows (à la Dekel et al., 2007).

At the end of stage 0, each player privately observes his opponent’s ability with probability p,

and he obtains no information otherwise (independently of the signal that is observed by his

opponent.)11 We shall say that a player is uninformed as long as he has not yet received the

signal about the realized length, and is informed afterwords. We shall use the term stranger

to describe an opponent whose foresight ability is not observed, and we shall use the term

observing (non-observing) to describe a player who has observed (not observed) his opponent’s

ability.

Let c : L → R
+ be an arbitrary weakly increasing function, which describes the cognitive

cost of each foresight ability.12 That is, a player who chooses ability Lk obtains a negative payoff

of −c (Lk). Without loss of generality, we normalize: c (L1) = 0. At each stage 1 ≤ t ≤ T the

players play the Prisoner’s Dilemma as described in Table 1 with two pure actions -{C, D}.

2.2 Strategies and Payoffs

Given i ∈ {1, 2}, let −i denote the other player. An information set of length n > 0 of player

i ∈ {1, 2} is a tuple I =
(

L, l, s, (ai, a−i)
n

)

where: (1) L ∈ L is the player’s ability (as chosen at

9 To simplify the presentation of the results, we assume that T−2 rather than T has a geometric distribution.
The results remain qualitatively the same without this assumption.

10 Results are robust to having either a maximal ability or a minimal ability different than L1 (see Sec. 8.2).
11 In Section 8.2 we show that the results are robust to the timing in which a player may observe his opponent’s

ability, and we demonstrate how to extend to model to allow p to be determined endogenously by the players.
12 We relax the assumption of weakly increasing cognitive costs in Section 8.2.
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stage 0); (2) l ∈ {1, ..., L} ∪ ∞ is the number of remaining periods (dubbed, the horizon), with

l < ∞ (l = ∞) describing an informed (uninformed) agent; (3) s ∈ {L ∪ φ} is the signal about

the opponent’s ability, with s = φ describing a non-informative signal (i.e., facing a stranger);

and (4) (ai, a−i)
n

∈ ({C, D} × {C, D})n describes the actions that were publicly observed so

far in the game. Let In denote the set of all information sets of length n, and let I = ∪n≥1In

be the set of all information sets.

A behavior strategy (abbreviated, strategy) is a pair σ = (µ, β), where µ ∈ ∆ (L) is a

distribution over the abilities, and β : I → ∆ ({C, D}) is a function that assigns a mixed

action for each information set (dubbed, playing-rule). The abilities in supp (µ) shall be called

the incumbents. Let Σ (B) denote the set of all strategies (playing-rules). With slight abuse

of notation, we can identify a pure distribution with a single ability in its support. A pure

playing-rule, which induces a deterministic play at all information sets, is described by the

function b : I → {C, D}.

The total payoff of the game is the undiscounted sum of the stage payoffs (including the

cognitive cost at stage 0). This is formalized as follows. A history of play (abbreviated, history)

of length n is a tuple
(

(L1, L2) , (a1, a2)
n

)

where (L1, L2) describes the abilities chosen at stage

0, and (a1, a2)
n

describes the n actions taken at stages 1, ..., n. Let Hn be the set of histories

of length n. For each history hn ∈ Hn, let the payoff of player 1 be defined as follows:

u (hn) = u
((

L1, L2
)

,
(

a1, a2
)n)

=
∑

k≤n

u
(

a1
k, a2

k

)

− c
(

L1
)

,

where u (a1, a2) is the Prisoner’s Dilemma stage payoff as given by Table 1.

For each game length T , history hT ∈ HT , and pair of strategies σ, σ′, let Prσ,σ′ (hT |T = T )

be the probability of reaching history hT when player 1 plays strategy σ, player 2 plays strategy

σ′, conditional on the random length of the game being equal to T . The expected payoff of a

player who plays strategy σ and faces an opponent who plays strategy σ′ is defined as follows:

u (σ, σ′) =
∑

T ∈N

Pr (T = T ) ·
∑

hT ∈HT

Pr
σ,σ′

(hT |T = T ) · u (hT ) .

Remark 1. Some readers may wonder why we study a cognitive bias (limited foresight) but

allow agents to use complex strategies with perfect memory. We consider this aspect of the

model an advantage rather than a weakness. The model allows agents to use complex strategies

with long memories and long foresight abilities, and yet, it implies a unique early-nice stable

outcome in which all players choose to have a small foresight ability, and to use simple strategies

that depend only on the realized actions in the previous stage. We note that all our results

remain the same if one adds a restriction to the model either to how many rounds of play the
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agents can remember; or to the complexity of strategies that the agents may use.

3 Characterization of a Nash Equilibrium

We study the long-run stable outcomes of payoff-monotonic dynamics in which more successful

types become more frequent. We interpret these dynamics to be the result of a process of

cultural learning.13 A state of the population is Lyapunov stable if no small change in the

population composition can lead it away. Nachbar (1990) shows that any Lyapunov stable

state is a symmetric Nash equilibrium of the auxiliary game. Motivated by this observation, we

characterize in this section a specific Nash equilibrium, σ∗. We emphasis that this equilibrium

behavior can be achieved by agents who passively follow their types, rather then actively

maximize their payoffs.14

A strategy is a symmetric Nash equilibrium if it is a best-reply to itself.

Definition 1. Strategy σ ∈ Σ is a symmetric Nash equilibrium if u (σ, σ) ≥ u (σ′, σ) ∀σ′ ∈ Σ.

Strategy σ∗ assigns positive probabilities to two abilities, L1 and L3, and it induces a

deterministic simple playing-rule. Players follow pavlov (defect iff players played differently in

the previous round) when they are uninformed about the number of remaining rounds. Players

with ability L1 defect at the last stage. Finally, an L3 player who is facing an L1 opponent

or does not know the opponent’s ability starts defecting with two rounds to go; otherwise he

starts defecting with three rounds to go.

Definition 2. For every p > 0, A > 1 and c (L3) < 1, let σ∗ = (µ∗, b∗) be as follows:15

µ∗ (L1) = 1 −
1 − c (L3)

p · (A − 1)
, µ∗ (L3) =

1 − c (L3)

p · (A − 1)
, ∀k /∈ {1, 3} µ∗ (Lk) = 0;

b∗
(

L, l, s,
(

ai, a−i
)t

)

=











C (l ≥ 4 or (l = 3 and s ∈ {L1, φ})) and
(

t = 0 or ai
t = a−i

t

)

D otherwise
.

Our first result shows that (µ∗, b∗) is a Nash equilibrium if p is not too close to zero or one,

the cognitive cost of L3 is not too high, and the continuation probability δ is close enough to

one.
13 The dynamics also fit a biological evolutionary process in which the type is determined by the gene.
14 The results also hold in the presence of sophisticated agents who explicitly maximize their payoffs. Thus,

the model can also fit a non-evolutionary strategic setup in which players explicitly choose how much effort to
spend on detecting early signs that the interaction is going to end soon (foresight ability), and then they play
the repeated Prisoner’s Dilemma (with partial observability of the opponent’s effort).

15 Definition 2 describes the behavior of players at all information sets, including the behavior off the equilib-
rium path (e.g., after observing that there are five more rounds to go), which is important for the equilibrium
refinements presented in the next section. Observe that L1 players only observe either l = ∞ or l = 1, and thus
they stop playing “pavlov” only in the last round.
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Theorem 1. There exists δ̄ < 1 such that for all δ ∈
(

δ̄, 1
)

, if A·(1−c(L3))

(A−1)2 < p < A−1
A

and

c (L3) < 1
A

, then σ∗ is a symmetric Nash equilibrium.

Theorem 1 is implied by Theorem 2 (which is proved in Appendix B, along with the other

results in the paper). The sketch of the proof is as follows. If we suppose that only abilities L1

and L3 are chosen and that the players follow b∗, then the result is a Hawk-Dove game between

these abilities: an L3 player fares better against an L1 opponent by defecting at horizon 2, while

an L1 player fares better against an L3 opponent due to its indirect “commitment” advantage:

when the opponent observes ability L1 (which happens with probability p), it induces him to

cooperate for an additional round. Thus, each ability becomes less successful (relative to the

other ability) if its frequency becomes larger. As a result, a unique frequency of L1 players

balances the payoffs of the two abilities, and this frequency is increasing in p. If p is not too

small, then the frequency of L1 players is sufficiently large, such that it is optimal for an L3

player who does not know the opponent’s ability to start defecting only in the penultimate

round. If p is not too large, then an L>3 player who observes an L3 opponent will still wait

to defect until there are three rounds to go, in the hope that the opponent has not observed

his ability. Finally, an L2 player is outperformed because he does not have the “commitment”

advantage of the L1 players, and, in addition, unlike the L3 players, he is unable to defect three

rounds before the end.

Remark 2. Theorem 1 holds also if pavlov is replaced with a different reciprocal behavior that

induces cooperative behavior on the equilibrium path, such as “tit-for-tat” (defect iff the oppo-

nent defected in the previous round), or “perfect-grim-trigger” (defect iff any player defected

before). We present the results with pavlov because it satisfies three appealing properties: (1)

it satisfies the refinement of evolutionary stability introduced in the next section; contrary to

this, “tit-for-tat” implies non-optimal play off the equilibrium path: following a defection of the

opponent, it is strictly better to cooperate rather than defect; (2) it is a very simple strategy

that depends only on the actions of the last round; and (3) it implies efficiency (mutual cooper-

ation most of the time) also when there are small error probabilities (see, Nowak and Sigmund,

1993), which allows its stability to remain robust when δ → 1 (see the invasion barrier analysis

in Section 6). Contrary to this, the “perfect-grim-trigger” induces inefficient play in “noisy”

environments.

4 Evolutionary Stability

A Nash equilibrium may be dynamically unstable. Maynard Smith and Price (1973) refined

Nash equilibrium, and presented the notion of evolutionary stability. A symmetric Nash equi-

librium σ is evolutionarily (neutrally) stable if it achieves a strictly (weakly) better payoff
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against any other best-reply strategy σ′. Formally:

Definition 3. (Maynard Smith and Price (1973), as reformulated for behavior strategies in

Selten (1983)) Strategy σ ∈ Σ is an evolutionarily (neutrally) stable strategy (abbreviated,

respectively, ESS, NSS) if: (1) it is a symmetric Nash equilibrium, and (2) ∀σ′ 6= σ, if u (σ′, σ) =

u (σ, σ) then u (σ, σ′) > u (σ′, σ′) (u (σ, σ′) ≥ u (σ′, σ′).

The motivation for Definition 3 is that an ESS, if adopted by a population of players in a

given environment, cannot be invaded by any alternative strategy that is initially rare.

Repeated games rarely admit an ESS due to the existence of “equivalent” strategies that

differ only off the equilibrium path. In particular, our model admits no ESS.16 Selten (1983)

slightly weakens this notion by requiring evolutionary stability in a converging sequence of per-

turbed games in which players rarely “tremble” and play “wrong” actions (but not necessarily

in the unperturbed game). Formally:

Definition 4. (Selten (1983, 1988)) A (full support) perturbation ζ is a function that assigns

a non-negative (positive) number for:

1. each ability at stage 0 such that
∑

Lk∈L ζ (Lk) < 1; and

2. each action (C or D) after each information set I ∈ I, such that ζ (C) (I)+ζ (D) (I) < 1.

Let Γ (ζ) denote the (full support) perturbed game that results from perturbing the game

described in Section 2 by (full support) perturbation ζ. In game Γ (ζ) each player is limited

to choose strategy σ = (µ, β) that satisfies: (1) µ (Lk) ≥ ζ (Lk) for each Lk ∈ L, and (2)

ζ (I) (C) ≤ β (I) (C) ≤ 1 − ζ (I) (D) for each I ∈ I . Let Σ (ζ) (resp., ∆ζ (L), B (ζ)) the

set of all strategies (resp., distributions, playing-rules) that satisfy these two properties (resp.,

the first property, the second property). Let M (ζ) denote the maximal tremble of ζ: M (ζ) =

max
(

sup Lk∈Lζ (Lk) , sup I∈I,a∈{C,D}ζ (I) (a)
)

.

Definition 5. (Selten, 1983) Strategy σ ∈ Σ is a limit ESS if there exists a sequence of

perturbations (ζn)n∈N
satisfying limn→∞ M (ζn) = 0, and for each n ∈ N, there exists an ESS

σn of the perturbed game Γ (ζn), such that limn→∞ σn = σ is satisfied.

Observe that any ESS is a limit-ESS, and that any limit ESS is a symmetric perfect equi-

librium (Selten, 1975).17

16 See Lorberbaum (1994) for a proof that the repeated Prisoner’s Dilemma with uncertain horizon does not
admit any evolutionarily stable strategy. Similarly, one can adapt the proof, and show that it does not admit
an evolutionarily stable set (Thomas, 1985) or an equilibrium evolutionarily stable set (Swinkels, 1992).

17 See Corollary 1, which slightly strengthens the result for general extensive-form games of van Damme (1987,
Corollary 9.8.6) that any limit ESS is a sequential equilibrium (Kreps and Wilson (1982))
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In order to strengthen our stability result, we present a stronger notion than Definition 5

by requiring a strict limit ESS to be the limit of ESS of every sequence of strict perturbed

games (rather than a specific sequence). The motivation (similar to Okada, 1981’s notion of

strict-perfection), is that a strong notion of stability should be robust to the specific structure

of the perturbations. Formally:

Definition 6. Strategy σ ∈ Σ is a strict limit ESS (strict limit NSS) if, for every sequence of

full support perturbations (ζn)n∈N
satisfying limn→∞ M (ζn) = 0, and for every n ∈ N, there

exists an ESS (NSS) of Γ (ζn), such that limn→∞ σn = σ is satisfied.

Our first main result strengthens Theorem 1 and shows that σ∗ is a strict limit ESS.

Theorem 2. There exists δ̄ < 1 such that for all δ ∈
(

δ̄, 1
)

,if A·(1−c(L3))

(A−1)2 < p < A−1
A

and

c (L3) < 1
A

,18 then σ∗ is a strict limit NSS, and if c (L4) > c (L3) then σ∗ is a strict limit ESS.

The sketch of the proof is as follows. Let ζ be any sufficiently small full support perturba-

tion, and let σ∗
ζ =

(

µ∗
ζ , b∗

ζ

)

be the closest strategy to σ∗ in the perturbed game G (ζ) that satisfies

u
((

L1, b∗
ζ

)

, σ∗
ζ

)

= u
((

L3, b∗
ζ

)

, σ∗
ζ

)

. Lorberbaum et al. (2002) proved that the perturbed-pavlov

is a strict-best reply to itself when playing slightly-perturbed standard repeated Prisoner’s

Dilemma (in which players remain uninformed throughout the game). Together with the ar-

guments from the sketch of proof of Theorem 1, this implies that (1) playing-rule b∗
ζ is a strict

best-reply to σ∗
ζ (for all abilities), (2) ability L2 achieves a strictly lower payoff than L3, and (3)

any ability L>3 can achieve, at most, the same payoffs as L3. The properties of the Hawk-Dove

“meta-game” between abilities L1 and L3 (discussed in Section 3) imply that any strategy with

a different frequency of L1-s and L3-s yields a strictly lower payoff. This shows that σ∗
ζ is an

NSS of Γ (ζ) and an ESS if c (L4) > c (L3).

Remark 3. We conclude this section with a few comments about the stability of σ∗:

1. Stability without cognitive costs: Minor adaptions to the proof imply a slightly stronger

result when c (L4) = c (L3). Let Las_3 = {Lk|k ≥ 3, c (Lk) = c (L3)} be the abilities with

the same costs as L3. Then:

Σ∗ = {(µ, β∗) |µ (L1) = µ∗ (L1) and ∀k /∈ Las_3 ∪ {L1} µ (Lk) = 0}

is a “strict limit evolutionarily stable set”: it is the limit of evolutionarily stable sets

(Thomas, 1985) of any sequence of converging full support perturbed games.

2. Uniform limit ESS: In Heller (2014) I show that the notion of “limit ESS” is too weak:

(1) it does not imply neutral stability, and (2) it may be dynamically unstable in the

18 Assumption 2 can be slightly weakened as follows c (L3) < min
(

1, 1

A
+

(

1 − 1

A

)

· c (L2)
)

.



13

sense that almost any small perturbation takes the population away. These two issues

are caused by the implicit assumption of the notion of “limit ESS” that mutants are

more rare than “trembling” incumbents. I solve these two issues by defining a slightly

stronger notion, uniform limit ESS, which requires mutants to be strictly outperformed

also without this implicit assumption. Minor adaptations to the proof imply that σ∗ is a

uniform limit ESS.

3. Dynamic stability of σ∗: All of our results remain qualitatively the same if one restricts

players to choose: (1) a foresight ability of at most LM (M ≥ 3), and (2) a playing-rule

that depends only on the last N ≥ 3 rounds. With such restrictions, each player has a

finite set of strategies, and existing results imply that σ∗ is dynamically stable:19

(a) The results of Thomas (1985) imply that σ∗ is Lyapunov stable in the unperturbed

game under the replicator dynamics.

(b) The results of Cressman (1997) and Sandholm (2010) imply that σ∗ is asymptotically

stable (i.e., populations starting close enough to σ∗ eventually converge to it) under

a large variety of payoff-monotonic dynamics, in any full support game Γ (ζ) with a

sufficiently small M (ζ). 20

5 All Abilities Can be Stable

Strategy σ∗ is efficient in the sense that players always cooperate on the equilibrium path,

except for the last few rounds. The following theorem shows that the game also admits an

inefficient stable strategy in which all players have ability L1 and always defect.

Theorem 3. Let σdef = (L1, bdef ) with bdef ≡ D (always defect). Then σdef is a strict limit

NSS. Moreover, if c (L2) > c (L1) then σdef is a strict limit ESS.

The proof adapts Lorberbaum et al. (2002)’s result that defection is a strict best reply to

itself in the slightly-perturbed repeated Prisoner’s Dilemma.

19 Note that the dynamic stability in the unperturbed game is relatively weak. Strategy σ∗ is vulnerable
to a sequence of two consecutive invasions: a neutral mutant that always cooperates, which creates a selective
advantage for a second mutant that start defecting earlier in the game (as shown by van Veelen and García, 2010,
any strategy in the unperturbed repeated Prisoner’s Dilemma has a similar vulnerability.) However, as soon
as any small perturbation (with full support) is introduced, then σ∗ satisfies the strong notion of asymptotic
stability, and it is no longer vulnerable to a sequence of invasions.

20 The results of Cressman (1997) and Sandholm (2010) require an additional mild requirement of regularity,
namely, strictness with respect to strategies outside its support. Minor adaptations to the proof of Theorem 2
show that strategy σ∗ is a regular ESS in Γ (ζ).
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The following theorem shows a “folk theorem” result: for any ability Lk and for any finite

sequence of actions, there exists a strict limit ESS in which all players have ability Lk and they

keep playing cycles of the sequence as long as they are uninformed. Formally:

Theorem 4. Let Lk ∈ L, M ∈ N, and S ∈ ({C, D})M 6= (D, ..., D). Assume that 0 < p. Then

there exists δ̄ < 1 (which depends on A, p, Lk and S) such that for all δ ∈
(

δ̄, 1
)

, there exists

a strict limit ESS σS,k = (Lk, βS,k) in which on the equilibrium path uninformed players repeat

playing cycles of the sequence S.

Kim (1994) studies the standard repeated Prisoner’s Dilemma, and shows that any finite

sequence of actions can be implemented as a strict limit ESS for δ sufficiently close to one by

using “perfect-grim-trigger punishments” off-equilibrium path. Our proof extends Kim’s result

to the setup with abilities as follows. On the equilibrium path, players with ability Lk repeat

playing cycles of the sequence S as long as they are uninformed, and they defect at the last

k stages. If an Lk player observes an Lk′ 6= Lk opponent, he plays a cycle of an asymmetric

sequence of action-profiles W ′, which yields the Lk (Lk′) player a higher (lower) payoff relative

to sequence S. If any player deviate from this pattern, both players always defect.

6 Early-Niceness and Uniqueness

6.1 Early-Niceness

A strategy is early-nice if players who follow its playing-rule cooperate when: (1) the horizon

is large enough, and (2) no one has ever defected before. Formally:

Definition 7. Strategy σ = (µ, β) ∈ Σ is early-nice if there exists Mσ ∈ N such that

β
(

L, l, s, (ai, a−i)
n

)

(C) = 1 if: (1) l > Mσ, and (2) (ai, a−i)
n

= (C, C)n (dubbed, coopera-

tive information set).

Early-niceness implies efficient play (mutual cooperation) at early stages of the interaction

on the equilibrium path. Theorem 4 shows that this implication is not enough to restrict the

set of stable abilities: any ability Lk can be the unique incumbent in a limit ESS which induces

early inefficient play only against non-incumbent abilities. Early-niceness also requires efficient

play in cases in which one of the players (or both) has “trembled” and chosen an ability outside

the support of µ. That is, it rules out the “discrimination” against mutants (playing a different

cycle when observing a “mutant” ability), which is necessary for the stability of the various

strategies of Theorem 4. Note that early-niceness does not restrict the play of a “mutant”

player who follows a different playing-rule.
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In the Introduction we presented an empirical motivation for early-niceness. We now present

a theoretical justification when the continuation probability δ is close to 1. The argument

adapts to the current setup the results of Fudenberg and Maskin (1990) for undiscounted

infinite repeated games (see also related ideas in Robson, 1990 and Bendor and Swistak, 1997).

We say that strategy σ has a (uniform) invasion barrier of 0 < ǭ < 1 if for every “mutant”

strategy σ′, the incumbents strictly outperform the mutants in any post-entry population in

which the frequency of the mutants is at most ǭ (i.e., for each 0 < ǫ < ǭ and each σ′, the

following inequality holds: u (σ, (1 − ǫ) · σ + ǫ · σ′) > u (σ′, (1 − ǫ) · σ + ǫ · σ′)). Note that: (1)

for finite games a strategy is an ESS iff it has a positive invasion barrier (Weibull, 1995, Prop.

2.5); (2) for games with infinite strategy spaces the stronger notion of having a positive invasion

barrier is required for implying dynamic stability (Oechssler and Riedel, 2001); and (3) having

a smaller invasion barrier implies a less robust stability. In what follows we show that the

invasion barriers of all the non-early-nice limit ESSs of the previous section converge to 0 as δ

converges to 1. This is in contrast with the early-nice strategy σ∗ that has an invasion barrier

bounded away from zero for all values of δ̄ < δ < 1.

Fix an arbitrary full support perturbed game Γ (ζ) with a sufficiently small M (ζ). We

first deal with the invasion barrier of σdef = (L1, defect) of Theorem 3. Let σ′ = (L1, pavlov).

Observe that σ′ yields one less point against σ, but it obtains an expected gain of A−1
1−δ

against σ′

(compared with the payoffs of strategy σ against these opponents). Thus, the mutant strategy

σ′ outperforms the incumbent strategy σ in any post-entry population in which the mutants’

share is at least 1−δ
A−1

. This implies that the invasion barrier of σdef converges to zero as δ → 1.

Next, consider one of the limit ESSs σS,k = (Lk, βS,k) of Theorem 4. Let σ′
S,k be a strategy

that coincides with σS,k as long as the players do not use the “perfect-grim-trigger punishments.”

If the players reach a history in which they have to use a “punishment” (defect at all the

remaining stages according to σS,k), then strategy σ′
S,k induces them to play pavlov. By the same

argument as in the case of σdef above, the mutant strategy σ′
S,k outperforms the incumbent

strategy σS,k in any post-entry population in which the mutants’ share is at least 1−δ
A−1

. We

conjecture that the above argument can be extended to show that the invasion barrier of any

non-early-nice strategy of finite complexity converges to zero as δ → 1.21

21 The next step in the analogous result of Fudenberg and Maskin (1990) is to observe that if σ is a strategy
with finite complexity, then there exists a history h∗ that yields the lowest expected sum of payoffs in the
remaining stages. Let σ′

h∗ be a strategy that differs from σ only by playing after history h∗ a different action
from the one induced by σ, and mutually cooperating at all remaining stages if the opponent had done the
same. A similar argument as above, shows that the invasion barrier of σ against σ′

h∗ converges to zero as δ → 1.
In our setup, unlike in Fudenberg and Maskin (1990), players have private information, and this raises technical
difficulties in the identification of history h∗ and the characterization of σ′

h∗ . Due to these technical difficulties,
we leave the proof of the conjecture for future research.
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6.2 Uniqueness Result

Two strategies are realization equivalent if they induce the same distribution over outcome

paths; they can only differ in their off-equilibrium behavior. Formally:

Definition 8. Strategies σ, σ′ ∈ Σ are realization equivalent if for each possible game length T

and for each history hT ∈ HT : Prσ,σ (hT |T = T ) = Prσ′,σ′ (hT |T = T ).

Our second main result shows that any early-nice limit ESS is realization equivalent to σ∗

(assuming A > 3), and that there is no early-nice limit ESS for values of p that are close to

either zero or one.

Theorem 5. There exists δ̄ < 1 such that for all δ ∈
(

δ̄, 1
)

, if A > 3, ∀k ∈ N c (Lk+1)−c (Lk) <

1, c (L4) < 1
A

, and p < 1, than strategy σ = (µ, β) is a an early-nice limit ESS only if σ ≈ σ∗.

Moreover, if p < A·(1−c(L3))

(A−1)2 or A−1
A

< p then no early-nice limit ESS exists.

The sketch of the proof is as follows. Let Lk be the lowest incumbent ability in supp (µ),

and assume that all incumbents cooperate with probability one at horizons larger than Mσ.

The inequality c
(

Lk+1

)

−c
(

Lk

)

< 1 implies that µ
(

Lk

)

< 1 (otherwise Lk+1 incumbents could

outperform the incumbents). Observe that on the equilibrium path, everyone defects at the

last k rounds (because, when the horizon is equal to k, this event becomes common knowledge

among the players), and, as a result, all incumbents L≥k+1 defect at horizon k + 1. Next, we

note that early-niceness implies that if any player defects on the equilibrium path, then both

players defect in all the remaining stages (as it becomes common knowledge that the horizon

is at most Mσ).

We finish the proof by dealing with three separate cases:

1. p < A−1
A

and all incumbents cooperate on the equilibrium path when facing a stranger at

a horizon larger than k + 1. The assumption that p < A−1
A

implies that all incumbents

cooperate on the equilibrium path when the horizon is larger than k + 2 (because the

opponent is likely to be unobserving and to cooperate until horizon k + 1). This implies

that σ must be equivalent to a shifted variant of σ∗, in which abilities Lk and Lk+2 co-

exist and p cannot be too low. Finally, if Lk ≥ L2, then perfection and early-niceness

imply that mutants with ability L1 outperform the Lk incumbents by inducing additional

rounds of cooperation when their ability is observed.

2. p < A−1
A

and some incumbents defect on the equilibrium path when facing a stranger with

a horizon larger than k + 1. First, we show that all incumbents L≥k+2 must defect with

probability one at horizon k + 2 (otherwise the strategy is not stable to a perturbation

that slightly increases the probability of defection at horizon k + 2). Next, we show that
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if A > 3 then µ
(

Lk+1

)

> 0 (otherwise σ is not stable to a perturbation that slightly

increases µ
(

Lk

)

). Finally, we compare the payoffs of Lk and Lk+1: ability Lk+1 yields

an additional utility point against
{

Lk, Lk+1

}

and an additional fixed loss against higher

abilities. This implies that abilities Lk and Lk+1 obtain the same payoff iff µ
(

L≥k+2

)

is

equal to a specific value, but then strategy σ is not stable to a perturbation that changes

the frequency of abilities
{

Lk, Lk+1

}

while keeping µ
(

L≥k+2

)

fixed.

3. p > A−1
A

. Let k > Mσ, and let m be the largest horizon in which a player with ability

Lk, who observes an opponent with the same ability, defects with a positive probability.

Neutral stability implies that the defection will be with probability one (otherwise the

strategy is not stable to a perturbation that slightly increases the frequency of players

that defect at horizon m). The inequality p > A−1
A

implies that that m = k (otherwise it

would be strictly better to defect at horizon m+1), and this contradicts the early-niceness.

We conclude with a few remarks on Theorem 5:

1. Replacing “pavlov” with “perfect-grim-trigger” (defect iff any player defected before) at

long horizons yields a strict limit ESS that is equivalent to σ∗ (but not identical, as they

differ in the off-equilibrium behavior.)

2. In principal, one could adapt the mechanisms that lead to early-niceness in either Fu-

denberg and Maskin (1990), Binmore and Samuelson (1992) or Kreps et al. (1982),

incorporate them in our model, and obtain early-niceness as part of the uniqueness result

(rather than as an assumption). We choose not to do this because it involves technical

difficulties that would make the model substantially less tractable and less transparent.

3. Theorem 5 holds for any p < 1. If p = 1, then the game may admit a limit ESS with

large abilities in its support. Specifically, for each k with sufficiently small c (Lk), one can

show that if a limit ESS exists, it must assign a positive frequency for abilities L≥k (see

a related analysis in Mohlin, 2012).

4. If one omits the condition c (L4) < 1
A

, then the uniqueness result still essentially holds,

except that a limit ESS may also be equivalent to σ∗
2 - a shifted variant of σ∗ that includes

abilities L2 and L4 (see Definition 2).

5. If the condition ∀k ∈ N c (Lk+1) − c (Lk) < 1 does not hold, then for sufficiently low p

there are additional “single-ability” limit ESS. Specifically, if c (Lk+1) − c (Lk) > 1 and

p < 1
(A−1)·(k−2)

, then a strategy that includes only ability Lk is also a limit ESS.
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7 Uniqueness with Weaker Solution Concepts

Theorem 5 shows that σ∗ is essentially the unique early-nice limit ESS. In this section we study

which aspects of the uniqueness hold for weaker solution concepts.

A strategy is a perfect NSS (symmetric perfect equilibrium) if it is the limit of NSS (sym-

metric Nash equilibria) of a converging sequence of full support perturbed games.

Definition 9. σ ∈ Σ is a perfect NSS (symmetric perfect equilibrium) if there exists a sequence

of full-support perturbations (ζn)n∈N
satisfying limn→∞ M (ζn) = 0, and for each n ∈ N, there

exists an NSS (symmetric Nash equilibrium) σn of Γ (ζn), such that limn→∞ σn = σ.

Observe that: (1) any limit ESS is a perfect NSS (by Lemma 1); and (2) any perfect NSS

is a symmetric perfect equilibrium.

The following two definitions are useful to present the results of this section. Strategy σ∗
k is

a k-shifted variant of σ∗, in which ability Lk replaces L1 and ability Lk+2 replaces L2. Formally:

Definition 10. For each k, let strategy σ∗
k =

(

µ∗
k, b∗

k

)

be as follows:

µ∗
k

(

Lk

)

= 1−
1 −

(

c
(

Lk+2

)

− c
(

Lk

))

p · (A − 1)
, µ∗

(

Lk+2

)

= 1−µ∗
k

(

Lk

)

, ∀k /∈ {k, k + 2} µ∗ (Lk) = 0.

b∗
k

(

L, l.s,
(

ai, a−i
)t

)

=























C
[

l ≥ k + 3 or
(

l = k + 2 and s ∈
{

Lk, φ
})]

and
(

t = 0 or ai
t = a−i

t

)

D otherwise

.

The set Σ∗
k ⊆ Σ includes all the strategies that differ from σ∗

k only by “redistributing”

frequency µ∗
k

(

Lk+2

)

among other abilities Lk that have the same cost and play the same as

Lk+2 (given playing-rule b∗). Formally:

Definition 11. For each k, let

Σ∗
k =

{

(µ, b∗) |µ
(

Lk

)

= µ∗
k

(

Lk

)

, ∀k 6= k µ (Lk) > 0 only if
(

Lk ≥ Lk+2 and c (Lk) = c
(

Lk+2

))}

.

The following result shows which aspects of the uniqueness results hold with the weaker

solution concepts. Part (1) shows that, in any symmetric perfect equilibrium, the minimal

incumbent ability is L1 and the maximal ability is either L3 or L4.
22 Part (2) shows that any

22 The same result holds for the weaker notion of sequential equilibrium (Kreps and Wilson (1982)) and to a
“0-perfect” equilibrium, in which the perturbations must assign minimal positive probabilities only at stage 0.
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early-nice NSS is similar to a k-shifted variant of σ∗.23 Part (3) shows that the uniqueness

result essentially holds for early-nice perfect NSS.

Theorem 6. There exists δ̄ < 1 such that for all δ ∈
(

δ̄, 1
)

, if ∀k ∈ N c (Lk+1) − c (Lk) < 1,

A > 3, and c (L4) < 1
A

, then:

1. If 1
(A−1)2 < p and σ = (µ, β) is a an early-nice symmetric perfect equilibrium, then

0 < µ (L1) < 1. Moreover, if A+1
(A−1)·(A−2)

< p < A−1
A

and c (L5) > c (L4) then µ (L≥5) = 0.

2. If p 6= 0.5, p < A−1
A

, and σ is a an early-nice NSS, then it is equivalent to a strategy in

∪kΣ∗
k. Moreover, if p < A·(1−c(L3))

(A−1)2 , then no early-nice NSS exist.

3. If p /∈
{

1
2
, 1

}

and σ is an early-nice perfect NSS, then σ ≈ σ′ for some σ′ ∈ Σ∗
1. Moreover,

if p < A·(1−c(L3))

(A−1)2 or A−1
A

< p, then no early-nice perfect NSS exist.

8 Discussion

8.1 Limited foresight and Uncertain Length

In this section we deal with three related questions: (1) Why do we model the interaction as

having uncertain length? (2) Could similar results be obtained in a model with a fixed length?

and (3) Why do we interpret abilities in our model as representing limited foresight?

As argued by Osborne and Rubinstein (1994, chapter 8.2):

“A model should attempt to capture the features of reality that the players perceive.

... In a situation that is objectively finite, a key criterion that determines whether

we should use a model with a finite or an infinite horizon is whether the last period

enters explicitly into the players’ strategic considerations.”

Following this argument, we present a “hybrid” model in which the horizon is infinite and

uncertain, until close to the end, in which the final period reaches the agent’s foresight ability.

Next we show that similar results can be obtained if the game has a fixed length. Consider a

repeated Prisoner’s Dilemma with a fixed length L. Agents with limited foresight in this setup

must be unable to “count” how many rounds remain in the game. This can be formalized by

restricting agents to strategies that depend only on the actions observed at the last m rounds,

or to strategies that can be implemented by automota with a limited number of states. With

such a restriction, one can adapt our main results (Theorems 2-5) to this setup.

23 The result is stated for p /∈ 0.5 and p < A−1

A
. See Part (3-f) and footnote 27 for an additional strategy that

may be an early-nice perfect NSS when p = 0.5. When p > A−1

A
we can show that: (1) for each M , if c (LM ) is

sufficiently small, then any early-nice NSS includes ability LM in its support, and (2) if M0 is sufficiently large
and c (LM0

) is sufficiently small, then no early-nice NSS exists.
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Finally, we discuss the interpretation of limited foresight in our model, and compare it

with the alternative notion of Jehiel (2001). The comparison between the two notions can be

facilitated by considering a long two-player zero-sum game such as Chess. In this setup, agents

with limited foresight (such as computer programs) base their play on a bounded minimax

algorithm that looks a limited number of steps ahead and uses a heuristic evaluation function

to assign values to the non-final positions k steps ahead. When moving from chess-like games to

non-zero-sum repeated games, the “position” is the history of play (due to its influence on the

future behavior of the opponent). Jehiel’s (2001) notion assigns a history-independent random

value to all non-final states. In contrast, our notion bases the evaluation of non-final states on

the history of play, by using an “infinite-horizon benchmark”: assuming that there is probability

δ to end the game in any future round. In particular, consider an L1 agent who plays against

an opponent who follows pavlov. Jehiel’s notion implies the counter intuitive prediction that

the L1 agent usually defects (and always defects if the randomness in the evaluation function

is sufficiently small), while our notion implies that he cooperates until the last stage. As

described in Footnote 7, the experimental evidence from finitely repeated Prisoner’s Dilemma

games suggests that subjects behave in a way that is consistent with our notion of limited

foresight.

8.2 Extensions and Variants

We conclude by presenting a few extensions and variants of our model.

In the basic model we followed two common assumptions in the evolutionary literature (see,

e.g., Dekel et al., 2007): (1) an agent can observe his opponent’s ability with a fixed exogenous

probability; and (2) an agent cannot send a false signal about his ability. These assumptions

may seem too restrictive. Completely relaxing them, by allowing each player to choose at stage

0 both an unobservable true ability and a “fake” ability that is observed by the opponent (a

“cheap-talk” model), induces a unique behavior in any Nash equilibrium: everyone defects at

all stages.24 In Appendix A we sketch a variant of the model, which partially relaxes these

assumptions: each player chooses at stage 0 a true ability, a fake ability, and an effort level,

and the probability in which a player observes the true ability (rather than the fake ability) of

the opponent is increasing with the player’s effort and decreasing in the opponent’s effort. We

show that a σ∗-like strategy remains stable in this setup.

24 To simplify the argument assume that c (Lk) ≡ 0 (the argument can be extended to positive and suffi-
ciently small cognitive costs). Assume to the contrary that players cooperate with positive probability on the
equilibrium path. Let m be the smallest horizon in which they cooperate with positive probability. Then the
following strategy is a strictly-better reply: choosing an arbitrary large enough true ability, signaling one of the
fake abilities of the incumbents, playing like the incumbents at horizons larger than m, and defecting during
the last m stages.
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Our basic model deals only with the repeated Prisoner’s Dilemma, and assumes that the

cognitive cost function is increasing. It is relatively simple to extend the results to an envi-

ronment in which players may play other games, as long as the probability of playing games

in which looking far ahead decreases efficiency (such as in the repeated Prisoner’s Dilemma) is

sufficiently high. The results can also be extended to deal with non-monotonic cost functions,

which may represent the advantages of having higher abilities in other games. Specifically, if

one assumes that the cognitive costs are not too high, then the game admits a strict limit ESS

similar to σ∗ except that L3 is replaced with the ability that minimizes the cognitive cost in

L≥3 (and the playing-rule remains the same as in σ∗).

Next we show that our results are robust to various changes in the set of abilities. First, we

consider the case in which the minimal ability in L is not L1, but any other arbitrary ability Lk̃

(including ability “L0”, which is never informed about the realized length of the interaction).

It is straightforward to see that all of our results hold in this setup except that σ∗ is replaced

with its shifted variant σ∗
k̃

(Definition 10), in which, ability Lk̃ (Lk̃+2) replaces ability L1 (L3) .

Next, we observe that our results hold also if the set of abilities L is extended to include ability

L∞, which is informed about the final period at the end of round 0.

The next variant introduces a maximal ability by restricting the set of abilities to be

{L1, ..., LM}. Assuming that M ≥ 3, Theorem 2 holds in this setup. Theorem 5 holds for

ps which are not too close to either zero or one. Assuming that c (LM) is sufficiently low, one

can complete the characterization for all values of p: (1) for low ps: if a limit ESS exists, then

the only ability in its support is LM (because the indirect “commitment” advantage of lower

abilities is too small); and (2) for high ps (p > A−1
A

): if a limit ESS exists, then its support

includes ability LM (as a result of the “arm race” for earlier defections and higher abilities).

Finally, we note that the main results (Theorem 2-5) hold for each of the following changes

to the observation of the opponent’s ability:

1. “Late observability”: Players observe the opponent’s ability later in the game (and not at

the end of stage zero). For example, the results hold if a player with ability Lk obtains the

signal about his opponent’s ability at horizon k (when he becomes aware to the timing of

the final period), or at horizon min (k, k′ + 1) (i.e., a player only observes if his opponent

is going to be informed about the final period at the next round).

2. Asymmetric observability (à la Mohlin, 2012): the informative signal (obtained with

probability p) is the opponent’s exact ability, only if it is strictly lower than the agent’s

ability; if the opponent’s ability is weakly higher, then the agent only observes this fact.

3. Perturbed signals: having a weak correlation between signals of the two players.
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A False Signals and Endogenous Observability

In this section, we sketch a variant of the model in which players can influence the probability

of observing the opponent’s ability. A comprehensive analysis of this variant (with a general

underlying game) is left for a separate paper (Heller and Mohlin, 2014).

At stage 0, each player i makes 3 choices: (1) true ability - Li ∈ L, (2) fake ability -

si ∈ L, and (3) effort level ei ∈ R
+, which costs ei utility points.25 The model also specifies

an observation function p : R+ × R
+ → [0, 1]. When a player who invests effort e1 faces an

opponent who invests effort e2, he privately observes his opponent’s true ability with probability

p (e1, e2) and observes the fake ability otherwise. We assume that p (e1, e2) is (1) increasing

and concave in the first parameter, (2) decreasing and convex in the second parameter, and (3)

sub-modular:
∂2p(e1,e2)

∂e1∂e2 < 0 (i.e., the efforts of the two players are strategic substitutes).

A strategy in this setup is a pair σ = (µ, β) where µ ∈ ∆ (L × L × R
+) is a distribution

over the pure choices at stage 0 (true ability, fake ability and effort level).

Theorem 2 is extended to this setup as follows:

Theorem 7. Assume that: (1) ∃e0 < 1
A

− c (L3) s.t. ∀e ≤ e0,
A·(1−c(L3))

(A−1)2 < p (e, e) < A−1
A

and
∂p (e1, e2)

∂e1

∣

∣

∣

∣

∣

(e1,e2)=(e0,e0)

− A ·
∂p (e1, e2)

∂e2

∣

∣

∣

∣

∣

(e1,e2)=(e0,e0)

< 1,

(2) c (L4) > c (L3) < 1
A

, and (3) δ is sufficiently close to 1. Then there exists 0 < e∗ < e0 such

that σ∗ (e∗) = (µ∗ (e∗) , b∗) is a limit ESS, where b∗ is as Def. 2 and µ∗ (e∗) is as follows:

supp (µ∗) = {(L1, L1, 0) , (L3, L1, e∗)} , and µ∗ ((L3, L1, e∗)) =
1 − c (L3) − e∗

p · (A − 1)
.

The stable strategy σ∗ (e∗) has two types in its support: (1) agents with ability L1 who do

not expend any effort; and (2) agents with ability L3 who expend effort e∗(which is determined

by the observability function) and try to deceive their opponent into thinking that they have

ability L1. Agents behave in the same way as in the basic model. In what follows, we briefly

explain the first assumption (the remaining two assumptions are identical to Theorem 2), and

the intuition as to why it implies the stability of σ∗ (e∗). Assumption (1) requires the existence

of an effort level e0 that satisfies three requirements. (I) e0 is not too large. Observe that if

e < 1
A

−c (L3), then the total cost of an agent with ability L3 who invests effort e is smaller than
1
A

, and is outweighed by its gain from defecting one stage earlier in a population that includes

a large enough fraction of agents with ability L1. The next requirement, (II), is that p (e, e) is

25 Similar results also hold if each player chooses two different efforts: one for lying, and one for detecting lies.
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not too close to zero or one (the same bounds as in Theorem 2) for any e ≤ e0: this implies

that the induced observation probability when two L3 agents meet each other (and each spends

effort level e∗ on the equilibrium path) is far enough from zero and one, which is required for

stability from the same reasons as in the basic model. And the third requirement, (III), is

that the marginal contribution of effort at e0 (which is the sum of the marginal contributions

induced by increasing the probability to observe the opponent’s ability and by decreasing the

probability that the opponent observes the agent’s own type) is smaller then its marginal cost

(=1): this condition implies (by convexity and sub-modularity) that there exists a stable effort

level e∗ < e0.

We conjecture that one could also adapt Theorem 5 to this setup.

B Proofs

B.1 Limit ESS and Full Support Perturbations

The following lemma shows that if σn is an ESS of a perturbed game of the repeated Prisoner’s

Dilemma, then it is also an ESS of a nearby full support perturbed game.

Lemma 1. Let ζ be a perturbation. Let σ ∈ Σ be an ESS of the perturbed game Γ (ζ). Then

for every ǫ > 0, there exists a full support perturbation ζ ′ such that: (1) |ζ − ζ ′| < ǫ; (2) σ′ ∈ Σ

is an ESS of the perturbed game Γ (ζ ′); and (3) |σ′ − σ| < ǫ.

Proof. The fact that σ is an ESS implies that it must assign a positive probability to each

information set (otherwise, an equivalent strategy σ′ that differs only in information sets that

are reached with zero probability would get the same payoff as σ: u (σ, σ) = u (σ′, σ) and

u (σ, σ′) = u (σ′, σ′)). This implies that σ must assign a positive probability for each ability and

for each action at each information set in which the horizon is larger than 1. When the horizon is

equal to 1, defection is a dominant action. Let ǫ > 0 be sufficiently small. Define a full support

perturbation ζ ′ as follows: (1) if ζ (I) (a) > 0, let ζ ′ (I) (a) = ζ (I) (a); (2) if ζ (I) (a) = 0 and

the horizon is larger than 1, let ζ ′ (I) (a) = min (ǫ, σ (a)) (which is a positive number due to

the previous argument); and (3) when the horizon is equal to one let ζ (I) (a) = ǫ. Let σ′ be

equal to σ except at horizon 1, in which it defects with probability 1 − ǫ. The above arguments

imply that σ′ is an ESS in Γ (ζ ′).

An immediate corollary of Lemma 1 is that every limit ESS is the limit of ESS of a sequence

of full support perturbed games.

Corollary 1. Let σ ∈ Σ be a limit ESS. There exists a sequence of full support perturbations

(ζn)n∈N
satisfying limn→∞ M (ζn) = 0, and for each n ∈ N, there exists an ESS σn of the

perturbed game Γ (ζn), such that limn→∞ σn = σ is satisfied.
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Tab. 2: Reduced Game (Players Choose abilities, and must follow Playing-Rule b∗)

L1 Lk (k≥3) L2

L1 2 · A A A

Lk (k≥3) 2 · A + 1 − c (Lk) A + 1 − p · A + p − c (Lk) A + 1 + p − c (Lk)

L2 2 · A + 1 − c (L2) A + 1 − p · A − c (L2) A + 1 − c (L2)

Proof. The fact that σ is a limit ESS implies that there exists a sequence of perturbations

(ζn)n∈N
satisfying: limn→∞ M (ζn) = 0, and for each n ∈ N, there exists a strategy σn ∈ Σ (ζn),

which is an ESS of Γ (ζn), and that limn→∞ σn = σ is satisfied. Lemma 1 implies that there

exists a sequence of full support perturbations (ζ ′
n)n∈N

with the same properties.

Remark 4. The corollary immediately implies that every limit ESS is a perfect NSS (Def.

9) and a symmetric perfect equilibrium (Selten, 1975). The proof of Lemma 1 relies on the

property of the repeated Prisoner’s Dilemma that each player has a dominant action at the last

stage. Slightly weaker results are known for general extensive-form games: any limit ESS is a

symmetric sequential equilibrium (van Damme, 1987, Corollary 9.8.6).

B.2 Theorem 2 - σ∗ is a Strict Limit NSS / ESS

Proof. The proof includes several parts:

1. Abilities L1 and L3 are best-replies given playing-rule b∗: u ((L1, b∗) , σ∗) = u ((L3, b∗) , σ∗)

≥ u ((Lk, b∗) , σ∗) for each k /∈ {1, 3} with strict inequality if: c (L4) > c (L3).

(a) Reduced game given b∗. Playing-rule b∗ induces a reduced normal form game in which

each player chooses ability at stage 0, and then players follow b∗ at the remaining

rounds. Note that the choice of ability only influences the payoffs at stages 0 (cogni-

tive cost), T − 1 (=horizon 2) and T − 2 (=horizon 3), as all abilities play the same

at all other stages (they all play pavlov until stage T − 3 and defect at stage T).

Henceforth, we focus only on the payoffs of these 3 stages, and present in Table 2 the

symmetric payoff matrix of this reduced game. The payoffs of Table 2 are calculated

as follows: Two players with ability L1 who face each other cooperate at horizons 2

and 3, and obtain 2 · A utility points. A player with ability Lk (k ≥ 2), who faces

L1, defects at horizon 2 and obtains 2 · A + 1 points (and induces a cognitive cost),

while the L1 opponent obtains only A points. When two L2-s face each other they

both cooperate at horizon 3 and both defect at horizon 2, and they obtain A + 1
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points. When an L3 player faces an L2, the outcome depends on whether or not L3

is observing. With probability p, the L3 player is observing and he obtains A + 2

points (by defecting at both horizons) and the L2 opponent obtains one point; with

probability 1 − p, L3 is not observing and both players obtain A + 1 points (both

cooperate at horizon 3 and defect at horizon 2). Finally, when two L3s face each

other, the outcome depends on both observations. If both players are observing

(probability p2), they defect at both horizons and obtain 2. If both are unobserving

(probability (1 − p)2), they defect only at horizon 2 and obtain A + 1. If exactly

one of them is observing, the observing player defects at horizon 3, and he obtains

A + 2 and his opponent obtains one. Aggregating these possible outcomes yields the

following expected payoff at horizons 2 and 3:

p2 · 2 + (1 − p)2 · (A + 1) + p · (1 − p) · (A + 2) + (1 − p) · p · 1 = A + 1 − p · A + p.

(b) Abilities L>3 are weakly dominated by ability L3 and strictly dominated if c (L4) >

c (L3): they obtain the same stage-payoffs but they bear higher cognitive costs.

(c) Ability L2 obtains a strictly lower payoff then ability L1.

We have to show that the payoff of ability L2 ((2 · A + 1) · µ∗ (L1) + (A + 1 − p · A) ·

µ∗ (L3)−c (L2)) is strictly smaller than the payoff of ability L3 ((2 · A + 1) ·µ∗ (L1)+

(A + 1 − p · A + p) · µ∗ (L3) − c (L3)). This holds iff:

(A + 1 − p · A) · µ∗ (L3) − c (L2)
?
< (A + 1 − p · A + p) · µ∗ (L3) − c (L3) ⇔

c (L3) − c (L2)
?
< p · µ∗ (L3) =

1 − c (L3)

A − 1
⇔

c (L3)
?
<

c (L2) · (A − 1) + 1

A
=

1

A
+

(

1 −
1

A

)

· c (L2) ,

and the latter inequality is implied by c (L3) < 1
A

.

(d) Frequency µ∗ balances the payoffs between abilities L1 and L3.

Observe that if A + 1 − p · A + p − c (Lk) < A, then the reduced game between these

two abilities is of the Hawk-Dove variety: each ability is a strict best-reply to the

other ability. This inequality holds iff:

A + 1 − p · A + p − c (L3) < A ⇔
1 − c (L3)

A − 1
< p.

The latter inequality holds due to the assumption that A·(1−c(L3))

(A−1)2 < p. It is well

known that a Hawk-Dove game admits a unique mixed equilibrium. We now show
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that µ∗ is the unique equilibrium. The payoff of L1 is 2 · A · µ∗ (L1) + A · µ∗ (L3), and

the payoff of L3 is (2 · A + 1) · µ∗ (L1) + (A + 1 − p · A + p) · µ∗ (L3) − c (L3). These

payoffs are equal if:

2·A·µ∗ (L1)+A·µ∗ (L3)
?
= (2 · A + 1)·µ∗ (L1)+(A + 1 − p · A + p)·µ∗ (L3)−c (L3) ⇔

(p · A − p − 1) · µ∗ (L3) + c (L3)
?
= µ∗ (L1) = 1 − µ∗ (L3) ⇔

p · (A − 1) · µ∗ (L3) + c (L3)
?
= 1 ⇔ µ∗ (L3) =

1 − c (L3)

p · (A − 1)
.

2. Stability against other distributions: If (µ, b∗) 6= σ∗ is a best-reply to σ∗ then u (σ∗, (µ, b∗)) ≥

u ((µ, b∗) , (µ, b∗)) with a strict equality if c (L4) > c (L3).

Part (1) implies that (µ, b∗) is a best-reply to σ∗ iff supp (µ) ⊆ {L1, L3}. The result is an

immediate corollary of the well-known result (see, e.g., Weibull, 1995, Section 2.1.2 ) that

the unique equilibrium in a Hawk-Dove game is an ESS. The intuition for this result is

the observation that, if the frequency of ability L1 becomes larger (smaller), they become

relatively less (more) successful than ability L3.

3. The perturbed game Γ (ζ): Let ζ be any full support perturbation with sufficiently small

maximal tremble M (ζ). Let σ∗
ζ =

(

µ∗
ζ , β∗

ζ

)

be defined as follows:

β∗
ζ (I) (C) =











ζ (I) (C) b∗ (I) = D

1 − ζ (I) (D) b∗ (I) = C
, µ∗

ζ (Lk) =























µ∗ (L1) + η k = 1

ζ (Lk) k 6= 1, 3

1 −
∑

k 6=3 µ∗
ζ (Lk) k = 3

,

where η is chosen such that u
((

L1, β∗
ζ

)

, σ∗
ζ

)

= u
((

L3, β∗
ζ

)

, σ∗
ζ

)

. Observe that:

(a) For sufficiently small M (ζ) , such η exists and its order of magnitude is O (M (ζ))

(due to continuity and the properties of the reduced game described above). This

implies that
∣

∣

∣σ∗
ζ − σ∗

∣

∣

∣ ≤ O (M (ζ)).

(b) β∗
ζ is the closest playing-rule to b∗ in Σ (ζ).

(c) The perturbed reduced game between abilities, in which the fixed playing-rule is β∗
ζ ,

is still a game of Hawk-Dove variety (again, by continuity). Thus the results of parts

(1)-(2) still hold in this setup.

(d) All information sets are reached with positive probability in Γ (ζ).

4. For every µ ∈ ∆ζ (L) and β ∈ B (ζ), u
((

µ, β∗
ζ

)

, σ∗
ζ

)

> u
(

(µ, β) , σ∗
ζ

)

(i.e., β∗
ζ is a strictly

optimal playing-rule against strategy σ∗
ζ in Γ (ζ) for all abilities).
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(a) β∗
ζ is strictly optimal for uninformed agents. Recall that as long as players are unin-

formed, playing-rule b∗ is equal to pavlov, and that β∗
ζ is the closest strategy to b∗ in

B (ζ). Lorberbaum et al. (2002) study the standard repeated Prisoner’s Dilemma,

in which players remain uninformed throughout the game. They analyze a perturba-

tion that assigns minimal probability ǫ > 0 for each action at each information set.

They show that the ǫ-perturbed pavlov (the strategy that defects with probability

1 − ǫ if the players played different actions at the previous round, and cooperates

with probability 1 − ǫ otherwise) is a symmetric strict equilibrium (and hence, also

an ESS) in the ǫ-perturbed game. Minor adaptations to their proof (omitted for

brevity) extend the result (for δ sufficiently close to 1): (1) for any full support

perturbation; and (2) for the current setup, in which players are informed in the last

few rounds.

(b) β∗
ζ is strictly optimal for horizons 1 and 2. Defection is a dominant action for

horizon 1. The fact that σ∗
ζ induces a very high probability of defection at horizon 1

(regardless of the history), implies that defecting at horizon 2 is a strict best-reply.

(c) Horizon 3 against L3. Defection at horizon 3 yields one more point immediately

(relative to cooperation), while it does not affect future payoffs (because, with high

probability, the opponent defects during the last two rounds regardless of the his-

tory).

(d) Horizon 3 against L1 and strangers. If players played different actions in the previous

round, then defection yields both a higher payoff in the current stage, and a higher

expected payoff in the future (as the opponent is likely to defect in the current stage,

and only mutual defection may lead to mutual cooperation at the next round). This

argument works also in larger horizons, and in steps (e)-(f) below we focus on showing

that β∗
ζ is optimal only after a previous round in which both players played the same.

If the players played the same action in the previous round, and the opponent is L1,

then cooperation yields (with high probability)26 payoff vector of A, A + 1, 1: A at

horizon 3, A + 1 at horizon 2 (as the L1 opponent cooperates), and one at horizon

1. Defection at horizon 3 yields a vector payoff of at most A + 1, 1, 1 (as the L1

opponent defects at horizon 2). Thus cooperation yields A − 1 more utility points.

We are left with showing that β∗
ζ yields a strictly better payoff against strangers.

If the stranger has ability L3, then defection yields one more utility point than

26 Henceforth in the analysis we present strict inequalities by using the payoffs that are induced by the
unperturbed strategy σ∗, which approximates the payoffs that are induced by σ∗

ζ . For sufficiently small M (ζ),
the inequalities hold also for the slightly-perturbed σ∗

ζ . For brevity, we also omit the phrasing “with high
probability” in the remaining text.
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cooperation at horizon 3, and payoffs during the last two rounds remain the same.

Thus, defection yields a higher expected payoff against a stranger iff the frequency

of L3 opponents is sufficiently low: µ∗ (L3) · 1 < (1 − µ∗ (L3)) · (A − 1) ⇔

µ∗ (L3) <
A − 1

A
⇔

1 − c (L3)

p · (A − 1)
<

A − 1

A
⇔

A · (1 − c (L3))

(A − 1)2 < p.

(e) Horizon 4 against L3. Cooperation at horizon 4 (assuming both players played the

same at the previous stage) yields a payoff vector of A, 1, 1, 1 (A, A + 1, 1, 1) during

the last four rounds when facing an observing (unobserving) opponent. Defection at

horizon 4 yields a payoff of A + 1, 1, 1, 1 in both cases. Thus, cooperation is a strict

best reply iff: 1 · p < (1 − p) · (A − 1) ⇔ p < A−1
A

.

(f) Horizon 4 against strangers and L1, and horizons larger than 4 against all opponents.

Cooperation is a strict best reply (assuming both players played the same at the

previous stage) because it yields one less utility point in the current stage (relative

to defection), and A − 1 more points in the next round.

5. Combining the above arguments implies σ∗
ζ is an NSS in Γ (ζ) and an ESS if c (L4) >

c (L3). This implies that σ∗ is a strict limit NSS, and a strict limit ESS if c (L4) > c (L3).

B.3 Theorem 5: Uniqueness Result

Proof. We begin with a few notations. Let σ = (µ, β) be an early-nice limit ESS. Let Mσ ∈ N

be a large enough integer such that with probability one everyone cooperates at any horizon

larger than Mσ. We shall say that a player faces an incumbent (at a given information set) if

he has observed the opponent to have an incumbent ability or if he faces a stranger (as with

probability one strangers have incumbent abilities). Let Lk ∈ supp (µ) be the lowest incumbent

ability. Recall that an information set I ∈ I cooperative if both players have cooperated at

all previous stages. We shall say “ability Lk does X” as an abbreviation for “playing-rule β

induces a player with ability Lk to do X”. The proof includes the following parts:

1. Preliminary observations about strategy σ:

(a) On the equilibrium path, everyone defects in the last k rounds.

Intuitively, this is because it is common knowledge among the players whether or

not the horizon is at most k. The formal argument is as follows: Assume to the

contrary that players cooperate with positive probability in the last k rounds on the
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equilibrium path. Let m ≤ k be the smallest horizon in which a player cooperates

with positive probability on the equilibrium path. Consider a strategy σ′ that coin-

cides with σ, except that players defect at horizon m with probability one. Observe

that u (σ′, σ) > u (σ, σ) as both strategies induce the same play and yield the same

payoff against σ at all rounds except at horizon m, in which strategy σ′ defects with

probability one and yields a higher payoff.

(b) With probability one, players with ability L≥k+1 defect at horizon k + 1 when facing

an incumbent. This is because defection at horizon k+1 yields one more utility point

without affecting the opponent’s future play (due to the previous step). Similarly,

this implies that players with ability L≥k+2 defect with probability one at horizon

k + 2 when facing an observed incumbent ability L≥k+1.

(c) Early-niceness implies that uninformed players cooperate with probability one at

cooperative information sets (because the unknown horizon has a positive probability

to be larger than Mσ). This is also true if the player has a non-incumbent ability.

(d) If any incumbent ability defects with positive probability when facing an incumbent

at a cooperative information set, and the defection is realized in the game, then both

players defect at all the remaining periods.

The claim is implied by the observation that after such a defection it becomes com-

mon knowledge that the maximal horizon is Mσ. The proof is analogous to step (a),

and it is omitted for brevity.

(e) µ
(

Lk

)

< 1. The assumption that c
(

Lk+1

)

− c (Lk) < 1 implies that if µ
(

Lk

)

= 1,

then any strategy σ′ that assigns mass one to Lk+1, cooperates when being unin-

formed and defects at the last k + 1 stages, is a strictly better reply against σ.

2. Case I: Assume that p < A−1
A

and all incumbents cooperate when: (1) the opponent is a

stranger, (2) the information set is cooperative, and (3) the horizon is strictly larger than

k + 1. Then:

(a) All incumbents cooperate when: (1) the opponent is an incumbent, (2) the informa-

tion set is cooperative, and (3) the horizon is strictly larger than k + 2.

The previous part implies that defection at horizon k + 2 (> k + 2) yields at least

A − 1 (2 · (A − 1)) less points than cooperation against an unobserving opponent

(probability 1 − p). If the opponent is observing (probability p) the maximal gain

from defection is one point (two points), which is obtained if the opponent were

planning to defect at horizon k + 2 (at the next round also after mutual cooperation
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at the current stage). Defection yields a strictly lower payoff if:

(1 − p) · (A − 1) > p · 1 ⇔ (A − 1) > A · p ⇔
A − 1

A
> p.

(b) The previous step implies that all incumbents obtain the same payoff at all horizons

except k + 1 and k + 2, and that the reduced game between the abilities at these

horizons is analogous to Table 2 (where Lk replaces L1). As a result: (1) µ
(

L>k+1

)

>

0 (otherwise, u
((

Lk, β
)

, σ
)

< u
((

Lk+1, β
)

, σ
)

because c
(

Lk+1

)

− c
(

Lk

)

< 1); and

(2) ∀k > k + 2, µ
(

L>k+2

)

> 0 only if c (Lk) = c
(

Lk+2

)

(otherwise u ((Lk, β) , σ) <

u
((

Lk+2, β
)

, σ
)

, and σ cannot be an equilibrium).

(c) µ
(

Lk+1

)

= 0. Assume to the contrary that µ
(

Lk+1

)

> 0. The fact that σ is

an equilibrium implies that u
((

Lk, β
)

, σ
)

= u
((

Lk+1, β
)

, σ
)

= u
((

Lk+2, β
)

, σ
)

.

Analogous calculations to part (1-c-d) of Theorem 2’s proof imply that Lk and Lk+1

obtain the same payoff only if:

c
(

Lk+1

)

− c
(

Lk

)

+ µ
(

L≥k+2

)

· p · A = 1 ⇔ µ
(

L≥k+2

)

=
1 −

(

c
(

Lk+1

)

− c
(

Lk

))

p · A
.

Let µ′ be defined as follows: µ′
(

Lk

)

= 0, µ′
(

Lk+1

)

= µ
(

Lk

)

+ µ
(

Lk+1

)

, and

µ′ (Lk) = µ (Lk) for each k ≥ k + 2. The fact that supp (µ′) ⊆ supp (µ) im-

plies that u ((µ′, β) , σ) = u (σ, σ) and the equality µ
(

L≥k+2

)

= µ′
(

L≥k+2

)

implies

u (σ, (µ′, β)) = u ((µ′, β) , (µ′, β)) (because µ and µ′ only differ in the frequency of

Lk and Lk+1, and these two abilities yield the same payoff).27

(d) If c
(

Lk+2

)

= c
(

Lk+3

)

then σ is not a limit ESS. By the previous steps u
((

Lk+2, β
)

, σ
)

=

u
((

Lk+3, β
)

, σ
)

(because these two strategies play the same on the equilibrium

path), and this implies that strategy σ′ = (µ′, β) which differs from σ = (µ, β) by an

internal shift in the frequencies of abilities Lk+2 and higher abilities with the same

cognitive costs satisfy: u (σ′, σ) = u (σ, σ) and u (σ′, σ′) = u (σ, σ′). An analogous

property would hold in any sufficiently close perturbed game, and thus σ cannot be

a limit ESS.

(e) If p <
1−(c(Lk+2)−c(Lk))

A−1
or c

(

Lk+2

)

− c
(

Lk

)

≥ 1, then σ is not an equilibrium.

Otherwise,

µ
(

Lk

)

= 1 −
1 −

(

c
(

Lk+2

)

− c
(

Lk

))

p · (A − 1)
. (B.1)

27 One can show that slightly perturbing µ′ to satisfy µ′
(

Lk+2

)

= µ
(

Lk+2

)

+ ǫ, would imply that
u (σ, (µ′, β)) < u ((µ′, β) , (µ′, β)) . That is, σ is not an NSS.
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The argument is analogous to part (1-d) of the proof of Theorem 2.

(f) Lk = L1 (which implies by the previous steps that σ ≈ σ∗). Assume to the contrary

that Lk > L1:

i. If there is an incumbent ability which defects with positive probability against an

observed L1 opponent, then both players defect at all the renaming rounds.

Intuitively, this is because after such a defection is realized, it becomes common

knowledge that the horizon is at most k. The formal argument is as follows.28

Assume to the contrary, that there is an incumbent ability who defects with

positive probability when facing an observed L1 opponent at a cooperative in-

formation set. Let l ≤ k̄ be the highest horizon in which an incumbent defects

against an observed L1. Assume to the contrary that either player cooperates

with positive probability at any later stage. Let m ≤ l be the farthest round

since the first defection, in which at least one of the players cooperates with

positive probability. Consider strategy σ′ that coincides with σ at all informa-

tion sets, except that it defects (with probability 1) m rounds after the initial

defection. Observe that strategy σ′ yields a strictly higher payoff conditional

on playing against L1 opponents. Consider any full support perturbed game

Γ (ζ) with sufficiently small M (ζ) . By continuity, any strategy σ′
ζ ∈ Σ (ζ) suffi-

ciently close to σ′ yields a strictly better payoff against any strategy σζ ∈ Σ (ζ)

sufficiently close to σ (relative to the payoff that σζ yields against itself). This

contradicts the assumption that σ is a perfect equilibrium.

ii. An incumbent ability which faces an observed L1 opponent at a cooperative in-

formation set: (1) cooperates if the horizon is larger than 2; and (2) defects if

the horizon is at most 2.

Defection at any horizon larger than 2 yields a strictly lower payoff due to the

previous step. Cooperating at horizon 2 yields strictly lower payoff, because

it immediately yields one less point, without changing the future play of the

opponent (who always defects at the last stage, as it is a dominant action).

iii. If Lk > L2 then u ((L1, β) , σ) > u
((

Lk, β
)

, σ
)

.

By the previous parts, (L1, β) achieves at most one less utility point (relative

to
(

Lk, β
)

) when facing an unobserving Lk opponent, and it achieves at least

A − 1 (A − 2) more points against an observing L>k (Lk) opponent. Thus,

28 Note that the argument is slightly more complex than part (1-a), as it deals with an information set off the
equilibrium path.
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u ((L1, β) , σ) > u
((

Lk, β
)

, σ
)

if:

(1 − p) ·µ
(

Lk

) ?
< p ·

(

A − 1 − µ
(

Lk

))

+c
(

Lk

)

⇔ µ
(

Lk

) ?
< p · (A − 1)+c

(

Lk

)

.

Substituting µ
(

Lk

)

yields and defining 0 ≤ x ≡ c
(

Lk+2

)

− c
(

Lk

)

< 1 :

p · (A − 1) − 1 + x

p · (A − 1)

?
< p·(A − 1)+c

(

Lk

)

⇔ x
?
< p·(A − 1)·

(

p · (A − 1) + c
(

Lk

)

− 1
)

+1

Substituting p · (A − 1) ≥ 1 − x yields:

x
?
< (1 − x) ·

(

1 − x + c
(

Lk

)

− 1
)

+ 1 ⇔ x
?
< (1 − x) ·

(

c
(

Lk

)

− x
)

+ 1

⇐ x
?
< (1 − x) · (−x) + 1 ⇔ 1 − 2x + x2 > 0 ⇔ (1 − x)2 > 0 ⇐ 0 ≤ x < 1.

iv. If Lk = L2 and c (L4) < 1
A

then u ((L1, β) , σ) > u ((L2, β) , σ).

By the previous parts, (L1, b1) achieves at most one less utility point (relative

to (L2, β)) when facing an L2 opponent, the same payoff when facing an unob-

serving L>2 opponent, and at least A − 1 more points against an observing L>2

opponent. Thus, u ((L1, β) , σ) > u ((L2, β) , σ) if:

µ (L2)
?
< p · (A − 1) · (1 − µ (L2)) + c (L2) ⇔ µ (L2)

?
<

p · (A − 1) + c (L2)

p · (A − 1) + 1
.

Substituting µ (L2) from (B.1), implies:

p · (A − 1) − 1 + (c (L4) − c (L2))

p · (A − 1)

?
<

p · (A − 1) + c (L2)

p · (A − 1) + 1

⇔ −1 + (p · (A − 1) + 1) · (c (L4) − c (L2))
?
< p · (A − 1) · c (L2)

⇔ c (L4) − c (L2)
?
<

1 + p · (A − 1) · c (L2)

1 + p · (A − 1)
,

and the last inequality is immediately implied by c (L4) < 1
A

.

3. Case II: Assume that p < A−1
A

and there are incumbents who defect with positive prob-

ability when: (1) the opponent is a stranger, (2) the information set is cooperative, and

(3) the horizon is strictly larger than k + 1. Then:

(a) µ
(

Lk

)

≤ 1
A

.

Due to part (1-e), defection at horizon k+2 (> k+2) yields A−1 (at least 2·(A − 1))



B.3 Theorem 5: Uniqueness Result 33

less utility points relative to cooperating until horizon k+1 if the opponent has ability

Lk , and one (at most two) more points against any other opponent. Such a defection

can yield a weakly better payoff only if:

µ
(

Lk

)

· (A − 1) ≤
(

1 − µ
(

Lk

))

⇔ µ
(

Lk

)

≤
1

A
. (B.2)

(b) All incumbent abilities L≥k+2 defect with probability one when facing a stranger at a

cooperative information set with horizon k + 2.

Assume to the contrary that there is an incumbent ability Lk̃ (k̃ ≥ k + 2) that

cooperates with positive probability against strangers at a cooperative information

set with horizon k + 2. Define strategy σ′ to coincide with σ, except that σ′ defects

with probability one when ability Lk̃ faces a stranger at a cooperative information set

with horizon k + 2. The assumption of case II and part (1-e) imply that u (σ′, σ) ≥

u (σ, σ), and that u (σ′, σ′) > u (σ, σ′) , and we get a contradiction to neutral stability.

(c) µ
(

Lk+1

)

> 0. Assume to the contrary that µ
(

Lk+1

)

= 0.

i. Assume that p < A−2
A−1

: We compare the payoff of ability Lk and the mean

payoff of any incumbent ability L≥k+2 when facing an Lk opponent: Lk ob-

tains one less utility point when the opponent’s ability is observed, and at least

A − 2 more utility points when the opponent is a stranger. This implies that

u
((

Lk, β
)

,
(

Lk, β
))

> u
(

σ,
(

Lk, β
))

(which contradicts neutral stability) if:

p < (A − 2) · (1 − p) ⇔ p <
A − 2

A − 1
.

ii. Due to analogous arguments to parts (a-b), µ
(

Lk

)

≤ 1
A

implies that all incum-

bent abilities L≥k+3 defect with probability one when facing a stranger (or an

incumbent ability in L≥k+2) at a cooperative information set with horizon k +3.

iii. Assume that p ≥ A−2
A−1

: To simplify notation let: α = µ
(

L≥k+3

)

/µ
(

L≥k+2

)

,

and µ = µ
(

Lk

)

. We compare the payoff of ability Lk and the average payoff of

abilities L≥k+2. Ability Lk yields: (1) at least A − 2 + α · (A − 1) more points

when facing an unobserved Lk opponent (probability (1 − p) · µ), (2) one less

point when facing an observed Lk opponent (probability p·µ), (3) at least A−2+

α · (A − 1) more points when facing an observing L≥k+2 opponent (probability

p·(1 − µ)), (4) at most one less point when facing an unobserved and unobserving

L≥k+2 opponent ((1 − p)2 ·(1 − µ)), and (5) at most 1+α less points when facing

an observed and unobserving L≥k+2 opponent (probability (1 − p) · p · (1 − µ))

. This implies that u
((

Lk, β
)

, σ
)

> u (σ, σ) (which contradicts σ being a Nash
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equilibrium) if:

(A − 2 + α · (A − 1)) (p · (1 − µ) + (1 − p) · µ)
?
> p·µ+(1 − p)·(1 − µ)·(1 + p · α)

Substituting A > 3 yields:

⇐ (1 + 2 · α) (·p · (1 − µ) + (1 − p) · µ)
?
> p · µ + (1 − p) · (1 − µ) · (1 + p · α)

⇔ (2 · p − 1)·(1 − 2 · µ)+α (2 · (p · (1 − µ) + (1 − p) · µ) − (1 − p) · (1 − µ) · p)
?
> 0

⇔ (2 · p − 1) · (1 − 2 · µ) + α (p · (1 − µ) · (1 + p) + 2 · (1 − p) · µ)
?
> 0.

Substituting p > A−2
A−1

> 1
2

and µ < 1
A

< 1
3

implies the inequality.

(d)

µ
(

L≥k+2

)

=
1 − c

(

Lk+1

)

1 + (A − 1) · p
. (B.3)

We compare the payoffs of ability Lk and ability Lk+1. Ability Lk obtains: one

less point when facing an Lk or Lk+1 opponent, the same payoff when facing an

unobserving L≥k+2 opponent, and A−1 more points when facing an observing L≥k+2

opponent. This implies that u
((

Lk, β
)

, σ
)

= u
((

Lk+1, β
)

, σ
)

(which is implied by

σ being an equilibrium) if and only if:

(A − 1) · p · µ
(

L≥k+2

)

= 1 − µ
(

L≥k+2

)

−
(

c
(

Lk+1

)

− c
(

Lk

))

⇔ µ
(

L≥k+2

)

=
1 −

(

c
(

Lk+1

)

− c
(

Lk

))

1 + (A − 1) · p
.

(e) Strategy σ is not a limit ESS.

Let µ′′ be defined as follows: µ′′
(

Lk

)

= 0, µ′′
(

Lk+1

)

= µ
(

Lk

)

+ µ
(

Lk+1

)

, and

µ′′ (Lk) = µ (Lk) for each k > k+1. supp (µ′′) ⊆ supp (µ) implies that u ((µ′′, β) , σ) =

u (σ, σ) and the previous part implies that u (σ, (µ′′, β)) = u ((µ′′, β) , (µ′′, β)) (be-

cause µ
(

L≥k+2

)

= µ′′
(

L≥k+2

)

). An analogous property is satisfied in any sufficiently

close perturbed game, and thus σ cannot be a limit ESS.29

4. Case III - Assume that p ≥ A−1
A

. Let k̃ > Mσ. Let m ≤ Mσ be the highest horizon in

which Lk̃ ability defects with a positive probability when facing an observed Lk̃ opponent

29 One can show that perturbing µ′′ to satisfy either µ′′
(

Lk+2

)

= µ
(

Lk+2

)

+ ǫ or µ′′
(

Lk+2

)

= µ
(

Lk+2

)

− ǫ,
would imply that u (σ, (µ′′, β)) < u ((µ′, β) , (µ′, β)) for any p 6= 0.5. That is, σ is not an NSS for any p 6= 0.5.
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at a cooperative information set (m cannot be higher than Mσ due to the assumption of

early-niceness). An analogous argument to part (3b), implies that ability Lk̃ defects with

probability one at horizon m when facing an observed Lk̃ opponent. Finally, an analogous

argument to part (4e) of Theorem 2’s proof.) shows that p ≥ A−1
A

implies a contradiction

to the assumption that σ is a limit ESS because defection yields a higher payoff than

cooperation when facing an observed Lk̃ opponent at a cooperative information set with

horizon m + 1.30

B.4 Other Results:

Proof of Part (1) of Theorem 6 (early-nice symmetric perfect equilibrium)

1. We begin by showing that 0 < µ (L1) < 1. The preliminary observations and Case I of

Theorem 5’s proof hold with minor adaptations also for a symmetric perfect equilibrium.

We are left with case II, in which there are incumbents who defect with positive probability

when facing a stranger at a cooperative information set when the horizon is larger than

k + 1 (where Lk is the smallest incumbent). Part (3a) holds also in this setup and

shows that µ
(

Lk

)

≤ 1
A

. Assume to the contrary that Lk 6= L1. We compare the

payoff of abilities L1 and Lk against σ. Ability L1 obtains at most one less point when

facing an Lk opponent (probability µ
(

Lk

)

), the same payoff when facing an unobserving

L>k opponent, and at least A − 1 more points when facing an observing L>k opponent

(probability p ·
(

1 − µ
(

Lk

))

). Thus, u ((L1, β) , σ) > u
((

Lk, β
)

, σ
)

= u (σ, σ) (and this

contradicts σ being an equilibrium) if:

µ
(

Lk

)

< p·
(

1 − µ
(

Lk

))

·(A − 1) ⇔ p >
µ

(

Lk

)

(

1 − µ
(

Lk

))

· (A − 1)
>

1
A

(A−1)
A

· (A − 1)
=

1

(A − 1)2 .

2. We now show that µ (L≥5) = 0.

(a) Assume first that µ (L≤2) ≤ 1
A

. We compare the payoff of (L1, β) and average payoff

of (L≥3, β) against σ. Ability L1 achieves at least A − 2 more points when facing

an observing L≥3 opponent (probability p · (1 − µ (L≤2))) , at most two less points

when facing an L≤2 opponent (probability µ (L≤2)), and at most 1 + p less points

when facing an unobserving L≥3 opponent (probability (1 − p) ·(1 − µ (L≤2))). Thus

30 If p = A−1

A
, then defection and cooperation yields the same payoff, and one has to rely also on an analogous

argument to part (3-3b) to imply the contradiction.
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u ((L1, β) , σ) > u ((L≥3, β) , σ) (and this contradicts σ being an equilibrium) if:

p · (1 − µ (L≤2)) · (A − 2)
?
> 2 · µ (L≤2) + (1 + p) · (1 − p) · (1 − µ (L≤2))

⇐ p · (1 − µ (L≤2)) · (A − 2)
?
> 1 + µ (L≤2) ⇔ p

?
>

1 + µ (L≤2)

(1 − µ (L≤2)) · (A − 2)

⇐ p
?
>

A+1
A

(A−1)
A

· (A − 2)
=

A + 1

(A − 1) · (A − 2)
.

(b) Assume that µ (L≤2) > 1
A

. By an analogous argument to part (4e) of Theorem 2’s

proof, it implies that it is strictly better to cooperate at any horizon larger than

three when facing a stranger at a cooperative information set. The assumption

that p < A−1
A

implies by an analogous argument to part (4-e) of Theorem 2’s proof

that it is strictly better to cooperate at any horizon larger than four when facing

an incumbent at a cooperative information set. Thus, on the equilibrium path all

incumbents cooperate at all horizons larger than four. This implies that if c (L5) >

c (L4) then all incumbents have ability of at most L4.

The proofs of parts (2-3) of Theorem 6 are very similar to the analogous parts of the proof of

Theorem 5 (omitted for brevity).

Proof of Theorem 3 ((L1, bdefect) is a strict limit ESS):

Proof. Lorberbaum et al. (2002) study a perturbed variant of the standard repeated Prisoner’s

Dilemma, in which there is a fixed minimal probability ǫ > 0 for each action at each information

set. They show that the ǫ-perturbed defect (the strategy that defects with probability 1−ǫ at all

information sets) is a symmetric strict equilibrium (and hence, also an ESS) in the ǫ-perturbed

game. Minor adaptations to their proof (omitted for brevity) allow us to extend the result (for

δ sufficiently close to one): (1) for any full support perturbation; and (2) for the current setup,

in which players may become informed earlier about the realized length of the game.

Proof of Theorem 4 (each Lk can be the unique incumbent in a strict limit ESS):

Proof. The proof includes the following parts:

1. Notation and Preliminary definitions:

(a) Given a finite action profile Wt = (W 1, W 2) ∈ ({C, D} , {C, D})t, let ū (W ) be

the average stage payoff of player 1 who repeats playing cycles of W 1 and faces an
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opponent who repeats playing W 2. Let Sj denote the jth action in the sequence S.

To simplify notation, assume without loss of generality that S1 = C.

(b) Let M ′ ∈ N and let Ẇ , Ẅ ,
...
W ∈ ({C, D} , {C, D})M ′

be sequences of action profiles

that satisfy the following properties: (1) the sequence Ẅ is the “reflection” of Ẇ , in

which the roles of players 1 and 2 are exchanged: ∀1 ≤ j ≤ M, i ∈ {1, 2} Ẇ i
j = Ẅ −i

j ;

(2) the sequence Ẇ begins with defection: Ẇ1 = D. (3)
...
W is a symmetric action

profile that begins with mutual defection (
...
W 1 = (D, D)); and (4) the average stage

payoffs are ordered as follows: ū
(

Ẇ
)

> ū ((S, S)) , ū
( ...
W

)

> ū
(

Ẅ
)

> 1.

(c) Let Wt ∈ ({C, D} , {C, D})t be a symmetric action profile of length t, in which

both players repeat playing cycles of S: ∀1 ≤ j ≤ t Wt,j = (Sj mod M , Sj mod M).

Similarly, let Ẇt (resp., Ẅ t,
...
W t) be an action profile of length t, in which both

players repeat playing cycles of Ẇ (resp., Ẅ ,
...
W ): ∀1 ≤ j ≤ t Ẇt,j =

(

Ẇj mod M ′

)

(resp., Ẅt,j =
(

Ẅj mod M ′

)

,
...
W t,j =

( ...
W j mod M ′

)

).

2. Definition of the deterministic playing-rule bW,k: At stage 1 bW,k (Lk′ , l.s, ∅) = C iff
(

s ∈ {Lk, φ} and
(

∃k < l′ < l s.t. W i
t+1+l−l′ = C

))

. That is, at stage 1 each player co-

operates only if he observes his opponent to have the incumbent ability (or a stranger),

and in addition, the horizon is long enough such that his opponent is likely to cooperate

in the future at least once. To simplify the notation below, we slightly abuse it, and write

s = Lk instead of s = φ when the opponent is a stranger (and has probability 1 to have the

incumbent ability Lk). At the remaining stages (t ≥ 1) bW,k

(

Lk′ , l.s = Lk′′ , (ai, a−i)
t
)

= C

iff either of the following conditions hold:

(

(

ai, a−i
)t

= Wt and W i
t+1 = C and

(

∃l1, l2 s.t. ((k < l1 < l2 < l) or (k′′ < l1 < l)) and W −i
t+1+l−l1

= W −i
t+1+l−l2

= C
))

;

or
(

(

ai, a−i
)t

= Ẇt and Ẇ i
t+1 = C and Lk′′ 6= Lk and

(

∃l1, l2 s.t. ((k < l1 < l2 < l) or (k′′ < l1 < l)) and Ẅ −i
t+1+l−l1

= Ẅ −i
t+1+l−l2

= C
))

;

or
(

(

ai, a−i
)t

= Ẅt and Ẅ i
t+1 = C and Lk′ 6= Lk and

(

∃k′′ < l1 < l s.t. Ẅ −i
t+1+l−l1

= C
)

)

or
(

(

ai, a−i
)t

=
...
W t and

...
W

i

t+1 = C and Lk′ , Lk′′ 6= Lk and
(

∃k′′ < l1 < l s.t.
...
W

−i
t+1+l−l1

= C
)

)

.

That is, the first action-profile determines which sequence the players should follow: W

if it was (C, C), Ẇ if it was (D, C), Ẅ if it was (C, D), and
...
W if it was (D, D). The

players follow this cycle until either of the following occurs:
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(a) It becomes common knowledge that either player has deviated in the past - in this

case, both players defect at all remaining stages.

(b) A player knows that his opponent is not going to cooperate in the future (because

the horizon is too short) - in this case he defects.

3. Fix an arbitrary full support perturbed game Γ (ζ) with sufficiently small maximal tremble

M (ζ). Let σW,k,ζ = (µW,k,ζ , βW,k,ζ) ∈ Σ (ζ) be the closest strategy to (Lk, bW,k) in Σ (ζ),

and let σ = (µ, β) 6= σW,k,ζ ∈ Σ (ζ) any other strategy. We now show that u (σ, σW,k,ζ) <

u (σW,k,ζ , σW,k,ζ) (i.e, σW,k,ζ is a symmetric strict equilibrium in Σ (ζ)), which implies that

(Lk, bW,k) is a strict limit ESS. The argument is a simple adaptation to Kim (1994)’s folk

theorem result and is briefly sketched as follows:

(a) u ((µ, β) , σW,k,ζ) ≤ u ((µ, βW,k,ζ) , σW,k,ζ). This is because any deviation from playing-

rule βW,k, which is observed by the opponent, leads the players to defect at all

remaining stages, and for δ sufficiently close to 1, the future loss outweighs the gain.

(b) u ((µ, βW,k,ζ) , σW,k,ζ) < u (σW,k,ζ , σW,k,ζ) if µ 6= µW,k. This is because playing-rule

βW,k,ζ induces a strictly higher payoff to Lk and any distribution µ 6= µW,k assigns a

smaller frequency to Lk and higher frequencies to all other abilities.
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