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Abstract

Most existing decision-making models assume that choice behavior is based on pref-
erence maximization even when the preferences are incomplete. In this paper we
study an alternative approach - “justifiable choice”: each agent has several prefer-
ence relations (“justifications”), and she can use each justification in every choice
problem. We present a new behavioral property that requires an alternative to be
chosen if it is not inferior to all mixtures of chosen alternatives, and show that
this property characterizes justifiable choice. The main application of this property
yields a multiple-utility representation, which substantially differs from existing re-
lated representations. In addition, we obtain a multiple-prior representation, and
study the notions of indecisiveness and being more decisive.

Key words: menu effects, incomplete preferences, multiple utilities, multiple priors,
indecisiveness, non-binary choice, tradeoff contrast effect.
JEL classification: D81

1 Introduction

In several disciplines, there has been significant interest in decision-making models in
which one’s preferences are allowed to be incomplete, thereby letting the decision maker re-
main indecisive on occasion (see, e.g., Roemer, 1999; Rigotti and Shannon, 2005; Mandler,
2005; Manzini and Mariotti, 2007; Salant and Rubinstein, 2008; Bernheim and Rangel,
2009). Most such models assume that the decision maker maximizes an incomplete pref-
erence relation (see, e.g., Aumann, 1962; Bewley, 2002; Dubra, Maccheroni and Ok, 2004;
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Eliaz and Ok, 2006).?

However, upon relaxation of the completeness axiom, it is not clear why preference maxi-
mization should be deemed as the proper characterization of rational behavior. An alter-
native approach for choice with incomplete preferences is justifiable choice (see, Lehrer and
Teper, 2011). According to this approach, the decision maker has several complete prefer-
ence relations called justifications (or rationales). Additional payoff-irrelevant information
that is available during the choice process determines which justification is used,® and the
decision maker selects the best element according to this rationale. We assume that each
justification can be used in every choice problem. Justifiable choice differs from preference
maximization in two key aspects: (1) it allows the revealed preferences to depend on the
menu, and (2) it does not allow the simultaneous use of conflicting rationales.

In this paper we present a new behavioral property: conver axiom of revealed non-
inferiority (henceforth, CARNI), and show that it characterizes justifiable choice.

1.1  New Behavioral Property (CARNI)

In our framework, choice behavior is described by a choice correspondence C' which selects,
in each closed set of alternatives, a non-empty subset of choosable alternatives. We say
that alternative x is revealed inferior to alternative y, if x is never chosen when y is a
mixture of alternatives in the choice set. The new axiom we propose, conver axiom of
revealed non-inferiority (CARNI), requires that an alternative be chosen if it is revealed
not to be inferior to all the mixtures of the chosen alternatives. In Subsection 2.2 we study
the relationships between CARNI and existing axioms.

We present two motivations for CARNI: one normative and one descriptive. Qur main
model uses the framework of von Neumann and Morgenstern (1944), where each choice
set includes lotteries over a finite set of consequences. In some situations, decision makers
may use internal randomization devices. In such situations, when a decision maker has to
select one of the elements in A, she may base her choice on a private lottery (i.e., tossing a
coin), and by doing this, she can induce compound lotteries. If the decision maker satisfies
reduction of compound lotteries, then these compound lotteries are equivalent to mixtures
of alternatives in A, and CARNI has a normative appeal.

A descriptive appeal of CARNI is that it captures one aspect of the tradeoff contrast
effect of Simonson and Tversky (1992). According to this effect, the tendency to choose
an alternative is hindered (or enhanced) if the tradeoffs within the set under consideration
are unfavorable (or favorable) to that option. One aspect of this bias is described in Figure
1 (where each axis represents a positive attribute). Because the contrast between the x-y
tradeoff and the z-z and y-z tradeoffs is unfavorable to object z, it is expected to fare
worse (to be chosen less often) in the triple than in the pairs. That is, z fares worse

2 Eliaz and Ok (2006) assume it explicitly. The other papers use an incomplete preference relation
as the primitive of the model, and by that, implicitly assume that choice behavior is determined
by maximizing this relation.

3 We do not explicitly model the process in which payoff-irrelevant information determines the
justification. Some examples for such processes are: framing effect (Tversky and Kahneman,
1981), availability heuristics, and anchoring (Tversky and Kahneman, 1974).
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because it is inferior to a mixture of other alternatives in the choice set. CARNI captures
a binary version of this aspect: an element is chosen if it is not inferior to mixtures of
alternatives in the choice set.

We note, that this descriptive appeal of CARNT is somewhat limited because: (1) CARNI
does not capture other aspects of the tradeoff contrast effect, such as the attraction effect
and the compromise effect (see de-Clippel and Eliaz, 2011 for an axiomatic model that
captures these aspects); (2) the experimental evidence for the tradeoff contrast effect is
for choice between multi-attribute products (Simonson and Tversky, 1992, 1993), while
we apply it to choice between lotteries; in a separate note (Heller, 2010) we present some
experimental evidence that suggests the existence of a moderate degree of this effect also
for choice between lotteries.

Our main result shows that satisfying three standard axioms (non-triviality, continuity,
and independence) and CARNI is equivalent to the following multiple-utility representa-
tion: There exists a unique convex and compact set of vN-M utility functions, such that
a lottery is selected if it is best with respect to one of these utilities.*

1.2 Comparison With Existing Multiple- Utility Representation

Eliaz and Ok (2006) presented a closely related preference maximization model. Their key
axiom, weak aziom of revealed non-inferiority (WARNTI), is similar to CARNI except that
it does not relate to mixtures. It requires that an alternative be chosen if it is revealed not
to be inferior to all of the chosen alternatives. This yields the following representation:
There exists a convex set of vN-M utilities, such that lottery ¢ is chosen if no lottery in
the choice set is strictly better than ¢ with respect to all of these utilities. In the following
paragraphs we detail the two key aspects in which our model differs from theirs: menu
effects and conflicting rationales.

Recently, Manzini and Mariotti (2010) experimentally tested how people violate the weak
axiom of revealed preference (WARP). Specifically, they divide the possible violations of
WARP into two groups: 1) pairwise inconsistency - choices over pairs of alternatives are
not transitive; and 2) menu effects - choices over two-element sets do not induce choices

4 A similar representation was presented non-axiomatically in Levi (1974).



over larger sets. Manzini and Mariotti show that menu effects are largely responsible for
failures of WARP, and they conclude that on the basis of their data, “any procedure that
fails to account for menu effects will not make a significant improvement of the standard
mazximization model.” WARNI implies that choices must be consistent with preference
maximization,® and thus it cannot account for menu effects. CARNI presents a small
deviation from WARP that is able to accommodate an interesting menu effect, while re-
taining a normative appeal.

In Eliaz and Ok’s representation an alternative can be chosen based on the simultaneous
use of conflicting rationales: lottery ¢ can be chosen in the triple {q,r, 7’} if it is better
than r according to one utility, and better than 7" according to a different utility, even
though ¢ does not maximize any utility. In our model, an element can be chosen only if
it maximizes one of the utilities. This seems more natural in many choice situations. One
example for such a situation, which is described in Lehrer and Teper (2011), is decisions in
large-scale organizations, where responsibility for different choices is delegated to different
employees, each employee has a different rationale, and all rationales are consistent with
the organization’s common information and policy. Another example for such a situation
is the following.

Example 1 There are four consequences: bn="beef near”, bf="beef far’, cn="“chicken
near”, c¢f=“chicken far”. Let ¢ be a 50:50 lottery with prizes bf and cf. Assume that the
decision maker may like either chicken or beef (two justifications) and also dislikes eating
too far from home. Then ¢ may beat bn based on the “chicken” justification (that is,
{bn,q} = C ({bn,q})); similarly, ¢ may beat cn based on the “beef” rationale ({cn,q} =
C ({cn,q})). But intuitively, if both bn and cn are available, g should not be chosen
({on,en} = C ({bn,cn,q})): the decision maker can get her favorite meal at a nearby
restaurant, regardless of whether she wants beef or chicken. Observe, that this choice
behavior is consistent with CARNI (g is not chosen in the triple because it is inferior
to the mixture of bn and cn), and is inconsistent with WARNI (as WARNI implies:
q € C({bn,q}) and g € C ({cn, q}) = q € C ({bn,cn, q})).

1.3 Other Related Literature

Our paper is related and inspired by two strands of literature. The first is the literature
studying choice with incomplete preferences and multiple rationales (e.g., Nehring, 1997;
Kalai, Rubinstein and Spiegler, 2002; Mandler, 2005; Manzini and Mariotti, 2007; Salant
and Rubinstein, 2008; and Cherepanov, Feddersen and Sandroni, 2010). In most of these
papers, the model only describes choices from subsets of an arbitrary finite set of outcomes,
and little structure is imposed on the different rationales. In this paper, we assume that
there is also data about the choices from lotteries over outcomes, and this allows us to
impose more structure on the justifications: the set of justifications is convex and closed,
and each justification is a complete and affine preorder.

The second strand of literature generalizes expected utility and subjective expected utility
by weakening some of its assumptions (e.g., Machina, 1982; Gilboa and Schmeidler, 1989;

° That is, alternative ¢ is chosen in menu A if and only if it is chosen in any couple {g,r} for
each element r in A.



Schmeidler, 1989; Ghirardato, Maccheroni and Marinacci 2004; Klibanoff, Marinacci, and
Mukerji, 2005; Maccheroni, Marinacci, and Rustichini, 2006; Gilboa et al., 2010; Ok,
Ortoleva, Riella, 2012). Most of this literature weakens the independence axiom, and
keep the weak axiom of revealed preference. In this paper we do the opposite (a similar
approach is used in Seidenfeld, Schervish and Kadane, 2010).

1.4 Structure

Section 2 presents the models and the results: the main result described above, and
an analogous multiple-prior representation in the framework of Anscombe and Aumann
(1963). Section 3 studies the notions of indecisiveness and being more decisive in our
models. All the proofs are presented in Section 4.

2 Models and Results
2.1 Risk (von Neumann-Morgenstern Framework)

2.1.1 Preliminaries

Let X be a finite set of consequences (certain prizes).® Let Y = A (X) be the set of lot-
teries over X. Let ) be the set of non-empty closed sets in Y. The mixture (convex com-
bination) of two lotteries is defined as follows: (ag + (1 — «)r) (z) = ag (z)+ (1 — a) r (z)
(where a € [0,1], ¢,7 € Y and z € X). Similarly, given A € Y, let ag+ (1 — «) A denote
the set of lotteries that include all convex combinations of ¢ with lottery r in A, with
weights a and 1 — « respectively: (ag+ (1 —a) A) = {aqg + (1 — a)r|r € A}.

The primitive of the model is a choice correspondence C over V.7 For each such set
A€ ), C(A)is anon-empty subset of A. The interpretation of C' is the following: when
a decision maker faces a choice from menu A, she selects one of the alternatives in C' (A),
and any alternative in C'(A) may be chosen. That is, the decision maker considers all the
elements in C' (A), and only them, as choosable alternatives. The selection of a specific
element in C'(A) is not explicitly modeled. When ¢ € C(A) we say that ¢ is (sometimes)
chosen (or selected) from A; similarly, when ¢ ¢ C(A) we say that ¢ is not chosen from
A. Given A € Y, conv (A) denotes the convex hull of A (the smallest convex set that
contains A).

The following three standard axioms (assumptions) are imposed on C:

A1l Non-triviality. 3A € Y and Jq € A, such that ¢ ¢ C(A).
A2 Continuity. For any lottery ¢ € Y, the set {r € Y|r € C ({¢q,r})} is closed, and the

set {r e Y|[{r}=C({q,r})} is open.

6 We define X to be finite for simplicity of presentation. Both models can be extended to a
compact metric space of outcomes (see, Evren, 2010; Gilboa et al., 2010).

7 We define C only on closed sets because in non-closed sets the Pareto frontier might be an
empty set. Our results remain the same if C' is defined only on finite (non-empty) sets.



A3 Independence. Let g€ Ac Y, reY anda€ (0,1). e C(A) @ ar+(1—a)q €
Clar+(1—a)A).

Axioms A1-A3 are standard. Axiom Al requires that C' be non-trivial (there is a choice
set with at least one unchoosable alternative). Axiom A2 (continuity) is equivalent to the
requirement that for any lottery ¢ € A, the sets {r|r = ¢} and {r|r < ¢} are closed, where
= is the preference relation that is revealed from binary choices: r = ¢ < r € C ({¢,7}) .®
Assume that the decision maker is going to select lottery ¢ in A, when she finds out that
there is probability « that she will be obliged to take lottery r. Axiom A3 (independence)
requires the decision maker to choose the mixture of ¢ and r in the new choice problem
(the mixture of A and r).

2.1.2  Convex Aziom of Revealed Non-Inferiority (CARNI)

It is well known that a choice correspondence is consistent with (complete) preference
maximization if and only if it satisfies WARP:

WARP  (Weak Aziom of Revealed Preference) - Let A,B € ) and ¢,r € AN B.
q € C(A) and r € C(B) implies g € C(B).

That is, if ¢ and r are elements in the intersection of two sets, ¢ is chosen in the first
set, and r is chosen in the second set, then both alternatives should be chosen in both
sets. Von Neumann and Morgenstern (1944) show that Axioms A1-A3 and WARP are
equivalent to expected utility representation: There exists a unique vN-M utility function
u, such that the chosen lotteries are best according to u. That is, for every set A € ) and
every lottery ¢ € A: g € C(A) < u(q) > u(r) Vr € A.

With an eye to our relaxation of WARP, we formulate it slightly differently:

WARP’ (equivalent formulation to WARP) - Let ¢ € A € Y. If there exists r € C(A)
and B € Y such that ¢ € C'(B) and r € B, then g € C(A).

WARP is appropriate when the psychological preferences of the decision maker are com-
plete. In such cases, if ¢ is selected from a menu that includes r then it implies that ¢ is
revealed to be as good as r. Thus if r is chosen from A so is q.

When the psychological preferences are incomplete, there is a difference between some-
thing being superior and it being non-inferior for a decision maker. Eliaz and Ok (2006)
propose the following axiom to deal with choice that is induced from incomplete prefer-
ences:

WARNI (Weak Axiom of Revealed Non-Inferiority) - Let ¢ € A € Y. If for every
r € C(A) there exists B € ) such that ¢ € C'(B) and r € B, then g € C(A).

According to Eliaz and Ok (2006)’s definition, element ¢ is revealed not to be inferior
to r, if ¢ is chosen from a set and r is an element in that set. WARNI requires that if
q is revealed not to be inferior to all of the alternatives chosen from A, then it must be
chosen from A as well. Following Eliaz and Ok (2006) one can show that axioms A1-A3
and WARNI are equivalent to the following multiple-utility representation: There exists a

8 Alternatively, A2 is equivalent to the requirement that sets {r|r = ¢} and {r|r < ¢} are open,
where > is the revealed strict preference relation (r > g < {r} = C ({¢,7}).



convex and compact set U of vN-M utility functions (unique up to linear transformations),
such that for every A € Y and every lottery g € A:?

qeC(A) e Vre A Ju, €U, st.u,.(q) >u(r). (1)

As discussed in the introduction, in some choice situations, it seems more appropriate to
require a convex variation of WARNI. This requirement is captured by CARNI:

A4 Conver Aziom of Revealed Non-Inferiority (CARNI). Let ¢ € A € Y. If Vr €
conv (C(A)) there exists B € Y such that ¢ € C'(B) and r € conv (B), then ¢ € C(A).

We say that element ¢ is revealed not to be inferior to r, if ¢ is selected from a set and
r is a mixture of elements in that set. CARNI requires that if ¢ is revealed not to be
inferior to all the mixtures of the elements chosen from A, then it must be chosen from
A as well. 19 The relationships between CARNI and related existing axioms are discussed
in Subsection 2.2.

2.1.3 Representation Theorem

The standard axioms A1-A3 (non-triviality, continuity, independence) and CARNI (A4)
yield a multiple-utility representation in which a lottery is chosen if and only if it is best
with respect to one of the utilities. Formally:

Theorem 1 Let C be a choice correspondence over Y. The following are equivalent:

(1) C satisfies axioms A1-AJ.

(2) There exists a conver compact set U of of vN-M utility functions, such that:
(a) for every A €Y and every lottery q € A:

geC(A)e Juel, st.VreA u(q) >u(r). (2)

(b) There are two lotteries p,p € Y such that Vu € U, u (Q) < u(p).

Moreover, the set U is unique up to positive linear transformations. !

2.1.4 Sketch of Proof

The formal proof of Theorem 1, like all other proofs in the paper, appears in Section 4. In
what follows we briefly sketch the main parts of the proof, in order to explain the intuition
of the result.

Eliaz and Ok (2006) show that WARNT and the standard axioms yield a multiple-utility
representation in which an element is chosen if it can beat any other alternative in the

9 Eliaz and Ok (2006)’s representation is somewhat different than (1) due to their dif-
ferent continuity requirements. Their representation is as follows: ¢ € C(A) & Vr €
A, (u, € U, s.touy (@) > ur (r) or Yu e Uu(q) = u(r)).

10 CARNI could be stated as an if and only if property (see Lemma 3): ¢ is chosen in A if and
only if it is revealed not to be inferior to all the mixtures of the elements chosen from A.

1 That is, if both U and V are convex compact sets that represent the same choice correspondence
then Vu € U, Jv € V' such that u =a-v+ b where a > 0 and b € R.



choice set for at least one vN-M utility (as described in (1)). Replacing WARNI by CARNI
yields a similar representation, only this time the chosen element has to beat any other
alternative in the convex hull of the choice set:

g€ C(A) & Vreconv(A), Ju, € U, s.t. u.(q) > u,(r).
This representation is equivalent to:

. B -
¢€C(4) & min max(u(g)—u(r)) =0

Since both the set of utilities and the convex hull of the menu are convex, and since all
the utilities in U are linear, we can now use the minimax theorem to reverse the order of
the minimization and maximization above and obtain that:

q € C(A) & max min (u(g) —u(r) =0

This is equivalent to:

g€ C(A) < JueUst.Vreconv(A), u(q) >u(r).

Since all the utilities in U are linear, one can replace conv (A) with A and obtain (2).
2.2 Relationships Between CARNI and FExisting Azioms

For expositional purpose, we present in Figure 2 the relations between CARNI and existing
axioms in the literature. We hope that this presentation will be beneficial to the reader
and will simplify the understanding of CARNI. However, note that the results in this
paper do not rely on these relations.

Figure 2. Logical Implications of CARNI and Related Axioms
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The axioms that are presented in Figure 2 are defined as follows:

e Mixture Invariance (Seidenfeld et al., 2010, axiom 2b) - ¢ € C' (A) = g € C (conv (A)):
If an element is chosen in a set, it is also chosen in the convex hull of the set. The in-
tuition of Mixture Invariance is that if the decision maker can implicitly use internal
randomization devices and she satisfies the reduction of compound lotteries, then a cho-
sen element should still be chosen when a mixture of existing alternatives is added to
the choice set.

e Sen’s a (Sen, 1971; also called contraction property)- For any A,B€ Y, ifge€ ACB
and ¢ € C'(B), then ¢ € C' (A): If an element is chosen in a set, it should also be chosen
in a subset.

e Sen’s 3 (Sen, 1971) - For any A, B € Y with A C B, if ¢,r € C'(A) and ¢ € C (B),
then r € C'(B): If two elements are chosen in a set, and one of them is also chosen in
a superset, then both of them should be chosen in the superset.

e Sen’s v (Sen, 1971) - Let M C Y be a collection of sets and let A be the union of all
these sets. If A € Y and ¢ € C (B) for each B € M, then g € C'(A): If an element is
chosen in each set of some class, it should also be chosen in the union of all these sets.

e Convex « - Let M C Y be a collection of sets and let A be the union of all these sets.
If A€ Y, Ais convex, and ¢ € C' (B) for each B € M, then ¢ € C' (A): This axiom is
the same as Sen’s v except that it is restricted to cases where the union of the sets (A)
is convex. It is immediate to see that Sen’s v implies Convex ~.

e Ajzerman property (Aizerman and Malishevski, 1981, property O; Chernoff, 1954,
postulate 5*) - For any A, B € Y, and for any ¢ € C (A), if C(B) C A C B, then
q € C (B): A choosable element is still chosen after adding unchosen alternatives to the
menu.

The following observations are implied from Figure 2:

(1) There is no logical implication between CARNI and WARNI (or WARP). On the one
hand, CARNI requires non-inferiority against a larger set of alternatives as a neces-
sary condition for being chosen. On the other hand CARNI defines non-inferiority
in a weaker way (there is a larger collection of sets in which an element may be
revealed not to be inferior to another element). Example 1 demonstrates a choice
correspondence that satisfies CARNI and violates WARNI. Modifying the choice
in that example by having {bn,cn,q} = C ({bn,cn,q}), would give a choice corre-
spondence that satisfies WARNI and violates CARNI (given that ¢ is inferior to
0.5bn + 0.5¢cn).

(2) WARP together with Mixture Invariance implies CARNI.

(3) It is well known that WARP can be decomposed into two independent axioms: Sen’s
a and Sen’s 8. CARNI (like WARNI) only satisfies Sen’s a.. As discussed in Eliaz and
Ok (2006, Remark 1) Sen’s a has a strong normative appeal, while the normative
appeal of Sen’s [ is ambiguous.

(4) CARNI can be decomposed into four independent axioms: Sen’s a, Convex v (a
weakening of Sen’s 7y to convex sets), Aizerman Property and Mixture Invariance.

(5) It may be of independent interest to note that WARNI can be decomposed into three
well-known independent axioms: Sen’s «, Sen’s v and Aizerman Property.

(6) It is well-known (Sen, 1971) that a choice correspondence is consistent with preference
maximization (also called binariness or normality) if and only if it satisfies both Sen’s
«a and Sen’s . This implies that a choice correspondence which satisfies CARNI is



in general inconsistent with preference maximization (unlike WARNI or WARP).

2.3 Uncertainty (Anscombe-Aumann Framework)

2.8.1 Model

In this model we follow the framework of Anscombe-Aumann (1963, as reformulated in
Fishburn, 1970). Similar to the first model, X is a finite set of outcomes and Y = A (X)
is the set of lotteries. Let S be a finite set of states of nature, and, abusing notation,
let S = |S]. Let L = Y be the set of all functions from states of nature to lotteries.
Such functions are referred to as acts. Endow this set with the product topology, where
the topology on Y is the relative topology inherited from [0, 1]X. Let £ be the set of all
closed and non-empty sets in L. Abusing notation, for an act f € L and a state s € S,
we denote by f (s) the constant act that assigns the lottery f(s) to every state of nature.
Similarly for set A € £ and state s € S, let A (s) denote the act-wise set of constant acts:

As) ={f(s)|f € A}.

Mixtures (convex combinations) of acts are performed point-wise. In particular if f, g € L
and « € [0, 1], then (af + (1 —a)g) (s) = af (s) + (1 —a)g (s) for every s € S. Similarly,
let (af + (1 —«)A) denote the set where each g € A is replaced by af + (1 — a)g:
(af+(1—a)A) = {af + (1 —a)glg € A}. As in the former model, the primitive is a
choice correspondence C' over £, which satisfies that for each A € £, C'(A) is a non-
empty subset of A.

The following five axioms are imposed on the choice correspondence:

B0 Monotonicity. Let f € A€ Landge Be L. 1IfVse S, f(s) € C(f(s),g(s)) then:
() g € C(B)=f € C(BU{[}) and (i) C'(4) € C(AU{g}).

B1 Non-triviality. There is an act f € A € L such that f ¢ C(A).

B2 Continuity. For any act f € L, the set {g € L|g € C ({f,g})} is closed, and the set
{9 € Li{g} = C({f,9})} is open.

B3 Independence. Let f € A€ L;he€ Land a € (0,1). fe C(A) <= ah+(l—a)f €
C(ah+ (1 —a)A).

B4 Convexr Aziom of Revealed Non-Inferiority (CARNI). Let f € A € L. If Vg €
conv (C'(A)) there exists B € Y such that f € C'(B) and g € conv (B), then f € C(A).

We say that act f (weakly) dominates act g if for every state of nature s € S f(s) €
C({f (s),g(s)}). That is, for every state of nature s, if the decision maker knows s, act
f is chosen in the pair {f, g}. Thus, f is better than ¢ in all states of nature. Axiom B0
(monotonicity) requires that if f dominates g, then: (i) f is chosen whenever it is added
to a set where g was a choosable alternative, and (ii) any alternative that is chosen in a
set that includes f is also chosen after adding ¢ to this set. Axioms B1-B4 are analogous
to axioms Al-A4, which were discussed in the first model.

Axioms B0-B3 and WARP !2 are equivalent to the subjective expected utility representa-
tion (Anscombe and Aumann, 1963; see also Savage, 1954): There exists a unique vN-M
utility function w, and a unique probability distribution p over S (prior), such that for

21n the Anscombe-Aumann framework WARP is formulated as follows: Let A, B € £ and
f,ge ANB. f € C(A) and g € C(B) implies f € C(B).

10



every A € L and every act f € A: f € C(A) <= E, (u(f)) > E, (u(g)) Vg € A.

Axioms B0-B3 and WARNI ! are equivalent to the following representation: There exists
a unique non-degenerate vN-M utility function u, and a unique closed and convex set
P C A(S) of priors, such that for every A € £ and every act f € A:

feC(A)<=Vgec A Ip,c Pst. E, (u(f))>E,, (u(g)). (3)

This representation is equivalent to the binary choice correspondence that is induced from
Knightian preferences (Bewley, 2002) or from justifiable preferences (Lehrer and Teper,
2011).

2.3.2  Representation Theorem

The standard axioms B0-B3 (monotonicity, non-triviality, continuity, independence) and
CARNI (B4) yield a multiple-prior representation in which an act is chosen if and only if
it is best with respect to one of the priors. Formally:

Theorem 2 Let C' be a choice correspondence over L. The following are equivalent:

(1) C satisfies axioms BO-BJ.

(2) There exists a non-constant vN-M wutility function u, and a closed and conver set
P C A(S) of probability distributions over S (priors), such that for every set A € L
and every act f € A:

feCA)edpePst.Vge A E,(u(f)) = Ep(ulg)). (4)

Moreover, P is unique and u s unique up to positive linear transformations.

Remark 1 As in the previous model, the extra convexity of CARNI allows us to change
the order of the quantifiers in the representation. In particular, in (3), each comparison
of a chosen act f with some act ¢ € A may be based on a different prior p, € P, while in
(4), all comparisons are based on the same prior p € P.

3 Psychological Preferences and Indecisiveness

Incomplete preferences allows a decision maker to exhibit indecisiveness. In this section
we characterize the notions of indecisiveness and being more decisive in our models. This
characterization may be of independent interest, as it can also be applied to other models
of incomplete preferences. (e.g., Bewley, 2002; Dubra, Maccheroni and Ok, 2004; and Eliaz
and Ok, 2006).

13Tn the Anscombe-Aumann framework WARNI is formulated as follows: Let f € A € L.
f € C(A) if and only if for every g € C (A) there exists B € L such that f € C'(B) and g € B.
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3.1 Psychological Preferences and Indecisiveness

The decision maker’s revealed psychological preference relation >* is defined for each
q,7 €Y as follows: 1

i e [vacy (I) re C(AU{r})=qeC(AU{q}) | )
(I)Vpe A: pe C(AU{q}) =peC(AU{r})

Part (I) compares the set of menus in which each alternative is chosen. It requires that
if r is chosen when it is added to menu A, then ¢ must also be chosen when it is added
to the same menu. Part (II) compares the choices of other alternatives when ¢ or r are
available. It requires that if an element is selected when ¢ is added to menu A, then
it should also be chosen when r is added to the same menu. Define ¢ = r if part (I)
holds (i.e, ¢ = r&(VAe Y, re C(AU{r}) =qe C(AU{q}))) and define ¢ =7 r if
part (II) holds (i.e., ¢ ="' r & (VAe Y, Vpe A: pe C(AU{q}) =pe C(AU{r}))).
Observe that all these relations (¢ =* r, ¢ =7 r, ¢ =1 r) are transitive.

*

Define a decision maker to be indifferent between ¢ and r, and denote it by ¢ ~* r, if
g =" r and r =* q. Define a decision maker to be indecisive between ¢ and r, and denote
it by ¢ >a* r, if =g =* r and = =* ¢.'® Define a decision maker to have incomplete
(complete) preferences if the relation >=* is incomplete (complete).

Bernheim and Rangel (2009) define revealed psychological preference relation (denoted
by R’ in their paper) as follows:

q=""re (VAeYwithgreA: reC(A)=qeC(A)).

That is, ¢ is revealed better than r a la Bernheim and Rangel (2009) if whenever both
elements are available and r is selected, so is ¢. As noted by Bernheim and Rangel =5% is
not necessarily transitive. ' The relation > is a natural transitive strengthening of =2
(¢ =1 r = q =BE r). The following example demonstrates why Part (II) is also required
when evaluating the revealed psychological preferences.

Example 2 Consider the following choice correspondence C' over finite set X = {z,y, z}:
¢ (X) = {ZE, y}, ¢ ({ZL‘, y}) = {Jf,y}, ¢ ({ZL’, Z}) = {$}7 and C ({y7 Z}) = {ya Z} Both rela-
tions =1 and =BF imply that the decision maker is indifferent between v and y. However,
the fact that z is selected from {y, z} but not from {z, z}, indicates that the decision maker
1s not indifferent between x and y: she selects z when y is available, but she does not choose
z when x 1s available.

We conclude by defining the notion of being more decisive. Let Alice and Bob be two

14 For brevity, we state our definitions only in the von Neumann-Morgenstern framework, but
they apply very similarly also in the Anscombe-Aumann framework.

15 Indecisiveness is closely related to Eliaz and Ok (2006)’s notion of incomparability.

16 Consider, for example, the following choice correspondence C over finite set X = {z,y, z}:
C(X) ={a,y}, C({z,y}) = {z,y}, C ({z,2}) = {z},and C ({y, z}) = {2} . In this case, y ="
x =Bz but y #£BE 2.
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decision makers with respective indecisiveness relations ><* and 0<j. Alice is more deci-
siwe than Bob if ¢ > r = ¢ < r. That is, whenever Alice is indecisive between two
alternatives, so is Bob.

Observe that when Bob prefers g over r (¢ =p r), Alice is required to have a preference
between the two alternatives, but her preference may either be g =4 r or r > 4 ¢, and this
may depend on g and r. Two special cases of being more decisive are the extreme cases
of full consistency and full inconsistency. Alice is fully consistent (fully inconsistent) with
Bob if for each ¢, € V: ¢ =p r implies that ¢ =4 7 (r =4 q).

Remark 2 If one assumes that there is a best element in X (3x, € X such that x, € A
={xy} = C (A)), then all of the results of the following subsections hold if one does either
of the following two changes (or both): (a) one replaces CARNI with WARNI; and (b)

one replaces =* with =1 or »BE.

3.2 Multiple-Utility Characterization

Intuitively, a decision maker with a multiple-utility representation prefers q over r if all his
utilities assign ¢ a better value. The following proposition shows the equivalence between
this definition and the choice-derived definition given in the previous subsection.

Proposition 1 Let C' be a choice correspondence over Y that satisfies arioms Al1-A4.
Let U be the multiple-utility representation. Then for each q,v € Y: q =* r <q = r
sVYueU, u(g) > u(r).

An immediate corollary of Proposition 1 characterizes indecisiveness and indifference in
terms of the representation.

Corollary 1 Let C' be a choice correspondence over ) that satisfies axioms A1-A. Let
U be the multiple-utility representation. Then for each q,r € Y :

(1) r~*qoVueU, u(r)=ul(q).
(2) ri<* ¢ ©Juy,us € U, uy (1) > uy (q) and ug (r) < uz (q).

Proposition 1 shows that >=* has a multiple-utility representation. It is well known that
such a preference relation is complete if and only if its set of utilities is a singleton (up to
positive linear transformations). Formally (proof is omitted):

Lemma 1 Let C' be a choice correspondence over Y that satisfies axioms A1-A4. Let U
be the respective multiple-utility representation. Then the indecisiveness relation is empty
if and only if U is a singleton (up to positive linear transformations: every uy,us € U
satisfy u; = a - ug + b for some a >0 and b € R).

The following proposition shows that Alice is more decisive than Bob if either of the
following conditions hold: 1) Alice has a single utility, or 2) Alice’s set of utilities is
included in Bob’s set of utilities., or 3) Alice’s set of utilities is included in Bob’s set of
opposite utilities.

Proposition 2 Let Alice and Bob be two decision makers with respective choice corre-
spondences (Cy,Cp) over Y that satisfy azioms A1-A4 with respective multiple-utility
representations (U, Ug). Then Alice is more decisive than Bob if and only if at least one

of the following holds:
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(1) Ua is a singleton (up to positive linear transformations).

(2) Us C Ug (up to positive linear transformations: for each ua € Uy there exist up €
Ug, a>0, and b € R such that up = a-uys +b)

(3) Uy € —Up (up to positive linear transformations).

An immediate corollary of Proposition 2 is the following: if Alice has incomplete pref-
erences and she is more decisive than Bob, then she is either fully-consistent or fully-
inconsistent with him.

Corollary 2 Let Alice and Bob be two decision makers with choice correspondences that
satisfy axioms A1-A4. Assume that Alice has incomplete preferences and that she is more
decisive than Bob. Then Alice is either fully-consistent or fully-inconsistent with Bob.

3.3 Multiple-Prior Characterization

The following proposition shows that a decision maker with a multiple-prior representation
prefers act f over g if all her priors assign f a better value.

Proposition 3 Let C be a choice correspondence over L that satisfies axioms B0-B4. Let
u be the utility and P the set of priors in the multiple-prior representation. Then for each

fLgeLl: f=rgef="gaVpe P, E,(u(f) > E,(u(g)) .

An immediate corollary of Proposition 3 characterizes indecisiveness and indifference in
terms of the representation.

Corollary 3 Let C' be a choice correspondence over L that satisfies axioms BO-B4. Let u
be the respective utility and P the respective set of priors in the representation. Then for
each f,g € L:

(1) f~"geVpe P E,(u(f))=E,(ulg))
(2) > g <3p1,p2 € P, Epl (u (f)) > Epl (u (g)) and Epz (u (f)) < E’p2 (u (g)>

The following lemma shows that a decision maker with a multiple-prior representation
has complete preferences if and only if her set of priors is a singleton.

Lemma 2 Let C be a choice correspondence over L that satisfies axioms B0-B4. Let P
be the set of priors in the multiple-prior representation. Then the indecisiveness relation
><I* 15 empty if and only if P is a singleton.

The following proposition shows that Alice is more decisive than Bob if either of the
following conditions hold: 1) Alice has a single prior, or 2) Alice’s set of priors is included
in Bob’s set of priors, and in addition Alice’s utility is equal to Bob’s utility or exactly
the opposite of Bob’s utility.

Proposition 4 Let Alice and Bob be two decision makers with respective choice cor-
respondences (Ca,Cp) over L that satisfy axioms B0-B4 with respective multiple-prior
representations ((ua, Pa), (up, Pg)). Then Alice is more decisive than Bob if and only if
at least one of the following holds:

(1) P, is a singleton.

(2) P4 C Pg and ugq = up (up to positive linear transformations).
4+ C P and uy = —ugp (up to positive linear transformations).

3) PACP d t itive li t f ti
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An immediate corollary of Proposition 4 is that if Alice has incomplete preferences and
she is more decisive than Bob, then she is either fully-consistent or fully-inconsistent with
him.

Corollary 4 Let Alice and Bob be two decision makers with choice correspondences that
satisfy axioms BO-B4. Assume that Alice has incomplete preferences and that she is more
decisive than Bob. Then Alice is either fully-consistent or fully-inconsistent with Bob.

4 Proofs

4.1  Equivalent Formulation of CARNI

The following lemma, which will be useful in later proofs, shows that CARNI can be
stated also as an “if and only if” statement:

Lemma 3 The following properties are equivalent:

(1) Vr € conv (C(A)) 3B, € Y such that ¢ € C(B,) and r € conv (B,) = q € C(A).
(2) Vr € conv(C(A)) 3B, € Y such that ¢ € C(B,) and r € conv (B,) < ¢ € C(A).

PROOF. The equivalence holds due to the observation that ¢ € C(A) implies that
Vr € conv(C(A)), 3B, = A such that ¢ € C(B,) = C(A) and r € conv(C(A)) C
conv (A) = conv (B,). O

4.2 Logical Implications of CARNI and Related Azxioms

In this subsection we prove the logical implications of CARNI and related axioms which

were presented in Subsection 2.2. The results are not used elsewhere in the paper (except
the fact that CARNI implies Sen’s «).

The first lemma shows that given WARP, Independence implies Mixture Invariance.

Lemma 4 Let C be a choice correspondence that satisfies WARP and Independence. Then
C' satisfies Mizture Invariance: ¢ € C (A) = q € C (conv (A)).

PROOF. WARP implies that C is consistent with preference maximization of transi-
tive and complete preference relation =. Let ¢ € C (A). Assume to the contrary that
qg & C(conv(A)). Let r € C(conv(A)). Preference maximization implies that r €
C'(conv (A)) \A and that r > t for each t € A (because r > g and ¢ = t for each t € A).
Thus there exist ¢t € A and s € conv (A) such that r =« - s+ (1 —a)t where 0 < a < 1.
Independence implies: r > t =s > t=>s > r and this contradicts r € C (conv (A4)).

The next lemma shows that WARNI can be decomposed into the following three (inde-
pendent) axioms: Sen’s a, Sen’s v, and Aizerman Property.
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Lemma 5 Let C be a choice correspondence. Then C' satisfies WARNI if and only if it
satisfies the following 3 axioms: Sen’s a, Sen’s v, and Aizerman Property .

PROOF. WARNI = Sen’s a: Proved in Eliaz and Ok (2006).

WARNTI = Sen’s 7: Let M C ) be a collection of sets and let A be the union of all these
sets. Assume that A € ), and ¢ € C'(B) for each B € M. Observe that Vr € C(A) C A,
1B, € M C Y such that ¢ € C (B,) and r € B,. By WARNI this implies that ¢ € C (A).

WARNI = Aizerman Property: Let A, B € Y satisfying C (B) C A C B. Let ¢ € C (A).
Assume to the contrary that ¢ ¢ C'(B). By WARNI there exists » € C'(B) C A such that
q is never chosen when 7 is present in the choice set. This implies ¢ ¢ C' (A) and we get
a contradiction.

Sen’s a + Sen’s v + Aizerman Property = WARNI: Let A € Y and ¢ € A. Assume that
Vr € C(A), 3B, € Y such that ¢ € C(B,) and r € B,. By Sen’s a, ¢ € C ({q,r}) for
each r € C' (A). Sen’s v implies that ¢ € C' (C (A) U {q}). Finally, by Aizerman Property,
qge C(A).

The next lemma shows that CARNI can be decomposed into the following four (indepen-
dent) axioms: Sen’s a, Convex v, Aizerman Property and Mixture Invariance.

Lemma 6 Let C be a choice correspondence. Then C' satisfies CARNI if and only if
C satisfies the following 4 azioms: Sen’s o, Conver v, Aizerman Property, and Mizture
Invariance.

PROOF. CARNI = Sen’s a: Let A,B C Y with A C B and ¢ € C(B). Assume to
the contrary that and ¢ ¢ C(A). Then by CARNI there is r € conv (C(A)) such that
for every B, € Y with r € conv(B,) =q ¢ C(B,). Observe that r € conv (C(A)) C
conv (A) C conv (B) and this implies that ¢ ¢ C' (B) and this leads to a contradiction.

CARNI = Convex ~: Let M C Y be a collection of sets and let A be the union of all
these sets. Assume that A € ), A is convex, and ¢ € C (B) for each B € M. Observe
that Vr € conv (C(A)) C conv(A) = A, 3B, € M C Y such that ¢ € C(B,) and
r € B, C conv (B,). By CARNI this implies that ¢ € C' (A).

CARNI = Aizerman Property: Let A, B € Y satisfying C (B) C A C B. Let ¢ € C (A).
Assume to the contrary that ¢ ¢ C(B). By CARNI there exists r € conv (C (B)) C
conv (A) such that ¢ is never chosen when r is present in the convex hull of the choice
set. This implies ¢ ¢ C' (A) and we get a contradiction.

CARNI = Mixture Invariance: Let A € Y and ¢ € C (A). By CARNI (and Lemma 3)
q € C (A) implies that Vr € conv (C(A)) 3B, € Y such that ¢ € C(B,) and r € conv (B,).
This implies (again by CARNI) that ¢ € C (conv (A)).

Sen’s a + Convex v + Aizerman Property + Mixture Invariance = CARNI: Let A €
Y and ¢ € A. Assume that Vr € conv(C(A)) 3B, € Y such that ¢ € C(B,) and
r € conv(B,). By Mixture Invariance ¢ € C(conv(B,)). Sen’s « implies that ¢ €
C (conv ({g,r})) for each r € conv (C(A)). By Convex v, g € C (conv(C(A)U{q})).
Sen’s « implies that ¢ € C' (C' (A) U {q}). Finally, by Aizerman Property, ¢ € C (A).
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It is well known that WARP implies Sen’s a, Sen’s v =Convex 7, and Aizerman Property
(see Aizerman and Malishevski, 1981). Thus Lemma 6 implies that WARP + Mixture
Invariance = CARNI.

4.8 Risk (von Neumann-Morgenstern framework)

In this subsection we prove Theorem 1. We begin by showing that the multiple-utility
representation implies axioms A1-A4. Let U be a compact and convex set of linear (vN-M)
utilities such that: 1) VA€ Yand g€ A: g€ C(A) & Jue U, st.Vr € A, u(q) > u(r),
and 2) there are two lotteries p,p € Y such that Vu € U, u (p) < u(p). Axiom Al (non-
triviality) holds because {p} = C ({7, 1}) Axioms A2 (continuity) and A3 (independence)
are immediate from the compactness of U and the linearity of each u € U. Let ¢ € A € ).
In order to prove axiom A4 we have to show that ¢ € C' (A) if Vi € conv (C(A)) 3B, € Y
such that ¢ € C'(B,) and r € conv (B,). This is done as follows:

Vr € conv (C(A
= Vr € conv (C(A
=Vr € conv (C(A

) 3B, € Ys.t.q e C(B,)andr € conv (B,)
) Fur € U up (q) 2 ur (7) (6)
) max (u ()—U(T))ZO

(@) ~u(r) 2
Py (0 mu(r) 2 @)

)
= Juy € Us.t.Vr € conv(C (A)
q

= min max
reconv(C(A)) uwelU

)
)
)
(
(

)s o (q) > ug (7)
)

= Jug € Us.t.Vr € C(A), ug (q) > ug (1) (8)
= Jug € Us.t.Vr € A, ug(q) > g (r (9)
=q e C(A) (10)

Where (6) is implied by the representation and the linearity of the utilities; (7) is due to
the minimax theorem (von Neumann and Morgenstern, 1944) using the linearity of the
utilities, and the convexity and compactness of U and conv (C' (A)); and (10) is implied
by the representation. We are left with showing that (9) holds. Assume to the contrary
that (9) does not hold. Let t € A\C (A) s.t. ug (t) > ug(¢q). Let ¢’ be an element in A
that maximizes ug. By (8) ¢ must be in A\C (A), while the representation implies that ¢’
must be in C'(A) (contradiction).

We now show that axioms A1-A4 imply the multiple-utility representation. Let > denote
the revealed (irreflexive) strict preference relation that is induced from C: ¢ > r < {q} =

C({qr}) (g #r)

The following lemma shows that > satisfies transitivity, non-triviality, continuity and
independence.

Lemma 7 Let C be a choice correspondence that satisfies axioms A1-A4, and let > be
the revealed strict preference. Then - satisfies the following properties:

C1 Non-triviality - There are q,r € Y such that ¢ > r.
C2 Continuity - For each ¢ € Y the sets {q|¢ > r} and {q|q¢ < r} are open.
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C3 Independence - For any p,q,r € Y and any a € (0,1), ¢ = r < ap+ (1 —a)q =
ap+ (1 —a)r
C4 Transitivity - For any p,q,7 € Y, p > q and ¢ > r implies that p > r.

PROOF. Axiom C1 is implied by axiom Al (non-triviality of C') together with CARNI:
by Axiom Al there exists ¢ € A\C (A); due to CARNI there exists r € conv (C(A)) such
that ¢ is never chosen when 7 is present in the convex hull of the choice set; in particular,
q ¢ C({q,r}). Axioms C2-C3 are immediately implied from the analogous properties of C'
(A2-A3). C4 (transitivity) is proved as follows. Let p > g and g = r. CARNI implies that:
{a} =C{a.r})=r ¢ C({p,q.r}), and {p} = C({p.q¢})=q & C ({p,q,r})-So it must be
that {p} = C ({p,q,r}). Assume to the contrary that r € C' ({p,r}). CARNI implies that
r e C({p,q,r}) and we get a contradiction. O (Lemma 7)

The following proposition (Theorem 1 in Evren, 2010) shows that > has a unique multiple-
utility representation.

Proposition 5 (Evren, 2010, Theorem 1) Let = be a strict binary relation over Y. The
following are equivalent:

(1) = satisfies axioms C1-C4 (transitivity, non-triviality, continuity and independence).
(2) There exists a nonempty conver compact set U of linear (vN-M) wutility functions,
such that:
(a) for every two lotteries q,r €Y, ¢ =1 < Yu € U, u(q) > u(r).
(b) There are two outcomes q,q € Y such that Vu € U, u (g) <u(q).

Moreover (Evren, 2010, Theorem 2),U is unique up to positive linear transformations.
That is if both U and V are conver compact sets that represent the same choice corre-
spondence then Yu € U, Jv € V' such that u=a-v+ b where a >0 and b € R.

We use Proposition 5 to finish Theorem 1’s proof, by showing that axioms Al-A4 imply
the multiple-prior representation. Let C' be a choice correspondence that satisfies these
axioms, and let > be the revealed strict preference. Let U be the unique (up to linear

transformations) convex and compact set of utilities of Prop. 5. We have to show for each
geAe€e)Y, qeC(A) < Tuel, st u(q) >u(r) Vr € A. This is done as follows:

q€ C(A)<=Vr e conv(C(A)) 3B, € Y s.t.qe C(B,) andr € conv (B,) (11)
<= —3r € conv(C (A)) s.t.r = q (12)
Ju, € Usuchthat u, (¢) > u, (r) (13)

—=Vre comJ( (A
Lax

<= min
reconv(C(A)

(@) —u(r)) >0

u(q) —u(r)) > (14)
))s o (@) > o (1) (15)
0(q) > uo(r) (16)
> g (1) (17)

)

—_
W

< max min
uelU reconv(C(A))

<= FJug € Us.t.Vr € conv(C (A
< Jug e Ust.Vre C(A), u
<= Jdug e Us.t.Vr € A, ug

)
(
(

(9)
Where (11) is implied by CARNI and Lemma 3; (12) is due to the definition of > and
CARNTI; (13) is implied by Proposition 5; (14) is due to the minimax theorem using the
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convexity and compactness of the sets U and conv (C' (A)) and the linearity of each utility
u € U ; and (16) is implied by the linearity of u. We are left with showing that (17) holds.
Assume to the contrary that (17) does not hold. Let t € A\C (A) s.t. ug (t) > ug (q). Let
' be an element in A that maximizes ug. Observe that ¢’ must be in A\C (A) due to (15).
By Proposition 5 =3r € A s.t. r = t’. By CARNI, ¢ must be chosen in A (contradiction).

Uniqueness (up to positive linear transformations) follows from the uniqueness of Propo-
sition 5 as follows. Let C' be a choice correspondence and let > be its revealed strict
preference. Due to Proposition 5 > has a unique multiple-utility representation U. Let
U’ be a utility set that also represents C. Let =’ be the unique strict preference that is
represented by U’ (due to Proposition 5). Assume to the contrary that U and U’ are not
equivalent under positive linear transformations. Then there are ¢, € Y such that either:
(g > rand g # r)or (¢ =" rand ¢q # r). Both cases imply a contradiction with respect
to the choice from {¢,r}. O (Theorem 1)

4.4 Uncertainty (Anscombe-Aumann Framework)

In this subsection we prove Theorem 2. We begin by showing that the multiple-prior
representation implies axioms B0-B4. Let u be a non-constant linear (vN-M) utility and
let P be a set of priors such that for every A € £ and every act f € A: f € C(A) &
dp € Pst.Vg € A, E,(u(f)) > E,(u(g)). Axiom B0 (monotonicity) holds because
Vse S f(s)eC(f(s),g(s)) implies E, (f) > E, (g) for every p € A (S), which implies
(i) and (ii) in BO. Axiom B1 (non-triviality) holds because of the non triviality of w.
Axioms B2 (continuity) and B3 (independence) are immediate from the linearity of v and
the closedness of P. Axiom B4 (CARNI) is implied by the representation due to the same
argument that was given in the previous subsection for axiom A4.

We now show that axioms B0-B4 imply the multiple-prior representation. Let > denote
the revealed (weak) preference relation that is induced from C: ¢ = r < ¢ € C ({q,r}),
and let > be its strict part (which is defined as in the previous subsection: ¢ > r < {q} =
C ({q,r}). The following proposition shows that > satisfies unambiguous transitivity,
non-triviality, continuity, independence, completeness and favorable mixing.

Proposition 6 Let C' be a choice correspondence that satisfies axioms B0-B4, and let =
be the revealed preference relation . Then = satisfies the following properties:

DO Unambiguous Transitivity. Let f,g,h € L such that Vs € S f(s) = g(s). Then, (i)
h>=f=h>g, and (ii) g = h =f = h.

D1 Non-triviality. There are acts f,g € L s.t. f > g.

D2 Continuity. For any f € L, the sets {g|g = f} and {g|g < f} are closed.

D3 Independence. Let f,g € L. f = g if and only if ah + (1 — ) f = ah+ (1 —a) g for
every h € L and a € (0, 1).

D4 Completeness and reflexivity. For any f,ge L, f = gorg> f,and f~ f.

D5 Favorable mizing. For every f,g,h € L and o € (0,1), if g = f and af + (1 —a) h =
g, then \f + (1 = AN h =g, for every 0 < A < .

PROOF. Axiom DO is implied by axiom B0 (monotonicity) and by Sen’s a (Lemma 6).
Axiom D1 is implied by axiom B1 (non triviality of C') and CARNI. Axioms D2-D3 are
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implied by the analogous properties B2-B3. Axiom D4 follows from the definition of > as a
revealed preference relation. Axiom D5 is proved as follows. Let A’ = A\f+ (1 — A\) h where
0 < A < a. Assume to the contrary that A’ < g. Observe that there exists 5 € (0,1)
such that af + (1 —a)h = Bf + (1 — B) k. Independence (D3) implies that A" < g
=Bg+(1—=PF)N <Bg+(1-PB)g=g and f <g=Bf+(1 =N <Bg+(1-p)N.
The transitivity of the strict preference > (which is proved as in the previous subsection)
implies that af + (1 —a)h = f + (1 — 5) K’ < g, which contradicts the fact that af +
(1—a)h=g.

The following proposition (Lehrer and Teper, 2011, Theorem 1) shows that > has a unique
multiple-prior representation.

Proposition 7 (Lehrer and Teper, 2011, Theorem 1). Let = be a binary relation over
L. The following are equivalent:

(1) = satisfies axioms D0-D5.
(2) There ezists a non-degenerate vN-M utility u, and a convex closed set P of priors

over the states of nature, such that for every two acts f,g € L: f = g < dp €
P with B, (u(f)) = E, (u(g)).

Moreover, P is unique and u is unique up to positive linear transformations.

Observe that Proposition 7 immediately implies that the strict relation > has Knightian
representation (Bewely, 2002): f >~ g < Vp € P, E, (u(f)) > E, (u(g)). We use Proposi-
tion 7 to finish the proof of Theorem 2, by showing that axioms B0-B4 imply the multiple-
prior representation. Let C be a choice correspondence that satisfies these axioms, and let
> be the revealed strict preference. Let u be the unique utility (up to linear transforma-
tions), and let P be the unique convex and closed set of priors of Proposition 7. We have
to show, foreach fe Ae L, fe C(A) e dpe P, st. E,(u(f)) > E,(u(g)) Vg € A.
This is done as follows:

fe€C(A) < —3g € conv(C(A))st.g> f (18)
Vg € Fonv(C’ (A)) Ip e Pst. E, (u(f)) > E,(u(g)) (19)
i | max By (u(f) —ulg) =0
emax min B (u(f)—ulg) 20 (20)
<= dpy € Ps.t.Vg € conv(C (A)), Ep, (u(f)) > Ep, (u(g))
<= dpy € Ps.t.Vge C(A), E, (u(f)) > Ey (u(g)) (21)
=T e PstVg e A, By (u(f)) > By (u(g)) (22)

Where (18) is implied by CARNI, Lemma 3 and the definition of >=; (19) is due to
Proposition 7, (20) is implied by the minimax theorem using the convexity and closedness
of the sets P and conv (A) and the linearity of each u € U, (21) is due to the linearity
of u; and (22) is proved in the same way that (17) is proved in the previous subsection.
The uniqueness of P and u (up to linear transformations) is implied by the uniqueness in
Proposition 7. O (Theorem 2).
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4.5 Indecisiveness and indifference

In this section we prove the results of Section 3.

4.5.1 Multiple-Utility Characterization
We begin by proving Proposition 1, which characterizes >* in terms of the representation:

Proposition 1 Let C be a choice correspondence over Y that satisfies axioms A1-A4.
Let U be the multiple-utility representation. Then for each ¢,r € Y: ¢ =* r <q = r
eVu e U, u(q) > u(r).

PROOF. It isimmediate that ¢ =* r =¢ =/ r and that Vu € U, u(q) > u(r) = q =*r.
We now show that ¢ =/ r =Vu € U, u(q) > u(r). Assume to the contrary that there
exists ug € U such that ug (r) > ug(q). We have to show that there exist A € ) and
p € A, such that p e C (AU {q}) and p € C (AU {r}). Let p,p € Y be alternatives such
that u (g) < u (p) for every utility u € U. For each € > 0, let p. = ep+ (0.5 — €) ¢ + 0.5,
and let A. = {p., (2¢p + (1 — 2¢) q)}. For sufficiently small €, ug (p.) > uo (¢) and ug (pe) >
up (2€p + (1 — 2¢) q). This implies that p. € C' (A, U {q}). In addition, for every ¢ > 0 and
every u € U, u(pe) < u(ep+ (0.5 —¢€) g+ 0.57) = 0.5u (2¢p + (1 — 2¢) ¢) + 0.5u (). This
implies that p. ¢ C (A. U {r}).

Finally, we prove Proposition 2, which characterizes when Alice is more decisive than Bob
in terms of multiple-utility representation. It shows that Alice is more decisive if: 1) Alice
has a single utility, or 2) Alice’s set of utilities is included in Bob’s set of utilities., or 3)
Alice’s set of utilities is included in Bob’s set of opposite utilities.

Proposition 2 Let Alice and Bob be two decision makers with respective choice corre-
spondences (C4, Cp) over ) that satisfy axioms A1-A4 with respect to multiple-utility
representations (Uy, Ug). Then Alice is more decisive than Bob if and only if at least
one of the following holds:

(1) Ua is a singleton (up to positive linear transformations).
(2) Ua C Up (up to positive linear transformations).
(3) Ua € —Ug (up to positive linear transformations).

PROOF. The ‘if’ part is straightforward. The ‘only if” part is proved as follows. Assume
that Alice is more decisive than Bob and that U, is not a singleton. Let Pp Py €Y be

elements such that ug (pg) > up (BB) for each up € Up, and let py,p, € Y be elements

such that ua (py) > ua (BA) for each uyq € Ua. Let ¢,7 € Y be elements such that Alice
is indecisive between them (q < r, such elements exist due to Lemma 1).

We begin by showing that us (pg) # ua (BB) for every uy € Uag. If ug (Pg) = ua (£B> for
every uy € Uy. Then by Corollary 1, for sufficiently small € > 0, Bob is decisive between
(1 —€)pp + €q and (1 —€)p, + er, while Alice is indecisive between these alternatives.

If there exist uy,us € Uy such that uy (D) = wy (BB) and uy (Pg) > ug (BB) (ug (Pg) <
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Us (—BB>)7 then by using Corollary 1, for sufficiently small ¢ > 0, Bob is decisive between
(1—€)pptep, and (1 —¢€)p,+ep, (between (1 —€)pp+epy and (1 —€)p,+ep, ), while
Alice is indecisive between these alternatives. The convexity of U4 then implies that either
ua (Pg) > ug (BB) for every uy € Ua or uag (Pg) < ug (pBg for every uy € Ug.

Assume first that uy (pg) > ua (BB) for every uy € Uyu. Normalize every utility « in

Ua U Ug to satisty u (pg) = 1 and u (BB) = 0. Assume to the contrary that there exists
ug € Uys\Up. By a standard separation theorem (using the convexity and the compactness
of Ug) there exist ¢q,r € Y such that & = us(r) —ua(q) > up(r) — ug(q) for each
up € Up.'" Let B = mawy,ecv, (up (r) —up (¢q)). Assume first that there is v’y € Uy such
that v = u/y (r) — /4 (¢) # «a. By the convexity of U4 one can assume that 8 < 7. This
implies that Alice is indecisive between the following lotteries:

! o5 ! o5
—T — and ——— —— D
s *(H“?’)“E 1+“§”’q+<1+“r)p3

(because if v > « then the first lottery is better according to vy and the second lottery is
better according to w4, and if 7 < « the opposite holds), while Bob is decisive (the second
lottery is better according to all of Bob’s utilities) - a contradiction. So we are left with the
case that u/y (r) — vy (q) = « for every u/y € Us. As Uy is not a singleton, there is p € Y
and uY, v} € Uy such that ul (p) > u? (p). For sufficiently small 6 > 0, ' = (1 — ) r+dp
and ¢ = (1—8)q + dp satisty: 1) uly (') — ul (¢) , w3 (') — 4 (¢) > up (') — up ()
for each up € Ug, 2) v? (r') —v? (¢) # vl (') — vl (¢). By the previous argument, this
leads to a contradiction. Thus, we have proved that in this case Uy C Ug.

We are left with the case that uy (pg) < ua (BB) for every uy € Uy. Let Charlie be a
decision maker with the exact opposite multiple-utility representation with respect to Bob
(Uc = —Upg). Observe that Charlie is as decisive as Bob. This implies that Alice is more
decisive than Charlie. Let po = p, and p, = Pg. Observe that ua (Pc) > ua @c) for
every uy € Uy. By using the proof of the previous case, it follows that U4 C Us = —Ugp,
which completes the proof. O (2).

4.5.2  Multiple-Prior Representation
We begin by proving Proposition 3, which characterizes >* in terms of the representation:

Proposition Let C be a choice correspondence over £ that satisfies axioms B0-B4. Let
u be the utility and P the set of priors in the multiple-prior representation. Then for
each f,ge L: f=*g& f="geVpe P, E,(u(f)) > E,(u(g)).

PROOF. [t is immediate that f =* g = f =1 g, and that Vp € P, E, (
E,(u(g))= f =* g. We now show that f =1 g =Vp € P, E,(u(f)) > E,(u(g)).
Assume to the contrary that there exists pg € P such that F (u (9)) > E, (u(f))-

17 Extending each utility u from A (X) to RIXI, a standard separation theorem yields a signed
unit vector v (possibly with negative values) such that ug (v) > up (v) for each up € Upg. This

IS
—~
t’z

vector v induces the two lotteries ¢q,r € Y as follows: ¢ = ﬁ (and ¢ = p if vt = 6) and
r= ”Z:” (and r =pif v~ = 0), where v;” = max (v;,0) and v; = -min (v;,0).
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We have to show that there exist A € £ and h € A, such that h € C(AU{f}) and
h¢ C(A)U{g}. Let 2,7 € X be alternatives such that u (z) < u (%). For each € > 0, let
he = ex + (0.5 —€) f 4+ 0.5g, and let A, = {h., (22 + (1 — 2¢) f)}. For sufficiently small
€, By (u(he)) > Ep, (u(f)) and E, (u(he)) > E,, (u(2€x + (1 — 2¢) f)). This implies
that h, € C(A.U{f}). In addition, for every ¢ > 0 and every p € P, E,(u(h.)) <
E,(u(ex+ (0.5 —€) f +0.59)) = 0.5E, (u(2ex + (1 — 2¢) f))+0.5E, (u(g)). This implies
that h. ¢ C' (AU {g}). O

Next we prove Lemma 2, which shows that a decision maker has complete preferences if
and only if her set of priors is a singleton:

Lemma 2 Let C be a choice correspondence over £ that satisfies axioms B0-B4. Let P
be the set of priors in the multiple-prior representation. Then the decision maker has
complete preferences if and only if P is a singleton.

PROOF. The ‘if’ part is straightforward. The ‘only if’ part is proved as follows. Assume
that the decision maker has complete preferences (i.e., relation ><* is empty). Assume to
the contrary that there are p; # py € P. The fact that p; # ps implies that there are
s1, 82 € S such that: p; (s1) > p2(s1) and po (s2) > p1 (s2). Let ,T € X be alternatives
such that u (z) < u (). Let

T S T S9
f1 = s and f2 = .
x all other states x all other states

It follows that E, (u(f1)) > Ep, (u(f1)) and E,, (u(f2)) > E,, (u(f2)) and by Corollary
3 fix* fo. O (Lemma 2)

Finally, we prove Proposition 4, which characterizes when Alice is more decisive than Bob
in terms of a multiple-prior representation. It shows that Alice is more decisive if: 1) Alice
has a single prior, or 2) Alice’s set of priors is included in Bob’s set of priors, and in
addition Alice’s utility is equal to Bob’s utility or exactly the opposite of Bob’s utility.

Proposition 4 Let Alice and Bob be two decision makers with respective choice cor-
respondences (C4, Cp) over L that satisfy axioms B0-B4 with respective multiple-prior
representations ((ua, Pa), (up, Pg)). Then Alice is more decisive than Bob if and only
if at least one of the following holds:

(1) P4 is a singleton (includes a single prior).
(2) P4 C Pp and ugq = up (up to positive linear transformations).
(3) P4 C Pg and uq = —up (up to positive linear transformations).

PROOF. The ‘if’ part is straightforward. The ‘only if’ part is proved as follows. Assume
that Alice is more decisive than Bob and that Alice has incomplete preferences. By Lemma
3 P, is not a singleton. Let T,z € X be elements such that: 1) ug (Tp) > up (zp),
and 2) for each © € X up (Tg) > up () > up (zp). Let fo,go € L be elements that Alice
is indecisive between them (fy >% go, such elements exist because Alice has incomplete
preferences).
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We begin by showing that us (Tg) # ua (zg). If ua (Tg) = ua (zp), then by Proposition
4, for sufficiently small € > 0, Bob is decisive between (1 — €) Tp+€fy and (1 — €) x5+ €go,
while Alice is indecisive between these alternatives.

Case 1: Assume first that us (Tp) > ua (zg). Normalize utilities us and up to satisfy
up (Tp) = ua(Tp) = 1 and up (zg) = ua(xp) = 0. We show that for every z € X,
0 < wg(x) < 1. Assume to the contrary that there exists x € X with ua () > 1
(ua (x) < 0). There there exists 0 < o < 1 such that 1 = uy (Tg) = ua (az + (1 — ) zp)
(0 = ua (zp) = ua(ax+ (1 — a)Tp)). For sufficiently small € > 0, Alice is indecisive
between (1 —€)Tp + €fp and (1 —¢) (ax + (1 —a)zp) + €go (between (1 —¢€)zg + €fo)
and (1 —¢€) (ax + (1 — @) Tp) + €go ) while Bob is decisive (he prefers the first act).

Next, we show that for each x € X uy () = up (x). Assume to the contrary that o =
ua () # up (x) where 0 < a < 1. For sufficiently small € > 0, Alice is indecisive between
(1—€)z+efpand (1 —€) (aZTp + (1 — ) zg)+e€go , while Bob is decisive (contradiction).

This shows that both decision makers have the same utility. Let u = uy = ug . We
now prove that Py C Pg . Assume to the contrary that Py Z Pp. Let ps € P4\ Pp. By a
standard separation theorem (using the convexity and the compactness of Pg, see footnote
17) there are f,g € Lsuch that 1 > a=E,, (u(f) —u(g)) > E,, (u(f) —u(g)) for each
pp € Pp. Let f = maxy,,ep, By (u(r) —u(q)). Assume first that there is p/y € P4 such
that v = Ey, (u(f) —u(g)) # o By the convexity of P4 we can assume that 3 < . This
implies that Alice is indecisive between these acts

! f+<1 ! ) A +<1 ! )
T e — 7 )i Aand g+ (1 - oy | T
L+ 557 L+ 557 L+ 57 L+ 57

(because if v > « then the first act is better according to p/y and the second act is better
according to p4 and if 7 < a the opposite holds), while Bob is decisive (the second act
is better according to all of Bob’s utilities) - a contradiction. We are left with the case
that E, (u(f) —u(g)) = a for every p)y € Pa. As P4 is not a singleton, there are h € L
and py,p4 € Pa such that E, (u(h)) > Ep (u(h)). For sufficiently small § > 0, " =
(1 —0) f+ohand ¢’ = (1 — &) g+dhsatisty: 1) Epx (u(f') —u(g")), Ep (u(f) —u(g)) >
Epy (u(f") = u(g)) for cach py € Py, 2) By (u(f) = u(g)) # Epa (u(f) —u(g). By
the previous argument, this leads to a contradiction. Thus, we have proved that in this
case Py C Ppg.

Case 2: Let Charlie be a decision maker with the opposite of Bob’s utility (u¢c = —up)
and the same set of priors as Bob (Po = Pg). This implies that Alice and Charlie fits
case 1. By the proof of this case, uy = uc = —up and P4 C P = Ppg, which completes
the proof.
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