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Abstract 

 

The literature distinguishes finite sample studies of seasonal stationarity quite less intensely than 

it shows for seasonal unit root tests. Therefore, the use of both types of tests for better exploring 

time series dynamics is seldom noticed in the relative studies on such a topic. Recently, Lyhagen 

(2006) introduced for quarterly data the seasonal KPSS test which null hypothesis is no seasonal 

unit roots. In the same manner, as most unit root limit theory, the asymptotic theory of the 

seasonal KPSS test depends on whether the data has been filtered by a preliminary regression. 

More specifically, one may proceed to the extraction of deterministic components – such as the 

mean and trend – from the data before testing. In this paper, I took account of de-trending on the 

seasonal KPSS test. A sketch of its limit theory was provided in this case. Also, I studied in finite 

sample the behaviour of the test for monthly time series. This could enrich our knowledge about 

it since it was – as I mentioned above – early introduced for quarterly data. Overall, the obtained 

results showed that the seasonal KPSS test preserved its good size and power properties. 

Furthermore, like the test of Kwiatkowski et al. [KPSS] (1992), the nonparametric corrections of 

residual variances may smooth the wide variations of the seasonal KPSS empirical sizes.  

Keywords: KPSS test, deterministic seasonality, Brownian motion, LM test 
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1. Introduction 

 

Nowadays, the use of seasonally unadjusted data is on the increase. Behind that, the inference 

distortion and the detrimental information loss in dynamic models could be caused by seasonal 

adjustment. In this respect, Ghysels and Perron (1993) showed that seasonal adjustment filters 

can seriously affect seasonal unit roots. Furthermore, researchers, in their quest to reveal as much 

time series information, have shown great interest in studying their unobserved components.  

Especially, several authors have shown that the seasonal and cyclical components are linked; see, 

inter alia, Canova and Ghysels (1994). That’s why the systematic elimination of the seasonal 

component can generate non-rigorous deductions. However, having decided not to eliminate this 

component, the question that comes immediately after: what model should be given to 

seasonality? 

The literature has considered several different seasonality models. The first approach is to model 

seasonality as a deterministic component; see Barsky and Miron (1989). The second approach is 

to consider seasonality as a deterministic variable within its stationary stochastic model; see 

Canova (1992). Finally, the third approach is to consider seasonality as stochastic. In this 

approach, the authors' concern is the development of seasonal unit root tests. The test of 

Hylleberg et al.  [HEGY] (1990) is now the preeminent seasonal unit root test, with its 

asymptotic orthogonality as a key property allowing its generalization at any observational 

frequency. The subsequent rejection of their null hypothesis implies a strong result that the series 

exhibits a stationary seasonal pattern, but their test is found to suffer from the problem of low 

power in moderate sample sizes. In agreement with what was found in the conventional case, 

Hylleberg (1995) suggested the joint use of seasonal unit root and stationarity tests. Literature 

was relatively small in seasonal stationarity tests. One can refer to the tests of Canova and 

Hansen (1995) and Caner (1998). The difference between the two tests lies at the correction of 

the error term when the standard assumptions, which it should verify in regression analysis, do 

not apply. The first test used a non-parametric correction like the test of Kwiatkowski et al. 

[KPSS] (1992) and the second used a parametric correction. Likewise, Lyhagen (2006) proposed 

another version of the KPSS test in the seasonal context which resulted in a frequency-based test. 

More explicitly, Lyhagen (2006) tested the hypothesis of level stationarity against a single 

seasonal unit root. Thus, this test can be termed seasonal KPSS test. 

It was shown by Khedhiri and El Montasser (2010) with a Monte Carlo method that the seasonal 

KPSS test is robust to the magnitude and the number of additive outliers. Furthermore, the 
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statistical results obtained cast an overall good performance of the finite-sample properties of the 

test. Khédhiri and El Montasser (2012) provided a representation of the seasonal KPSS test in 

the time domain and established its asymptotic theory. This representation allows the 

generalization of the test’s asymptotic theory when the basic equation incorporates other 

additional dynamics. 

This paper differs from Khédhiri and El Montasser (2012) in that it takes into account the 

presence of a linear trend in the basic equation of the seasonal KPSS test and the monthly 

observational frequency. In doing so, I will conduct a Monte Carlo analysis to study the test’s 

properties of size and power in such circumstances. In addition, a sketch of its asymptotic theory 

is provided in the presence of a linear trend. 

The outline of this paper is as follows. In section 2, I introduce some preliminaries of the 

seasonal KPSS. In section 3, I conduct a Monte Carlo simulation study to assess the finite 

sample properties of the test in terms of its size and power performance when including a linear 

trend in its basic equations. Also, I consider in this study the effect of the observational 

frequency on the test properties. To this aim, I involve monthly data. The last section concludes.  

 

2. Preliminaries on the Seasonal KPSS Test 

 

Let ty  be a time series observed quarterly. Since the goal is to test for the presence of negative 

unit root, it would be suitable to use the appropriate filter in order to isolate the effects of other 

unit roots in the series. Therefore, the test will be applied to the transformed series: 

,)1( 32)1(

tt yLLLy   where L  is the lag operator. This transformation is obtained from the 

seasonal difference filter ).1)(1()1)(1)(1(1 2224 LLLLLL   

  Next, one test the unit root of –1 in the series 

 

    ,,...,1,')1( Tturxy tttt           (1) 

 

where NT 4 , 



4

1

'

i
itit Dax and the shorthand notation ])4/)1[(4,(  ttiDit   and also 

where [.] denotes the largest integer function and ),( ji is the Kronecker’s  function.  
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The term tu  is zero mean weakly dependent process with autocovariogram )( htth uuE  and a 

strictly positive long run variance
2

u . 

The component tr  is drawn from the following process: 

 

    ttt vrr  1 ,       (2)  

where tv  is zero mean weakly process with variance 2

v  and long run variance 02 v .  

 

The transformation needed to carry out the seasonal KPSS test for complex unit roots i  is 

given by the following variable, 

 

tt yLy )1( 2)2(  .  

 

The test of such complex unit roots is based on the regression, 

   tttt ecxy  ')2(
,       (3) 

 

where te is zero mean weakly dependent process with long run variance 02 e  and 





4

1

'

i
itit Dbx . The component tc  is given by 

   ttt cc  2 ,      (4) 

where t  is another zero mean weakly dependent process with variance 
2

 and strictly positive 

long run variance 
2

 . 

Adding the deterministic terms in (1) and (3) is very important because it allows the seasonal 

KPSS test to include deterministic seasonality. The testing procedure follows in two steps: First, 

the unit root of -1 is tested, and then the complex roots are tested where their null hypothesis will 

be specified thereafter. 

The seasonal KPSS test is a Lagrange Multiplier-based test. Hence, the null hypothesis of a root 

equals to -1 is 0: 2
0 vH  . Under this null hypothesis, 

)1(

ty  is written as: 

,')1(

ttt uxy          (5) 

where the series is trend stationary after seasonal mean correction. Under the alternative 

hypothesis ,0: 2

1 vH   
)1(

ty  has a unit root corresponding to Nyquist frequency.  
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Let tu~  be the residual series obtained from least squares regression applied to equation (5), 

Tt ..., ,2 ,1 . Following Breitung and Franses (1998, eq. (18), p. 209), and Busetti and Harvey 

(2003, eq. (8), p. 422) and Taylor (2003, eq. (38), p. 605), we replace the long-run variance 
2

u  

by an estimate of ( 2  times) the spectrum at the observed frequency in order to deal with 

unconditional heteroscedasticity and serial correlation. This nonparametric estimation of the 

long-run variance is a useful solution to the nuisance parameter problem (Taylor, 2003). Thus, 

for the Nyquist frequency, this nonparametric estimation is written as follows: 

   )cos()~~(),(2~)(~

11

1

1

212

, kuulkwTuTl kt

T

kt
t

l

k

T

t
tu   







   ,  (6) 

where the weight function 
1

1),(



l

k
lkw  and l  is a lag truncation parameter such that l  

as T  and ).( 2/1nol   Now from equation (6), I choose a Bartlett kernel following Newey 

and West (1987). It should be noted that Andrews (1991) showed that such a truncation lag can 

produce good results in practice, as also shown in KPSS (1992). Similarly, the null hypothesis of 

the test regarding complex unit roots is given by 0: 2

0 H . Under this null hypothesis,  
)2(

ty  is 

written as follows:  

   ttt exy  ')2(       (7) 

Using the residuals te~ obtained from the least squares regression of equation (7), the Bartlett 

kernel estimator of 
2

e  can be computed as follows: 

)
2

cos()~~(),(2~)(~

11

1

1

212

2
,

keelkwTeTl kt

T

kt
t

l

k

T

t
t

e

  






    (8) 

Define the partial sums j

t

j

ji

t ueS ~~

1




 
 and t

t

j

ji

t eeP ~~

1

2





. 

It follows that the test statistics for unit root of -1 is given by: 

)(~

~~

1
2

,

1

2

)(

l

SS

T u

T

t
tt









       (9) 

This statistic may be written for the complex unit roots, as 
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)(~

~~

1
2

2
,

1

2

)
2

(

l

PP

T
e

T

t
tt









 ,       (10) 

where tS
~

 and tP
~

 are the conjugate numbers of tS
~

 and tP
~

, respectively. 

Khédhiri and El Montasser (2012) have shown under 0: 2

0 vH  , drrVd 
1

0

2)( )(
  where 

)(rV is a standard Brownian bridge, “ d ” denotes weak convergence in probability and 

]1,0[r . However, for 0: 2

0 H , the authors have shown that  



dVV IR
d ])()([

2

1 2

2

1

0

2

2

)
2

(

   

where )(
2


RV and )(

2


IV  are two independent standard Brownian bridges and ]1,0[ . 

 

Remark 1: Asymptotically 
)(  has the first level Cramer-von Mises distribution ( 1CvM ) under 

the null hypothesis while the limit theory of 
)2/(  was shown as a function of a generalized 

Cramer-von Mises with two degrees of freedom. Specifically, the asymptotic theory of this 

statistic is as follows: ).2(
2

1
1

)
2

(

CvMd


   

The reader can refer to Anderson and Darling (1952) for this type of distributions. The critical 

values of the seasonal KPSS test with seasonal dummies can be computed from Nyblom (1989) 

or from Canova and Hansen (1995). These critical values are also shown in Table 1 of Khédhiri 

and El Montasser (2012). 

 
Remark 2: It can be shown that the seasonal frequency has no effect on the asymptotic 

distribution of test statistics. In other words, 
)(  may retain the same limit distribution as above 

and the statistic associated with the complex unit roots in question has the same limit distribution 

as 
)

2
(


 . Only the set of seasonal unit roots will change and it may not include the unit root 

which corresponds to the Nyquist frequency, i.e. when the periodicity is odd. 

 

Remark 3: Recall that if there is a time trend in the regression of the standard KPSS test, the 

partial sum of residuals from a first order polynomial regression weakly converges to a second 

level Brownian bridge denoted 2B where, as in McNeill (1978), 
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    



  

1

0
2 )()1(

2

1
)1(6)1()()( dssWWrrrWrWrB , (11) 

with (.)W  being a standard Wiener process or Brownian motion. 

Then the test statistic follows the so-called second level Cramer von Mises distribution; see 

Harvey (2005). However, this result cannot be generalized to seasonal KPSS test. Indeed, the 

statistics )(  follows the so called zero level Cramer von Mises noted 0CvM ; see Harvey 

(2005). Specifically, 

 

    .)(
1

0

2)( drrWd        (12) 

 

Meanwhile, when the deterministic component is represented by only a trend in Eq. (3), it can be 

shown that 

    ).2(
2

1
0

)
2

(

CvMd


       (13) 

 

The critical values of the seasonal KPSS test in this case can be obtained from Nyblom (1989, 

Table 1) and they are shown in Table 1. 

 

Table 1: Critical values of the seasonal KPSS test in the case of first order polynomial trend 

 

 1% 5% 10% 

Root -1 2.787 1.656 1.196 

Roots i  1.9645 1.3120 1.031 

 

Even though only a constant is included in the Eqs. (1) and (3), these critical values are still 

appropriate. These findings show indeed that the generalization of the asymptotic results of the 

standard KPSS test should not be done in an automatic way, but rather it is advisable to take 

some serious reflection to establish equivalent results for the seasonal KPSS test. 

 

3. The Monte Carlo Analysis 

 

To evaluate the size performance of the seasonal KPSS statistic in presence of first order linear 

trend, I conduct Monte Carlo simulation experiments with seasonal roots of a quarterly process. 

The data generating process (DGP) for the negative unit root is 
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    ,,...,1,' Ttrxy ttt        (14a) 

 where 'tx   only represents a first order linear trend and the autoregressive process  tr  is given 

by: 

    ,1 ttt vrr         (14b) 

The error terms tv are normally distributed with zero mean and unit variance. 

 

The DGP for complex unit roots is given by:  

    ,'

ttt cxy         ,,...,1 Tt       (15a) 

where 'tx only includes a first order linear trend and the process tc is given by: 

    ,2 ttt cc          (15b) 

t  are normally distributed with zero mean and unit variance.  

I choose alternative values of    8.0 ,2.0 ,0 ,2.0 ,8.0 ,1   and I only consider the 5% 

nominal size. The bandwidth values chosen in our experiments are given by: 

00 l , 4 l integer  4/1)100/(4 T  and 12 l integer  4/1)100/(12 T .  

I use 20000 replications and all the simulation experiments were carried out with Matlab 

programs. The corresponding results are summarized in Table 2. 

 

Table 2: Rejection frequencies for the seasonal KPSS test with a first order polynomial trend for 

seasonal quarterly unit roots, significance level: 5% (size and power) 

 

)1(  
)( i  

  T 0l  4l  12l  0l  4l  12l
 

-1 80 0.9492 0.7218 0.2127 0.9774 0.9092 0.3863 

 200 0.9936 0.8498 0.5981 0.9987 0.9734 0.8138 

-0.9 80 0.7894 0.4153 0.1103 0.9123 0.7575 0.2929 

 200 0.8398 0.5981 0.1481 0.9627 0.7694 0.3841 

-0.2 80 0.1146 0.0534 0.0210 0.1368 0.0786 0.0243 

 200 0.1158 0.0577 0.0398 0.1461 0.0761 0.0403 

0 80 0.0514 0.0398 0.0176 0.0510 0.0398 0.0173 

 200 0.0522 0.0473 0.0369 0.0479 0.0435 0.0331 

0.2 80 0.0181 0.0296 0.0145 0.0126 0.0204 0.0116 

 200 0.0164 0.0382 0.0336 0.0100 0.0255 0.0264 

0.9 80 0.00 0.0053 0.0026 0.00 0.0019 0.0007 

 200 0.00 0.0006 0.0074 0.00 0.00 0.0007 
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What has been observed in Table 2 of Khédhiri and El Montasser (2012) still be seen from Table 

2. Indeed, the size of the test increases with decreasing values of  . Similarly, the sample size 

does not noticeably affect the test’s size not markedly improved with the non-parametric 

corrections ) 4( l and ) 12( l . 

 To see the effect of observational frequency on the seasonal KPSS test in finite samples, 

monthly periodicity is taken into account. I only consider a deterministic seasonality. More 

specifically, I assume that the deterministic component is represented by 12 seasonal dummy 

variables. Remember that seasonal unit roots exhibited by the filter )...1()( 112 LLLLS   

corresponding to the seasonal frequencies ,
12

2 i
i


   .6,.....2,1i  For size experiments, I 

assume a particular value of the null hypothesis specifying an i.i.d. process as a data generating 

process and corresponding to 0  in (14b) and (15b) for the quarterly case. For power 

experiments, I suppose that the process tr , for the seasonal frequencies other than the Nyquist 

one, is outlined by: 

   .5,...2,1,cos2 21   irrr tttit     (16) 

However, when the process shows a unit root corresponding to the Nyquist frequency, it will be 

generated by: 

   ttt vrr  1        (17) 

The considered sample sizes are T=240 et T=600 which display the same number of years as in 

table 2. As mentioned above, the critical values of the test are obtained from Table 1 of Khédhiri 

and El Montasser (2012) where the first line corresponds to the unit root -1 and the second one to 

complex unit roots. 
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Table 3: The size of the seasonal KPSS test for 

monthly data, significance level 5% 

 T=240 T=600 

)0(
)

6
(

l


  
0.0583 0.0533 

)4(
)

6
(

l


  
0.0556 0.0491 

)12(
)

6
(

l


  
0.0472 0.0470 

)0(
)

3
(

l


  
0.0581 0.0524 

)4(
)

3
(

l


  
0.0531 0.0500 

)12(
)

3
(

l


  
0.0457 0.0471 

)0(
)

2
(

l


  
0.0590 0.0527 

)4(
)

2
(

l


  
0.0546 0.0499 

)12(
)

2
(

l


  
0.0473 0.0469 

)0(
)

3

2
(

l


  
0.0592 0.0522 

)4(
)

3

2
(

l


  
0.0568 0.0505 

)12(
)

3

2
(

l


  
0.0471 0.0482 

)0(
)

6

5
(

l


  
0.0568 0.0515 

)4(
)

6

5
(

l


  
0.0529 0.0503 

)12(
)

6

5
(

l


  
0.0454 0.0474 

)0()( l  0.0583 0.0530 

)4()( l  0.0538 0.0500 

)12()( l  0.0444 0.0459 
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Table 4: The power of the seasonal KPSS test for  

   monthly data, significance level 5% 

 T=240 T=600 

)0(
)

6
(

l


  
1 1 

)4(
)

6
(

l


  
0.9988 0.9998 

)12(
)

6
(

l


  
0.9493 0.9944 

)0(
)

3
(

l


  
1 1 

)4(
)

3
(

l


  
0.9990 1 

)12(
)

3
(

l


  
0.95 0.9949 

)0(
)

2
(

l


  
1 1 

)4(
)

2
(

l


  
0.9987 1 

)12(
)

2
(

l


  
0.9517 0.9943 

)0(
)

3

2
(

l


  
1 1 

)4(
)

3

2
(

l


  
0.9986 1 

)12(
)

3

2
(

l


  
0.9515 0.9942 

)0(
)

6

5
(

l


  
1 1 

)4(
)

6

5
(

l


  
0.9982 1 

)12(
)

6

5
(

l


  
0.9450 0.9942 

)0()( l  1 1 

)4()( l  0.9648 0.9929 

)12()( l  0.7744 0.9194 
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According to Table 3, all empirical rejection frequencies approach the theoretical significance 

level of 5%. This shows indeed an excellent empirical size not subject to any distortion. Also, the 

increase of sample size mostly results in a slight decrease in size. Table 4 shows again that the 

seasonal KPSS test for monthly data preserves its good power properties. In this regard, a 

reduction of power corresponding to the root of -1 and the function l12 is notable but not 

surprising. Indeed the value 0.7744 that appears in the last box of the first column of Table 4 is 

very close to the values provided by KPSS (1992, Table 4) for the conventional unit root. This 

similarity is due to the mirror effect situation that occurs between the unit roots at frequencies 

zero and  . 

 

4. Conclusion 

 

As pointed by Hylleberg (1995), the most important reserve against the seasonal unit root test 

was that the null hypothesis of a unit root at the seasonal frequencies is problematic because 

seasonal unit root allows more variation in the seasonal pattern that is actually observed. So if 

the data generating process (DGP) is a seasonal unit-root- process, ‘winter may become 

summer’. Another limitation going along with the first one is manifested by the fact that the 

HEGY test, like the Dickey-Fuller test, has low power against reasonable alternatives and that 

the existence of moving average terms with roots close to the unit circle imply that the power is 

almost equal to the size. Even though there were some recommendations to handle such 

situations, interest has been granted for the construction of tests with better properties than the 

existing ones either against similar or different alternatives or for different established 

assumptions. In this research spectrum, one may refer to the tests of Canova and Hansen (1995) 

and Lyhagen (2006) adopting a very similar framework. In this paper, I studied the finite sample 

properties of the second one in presence of a linear trend and also by considering a monthly 

periodicity. The effect of changing observational frequencies should be studied since this test 

was early set for quarterly data. The bottom line of this Monte Carlo study is that the seasonal 

KPSS test preserves good size and power properties both in including a linear trend and 

considering monthly time series. Moreover, its empirical rejection frequencies often approximate 

nominal sizes when using the nonparametric corrections of the residual variances.  

The extension of the seasonal KPSS to a vector of time series is a future avenue of research. In 

that framework, one can examine if a set of data exhibit a common deterministic seasonality. 

This extension would be analogous to that which Nyblom and Harvey (2000) made to the KPSS 

test. 
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