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Abstract

The paper explores probability theory foundations behind evaluation of probabilistic

forecasts. The emphasis is on a situation when the forecast examiner possesses only par-

tially the information which was available and was used to produce a forecast. We argue

that in such a situation forecasts should be judged by their conditional auto-calibration.

Necessary and sufficient conditions of auto-calibration are discussed and expressed in the

form of testable moment conditions. The paper also analyzes relationships between fore-

cast calibration and forecast efficiency.
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1 Introduction

There is little doubt that it is important for users of economic forecasts to have information

on the degree of forecast uncertainty and probabilities of different scenarios. In general point

forecasts give insufficient information to a user who needs tomake a decision. This is the reason

for growing popularity of more complete—probabilistic—forecasts in econometrics.

Real-life forecasts are not perfect and we want to be able to diagnose imperfections in or-

der to improve our forecasting methods. Several procedures have been used for testing fore-

cast calibration and efficiency in the literature on probabilistic forecasts. For example, see Ku-

piec (1995), Diebold, Gunther, and Tay (1998), Christoffersen (1998), Diebold, Tay, and Wal-

lis (1999), Berkowitz (2001), Clements and Taylor (2003), Wallis (2003), Engle and Manganelli

(2004), Clements (2006), Mitchell and Wallis (2011), Chen (2011), Galbraith and van Norden

(2011) (this list includes closely related literature on interval/quantile forecasts). However, most

of these procedures are applicable only in a narrow class of forecasting situations, primarily

when one-step-ahead forecasts of a time series are made given the full previous history of this

series. The literature does not provide a comprehensive general picture of testable implications

of forecast calibration/efficiency. Even the conditions under which we can call a forecast cal-

ibrated or efficient are not yet fully understood and formally stated. In this paper we want to

make up for this omission.

To catch the idea of the approach employed in this paper consider the example of the classi-

cal point forecasting under quadratic loss. It is well-known that the conditional expectation

with respect to an information set Ψ is the best point forecast in mean-square sense of all
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theΨ-measurable forecasts. From the properties of conditional expectation it follows that the

efficient forecast must be unbiased and the forecast error must be uncorrelated with any Ψ-

measurable variables. These theoretical properties lead to corresponding test procedures, for

example, Mincer-Zarnovitz-type regression-based tests (Mincer and Zarnowitz, 1969).

This paper applies a similar approach to probabilistic forecasts. Unlike most of the existing

literature (Corradi and Swanson, 2006c is a vivid example) we emphasize the probability theory

basis behind probabilistic forecasting, rather than statistical testing. It turns out that for many

important theoretical results one can consider forecasting as a one-shot activity, rather than

repeated one, which is subject to statistical procedures.

We consider forecasting of some target outcome Y which is a real-valued random variable.

A complete probabilistic forecasts ofY is represented by a randomcumulative distribution func-

tion F̃ . (Tilde is used to show that the CDF is random). To analyze the properties of a proba-

bilistic forecast it is necessary to consider the joint distribution of the forecast F̃ and the target

outcome variable Y specified on a common probability space. Finally, forecast evaluation must

rely on some relevant information represented by an information setΨ. FormallyΨ is a sub-σ-

algebra in the underlying probability space.

For a point forecast judged by the quadratic loss it is important to correctly represent the

central point of the conditional distribution of Y given the relevant information set, which is

achieved when the forecast coincides with the conditional mean. Similarly, for a probabilistic

forecast it is important to be calibrated (Diebold, Hahn, and Tay, 1999; Gneiting, Balabdaoui,

and Raftery, 2007). Calibrationmeans good conformity between a probabilistic forecast and the

actual behavior of the target variable. However, this idea of conformity is vague and requires an

accurate formulation.

Several different modes of calibration were considered in the literature: probabilistic cal-

ibration (PIT uniformity), marginal calibration and ideal calibration with respect to an infor-

mation set (Gneiting, Balabdaoui, and Raftery, 2007, Gneiting and Ranjan, 2013). Also very

popular is the condition of uniformity and independence of PIT values (Diebold, Gunther, and

Tay, 1998).

Many papers on evaluation of probabilistic forecasts assume that there is a complete para-

metric model of the data which gives the DGP for some true vector of parameter values (e.g.

Corradi and Swanson, 2006a; Corradi and Swanson, 2006c; Chen, 2011). From this point of view

forecast evaluation is a type of model evaluation. The probabilistic properties of forecast evalu-

ation statistics are governed by the model. However, this approach is not applicable when there

is no formal parametric model behind the forecasts. Our view is that the concept of calibra-

tion should not refer to a “model” or the “true DGP”. It is more realistic to consider forecasting

methods rather than forecasting models (cf. Giacomini and White, 2006). This permits us not

to exclude forecasts which are not based on formal models (e.g. survey forecasts or forecasts

utilizing exponential smoothing).

The mode of calibration closest to the idea of “true DGP” is ideal calibration (to be defined

below). In a sense, it is fundamental, comprehensive and underlies the current econometric lit-

erature on probabilistic forecasting with its reliance on model-based forecasts. However, prac-

tical considerations suggest a different (though closely related) concept of calibration.

In a forecast evaluation situation one should distinguish (at least) two different parties: the

forecaster and the individual who evaluates the forecast. The later party will be called the ex-

aminer here. The information sets of the forecaster and the examiner can be distinct, say, Ψ∗

and Ψ. The concept of ideal calibration is ambiguous without specifying the information set.

The forecast, which is calibrated with respect toΨ∗, can be miscalibrated with respect toΨ and

vice versa.
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There are many real-life situations in which Ψ
∗ and Ψ are not the same. For example, the

central bank or the government can use internal information which is not publicly available. It

is also not uncommon that a forecast includes subjective judgment of the forecaster or utilizes

suboptimal sources of information. The leading motivating example is that of survey forecasts

(like Survey of Professional Forecasters, see Diebold, Tay, and Wallis, 1999, Clements, 2006,

Engelberg, Manski, and Williams, 2009). To be comprehensive enough the theory of forecast

evaluation should not exclude the possibility that a forecaster uses some irrelevant information.

(One can recall Roman augurs using observation of birds’ behavior for foretelling.)

The idea is that it is in general more convenient to define a notion of calibration which

explicitly takes into account the fact that the forecast itself can be the source of information

for the forecast examiner. We call this mode of calibration conditional auto-calibration. The

definition is given below. In the situation of point forecasting under quadratic loss the idea can

be expressed as follows: a point forecast Y f is efficient (or rational) if E[Y |Ψ,Y f ] = Y f .

Themain reason for introducing the concept of conditional auto-calibration alongwith ideal

calibration is that if forecaster’s information set is not known to the examiner, the later has no

way to verify that the forecast is ideally calibrated with respect to this information set. Hence

the examiner in fact can only test auto-calibration.

For practical reasons it is convenient to express the implications of calibration in the form of

moment conditions. Here we confront with a subtle point of probabilistic forecasting, namely,

that there are two different kinds of moments involved. First, there are moments defined on

the underlying probability space. Second, a realization of a complete probabilistic forecast F̃

specifies a probability measure for outcomes, which can be used to calculate various moments.

If the forecast is calibrated and coincides with a relevant conditional distribution function, then

the corresponding conditional moments can be expressed in terms of the moments calculated

from the forecast-based probability measures. In this paper we show how different aspects of

calibration can be characterized by the corresponding moment conditions. The key to many

theoretical results mentioned in this paper is Theorem 6 in Appendix. It allows to express con-

ditional moments givenΨ in terms of the corresponding moments of conditional distributions

in the case when moment function includesΨ-measurable random elements.

Another aspect of probabilistic forecasting is forecast efficiency (also called optimality and

rationality in different contexts) with respect to the objectives of a forecast user. In a sense cal-

ibration is a testable implication of efficiency. However we also consider more direct conditions

of efficiency and relate them to calibration. Among other things, we formulate and prove the

sharpness principle of forecasting conjectured in Gneiting, Balabdaoui, and Raftery (2007). Its

formulation happens to rely on the notion of auto-calibration.

The question of accuracy testing, which also can be used for forecast evaluation, is not con-

sidered here. There is an extensive literature on this subject starting from Diebold and Mariano

(1995) and including West (1996), White (2000), Sarno and Valente (2004); Corradi and Swan-

son (2005), Corradi and Swanson (2006b), Giacomini andWhite (2006), Amisano and Giacomini

(2007), Bao, Lee, and Saltoǧlu (2007). However, we state relative predicted efficiency conditions

which are closely related and can be viewed in some sense as an improved alternative to accuracy

testing when it is used for the purpose of calibration or efficiency testing.

Section 2 analyzes the notion of calibration and characterize calibration by moment con-

ditions. Section 3 discusses forecast efficiency from the point of view of utility maximization

and proper scoring rules and analyzes the links between calibration and efficiency. Section 4

provides illustrative examples. Section 5 compiles main conclusions. Theorems and a technical

counterexample are moved to the Appendix.
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2 Forecast calibration

2.1 Basic definitions

We start by defining ideal calibration.1 Assume that Ψ is the information set including all the

relevant informationwhich can be used. The idea is that for a given information setΨ the ideally

calibrated forecast, first, fully utilizesΨ and, second, is based only onΨwithout employing any

other information (formally, the forecast F̃ isΨ-measurable). The arguments in Subsection 3.1

below give additional reason for using the word “ideal” in this context: in a sense it is the best

achievable forecast among forecasts based onΨ.

Definition 1. A forecast F̃ is ideally calibrated given Ψ if F̃ = FΨ, where FΨ(y) = F(y |Ψ) is the

distribution function of Y conditional onΨ.

If the forecaster possesses some informationwhich is not available to the examiner, then the

examiner can potentially derive somenew information from the forecast itself. Thus, in this case

the relevant information set to be used for forecast evaluation combines the examiner’s prior

information with the information delivered by the forecast and we can state that forecast F̃ is

calibrated from the examiner’s point of view if it coincides with F
Ψ,F̃ , which is the conditional

distribution of Y givenΨ and F̃ .

Definition 2. A forecast F̃ is conditionally auto-calibrated givenΨ if it is ideally calibrated with

respect toΨ∪σ(F̃ ), that is, F̃ = F
Ψ,F̃ .

The definition extends the notion of (unconditional) auto-calibration introduced in Tsy-

plakov (2011).

By definition all auto-calibrated forecasts are ideally calibrated given the corresponding in-

formation setΨ∪σ(F̃ ). Moreover, aΨ-measurable forecast, which is auto-calibrated givenΨ,

must be ideally calibrated givenΨ. Conversely, it can be stated that any forecast, which is ideally

calibrated with respect to some information setΨ∗ includingΨ, is auto-calibrated with respect
toΨ (Theorem 11). Therefore, if F̃ is auto-calibrated givenΨ1 andΨ1 is a “richer” information

set than Ψ2, that is, Ψ1 contains all the information of Ψ2 and maybe some additional useful

information (formally,Ψ2 ⊂Ψ1), then it is auto-calibrated givenΨ2.

Of course, one can base the theory of forecast evaluation on the definition of ideal forecast

calibration. However, it is more clear and natural to concentrate on the property of conditional

auto-calibration instead as this allows to highlight the specific aspects of a situation when the

forecast examiner can obtain from the evaluated forecast itself informationwhich is new to him.

As discussed below, in general it is not sufficient to use conditions of PIT uniformity and

orthogonality between PIT values and some observable variables based onΨ to test calibration

(which can be put into regression to test orthogonality conditions). Thus, a partially informed

examiner confronted with a black-box forecast have to use specific instruments and construct

peculiar variables based on both F̃ andΨ, which can be used in calibration testing.

Even if the forecast under examination is known to beΨ-measurable, these specific instru-

ments can be utilized with benefit, because for the examiner it might not be clear how the fore-

cast is constructed fromΨ. Moreover, even if the forecast is not a black box one these specific

1The concept of ideal calibration with respect to an information set is quite natural and is implicit in the litera-

ture on probabilistic forecasting (albeit, possibly, in a non-direct fashion—like “forecast represents the true DGP”).

Cf. Diebold, Gunther, and Tay (1998). Explicit definitions can be found in Tsyplakov (2011) and Gneiting and Ran-

jan (2013). It is also similar to the definition of interval forecast efficiency with respect to an information set in

Christoffersen (1998).
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instruments can be useful, because at the technical side a forecast F̃ is not a finite-dimensional

variable which is a typical object of analysis in econometrics. There are specific aspects of using

a CDF-valued variables, and we illustrate these in examples below.

A final remark is pertinent here. It goes without saying that adequate choice of information

set is crucial for testing calibration in applications. If an examiner wants to evaluate a forecast

he must consider informationΨ which is available at the time the forecast was made. Further,

judgments about forecaster’s rationality can only be based on the information available to this

forecaster.

2.2 General moment conditions of forecast calibration

The definition of conditional auto-calibrationwith respect to an information set, although intu-

itively appealing, is too abstract. For the purposes of forecast evaluation one would like to have

some functions of Y , which are directly observable and could be compared to something, which

is based on the forecast and the information contained in Ψ. In the case of point forecasting

we can directly compare the forecasts and the actual realizations of Y . We would like to have

something similar in the case of probabilistic forecasting.

Consider a function g (y, w,F ), which takes an outcome value y , a distribution function F

and some additional variable w as its arguments. A good probabilistic forecast of Y should be

able to predict the behavior of g (Y ,W, F̃ ), where W is some Ψ-measurable random element.

Here F̃ and W can be treated as fixed, since they are assumed to be already known at the fore-

casting time. Thus, letting F̃ = F andW = w we can use the expectation of g (Y , w,F ) under the

assumption that Y is distributed according to F as our forecast of g (Y ,W, F̃ ).

Note that we have to consider two types of probability measures and two types of expec-

tations here. First, there is a probability measure in the underlying probability space. Second,

values, which are assumed by forecasts, are CDFs inducing their own probability measures.

This reasoning suggests a very general type of moment condition of calibration. Define

γ(F, w) =EY ∼F g (Y , w,F ).

Then we must have under conditional auto-calibration that

Eg (Y ,W, F̃ ) =Eγ(F̃ ,W ). (1)

Actually this is the most general moment condition of calibration, because, as discussed below,

it is not only necessary, but also sufficient for conditional auto-calibration (see subsection 2.7).

The conditions of this kind can be used to compare theoretical and empirical moments for the

purpose of calibration testing (see subsection 2.8).

As conditions (1) are rather general, it is interesting to narrow these testable implications

of calibration and consider various special cases. We start by linking it to the conditions of

probabilistic and marginal calibration.

2.3 Conditional probabilistic and marginal calibration

Probabilistic calibration (PIT uniformity) Consider a situation when forecasts are such

that their values have a constant support [a,b] with possibly infinite bounds, continuous and

strictly increasing at [a,b]. (The outcome variable Y is implicitly assumed to have the CDF with

similar properties). We loosely call this setting a density forecasting situation. For a random

variable Y with a cumulative distribution function F the probability integral transform (PIT)
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value is defined as F (Y ). It has theU [0,1] distribution if F is continuous. In the same manner

one can define the PIT value for a probabilistic forecast.2

In a density forecasting situation the PIT value for a forecast F̃ and the outcome variable Y

is defined as

P = F̃ (Y ).

This quantity is the one that is used most often for calibration diagnostics in econometrics; e.g.

Diebold, Gunther, and Tay (1998); Mitchell and Wallis (2011); Chen (2011). Probabilistic cali-

bration is a mode of calibration based on these PIT values. The term “probabilistic calibration”

for the condition of PIT uniformity was suggested in Gneiting, Balabdaoui, and Raftery (2007);

see also the reformulation of this definition in Gneiting and Ranjan (2013).3 Here we introduce

conditional version of this mode of calibration.

Definition 3. A forecast F̃ is probabilistically calibrated givenΨ if P |Ψ∼U [0,1].

This condition can be decomposed into two conditions, namely, that, first, PIT values are

unconditionally distributed asU [0,1] and, second, P andΨ are independent (see Theorem 9).

Unconditional PIT uniformity can be assessed, for example, with the help of a histogram of

the PIT values on the [0,1] interval. The histogram should be almost flat (e.g. Diebold, Gunther,

and Tay, 1998).

It can be seen that the concept of probabilistic calibration is closely connected to interval

forecasting and quantile forecasting (e.g. value-at-risk forecasting).4 For a forecast F̃ we can

define the corresponding p-quantile forecastQp = F̃−1(p). Under correct calibration probability

that Y is less than Qp is p. Consequently the probability that P does not exceed F̃ (Qp ) = p

should also be equal to p.

Further references and examples of moment conditions of probabilistic calibration can be

found in Chen (2011). Under probabilistic calibration givenΨ all suchmoment conditions must

be true also conditionally onΨ.

More generally, for a function c(p, w) taking p ∈ [0,1] and an additional variable w as its

arguments denote

χ(w) =EP∼U [0,1]c(P, w).

It’s a direct corollary to Theorem 6 that if a forecast F̃ in a density forecasting situation is con-

ditionally probabilistically calibrated with respect toΨ (that is, F̃ (Y )|Ψ∼U [0,1]) then for any

c anyΨ-measurableW it satisfies

Ec(F̃ (Y ),W ) =Eχ(W ). (2)

Note that these moment conditions are weaker than the general moment conditions of condi-

tional auto-calibration (1).

2The notion of PIT can be extended to arbitrary distributions by introducing randomization (e.g. Ferguson,

1967; Brockwell, 2007). One can extend the results of the current paper in this direction, but we prefer not to do

so in order to keep the exposition more transparent.
3The definitions of probabilistic and marginal calibration proposed in Gneiting, Balabdaoui, and Raftery (2007)

are formulated from a prequential perspective due to Dawid (1984) for sequences of forecasts. In Gneiting and

Ranjan (2013) the one-shot view on the forecasting theory is employed, similar to that of the current paper.
4 That is why the literature in this area such as Kupiec (1995), Christoffersen (1998), Lopez (1998), Clements and

Taylor (2003), Engle andManganelli (2004) can be considered as a part of the literature on probabilistic forecasting.
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Marginal calibration The concept of probabilistic calibration implicitly assumes a situ-

ation when probabilities are fixed while the bounds are reported by the forecaster. A reversed

situation is when bounds are fixed while the forecaster reports probabilities as in the Survey

of Professional Forecasters. A calibrated forecast must supply probabilities which are in accor-

dance with the true ones. Probabilities for all possible bounds are summarized by a CDF. Thus,

another mode of calibration is defined in terms of CDFs. The definition is given in Gneiting,

Balabdaoui, and Raftery (2007) and reformulated in Gneiting and Ranjan (2013). Again, here we

define a conditional version of this definition. In this definitionEΨ is the operator of conditional

expectation givenΨ and FΨ is the conditional CDF of Y givenΨ.

Definition 4. A forecast F̃ is marginally calibrated givenΨ if EΨF̃ = FΨ.

Similarly to conditional probabilistic calibration conditional marginal calibration can be

characterized bymoment conditions, which are weaker than the general moments conditions of

conditional auto-calibration (1). For a function n(y, w) of an outcome value y and an additional

variable w denote

ν(F, w) =EY ∼F n(Y , w).

If a forecast F̃ is marginally calibrated with respect toΨ then for any n anyΨ-measurableW it

satisfies

En(Y ,W ) =Eν(F̃ ,W ) (3)

(see Theorem 10). That is, conditional marginal calibration implies that ν(F̃ ,W ) is an unbiased

forecast of n(Y ,W ).

For example, one can take n = y , ν = mean(F̃ ) to express mean unbiasedness of F̃ . Gneit-

ing, Balabdaoui, and Raftery (2007) propose a diagnostic diagram for unconditional marginal

calibration based on binning and application of condition EI{Y ∈ (a,b]} =E[F̃ (b)− F̃ (a)] to the

bins.

Theorem 8 states that both probabilistic and marginal calibration given Ψ are implied by

auto-calibration given Ψ.5 However, as we show below (subsection 2.7), neither probabilistic,

normarginal calibration are sufficient for auto-calibration with respect to the same information

set. Hence, calibration tests based on (2) and (3) can be incomplete as tests of conditional auto-

calibration.

2.4 Orthogonality conditions of calibration

From the theory of point forecasting it is known that the expectation conditional on the infor-

mation set Ψ is the forecast which is optimal in mean-square sense among the forecast based

onΨ (e.g. Bierens, 2004, pp. 80–81). This forecast satisfies orthogonality conditions: the pre-

diction error is uncorrelated with any random variable based onΨ.6 There are also extensions

to the case of general cost functions (e.g. Granger, 1999). In Mitchell and Wallis (2011) an idea

was put forward that calibration of probabilistic forecasts can be tested by verifying similar or-

thogonality conditions. We demonstrate that this idea lends itself to further generalization.

5Gneiting and Ranjan (2013) observe that the ideally calibrated forecast is both (unconditionally) marginally

calibrated and probabilistically calibrated.
6These conditionswere utilized in the rational expectations literature. Shiller (1978), p. 7: “. . .Expected forecast

errors conditional on any subset of the information available when the forecast was made, are zero. . . Hence, the

forecast error . . . is uncorrelated with any element of It [the set of public information available at time t ]”.

The term “orthogonality conditions” is known from the GMM literature (cf. Hansen, 1982).
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Consider a function r (y,F ), which takes an outcome value y and a CDF F as its arguments,

and denote

ρ(F ) =EY ∼F r (Y ,F ).

Let a(w,F ) be some function of an additional variable w and a CDF F .7 By letting g = r a in

the general moment conditions of calibration (1) we obtain the following general orthogonality

conditions of calibration: if a forecast F̃ is conditionally auto-calibrated with respect toΨ then

for any r , anyΨ-measurableW and any a it satisfies

E[(r (Y , F̃ )−ρ(F̃ ))a(W, F̃ )] = 0. (4)

According to this conditions a point forecast ρ derived from a probabilistic forecast F̃ must

be unbiased as a forecast of r and the error must not be correlated with any function of a Ψ-

measurableW and the forecast F̃ . One can represent a CDF F in function a(w,F ) by some char-

acteristics of the corresponding distribution such as the mean, median or interquartile range.

An example of this type of orthogonality conditions can be found in Clements (2006), where

in the context of evaluating the SPF probabilistic forecasts it was noted that E[(I − p)p] = 0,

where I is an indicator variable for the event that Y is in some interval and p is the predicted

probability of this event.

Note that conditional probabilistic and marginal calibration can also be characterized by

orthogonality conditions, but these conditions are less general. Under conditional probabilistic

calibration with respect to Ψ for any function k(p) taking p ∈ [0,1] as its argument and any

Ψ-measurableW we must have

E[(k(F̃ (Y ))−κ)W ] = 0, (5)

where κ=EP∼U [0,1]k(P ). Similarly under conditional marginal calibration with respect toΨ for

any function m(y) of an outcome value y and anyΨ-measurableW we must have

E[(m(Y )−µ(F̃ ))W ] = 0, (6)

where µ(F ) =EY ∼F m(Y ).

As an example of orthogonality conditions for probabilistic calibration consider a regres-

sion from subsection 4.3 of Christoffersen (1998) used for testing for conditional coverage of

an interval forecast. A similar regression representing orthogonality conditions for marginal

calibration can be found in Clements (2006).

2.5 Sequential auto-calibration

Consider a sequence F̃t of h-step-ahead probabilistic forecasts of a univariate time series Yt ,

t = 1,2, . . . in a recursive setting. The examiner’s information set available for evaluating F̃t ,

which we denoteΨt , should include information on available previous values of the series and

previously issued forecasts. We assume that all forecasts F̃1, . . . , F̃t are already known at time

t −h and thus

σ(Y1, , . . . ,Yt−h , F̃1 . . . , , F̃t−1) ⊂Ψt .

This suggests the following definition.

7Note that any random element A which is measurable with respect to Ψ∪σ(F̃ ) can be represented as A =
a(W, F̃ ) for some function a(w,F ), whereW is aΨ-measurable variable.
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Definition 5. A sequence of forecasts F̃t , t = 1, . . . ,T in recursive h-step density forecasting

situation is sequentially auto-calibrated if each forecast F̃t is conditionally auto-calibrated with

respect to σ(Y1, , . . . ,Yt−h , F̃1 . . . , , F̃t−1).

If a sequence of one-step density forecast of a time series Yt , t = 1, . . . .,T is made from the

full history of the same series, then calibration is frequently judged by analyzing the resulting

series of PIT values

Pt = F̃t (Yt ), t = 1, . . . .,T.

It is assumed that a sequence of such forecasts is calibrated if and only if the PIT values Pt are

independent and distributed asU [0,1] (cf. Diebold, Gunther, and Tay, 1998). We will call this

the UIPIT condition (condition of uniformity and independence of PIT values):

(P1, . . . ,PT ) ∼U [0,1]T . (UIPIT)

The UIPIT condition is very popular in the density forecast evaluation literature; e.g. Dawid

(1984), Diebold, Gunther, and Tay (1998), Berkowitz (2001), Mitchell and Wallis (2011), Chen

(2011). Mitchell and Wallis (2011) even call this “complete calibration”. However, this is in fact

not an independent mode of calibration. It can be a necessary condition of sequential auto-

calibration or a sufficient condition of sequential ideal calibration (see subsection 2.7 below) or

completely irrelevant depending on the situation.

UIPIT condition should be primarily considered as a necessary condition of sequential auto-

calibration in a specific setting. If in a recursive one-step-ahead density forecasting situation

forecasts F̃t , t = 1, . . . ,T are sequentially auto-calibrated, then according to Theorem 12 UIPIT

conditionmust hold. This is a generalization of Proposition inDiebold, Gunther, andTay (1998),

p. 867 in the spirit of partial information approach of the current paper.

The condition of serial independence of PIT values, which is the part of the UIPIT condition,

can be expressed with the help of orthogonality conditions. For example, any function k of a

the PIT value for moment t must be uncorrelated with any function k2 of lagged PIT values:

E[(k(Pt )−κ)k2(Pt−s)] = 0, s = 1,2, . . .

Under the UIPIT condition a series of transformed PIT values k(Pt ), t = 1, . . . ,T also must be

i.i.d. and hence serially uncorrelated. Therefore, we can use autocorrelation functions of the

PIT values and their transformations to test sequential auto-calibration of recursive forecasts

as proposed in Diebold, Gunther, and Tay (1998). When the UIPIT condition is not applicable,

we can still employ similar orthogonality conditions

E[(k(Pt )−κ)Wt ] = 0

provided that we use onlyΨt -measurable variables as Wt . For example, in the case of h-step-

ahead forecastingwe can useWt = k2(Pt−s) for s ≥ h. In the case of real-time forecasting if some

preliminary estimates of Yt−s , say Y ∗
t−s , are observed at the timewhen the forecast ismade, then

we can use

E[(k(F̃t (Yt ))−κ)k2(F̃t−s(Y ∗
t−s))] = 0, s = 1,2, . . .

In general there is no need to rely only on orthogonality conditions based on PIT values.

Other conditions can be more suitable in many forecasting situations. It can be emphasized in

particular that various functions of forecasts F̃1, . . . , F̃t can be important in testing sequential

auto-calibration.

9



2.6 Forecast encompassing

Next we consider forecast encompassing as an example of conditions of general type (1). The

idea is to verify calibration of one forecasting method against another one.

Suppose that we want to test whether F̃1 is auto-calibrated and F̃2 is an alternative forecast.

Forecast examiner can use an information set Ψ and information contained in forecast F̃2 for

forecast evaluation purposes. For a pair of (non-random) CDFs H and F and some additional

variable w let

γ0(H , w,F ) =EY ∼H g (Y , w,F ).

Then for two forecasts F̃1, F̃2 under the assumption that F̃1 is auto-calibrated with respect to

Ψ∪σ(F̃2) we have for any g and anyΨ-measurableW

Eg (Y ,W, F̃2) =Eγ0(F̃1,W, F̃2).

This can be called a forecast encompassing condition. The idea applying encompassing principle

to forecasts is due to Chong and Hendry (1986). The principle states that “models which claim

to congruently represent a data generation process must be able to account for the findings of

rival models” (Chong and Hendry, 1986, p. 676).

We can note here that full probabilistic forecasts are particularly suited for application of

the encompassing principle since they provide complete distribution functions, so that given

one probabilistic forecast we can derive forecast of any calibration-related characteristics of

another probabilistic forecast.

In particular, for g = k(F (y))a(W,F ) we obtain

E[(k(F̃2(Y ))−κ0(F̃1, F̃2))a(W, F̃2)],

where κ0(H ,F ) = EY ∼H k(F (Y )). As an example of this forecast encompassing condition con-

sider an indicator function k = I{F (Y ) ≤ p} = I{Y ≤ F−1(p)}. The expectation for F = F2 under

another CDF F1 is given by κ0(F1,F2) = F1(F−1
2 (p)) and we obtain the following moment condi-

tion:

E[(I{F̃2(Y ) ≤ p}− F̃1(F̃−1
2 (p)))a(W, F̃2)] = 0.

Similarly for g = m(y)a(W,F ) we obtain an orthogonality condition

E[(m(Y )−µ(F̃1))a(W, F̃2)].

Another form of forecast encompassing contrasts results of one forecast with results of an-

other one. The idea is that a calibrated forecast F̃1 must be able to explain the differential in

some function r for forecasts F̃1 and F̃2. When F̃1 is well-calibrated we have

E[g (Y ,W, F̃2)− g (Y ,W, F̃1)] =E[γ0(F̃1,W, F̃2)−γ(W, F̃1)],

where γ(w,F ) = γ0(F, w,F ). The two forms of forecast encompassing conditions roughly corre-

spond to FE(2) and FE(3) regressions in Clements and Harvey (2010) where forecast encompass-

ing is applied to probability forecasts of 0/1 events.

2.7 Sufficient conditions of calibration

In some sense general moment conditions (1) are complete. That is, it can be proved (see be-

low) that the requirement that they are satisfied for any g and anyW is sufficient for conditional
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auto-calibration. In the same sense conditions (2) and (3) are sufficient for conditional proba-

bilistic and marginal calibration respectively. However, it is tempting to narrow these general

moment conditions somehow. Both theoretically and practically interesting question is how

“narrow” one can be in calibration testing without a fundamental sacrifice of comprehensive-

ness.

We have already seen that auto-calibration givenΨ implies both probabilistic and marginal

conditional calibration givenΨ. Probabilistic calibration and marginal calibration are different

concepts. Neither of themgeneralizes the other one. Counterexamples8 for a density forecasting

situation and trivialΨ can be found in Gneiting, Balabdaoui, and Raftery (2007) (Examples 3, 5,

6) and in Mitchell and Wallis (2011) (combined and unfocused forecasts in the AR(2) example).

See also Forecast C in Example 1 below.9

It can be seen that neither probabilistic, nor marginal calibration givenΨ are sufficient for

auto-calibration givenΨ. Example 13 in the Appendix demonstrates that even when a forecast

is simultaneously (unconditionally) probabilistically and marginally calibrated, it can fail to be

auto-calibrated.

Of course, if we do not want to assume that the forecast examiner is only partially informed,

then the distinction above is not important. If a Ψ-measurable forecast F̃ is conditionally

marginally calibratedwith respect toΨ (that is,EΨF̃ = FΨ) then obviously F̃ is ideally calibrated

with respect toΨ. The same is true for conditional probabilistic calibration (Theorem 14).

Both probabilistic andmarginal calibration with respect toΨ∪σ(Ψ) are equivalent to auto-

calibration givenΨ. So are orthogonality conditions (7) and (8) which follow. They are arguably

the most narrow sufficient conditions of conditional auto-calibration.

Marginal calibration with respect to Ψ∪σ(F̃ ) can be expressed in terms of orthogonality

conditions between I{Y ≤ y}−F̃ (y) and any function a(W, F̃ ) of aΨ-measurableW and forecast

F̃ (for any real y and any a). Similarly (in a density forecasting situation) probabilistic calibra-

tion with respect to Ψ∪σ(F̃ ) can be expressed in terms of orthogonality conditions between

I{F̃ (Y ) ≤ p}−p and any a(W, F̃ ). Thus, we have two different sufficient moment conditions of

auto-calibration with respect toΨ:

E[(I{Y ≤ y}− F̃ (y))a(W, F̃ )] = 0 (7)

for any real y , any a and anyΨ-measurableW and

E[(I{F̃ (Y ) ≤ p}−p)a(W, F̃ )] = 0 (8)

for any p ∈ [0,1], any a and anyΨ-measurableW .

There is no guarantee that these partial conditions with indicator variables can provide tests

with goodpower. Perhaps, somemore general test based on conditions (1) can bemore powerful.

At least an examiner utilizing such narrow sufficient conditions would not be fundamentally

non-comprehensive.

Theorem 15 states a less obvious sufficient moment condition of conditional auto-

calibration:

E[(r (Y , F̃ )−ρ(F̃ ))W ] = 0, (9)

8One can easily generate other counterexamples. In theory an arbitrary forecast can be readily recalibrated to

achieve either probabilistic or marginal calibration relative toΨ. If G̃(p) is the conditional distribution function of

PIT values F̃ (Y ) givenΨ, then G̃(F̃ (y)) is a probabilistically recalibrated version of F̃ (Y ). Similarly F̃ (H̃−1(FΨ(y))),

where H̃(y) =EΨF̃ (y), is its marginally recalibrated version.
9Probabilistic andmarginal calibration are also distinct concepts for discrete Y assumingmore than two values;

see an example in Table 2 of Gneiting and Ranjan (2013).
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for any r and anyΨ-measurableW . This is also anorthogonality condition, where orthogonality

is between r (Y , F̃ )−ρ(F̃ ) andΨ-measurable variables.

One can never be sure that a forecast is conditionally auto-calibrated (probabilistically cal-

ibrated, marginally calibrated). All of the theorems on sufficient moment conditions require

corresponding conditions to be satisfied for arbitrary functions and arbitrary variablesW . Com-

parison of forecasts A and B in Example 1 below highlights this problem.

Our view is that the problem is a fundamental one and there is no universal solution. How-

ever, we can give a universal advise for a forecast examiner: try to build as good forecast as you

yourself can or find some other good forecast and use relative predicted efficiency conditions

(see below) to test one forecast against another. Forecast evaluation is an art in the same sense

that forecasting itself is an art. It is reasonable to start testing miscalibration in several obvious

directions, but to discover non-obvious miscalibration one has to be creative.

For a recursive one-step-ahead density forecasting situation an interesting question is

whether UIPIT condition is sufficient for sequential auto-calibration. In general the answer

is negative. However, when we are sure that the forecaster uses only the previous history to

produce forecasts, then conditioning on the previous history of Yt is equivalent to conditioning

on the previous history of Pt = F̃t (Yt ) and, hence, UIPIT condition is sufficient not only for se-

quential auto-calibration, but for sequentially ideal calibration. That is, according to Theorem

16 under UIPIT each F̃t is ideally calibrated given σ(Y1, , . . . ,Yt−1).

When forecasts are not measurable with respect to σ(Y1, . . . ,Yt−1) UIPIT is not sufficient; it

does not indicate a sequence of calibrated forecasts. Although formultistep forecasts, which are

measurable with respect to σ(Y1, . . . ,Yt−1), UIPIT condition is sufficient for sequentially ideal

calibration, this is not a very useful sufficient condition since in general independence does not

hold anyway. For forecasts using real-time data subject to revisions independence of PIT values

can be completely irrelevant condition.

2.8 The general idea of moment-based calibration testing

As calibration tests in the existing literature mostly pertain to a situation when one-step-ahead

forecasts of a time series aremade given the full previous history of this series, these testsmostly

rely on the UIPIT condition. Moreover, under UIPIT any functions of PIT values are also inde-

pendent and have known distribution; for example, this is true of the tick (indicator) variables

for interval/quantile forecasts. Therefore, under the UIPIT condition the distribution of the

vector of observations is fully known, which facilitates construction of the corresponding tests.

For example, likelihood ratio tests are widely used (e.g. Kupiec, 1995; Christoffersen, 1998;

Berkowitz, 2001; Clements and Taylor, 2003).

In general we do not know the complete distribution of observations. The conditional distri-

bution of a singleYi givenΨi and F̃ is under the null of conditional auto-calibrationwith respect

to F̃ fully described by the forecast F̃i . However, to design tests we have to make assumptions

on the dependence structure in the observations i = 1, . . . , N .

Given a moment condition of calibration one can replace theoretical moments by sample

ones based on a series of forecasts and outcomes and see how far the result is from what should

be in theory. This allows to develop various types of diagnostic tests for forecast calibration.

Chen (2011) demonstrates that many of the tests of calibration/efficiency developed in the lit-

erature fall within this approach.

Suppose that in theory the expectation of d must be zero under the null of calibration: Ed =
0. We can obtain the values of d for a series of realizations of forecast functions F1, . . . ,FN and a

series of outcomes y1, . . . , yN and calculate the corresponding sample moment d̄ =
∑N

i=1 di /N .
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If d̄ is far from zero, then we can conclude that the forecast is miscalibrated.

Note that in order to test the moment conditions of calibration it is not necessary to assume

that the data are described by some parametric model and that forecasts follow that model. Un-

der appropriate assumptions on the distribution of the sequence of di , discussion of which is

beyond the limits of this paper, we can use the usual t-ratios d̄/se(d̄). The most subtle aspect

here is adequate calculation of the standard error se(d̄) for dependent di . In the Example 3 be-

low the usual heteroskedasticity and autocorrelation consistent (HAC) standard errors are used.

If this is done correctly and the series of forecasts is well-calibrated, then this statistic is asymp-

totically distributed as N (0,1). An extension to the multivariate case—simultaneous testing of

several moment conditions—is straightforward and is familiar from the GMM framework: a t-

ratio is replaced by a quadratic form and the distribution is chi-square. For the orthogonality

conditions testing could be conveniently done by means of F -statistics andWald statistics from

auxiliary regressions (with robust covariance matrices if needed).

3 Forecast efficiency

3.1 Forecast efficiency, proper scoring rules and ideal forecasts

One can describe the simplest scheme of decision-making based on probabilistic forecasts as

follows. The forecast user chooses some action a. The consequences depend on a realization y

of a random variable Y . If the preferences of the forecast user are described by a utility function

u(a, y) andF is a realization of a probabilistic forecast ofY in the formof a distribution function,

then the best action a(F ) is given by (e.g. Pesaran and Skouras, 2002)

a(F ) ∈ argmax
a

EY ∼F [u(Y , a)].

(In forecasting theory one often uses expected loss minimization instead of expected utility

maximization). One can say that F̃1 is better than F̃2 if it leads to a greater expected utility, that

is,

Eu(Y , a(F̃1)) >Eu(Y , a(F̃2)).

This provides economic foundation for the theory of evaluation of probabilistic forecasts.

If we do not have a user with a utility function, then we can compare probabilistic forecasts

using some suitable loss function or scoring rule.

A scoring rule is a function S(F, y) of a CDF F and an outcome value y used to judge the accu-

racy or success of full probabilistic forecasts. If F1, . . . ,FN is a series of realizations of predictive

distribution functions, and y1, . . . , yN is a series of realized outcomes, then the average score is

given by

1

N

N
∑

i=1

S(Fi , yi ).

It is assumed that a more accurate (successful) forecast has a higher average score.

Not any arbitrary scoring rule is suitable for forecast evaluation. The general requirement is

that scoring rules used for forecast evaluation must be proper.

One can define the expected score function as the expected score of F2 given that Y is dis-

tributed as F1:

S(F2,F1) =EY ∼F1 S(F2,Y ).

(Note the overloaded notation used and take into account that both F1 and F2 are non-random

CDFs here). By definition, if the scoring rule S is proper, then the expected score is maximized
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with respect to F2 when F2 coincides with F1:

S(F1,F1) ≥ S(F2,F1),

and it is strictly proper (within a suitable class of distributions), if the inequality is strict for

F2 6= F1. Proper scoring rules are known to encourage truthful forecast statement: if the forecast

is assessed according to a proper scoring rule, then the forecaster cannot expect to benefit by

cheating and reporting forecast distributions which he believes to be incorrect.

A detailed review of this topic can be found in Gneiting and Raftery (2007) and Bröcker and

Smith (2007). Economic applications of scoring rules can be found in Diebold and Rudebusch

(1989), Clements and Harvey (2010), Boero, Smith, andWallis (2011), Diks, Panchenko, and van

Dijk (2011), Mitchell and Wallis (2011).

When forecasts are in the form of distribution functions it is logical to base forecast evalu-

ation on the notion of a proper scoring rule, because it is closely related to the maximization of

expected utility or minimizing expected loss by the forecast user. Indeed, define a scoring rule

S as the utility of an outcome y under the best action a(F ):

S(F, y) = u(y, a(F )).

Such a utility-based scoring rule is proper since

S(F1,F1) =EY ∼F1 u(Y , a(F1)) ≥EY ∼F1 u(Y , a(F2)) = S(F2,F1)

(cf. Diebold, Gunther, and Tay, 1998, Gneiting and Raftery, 2007). Therefore, when analyzing

the quality of probabilistic forecasts one can focus on proper scoring rules and abstract from the

implicit expected utility maximization.

An important property of an ideally calibrated forecast is that it achieves the maximum ex-

pected score if the scoring rule used is proper. Diebold, Gunther, and Tay (1998), p. 866: “. . . If a

forecast coincides with the true data generating process, then it will be preferred by all forecast

users, regardless of loss function.” See also Granger and Pesaran (2000).

According to Theorem 17 for any proper scoring rule the forecast, which is ideally calibrated

with respect toΨ, attains the highest expected score among theΨ-measurable forecasts (Tsy-

plakov, 2011).

Thus, when a forecast is ideal with respect toΨ, it can be called efficient or optimal. Under

appropriate additional conditions the inequality in the theorem is strict if the scoring rule S is

strictly proper and the alternative forecast is not ideal (Holzmann and Eulert, 2011).

Therefore, if a forecast is not auto-calibrated given Ψ, which is signaled by a violation of

some moment condition, then it is not ideally calibrated givenΨ and F̃ and there is a potential

for its improvement with the help of the information contained in Ψ and F̃ . Improvement is

measured by an increase in the mean score.

On the other hand, ifΨ∗ is the information set containing all available information andΨ⊂
Ψ

∗, then the forecast which is ideally calibrated given Ψ
∗ and hence has the largest expected

score is auto-calibrated givenΨ. This means that an efficient forecast would not be dismissed

by the auto-calibration criterion.

It can be said that in a certain sense the concept of calibration is intrinsically based on proper

scoring rules and score maximization.

It is also notable that each general moment condition (1) suggests the corresponding proper

scoring rule

Sg (F, y ; w) =−(g (y, w,F )−γ(F, w))2.
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3.2 Moment conditions of forecast efficiency

We can use the first order conditions of score maximization to derive moment conditions of

efficiency. Consider a CDF-to-CDF transformation T (F, w,δ) depending on a real vector of pa-

rameters δ and an additional variable w . We require that F = T (F, w,0). Suppose that F̃ is an

efficient forecast,Ψ is the relevant information set andW is someΨ-measurable random ele-

ment. The transformation T can produce a family of forecasts F̃δ = T (F̃ ,W,δ) parametrized by

δ, which includes the efficient forecast F̃ with δ= 0. If ES(F̃δ,Y ) is differentiable as a function

of δ, then we must have
d

dδ
ES(F̃δ,Y )

∣

∣

∣

δ=0
= 0.

Under appropriate regularity conditions the differentiation and expectation operations are in-

terchangeable and we obtain the following moment conditions:

E
d

dδ
S(F̃δ,Y )

∣

∣

∣

δ=0
= 0. (10)

The idea here is that we can extend a forecast F̃ in a parametric way (irrespectively of a pos-

sible parametric model on which F̃ could be based) and then derive moment conditions which

follow from the fact that the maximum score is attained for those parameters which correspond

to the initial forecast F̃ if F̃ is efficient.

By the same logic assuming that S is proper we must have for an arbitrary CDF F

EY ∼F
d

dδ
S(Fδ,Y )

∣

∣

∣

δ=0
= 0,

where Fδ = T (F, w,δ). It can be seen that efficiency conditions (10) can be considered as auto-

calibration conditions givenΨ of general type (1) with g = d
dδ

S(T (F, w,δ), y) |δ=0.

Location A simple transformation of a CDF is a shift by w Tδ where w is a real vector (which

may include a constant element 1):

Fδ(y) = F (y −w Tδ).

For example, consider a density forecast with log-density

ℓ̃(y) = log F̃ ′(y)

and the logarithmic scoring rule

S(F, y) = logF ′(y).

In this case (necessary) moment conditions of forecast efficiency are given by

E[−ℓ̃′(Y )W ] = 0,

whereW is aΨ-measurable vector.

Scale Another simple transformation is scaling of CDF F around some central point c(F ). Nat-

ural central points are the median c = F−1(1/2) and the mean c = mean(F ):

Fδ(y) = F ((y − c(F ))exp(−w Tδ)+ c(F )).

For the logarithmic scoring rule the corresponding conditions of forecast efficiency are given by

E[(−ℓ̃′(Y )(Y − c(F̃ ))−1)W ] = 0.

15



Inverse normal transform: location and scale Alternatively, we can employ transforma-

tions based on the inverse normal transform (INT) of CDF F̃ defined as Φ−1 ◦F , where Φ(·) is
the standard normal CDF:

Fδ(y) =Φ(Φ−1(F (y))−w Tδ)

and

Fδ(y) =Φ(Φ−1(F (y))exp(−w Tδ)).

These transformations correspond to the location and scale and give the following conditions

of forecast efficiency with the logarithmic scoring rule:

E[INTW ] = 0

and

E[(INT2 −1)W ] = 0,

where INT = Φ
−1(F̃ (Y )). It can be seen that the two conditions are orthogonality conditions

for probabilistic calibration of type (5). This demonstrates that some known calibration tests

based on PIT and INT values (e.g. Berkowitz, 2001) can be motivated by their connection with

efficiency.

3.3 Calibration, efficiency and sharpness

Another link between calibration and efficiency is provided by the sharpness principle of prob-

abilistic forecasting.

Forecast sharpness is a characteristic which reflects the degree of forecast definiteness, the

concentration of the forecast distribution (Murphy and Winkler, 1987; Gneiting, Balabdaoui,

and Raftery, 2007). Users can prefer sharp forecast as they are more definite and informative.

However, forecast sharpness can be deceptive and it is not a good idea to make choice between

forecasts solely on the basis of their sharpness.

In Gneiting, Balabdaoui, and Raftery (2007) a conjecture called “the sharpness principle”

was put forward, which states that the problem of finding a good forecast can be viewed as the

problem of maximizing sharpness subject to calibration. It can be shown that the conjecture is

actually true provided that a vague “calibration” notion is replaced by (conditional or uncondi-

tional) auto-calibration.

First, for a proper scoring rule S(F,F ) can be viewed as a measure of sharpness of a distri-

bution F . For a proper scoring rule −S(F,F ) is a concave10 function of F and thus, according to

DeGroot (1962), can be viewed as a measure of uncertainty of a probability distribution F . For

the logarithmic scoring rule −S(F,F ) is the familiar Shannon’s entropy measure.

Second, for an auto-calibrated forecast we have ES(F̃ ,Y ) =ES(F̃ , F̃ ), i.e. the expected score

of such a forecast equals its expected sharpness. The fact follows from (1) for g = S(F, y).

This means that auto-calibrated forecasts can be compared on the basis of the levels of their

expected sharpness. Sharpness is no more a deceptive characteristic when only (uncondition-

ally) auto-calibrated forecasts are considered. The ideally calibrated forecast given Ψ is the

sharpest of allΨ-measurable auto-calibrated forecasts, because it is characterized by the great-

est expected score.

Another intuitively expected property of well-calibrated forecasts is that the more complete

information has the forecaster, the sharper is the forecast which he can potentially produce. Let

10Function S(F1,F2) is linear in the second argument. Therefore S(Fα,Fα) = αS(Fα,F1) + (1 −α)S(Fα,F2) ≤
αS(F1,F1)+ (1−α)S(F2,F2) for Fα =αF1 + (1−α)F2 and α ∈ [0,1].
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F1 = FΨ1 be the ideal forecast based onΨ1 and F2 = FΨ2 the ideal forecast based onΨ2, where

Ψ1 is a “richer” information set thanΨ2 (Ψ2 ⊂Ψ1). Then

ES(F1,Y ) =ES(F1,F1) ≥ES(F2,Y ) =ES(F2,F2)

with strict inequality if F1 6= F2 almost surely and S is strictly proper. See Holzmann and Eulert

(2011) for a proof. Similar results for the discrete outcome case can be found in DeGroot and

Fienberg (1983) and Bröcker (2009).

We can further study the relationship between the expected score and the expected sharp-

ness for forecasts, which lack conditional auto-calibration. Let d denote a divergence indicator

(generalized distance) between distributions F1 and F2 defined as

d(F2,F1) = S(F1,F1)−S(F2,F1).

The divergence d(F2,F1) is non-negative, if the rule S is proper. It is zero when the two distri-

butions coincide. For the logarithmic scoring rule d is the Kullback–Leibler distance. In general

since ES(F̃ ,Y ) = ES(F̃ ,F
Ψ,F̃ ) the expected score of a (possibly miscalibrated) forecast F̃ can be

decomposed as follows:

ES(F̃ ,Y ) =ES(F
Ψ,F̃ ,F

Ψ,F̃ )−Ed(F̃ ,F
Ψ,F̃ ),

where F
Ψ,F̃ is the conditional distribution function of Y given Ψ and F̃ . The first term can be

interpreted as the expected sharpness of the forecast F
Ψ,F̃ , which is a “fully recalibrated” version

of forecast F̃ givenΨ, while the second term relates to the divergence between F̃ and F
Ψ,F̃ , i.e.

it is a measure of miscalibration of forecast F̃ with respect to the information contained in itself

and Ψ. A version of this partitioning for the dichotomous outcomes and the Brier score was

developed in Sanders (1963). Bröcker (2009) extended it to the case of an arbitrary finite-support

discrete distribution and arbitrary proper scoring rules.

The principle of maximizing sharpness subject to calibration which was considered here is

difficult to apply in practice, because achieving perfect conditional auto-calibration of a forecast

may prove too challenging. However, this principle provides a useful insight into the essence

of probabilistic forecasting. In particular, it is clear that the advantage of using proper scoring

rules for forecast comparison is that they provide the right balance of sharpness and calibration.

If other—not proper—scoring rules were used for forecast evaluation, then the forecaster would

have an incentive to report miscalibrated (for example, too sharp) forecasts.

3.4 Predicted efficiency conditions

Finally in this section we consider calibration conditions, which relate to forecast efficiency

indirectly, through its use of proper scoring rules.

As was already noted above, the expected sharpness of an auto-calibrated forecast equals its

expected score. I general if F̃ is auto-calibrated givenΨ, then from (4) with r = S(F, y) we have

that for any function a(w,F ) and anyΨ-measurableW

E[(S(F̃ ,Y )−S(F̃ , F̃ ))a(W, F̃ )] = 0. (11)

Another condition is a variety of forecast encompassing condition. Define g as the score

differential between F1 and F2
11

g = S(F2, y)−S(F1, y).

11Logarithmic score differential in the form of likelihood ratio or Kullback–Leibler information criterion is used

for forecast evaluation purposes in Amisano and Giacomini (2007) and Bao, Lee, and Saltoǧlu (2007); see also Hall

and Mitchell (2007).
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and let γ be the expectation of g under assumption that Y is distributed as F1

γ= S(F2,F1)−S(F1,F1).

According to the general moment conditions of calibration (1) for two forecasts F̃1, F̃2 under the

assumption that F̃1 is auto-calibrated with respect toΨ∪σ(F̃2) we have

E[S(F̃2,Y )−S(F̃1,Y )] =E[S(F̃2, F̃1)−S(F̃1, F̃1)]. (12)

Thismoment condition can be called a relative predicted efficiency (RPE) condition12. The relative

predicted efficiency conditions parallel the generalization of the likelihood ratio test for non-

nested models developed in Cox (1961), Cox (1962).

4 Examples

4.1 Example 1, the pitfalls of the UIPIT condition

Consider the following artificial example. Starting from Y0 ∼ N (0,1) define Yt for t ≥ 1 recur-

sively:

Yt =µt +ǫt ,

µt =Φ
−1({KΦ(Yt−1)})

p
1−λ,

ǫt |Y0, . . . ,Yt−1 ∼ N (0,λ),

whereΦ(·) is the standard normal CDF, {·} is the fractional part,K is a large integer andλ ∈ (0,1).

We assume that the relevant information set for the forecast at time t ≥ 1 is Ψt =
σ(Y0,Y1, . . . ,Yt−1). Three different forecasts are considered.

Forecast A: N (µt ,λ). This forecast reflects theDGP and is ideally calibratedwith respect toΨt .

Forecast B: N (0,1). This forecast corresponds to the unconditional distribution of Yt and is

unconditionally auto-calibrated. PIT values of this forecast are dependent. However, the

DGP incorporates a highly non-linear transformation, which disguises the dependence.

For large K it is impossible to find any traces of serial dependence in the series of the

PIT values for Forecast B by the means of PIT-based tests ordinarily used for forecast

evaluation.

Forecast C: N (µt + ξt ,λ+β), where ξt is an independent Gaussian white noise ξt ∼ N (0,β).

Forecast C is based on Forecast A, but contains additional noise. It has PIT valuesΦ((ǫt −
ξt )/

√

λ+β), which are distributed asU [0,1] and independent. Moreover, PIT values are

distributed asU [0,1] conditionally onΨt (that is, probabilistically calibrated givenΨt ).

However, Forecast C is not auto-calibrated with respect to Ψt , since it is not marginally

calibrated givenΨt .

Here we have two forecasts with uniform and independent PIT values and one forecast with

uniform PIT values and non-obvious dependence in PIT values. We can run a battery of tests for

PIT uniformity and independence such as those listed in Chen (2011) and Mitchell and Wallis

(2011). However, the result of such exercise is foreseeable so we skip it.

12In Tsyplakov (2011) it was called relative forecast calibration condition.
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Table 1: Statistics for the forecasts of Example 2

F̃c F̃r 1 F̃r 2 F̃xz

Expected log. score −1.612 −1.596 −1.525 −1.484

% best 0 0 1.41 98.59

Test 1, INT⊥1, X 99.95 99.95 4.22 4.99

Test 2, Y −M ⊥ 1, X 99.97 99.97 5.15 5.09

Test 3, INT2 −1⊥1 83.54 5.84 5.92 5.99

Test 4, PE 98.41 60.22 61.52 5.84

Test 5, RPE 99.99 99.57 11.98 4.57

Note: The table is based on 10000 simulations. The expected logarithmic score is in the first row.

The test statistics are F-statistics. The figures for the tests are rejection frequencies are for 5%

asymptotic significance level using the corresponding F quantiles.

The example is artificial and is not directly related to real forecasting problems, but it is sug-

gestive. Although from the point of view of the usual tests for the UIPIT condition all the three

forecasts look indistinguishably perfect, they are different in terms of efficiency. For example,

the expected logarithmic score of a single forecast of Yt is given by K − log(λ)/2 for Forecast A,

K for Forecast B and K − log(λ+β)/2 for Forecast B, where K =−(log(2π)+1)/2.

Forecast A is dramatically better than B for λ≪ 1 and dramatically better than C for β≫λ.

Comparison of Forecasts A and B shows that it is not advisable to rely on direct tests of the

UIPIT condition when the time series can incorporate non-obvious non-linearity. Comparison

of Forecasts A and C demonstrates a possible problem with reliance on the UIPIT condition and

conditional probabilistic calibration when the forecast can include extraneous noise.

4.2 Example 2, combined forecasts, simulation

Our second example relates to calibration testing of combined forecasts. Suppose thatY is given

by

Y = X +ǫ/
p

Z ,

where X ∼ N (0,1), Z ∼ Γ1/2,2 and ǫ ∼ N (0,1) are independent. Also denote F̃x , F̃z , F̃xz condi-

tional CDFs which correspond to Y |X ∼ t8, Y |Z ∼ N (0,1+1/Z ) and Y |X , Z ∼ N (X ,1/Z ).

We run simulations for four forecasts. The first is the equal-weight linear pool of two partial

conditional CDFs: F̃c = 1
2

F̃x + 1
2

F̃z . The second and third forecasts are recalibrated versions of

F̃c . The recalibration is implemented via an INT-based model:

INTc =βX +ξ, Varξ=σ,

where INTc = Φ
−1(F̃c (Y )) is the inverse normal transform for F̃c . The recalibrated forecast is

given byΦ((Φ−1(F̃c (Y ))−βX )/σ). Forecast F̃r 1 with β= 0, σ= 0.874 repairs only the incorrect

unconditional dispersiveness of F̃c . Forecast F̃r 2 with β= 0.316, σ= 0.814 also repairs the con-

ditional mean. (The parameters are approximations to the corresponding theoretical models.)

Finally, forecast F̃xz is known to be conditionally auto-calibrated with respect to σ(X ) and can

be regarded as a perfectly recalibrated variant of F̃c .
13.

We reproduce a situation where a forecast examiner can observe X , but not Z or ǫ. Some

forecaster(s) presented him forecasts F̃c , F̃r 1 and F̃r 2. (We are adding F̃xz for control purposes.)

13Note that σ(F̃c ) =σ(X , Z ).
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From his point of view the suitable mode of calibration is conditional auto-calibration with

respect to Ψ = σ(X ). Five different tests are used, which are based on the following moment

conditions.

Test 1 EINT = 0 and E[INTX ] = 0, where INT =Φ
−1(F̃ (Y )).

Test 2 E[Y −M ] = 0 and E[(Y −M)X ] = 0, where M = mean(F̃ ).

Test 3 E[INT2 −1] = 0.

Test 4 Predicted efficiency test ESlog (F̃ ,Y ) = ESl og (F̃ , F̃ ) and E[(Slog (F̃ ,Y ) −
Slog (F̃ , F̃ ))Slog (F̃ , F̃ )] = 0, where Slog (F, y) = logF ′(y) is the logarithmic scoring

rule.

Test 5 RPE test against F̃x based on E[Slog (F̃x ,Y )−Slog (F̃ ,Y )] =E[Sl og (F̃x , F̃ )−Slog (F̃ , F̃ )].

We used simulationswith 200 observations. The requiredmoments in intractable cases were

calculated by plain numerical integration. Table 1 shows the results on the expected logarithmic

score, comparison of average logarithmic scores and rejection rates for five calibration tests.

The expected logarithmic score shows the asymptotic potential of a forecast which becomes

visible when the number of observations tends to infinity. When a series of forecasts is not very

long, imperfect forecasts can obtain higher average scores than the ideal forecast. So “% best”

row shows the percentage of experiments in which the corresponding model had the highest

average logarithmic score.

The basic combined forecast F̃c is underdispersed and F̃r 1 corrects this well-known problem

(cf. Gneiting and Ranjan, 2013 where the beta CDF is used for the same purpose). Test 3, indeed,

frequently signals inadequate unconditional dispersiveness in F̃c , while it shows rejection rate

close to 5% for the three recalibrated forecasts.

Recalibration of F̃c for both location and scale produces forecast F̃r 2, which does not show

obvious signs of either probabilistic or marginal conditional miscalibration. However, since it

does not coincidewith the ideally recalibrated forecast F̃xz , it cannot be auto-calibrated. Indeed,

Test 4 often signals miscalibration. Interestingly, Test 5 (RPE test) also has some power against

this miscalibration in F̃r 2.

Here partial miscalibration criteria (like conditional probabilistic calibration) are not able

to signal miscalibration in F̃r 2 conditionally on X . Even though Z is unobservable to the ex-

aminer directly, he can use the characteristics of the forecast itself to detect miscalibration. It

can be also seen from this example that an RPE test can be useful in situations where the di-

rection of miscalibration is not obvious. If there exists some rough forecast then we can use it

for miscalibration diagnostics without additional analysis. Tests 4 and 5 use general moment

conditions (1) of forecast calibration and they cannot be reduced to testing conditional proba-

bilistic or marginal calibration given X . Thus the concept of conditional auto-calibration can

be important in practice, not only in theory.

4.3 Example 3, stock index forecasts

As our third example we consider one-step-ahead forecasting of the daily returns of a stock

index. The data are daily returns (in percent)Rt = (logRT SIt−logRT SIt−1)×100 of the Russian

stock market index (RTSI) calculated from the close levels. We use the data for the period from

1995-09-01 to 2013-08-09 (4,478 observations).

The following forecasts are considered.
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Table 2: Statistics for the three forecasts of RTSI, Example 3

200-t ES AR-GARCH-t

Log. score −2.217 −2.202 −2.148

Location test 1 −1.11 2.80** −1.07

Location test 2 5.54*** 8.24*** −1.92

Scale test 1 0.30 2.29* −3.16**

Scale test 2 vs. 200-t −1.17 1.43 −1.44

Scale test 2 vs. ES 2.72** 1.03 −1.76

Scale test 2 vs. AR-GARCH-t 3.80*** 2.14* −3.04**

Note: The figures for the tests are t-ratios. Newey–West HAC standard errors with lag truncation 3

where used. Statistical significance at 5% (1%, 0.1%) level is shown by * (**, ***).

Forecast 200-t: A rolling span of the 200 most recent observations yt−199, . . . , yt is used to fit

the Student’s t distribution with location parameterα, scale parameterσ and degrees-of-

freedom parameter ν by the maximum likelihood.

Forecast ES: The forecast is based on exponential smoothing for volatility σ2
t+1 = (1−δ)R2

t +
δσ2

t with the decay factor δ = 0.95 (RiskMetrics, 1996). The one-step-ahead forecasting

distribution is given by N (0,σ2
t+1). The recursion for volatility starts from the sample

variance of the first 200 observations.

Forecast AR-GARCH-t: The forecast is based on AR(1)-GARCH(1,1)-t model (the first order

autoregression, where disturbances are GARCH(1,1)-t as in Bollerslev, 1987). The model

is estimated recursively by the maximum likelihoodmethod. The forecasting distribution

is Student’s t with location, scale and degrees-of-freedom parameters supplied by the

model.

All the forecasts are produced starting from the observation 201. They are compared by their

observed average logarithmic scores. The following statistics are summarized in Table 2.

Log. score is the average logarithmic score.

Location test 1 is the test corresponding to the moment condition E[−ℓ̃′(Y )] = 0. For the Stu-

dent’s t distribution with parameters α, σ and ν the derivative of the log-density used in

the test is given by

−(ν+1)(y −α)/(νσ2 + (y −α)2).

Location test 2 corresponds to the moment condition E[−ℓ̃′(Y )Y−1] = 0, where Y−1 is the first

lag of Y .

Scale test 1 corresponds to the moment condition E[−ℓ̃′(Y )(Y −C )] = 1, whereC is the center

of the predictive distribution (which is defined unambiguously for symmetric forecasts

such as used here).

Scale test 2 vs. H̃ corresponds to the moment condition E[(−ℓ̃′(Y )(Y −C )−1)R] = 0, where

R = log(H̃−1(3/4)−H̃−1(1/4)) is a scale variable defined as the logarithm of the interquar-

tile range of the rival forecast H̃ .
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Forecast AR-GARCH-t is expectedly the best according to the average logarithmic score.

ES is the only forecast which does not include a constant term and Location test 1 signals the

resulting downward bias.

AR-GARCH-t includes an autoregressive term and is the only forecast which is not rejected

by Location test 2.

Scale test 1 shows that ES produces too narrow forecasts while the forecasts from AR-

GARCH-t are too wide. Scale test 2 against AR-GARCH-t confirms this lack of calibration.

Although 200-t has unconditionally correct scale, Scale test 2 against ES and AR-GARCH-t

demonstrates that volatility clustering is not fully captured.

We can conclude that all three forecasts are not fully efficient. The efficiency tests show the

directions of possible improvement.

5 Conclusion

In evaluation of probabilistic forecasts it is desirable to rely on fundamental concepts and the-

oretical properties. Some of such concepts and properties were considered in this paper.

Conditional auto-calibration and ideal calibration given an information set are two impor-

tant fundamental concepts which can be used.

Among other things, the concept of auto-calibration helps to derive the principle of maxi-

mizing sharpness subject to calibration from expected score maximization.

The paper highlights the difference between conditional auto-calibration and the less gen-

eral concepts of conditional probabilistic calibration (PIT uniformity) and conditional marginal

calibration.

The paper argues that expected score maximization and the notion of a proper scoring rule

can be viewed as the implicit basis for evaluation of probabilistic forecasts. The notion of cali-

bration can be derived from this basis.

Forecast efficiency, conditional marginal and probabilistic calibration, conditional auto-

calibration can be expressed by variousmoment conditions, including orthogonality conditions.

These conditions lead to a general framework for calibration testing. The framework can facil-

itate construction of various new tests. This is exemplified by general forecast encompassing

tests introduced in this paper, including tests based on relative predicted efficiency condition.

Last, but not the least, the paper suggests that a great caution is required when using the

condition of uniformity and independence of PIT values as a definition of ideal calibration or

efficiency. The moment conditions described here can be used to extend forecast evaluation

techniques to situations where this condition is not necessary or inappropriate.

Appendix

Theorem 6. Consider a measurable real-valued function b(x, y) and two random elements, X and

real-valued Y , such that E|b(X ,Y )| < ∞. If X is measurable with respect to a sub-σ-algebra Ψ,

then

EΨb(X ,Y ) =β(X ,FΨ)

and

Eb(X ,Y ) =Eβ(X ,FΨ),
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where FΨ(y) is the conditional CDF of Y givenΨ and

β(x,F ) =EY ∼F b(x,Y ) =
ˆ

b(x, y)dF (y).

This is a corollary of Theorem 6.4 (disintegration theorem) in Kallenberg (2002), p. 108. The-

orem 6 can be viewed as a combination of two properties of conditional expectations and con-

ditional distributions. First, conditional expectations can be represented by the unconditional

expectations in terms of the corresponding conditional distributions:

EΨm(Y ) =µ(FΨ),

where

µ(F ) =EY ∼F m(Y ) =
ˆ

m(y)dF (y).

Second, if a random element X is Ψ-measurable, then it can be treated as fixed inside the

conditional expectation with respect toΨ (the substitution property of the conditional expec-

tation):

EΨb(X ,Y ) = B(X ),

where B(x) = EΨb(x,Y ) = β(x,FΨ). For b(x, y) = x y the substitution property is a general-

ization of the well-known property of conditional distribution: EΨ[X Y ] = XEΨY , if X is Ψ-

measurable.

Theorem 7. If a forecast F̃ is conditionally auto-calibrated with respect to Ψ then for any g and

anyΨ-measurableW it satisfies

E
Ψ,F̃ g (Y ,W, F̃ )| = γ(F̃ ,W )

and

Eg (Y ,W, F̃ ) =Eγ(F̃ ,W ),

where

γ(F, w) =EY ∼F g (Y , w,F ).

Proof. Denote γ0(H , w,F ) = EY ∼H g (Y , w,F ), where F, H are non-random distribution func-

tions. Since F̃ andW are measurable with respect toΨ∪σ(F̃ ), then by Theorem 6

E
Ψ,F̃ g (Y ,W, F̃ ) = γ0(F

Ψ,F̃ ,W, F̃ ).

If F̃ = F
Ψ,F̃ , then the right-hand side is γ0(F̃ ,W, F̃ ) = γ(F̃ ,W ). Then the law of iterated expec-

tations can be applied.

Theorem 8. If a forecast F̃ is conditionally auto-calibrated with respect toΨ, then it is marginally

calibrated givenΨ and (in a density forecasting situation) probabilistically calibrated givenΨ.

Proof. [conditional marginal calibration] Note that EΨF̃ (y) =EΨFΨ,F̃ (y) = FΨ(y) for any real y .

[conditional probabilistic calibration] According to Theorem 7 under conditional auto-

calibration with respect toΨ for g = I{F (y) ≤ p} and γ= p we have EΨI{F̃ (Y ) ≤ p} = p.

Theorem 9. Probabilistic calibration givenΨ is equivalent to the condition that (1) P ∼U [0,1] and

(2) P andΨ are independent.
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Proof. Let A = P−1(−∞, p] for some p and B ∈Ψ. Then

P(A∩B) =E[I{P ≤ p}I(B)] =EEΨ[I{P ≤ p}I(B)] =E[EΨI{P ≤ p} · I(B)] = pEI(B) =P(A)P(B).

It follows that P andΨ are independent.

Conversely, suppose that P ∼U [0,1] and that P andΨ are independent. Since I{P ≤ p} and

Ψ are independent we have EΨI{P ≤ p} =EI{P ≤ p} = p.

Theorem 10. If a forecast F̃ is marginally calibrated given Ψ (that is, EΨF̃ = FΨ) then for any n

and anyΨ-measurableW it satisfies

En(Y ,W ) =Eν(F̃ ,W ),

where

ν(F, w) =EY ∼F n(Y , w).

Proof. By Theorem 6 we have EΨn(Y ,W ) = ν(FΨ,W ). Since ν(F, w) is linear in F , it follows that

ν(FΨ,W ) = ν(EΨF̃ ,W ) =EΨν(F̃ ,W ).

Then the law of iterated expectations can be applied.

Theorem 11. If a forecast F̃ is ideal with respect toΨ∗, then it is conditionally auto-calibrated with
respect toΨ for anyΨ⊆Ψ

∗.

Proof. SinceΨ∪σ(F̃ ) ⊂Ψ
∗ we have F

Ψ,F̃ =E
Ψ,F̃FΨ∗ =E

Ψ,F̃ F̃ = F̃ .

Theorem12. Suppose that in a recursive one-step density forecasting situation each forecast F̃t , t =
1, . . . ,T is auto-calibrated with respect toΨt =σ(Y1, . . . ,Yt−1, F̃1,, . . . , F̃t−1).14 Then (P1, . . . ,PT ) ∼
U [0,1]T , where Pt = F̃t (Yt ).

Proof. By Theorem 8 we have Pt |Ψt ∼ U [0,1]. Since σ(P1, . . . ,Pt−1) ⊂ Ψt , it follows that

Pt |P1, . . . ,Pt−1 ∼ U [0,1]. Using this fact and starting induction from P1 ∼ U [0,1] we obtain

(P1, . . . ,PT ) ∼U [0,1]T .

Example 13. The actual distribution of Y is described by F(y |W ) = F ◦
W (y), where W = 1 or

W = 2 with equal probabilities and

F ◦
1 (y) =
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2
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1
2

y + 1
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4
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],
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F ◦
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The forecast F̃ is also based onW : F̃ (y) = FW (y), where

F1(y) =















y, y ∈ [0, 1
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1
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],
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,1],

F2(y) =
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3
2

y − 1
4

, y ∈ [ 1
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, 3
4

],
1
2

y + 1
2

, y ∈ [ 3
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,1].

Since 1
2

F ◦
1 (y)+ 1

2
F ◦

2 (y) = 1
2

F1(y)+ 1
2

F2(y) (= y for y ∈ [0,1]) and 1
2

F ◦
1 (F−1

1 (p))+ 1
2

F ◦
2 (F−1

2 (p)) = p,

it can be seen that F̃ is both marginally and probabilistically calibrated. However, σ(F̃ ) =σ(W )

and thus for F̃ to be auto-calibrated we must have F̃ = F ◦
W which is not the case here.

14HereΨ1 is assumed to be the trivial σ-algebra.
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Theorem 14. If in a density forecasting situation for aΨ-measurable forecast F̃ we have F̃ (Y )|Ψ∼
U [0,1] then F̃ is ideal with respect toΨ.

Proof. FΨ(y) =EΨI{Y ≤ y} =EΨI{F̃ (Y ) ≤ F̃ (y)} = F̃ (y).

Theorem 15. If a forecast F̃ satisfies condition

EΨ[r (Y , F̃ )−ρ(F̃ )] = 0,

for any r , where

ρ(F ) =EY ∼F r (Y ,F ),

then it is conditionally auto-calibrated with respect toΨ.

Proof. Let r (y,F ) = I{y ≤ y0}a(w,F ) and ρ(F ) = F (y0)a(w,F ), where a(w,F ) is some function

with additional variable w playing the role of a placeholder. For arbitrary y0, a and w we must

have

EΨ[(I{Y ≤ y0}− F̃ (y0))a(w, F̃ )] = 0.

By the substitution property of conditional expectation15 w here can be replaced by an arbitrary

Ψ-measurable random variableW :

EΨ[(I{Y ≤ y0}− F̃ (y0))a(W, F̃ )] = 0

and

E[(I{Y ≤ y0}− F̃ (y0))a(W, F̃ )] = 0.

Since a here is arbitrary, it follows that

E
Ψ,F̃ [I{Y ≤ y0}− F̃ (y0)] = 0,

which is equivalent to F̃ = F
Ψ,F̃ .

Theorem 16. Suppose that in a recursive one-step density forecasting situation each forecast F̃t ,

t = 1, . . . ,T isΨt -measurable, whereΨt =σ(Y1, . . . ,Yt−1), and that (P1, . . . ,PT ) ∼U [0,1]T , where

Pt = F̃t (Yt ). Then each forecast F̃t is ideally calibrated with respect toΨt .

Proof. From (P1, . . . ,PT ) ∼U [0,1]T it follows that Pt |P1, . . . ,Pt−1 ∼U [0,1]. In a recursive one-

step density forecasting situation if each F̃t isΨt -measurable we have

σ(P1, . . . ,Pt−1) =σ(Y1, . . . ,Yt−1) =Ψt

and thus Pt |Ψt ∼ U [0,1]. By Theorem 14 this means that each F̃t is ideally calibrated with

respect toΨt .

Theorem 17. For any proper scoring rule the forecast, which is ideally calibrated with respect toΨ,

attains the highest expected score among theΨ-measurable forecasts.

Proof. Suppose that FΨ is the ideally calibrated forecast and F̃ is someΨ-measurable forecast.

Then by Theorem 6 ES(F̃ ,Y ) = ES(F̃ ,FΨ) and ES(FΨ,Y ) = ES(FΨ,FΨ). Since S is proper, we

have ES(FΨ,FΨ) ≥ES(F̃ ,FΨ) and hence ES(FΨ,Y ) ≥ES(F̃ ,Y ).

15That is, Ψ-measurable variables can be treated as fixed inside EΨ. Here we have to use a generalized form of

Theorem 6 above, which can be found in Kallenberg (2002).
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