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1 Introduction

We propose new specifications within bankruptcy hazard functions that explicitly

account for information noise in the input data. The issues on input data have been of

long-standing interest in credit risk modeling, including information transparency, data

integrity, data quality, and their impact on models’ empirical performance. These issues

have recently become increasingly more important topics, during and post the global

financial crisis, in the academic literature and financial press.1 It is thus highly desirable

to develop statistical models that explicitly take into account of noise in the input data.

However, to the best of our knowledge, such models are virtually non-existent in the

empirical credit risk literature.

Motivated by the seminal work of Duffie and Lando [2001] on modeling credit risk

with incomplete information, we propose new hazard specifications that explicitly handle

noisy information, and demonstrate their empirical efficacy. Compared to the previous

literature on bankruptcy hazard models, our specifications have new variables in the

hazard function, which are the interaction effects between proxies for the degree of noise

and time-varying covariates. Based on over two million firm-months of panel data on

North American public firms during 1979–2012, within which there are more than 2,100

bankruptcies filed under Chapter 7 or Chapter 11, we show that our interaction effects

significantly improve both in-sample model fit and out-of-sample forecasting accuracy.

The improvements in forecasting accuracy are persistent over time, and are robust to

various empirical setup. We are also able to predict the signs of the coefficients on the

proposed interaction effects, which are strongly supported by the data.

When accounting information is noisy and the degree of noise is heterogeneous,2 the

theoretical results of Duffie and Lando [2001] imply that any monotonic transforma-

tion of the hazard rate is a nonlinear function of both the degree of noise and relevant

time-varying covariates. However, such non-linearity in the hazard function is typically

not modeled in the current practice of credit risk modeling.3 By further exploring this

implication, we find that one way to approximate the non-linearity is to use interaction

1The related news article, industry publications and academic papers include Morgenson, G., “Was
There A Loan It Didn’t Like?” New York Times, November 1, 2008; Bitner, R., Confessions of a Subprime

Lender, Wiley, 2008; Schoolman, P., 2008, “Credit Crisis Lessons for Modelers,” in Risk Management:

The Current Financial Crisis, Lessons Learned and Future Implications; Ng and Rusticus [2013]; to cite
a few.

2The heterogeneity in the degree of noise might be both cross-sectional and in time series.
3Typically, the current practice models monotonic transformations of the hazard rate as a linear

function of time-varying covariates. Well-known examples include studies using proportional hazard
models (for example, Bharath and Shumway [2008], Duffie, Saita and Wang [2007]), and those using
dynamic logistic regressions (for example, Shumway [2001], Chava and Jarrow [2004], Campbell, Hilscher
and Szilagyi [2008, 2011]). In particular, Cox [1972] Proportional Hazard models treat log(hazard) as
a linear function of covariates (and log[baseline hazard function]). Dynamic logistic regressions treat
logit(hazard) as a linear function.
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effects between proxies for the degree of noise and covariates.4 Accordingly, we develop an

approach to create hazard specifications that explicitly handle information noise, which

amounts to three simple steps. One, identify time-varying covariates. Two, identify a

proxy for the degree of noise. Three, construct interaction effects between the identi-

fied proxy and covariates. All these variables are candidates to be selected within the

bankruptcy hazard function. In particular, this paper chooses covariates from four well-

known hazard models in the literature, namely, the best-performing models in Shumway

[2001], Chava and Jarrow [2004], Duffie, Saita and Wang [2007], Bharath and Shumway

[2008], respectively. We also choose numerous candidates as proxies for the degree of noise

that are widely accepted in the finance literature, including firm size, analyst coverage

and analysts’ forecast variation.5

Our approach allows us to develop three empirically testable hypotheses, regarding

our proposed interaction effects. First, we test if the signs of the coefficients on the

interaction effects are consistent with theoretical predictions. Second, we test whether

our interaction effects as a whole improve in-sample Goodness-of-Fit. Finally, we test if

these effects improve out-of-sample forecasting accuracy.

We find strong empirical evidence consistent with the three hypotheses. First, the co-

efficients on our proposed interaction effects have the same signs as predicted by the

first hypothesis. Second, altogether these effects significantly improve the in-sample

model fit based on full-sample tests. Third, the models with our proposed effects persis-

tently outperform those without, in out-of-sample forecasting accuracy, according to two

well-accepted predictability measures, (1) Area Under ROC Curve (AUC), and (2) the

captured fractions of the total number of bankruptcies within deciles ranked by model

forecasts. For the first measure, the models with our effects have significantly higher year-

by-year AUC in typically 6 out of the 10 holdout years, and are no worse in any other

year.6 For the second measure, the models with our effects capture more bankruptcies in

top deciles and less in low-risk deciles, than the models without our effects. This implies

that models achieve more accurate classification and less mis-classification by using our

proposed interaction effects. The models with our effects also have predominantly higher

cumulative captured bankruptcies in all deciles, implying an unambiguous improvements

on forecasting accuracy. Finally, we conduct a variety of robustness checks. We show that

our results are robust to different empirical setup, and are substantially stronger when our

interaction effects are used in private firm models, where information quality is a more

serious problem. Therefore, our findings provide strong empirical support for using our

4We note that models in Chava and Jarrow [2004] also used interaction effects, between industry
groups and covariates. Nonetheless, they are not related to imperfect information.

5See, for example, Thomas [2002], Zhang [2006], Lin, Ma and Xuan [2011], Guo and Masulis [2012].
In particular, we use log(total assets) as a proxy for firm size in our main results, Sections 5.1 and 5.2,
and adopt other proxies in robustness checks, Section 5.3.

6The average of the year-by-year AUC improvements are also highly significant.
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proposed hazard specifications in real-world bankruptcy forecasting, where firm-specific

information is likely to be noisy.

We advance the empirical literature on corporate bankruptcy prediction, or more gen-

erally corporate default prediction, which dates back at least to Altman [1968], Beaver

[1966]. The state of the art in default/bankruptcy forecasting is probably represented

by hazard models (also known as intensity-based models, reduced-form models, survival

analysis or duration analysis). The best-known default/bankruptcy hazard models in-

clude those in, for example, Shumway [2001], Chava and Jarrow [2004], Duffie, Saita and

Wang [2007], Bharath and Shumway [2008], Campbell, Hilscher and Szilagyi [2008, 2011],

Chava, Stefanescu and Turnbull [2011], Duan, Sun and Wang [2012]. For comprehensive

reviews on this literature, see Duffie, Saita and Wang [2007] or Giesecke, Longstaff, Schae-

fer and Strebulaev [2011], and references therein. In addition to introducing new hazard

specifications that improve model performance, our paper also reconciles some conflicting

empirical findings in the previous literature. Particularly, there have been disagreements

on the statistical significance of covariates such as firm size and asset profitability in the

hazard function.7 Our paper provides plausible explanations on the discrepancies in the

empirical results, thus reconciles the literature.8

Our approach also has a broad range of industry applications on credit risk model-

ing.9 For instance, they are directly applicable to Probability of Default (PD) models

that are widely used by credit rating agents, or by virtually all banking institutions (as

internal rating tools), where concerns on data quality and verification quality of obligors’

information are prevalent.10

Apart from Duffie and Lando [2001], our paper is closely related to the theoretical

literature studying credit risk models with incomplete information, see, for example,

Giesecke [2004, 2006], Guo, Jarrow and Zeng [2009] and the sequel. Our paper provides

an empirical implementation of the theory, in justified and practical manners.11

Furthermore, our paper contributes to empirical studies investigating the impact of

financial reporting quality on bankruptcy forecasting accuracy,12 or the factors affecting

predictability and likelihood of corporate defaults.13 Within these types of empirical

7For example, Shumway [2001], Chava and Jarrow [2004] found that (relative) firm size is significant
with negative signs, while Duffie, Saita and Wang [2007], Campbell, Hilscher and Szilagyi [2011] found it
insignificant, or sometimes significant with positive signs. Similarly, Chava and Jarrow [2004], Bharath
and Shumway [2008] found that asset profitability measures, like net income divided by assets, are
significant with negative signs, but Chava, Stefanescu and Turnbull [2011] found it insignificant.

8See Section 3 and Section 5.3 for the explanations.
9This paper only investigates bankruptcy events, because bankruptcy data is publicly available and

is the only data available to us.
10PD models are widely used in the financial industry, in areas of Basel-compliant regulatory capital

measurement, economic capital management, risk management, portfolio management and pricing.
11Note that this paper does not consider other forms of imperfect information, for example, delayed

information. They might be considered in future empirical work.
12See, for example, Beaver, McNichols and Rhie [2005], Beaver, Correia and McNichols [2012].
13See, for example, Campbell, Hilscher and Szilagyi [2011], Tang, Subrahmanyam and Wang [2012],
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studies, our hazard specifications provide a potentially useful tool to account for noise in

econometricians’ information set. For example, our proposed interaction effects naturally

serve as control variables in credit risk-related empirical tests.

Our paper also has a technical contribution. As will be demonstrated in Section 5.3,

our proposed hazard specifications have a built-in mechanism to elegantly handle outliers,

by automatically adjusting the responsiveness of covariates based on the outliers’ degree

of noise. This mechanism requires minimum (or no) distortion of the input data, and is

shown to be effective in our empirical study.14

The remainder of the paper is organized as follows. Section 2 explores implications of

the theoretical results of Duffie and Lando [2001], and develops hypotheses accordingly.

Section 3 outlines the design of our empirical study. Section 4 describes the bankruptcy

dataset that we construct to test hypotheses. Section 5 presents the empirical results,

including evidence from full-sample tests, out-of-sample tests and robustness checks. Sec-

tion 6 concludes.

2 Hazard Specifications with Imperfect Information

In this section, we propose hazard specifications that account for information noise,

motivated by the theoretical results of Duffie and Lando [2001](henceforth DL). We then

develop three hypotheses related to the specifications.

2.1 Theory

We explore the results of DL, who considered a filtering problem when there is noise

in the observed assets of a debt issuer (henceforth “firm”). Using the notation of DL, the

stock of assets of the firm, Vt, is modeled as a geometric Brownian Motion (BM)15 with

initial value of V0. Although all parameters associated with the stochastic process of Vt

are known, Vt itself is not observable to the creditors of the firm. Instead, a noisy value of

assets is observed, denoted as V̂t. It is assumed that log V̂t = log Vt+Ut, where Ut denotes

random noise that is independent of log Vt, and is normally distributed with mean u and

standard deviation a. Note that the standard deviation a of Ut can be interpreted as

“a measure of the degree of noise” (Duffie and Lando [2001, p. 642]). We adopt this

interpretation throughout this paper.

The firm will file bankruptcy when log Vt first falls to some low boundary v.16 We

Cai, Saunders and Steffen [2012], Maffett, Owens and Srinivasan [2013] as more recent studies.
14The capability to handle outliers is a side benefit of our approach. While Section 5.3 gives an

example, we defer to future work for dedicated, full-blown empirical studies on this topic.
15All random variables are defined on a fixed probability space (Ω,F , P ).
16In the model of DL, v is determined by the firm owners within an optimal bankruptcy framework of

Leland [1994], Leland and Toft [1996]. Note that the firm owners (or managers) have perfect information
on the “true” value of assets, log Vt, to decide when to file bankruptcy. Thus, only creditors’ information
is noisy. Problems with asymmetric information was explicitly ruled out by DL, and is not considered
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denote the bankruptcy time as τ . Within this setup, Duffie and Lando [2001, Equation

26] showed that the conditional probability of bankruptcy at time t, during the period of

(s− t), s > t, is

P (t, s) = Pr(τ ≤ s|V̂t, V0, τ > t) = 1−

∫ +∞

v

[1− π(s− t, x− v)]g(x|V̂t, V0, t)dx, (1)

where we refer to DL for the detailed expressions of π(·) and g(·).

Under the assumption that accounting report is unbiased,17 the conditional probability

of bankruptcy (henceforth, PB), P (t, s), is a function of the standard deviation of noise

(a), the time-t observed assets (V̂t), initial assets (V0), mean and volatility of the asset

growth rates, debt face value, among other parameters. See Appendix A for more detailed

descriptions on these parameters.

We are interested in the joint impact on PB of a and observed (noisy) asset returns,

denoted as rN , ( V̂1

V0
− 1) at time t = 1, assuming V0 = 1 is observed with perfect

information and s = 2. Thus, we fix all other parameters at some values (see Appendix

A for values of these parameters), and vary levels of a and V̂1. We then numerically

evaluate P (1, 2) for various levels of a and rN , and graphically illustrate how PB changes

accordingly. This results a surface of PB as shown in Figure 1a.

There are two salient features about the shape of the PB surface in Figure 1a. First,

while in general, rN is decreasing in PB, the slope of PB with respect to rN varies with

a. With a higher level of a, the slope along the direction of rN becomes less steep. This

can be seen more clearly if we project the surface of PB onto the PB–rN plane, resulting

a contour plot in Figure 1b, i.e., PB curves with the same value of a (or “iso-a” curves).

Clearly, the slope of a PB curve given a lower a is steeper than that given a higher a.

This feature implies that, when asset information becomes noisier, the observed asset

returns, as a predictor, become less responsive to bankruptcy risk.18 This feature is

highly intuitive and are supported by numerous empirical studies, for example, Beaver,

McNichols and Rhie [2005], Beaver, Correia and McNichols [2012].

The second feature is that PB is increasing in a when rN is above around -4%, but

decreasing in a when rN is below around -8%.19 This feature is also intuitive, because with

here either.
17Unbiased accounting report means that u = −a

2

2
so that E(Ut) = 1. We make this assumption

throughout this paper. It can be shown that the bias of accounting report does not materially impact
the interaction effects between the degree of noise and covariates. Thus this assumption is not central
to this paper, and will be topics of future research.

18In extreme cases, when the degree of noise is extremely high, the slope along the direction of rN
becomes almost flat, implying that coefficient on rN is close to zero. In these cases, observed asset
returns as a predictor will not accurately rank firms in terms of bankruptcy risk.

19Note that Figure 1a generalizes Duffie and Lando [2001, Figure 4], in a two-dimensional sense. Their
graph corresponds to the case where rN is zero in Figure 1a. Figure 1b is also similar to Duffie and
Lando [2001, Figure 6]. We note that Figure 1 implies when rN is near -6%, the monotonicity of PB in a
is indeterminate. The threshold of (around) -6% is due to the assumptions on specific parameter values
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(a) Probability of bankruptcy (PB) for various levels of standard deviation of noise, a, and observed

(noisy) asset returns, rN , ( V̂1

V0

− 1)

(b) The projection of the surface of PB, in Figure 1a above, onto the PB–rN plane

Figure 1: Theoretical probability of bankruptcy, varying the degree of noise and observed
(noisy) asset returns
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noisier information, one should attribute the observed high (low) asset returns more to

noise rather than the true value of assets, which entails higher (lower) PB than noise-free

PB. Therefore, to assess the impact of information noisiness on PB, we should consider

it in context of other parameters (like rN) as demonstrated in Figure 1.

These two features persist even if we perform any monotonic transformation of PB,

such as logarithmic or logit transformations. This is because monotonic transformations

do not change relative magnitude and the sign of the slope. Therefore, any monotonically

transformed PB still has steeper (less steep) slope along the direction of rN for lower

(higher) a, and is increasing (decreasing) in a for higher (lower) rN . We graphically

illustrate the surface of logarithmic transformation of PB in Figure 2a. Figure 2a is

identical to Figure 1a, except that the vertical axis is now log(PB). Again, we plot the

projection of the surface of log(PB) onto the log(PB)–rN plane, in Figure 2b.

The above analysis shows that any monotonic transformation of PB is a non-linear

function of both a and rN when there exists heterogeneity in the degree of noise, either

across firms or over time.20 One obvious way to approximate such non-linearity within

models of PB is to use an interaction effect between a and rN , i.e. (a∗rN). This is directly

implied by Figure 2b. To provide more insights into this approximation, note that, when

(a ∗ rN) is added, the coefficient on rN can now be viewed as a linear function of a, and

thus varies depending on levels of a. This mechanism precisely models the variation of

log(PB)’s slope with respect to rN , conditional on a. The use of interaction effects, of

course, also has mathematical convenience to keep (any monotonic transformation of)

PB within the linear family.

Although noise is associated with firm’s assets and all other parameters are assumed

to be known without noise, the slope of PB with respect to other parameters might also

vary with a, a feature similar to that shown in Figure 2. Such parameters include the

mean and volatility of the asset growth rates, denoted as µ and σ respectively. The

theoretical relationship between log(PB) and µ or σ, for various levels of a, is depicted

in Figures 4 and 5, respectively, in Appendix A. Likewise, for various levels of a, we

also plot the relationship between log(PB) and normalized debt face value,21 D

V̂1
, where

D denotes the debt face value, in Figure 6 of Appendix A. In all graphs, log(PB) has a

steeper slope (with respect to the corresponding covariate) when a is lower, and a flatter

slope when a is higher. Thus, we might also incorporate interaction effects between a

and unbiased accounting report. When we change these assumptions, the PB surface might shift along
any axis (implying changes of the signs on main effects of a), but the shape of this surface, and thus the
two features, remains the same.

20As can be seen in Figure 2b, the current practice of modeling a linear relationship, between covariates
and monotonic transformation of PB, implicitly assumes that the degree of noise is the same across firms
and over time, which is unlikely in reality.

21We consider normalized debt face value because it is popular in the empirical credit risk literature,
typically as a proxy for leverage.
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(a) log(probability of bankruptcy) (log(PB)) for various levels of standard deviation of noise, a, and

observed (noisy) asset returns, rN , ( V̂1

V0

− 1)

(b) The projection of the surface of log(PB), in Figure 2a above, onto the log(PB)–rN plane

Figure 2: Theoretical log(probability of bankruptcy), varying the degree of noise and
observed (noisy) asset returns
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and these parameters, i.e., (a ∗ µ), (a ∗ σ) or (a ∗ D

V̂1
), when modeling log(PB).22

We note that the empirical success of our interaction effects depends on the hetero-

geneity in the variables a, rN , µ, σ and D

V̂1
. As is evident in Figures 2, 4, 5 and 6, if

either of these variables lacks variation, the corresponding interaction effect may fail to

be detected as significant in empirical estimation. Therefore, in empirical study, we try

to avoid data exclusions as much as possible, in order to better exploit variation in these

variables. Interestingly, this differs from the common practice of forecasting bankruptcy

or default, which manipulates data to avoid extreme values (i.e., outliers) in independent

variables.

2.2 Hypotheses on Proposed Hazard Specifications

It is natural to approximate PB, i.e., P (t, s) in Equation (1), using hazard rate,

denoted as λt, because λt is the continuous-time limit of P (t, t+∆t), and it can be shown

that this limit exists in the case of incomplete information,23

λt , lim
∆t→0

P (t, t+∆t)

∆t
. (2)

Consequently, in light of our analysis in Section 2.1, within the hazard function we can

also use the interaction effects between proxies for a and time-varying covariates.

We develop three empirically testable hypotheses related to our proposed interaction

effects. First, the features of PB surfaces in Figures 2, 4, 5 and 6 allow us to predict the

signs of the coefficients on our proposed interaction effects.

Hypothesis 1 (Signs of the Coefficients). Supposing there is one proxy for the degree of

noise, a, that is decreasing in a, then the interaction effect, between this proxy and any

covariate that is decreasing (increasing) in hazard rate, will have a negative (positive)

coefficient.

For example, without any interaction effect, the observed (noisy) asset return, rN , is

decreasing in the hazard rate (as shown in Figures 2). Hypothesis 1 thus predicts any

interaction effect between rN and a proxy for a (decreasing in a) has a negative sign. It is

straightforward to verify that this prediction is in accordance with the analysis in Section

2.1. We provide further intuition on Hypothesis 1 in Section 3 later (as explanations on

Equation (4)).

Second, if Equation (1) indeed represents the real-world data-generating process

(DGP) of bankruptcy, then we expect that our proposed hazard specifications should

improve empirical performance of hazard models, including both in-sample model fit and

22We also find there might exist higher-order interaction effects between a, rN and other parameters.
For simplicity, we only consider first-order interaction effects in this study.

23This result is also due to DL, which showed that λt exists when there is incomplete information,
and thus justified the use of hazard models, or similar statistical models, in practice.
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out-of-sample forecasting accuracy. This is because, while hazard models without our

proposed interaction effects try to model the relationship between monotonic transfor-

mations of PB and covariates as a hyperplane, our specifications effectively model the

relationship as a surface similar to that implied by the DGP (shown in Figures 2). Better

approximations of the DGP should be reflected in empirical model performance. There-

fore, we develop the following two hypotheses.

Hypothesis 2 (In-Sample Goodness-of-Fit). Hazard models with the proposed interaction

effects, between proxies for a and time-varying covariates, have significantly better in-

sample Goodness-of-Fit than those without.

Hypothesis 3 (Out-of-Sample Forecasting Accuracy). Hazard models with the proposed

interaction effects, between proxies for a and time-varying covariates, have significantly

better out-of-sample forecasting accuracy than those without.

3 Empirical Design

We conduct empirical study in three steps. First, similar to Duffie, Saita and Wang

[2007], Bharath and Shumway [2008], we specify the hazard rate as a Cox [1972] propor-

tional hazard model (henceforth, Cox model),

λt = ht exp(β
′Xt), (3)

where ht is an arbitrary and unspecified baseline hazard function common to all firms, Xt

is a vector of time-varying covariates, β is a vector of coefficients.24 β can be estimated

using the partial likelihood function of Cox [1972] without requiring estimation of ht.
25

Next, we choose the covariates, Xt, from four well-known bankruptcy hazard models

in the literature (henceforth, “reference models”), instead of identifying them by ourselves.

The reasons for this design are threefold. First, the reference models are widely accepted

as the state of the art in credit risk prediction, and are frequently cited.26 Their choices

of Xt also have economic interpretations that are aligned with our analysis in Section

2.1. See below the detailed descriptions of Xt within these models. Second, we use the

reference models as benchmarks for model comparison purposes. Hence, their choices of

Xt serve as control variables when testing the impact of our proposed interaction effects.27

24“ ′ ” is the transpose operator. Cox model implies that log λt = log ht + β′Xt, which fits into our
analysis in Section 2.1.

25Because this paper only studies ranking power of models, the estimate of ht is not required.
26For more recent citations of these models, see, for example, Tang, Subrahmanyam and Wang [2012],

Maffett, Owens and Srinivasan [2013].
27We note that the reference models might not include covariates like firm liquidity (see, for example,

Campbell, Hilscher and Szilagyi [2011]). We defer empirical tests on our proposed specifications using a
more comprehensive set of covariates (potentially beyond those used in the extant literature) to future
research.
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Third, this design allows us to demonstrate the generality of our approach. Our hazard

specifications impose no restriction on Xt, and thus can be used in combination with any

existing choice of Xt, as long as they are properly analyzed as we demonstrate here.

Finally, we create four new models (henceforth, “augmented models”) by creating

interaction effects between proxies for a and covariates, and adding them into the reference

models’ hazard functions. Each augmented model corresponds to one reference model.

Now the hazard rate of an augmented model becomes

λt = ht exp
[

β̄′Xt + γ̄0ã+
I

∑

i=1

γ̄i(ã ∗X
i
t)
]

, (4)

where β̄ denotes a vector of coefficients on the main effects of Xt, I is the number of

additional interaction effects, ã denotes a proxy for a such that higher ã represents lower

a, X i
t denotes the ith covariate with which ã interacts, and γ̄0, . . . , γ̄I are coefficients on

ã and interaction effects respectively.

We provide more intuition, using Equation (4), why Hypothesis 1 is in accordance

with our analysis in Section 2.1. First, we note that the coefficients on X i
t are different

in Equations (3) and (4). In Equation (3) where there is no interaction effect, the coef-

ficient on X i
t is the corresponding element within β, denoted as βi. In Equation (4), the

coefficient can be viewed as (β̄i+ γ̄iã) where β̄i is the coefficient on the main effect of X i
t .

Hypothesis 1 predicts that βi and γ̄i have the same sign. If this is true, then lower degree

of noise (i.e., higher ã) entails that (β̄i + γ̄iã) is more consistent with βi. For example,

when βi and γ̄i have the (same) positive sign, lower degree of noise entails that (β̄i+ γ̄iã)

is more positive, or less negative.28 In other words, Hypothesis 1 implies that when the

degree of noise is lower, X i
t is more responsive to log λt, which is precisely the intuition

behind the analysis in Section 2.1.

The four reference models used in our study are “Model with accounting and market

variables” in Shumway [2001], “Public firm model with industry effects” in Chava and

Jarrow [2004], the intensity model in Duffie, Saita and Wang [2007] and “Model 7” in

Bharath and Shumway [2008], respectively. These models are the best-performing one in

the corresponding articles. Henceforth, we call the reference models “S01 Model”, “CJ04

Model”, “DSW07-S Model” and “BS08 Model”, respectively. Note that “DSW07-S Model”

is a simplified version of the intensity model of Duffie, Saita and Wang [2007].29

We recognize that some covariates chosen by the reference models can be loosely

28Likewise, if both βi and γ̄i have the negative sign, then lower degree of noise (i.e., higher ã) entails
that (β̄i + γ̄iã) is more negative, or less positive.

29We use “-S” to highlight that our implementation is a “simplified” version. There are two simplifica-
tions within our implementation. First, we use a “naïve” version of Distance-to-Default (DD) measure,
developed by Bharath and Shumway [2008]. Bharath and Shumway [2008] showed that the default pre-
diction performance of DD is robust to how it is implemented. Second, for simplicity, we do not model
the time series dynamics of covariates.
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interpreted as proxies for parameters analyzed in Section 2.1, namely, observed (noisy)

asset return, the expected asset return, volatility of asset return and normalized debt

face value.30 Therefore, we use these covariates to construct potential interaction effects.

Note that whether or not a potential interaction effect is included in our augmented

models is determined by the statistical significance of its coefficient, an empirical decision

that is data dependent. The covariates used in each reference model and the potential

interaction effects are described as follows.31

S01 Model has five covariates: (1) Net Income/Total Asset (NI/TA); (2) Total Li-

ability/Total Asset (TL/TA); (3) firm’s relative size (RSIZE) defined as the difference

between the logarithm of firm’s equity value and the logarithm of the total NYSE &

AMEX market capitalization; (4) firm’s stock excess return (EXRET) defined as differ-

ence between firm’s trailing one-year stock return and the value-weighted CRSP NYSE

& AMEX index return; and (5) firm’s stock volatility (σE). We use four of them to

construct potential interaction effects, based on their economic interpretations. First, it

is natural to (loosely) interpret NI/TA and TL/TA as proxies of observed (noisy) asset

return and normalized debt face value, respectively. Second, we view σE as a rough proxy

for volatility of asset return. Finally, although EXRET is excess return, not firm’s stock

return, it can be viewed as a crude approximation of the trailing one-year stock return.

The trailing one-year stock return is commonly used as a “naïve” proxy for the expected

asset return (see, for example, Bharath and Shumway [2008]).32 As a result, we obtain

four potential interaction effects within S01 Model.

CJ04 Model includes all the covariates used in S01 Model, with additional industry

effects. Hence, the potential interaction effects in CJ04 Model are the same as in S01

Model.

In DSW07-S Model, there are four covariates: (1) a “naïve” version of Distance-

to-Default measure (Naïve DD) defined as, roughly speaking, the number of standard

deviations of asset growth rate by which the expected log assets exceed log debts;33 (2)

firm’s trailing one-year stock return (RETURN); (3) three-month Treasury bill rate (3m

T-rate); and (4) trailing one year return on the S&P500 index (SPX). We construct two

potential interaction effects, with Naïve DD and RETURN respectively. This is because

Naïve DD is effectively a synthesis of the expected asset return, volatility of asset return

and normalized debt face value, and RETURN is commonly used as a proxy for the

30We also recognize that it is impossible to precisely map parameters in Section 2.1 to the covariates
used in the reference models. This is because these covariates are identified based on empirical perfor-
mance rather than theoretical considerations. However, we do find similarity between their economic
interpretations, and thus can roughly approximate the parameters using these covariates.

31Also see Table 1 for a summary of covariates used in the reference models.
32This approximation is plausible, because, like the expected asset return, EXRET is also decreasing

in PB.
33It is called a “naïve” version because the implementation uses naïve proxies for parameters, see

Bharath and Shumway [2008] for details.
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expected asset return (see, for example, Bharath and Shumway [2008]). Consequently,

we have two potential interaction effects within DSW07-S Model.

There are six covariates in BS08 Model: (1) probability of bankruptcy measured using

Naïve DD (πNaïve), defined as N(−Naïve DD), where N(·) is the Gaussian cumulative

distribution function; (2) logarithm of firm’s market capitalization of equity (logE), where

E is defined as the product of month-end stock price and number of shares outstanding;

(3) logarithm of firm’s debt face value (logF ), where F is defined as (Compustat item

“Debt in Current Liabilities”)+1
2
(Compustat item “Total Long-Term Debt”); and three

covariates used in S01 Model, namely, (4) σE, (5) EXRET and (6) NI/TA. We use all of

them to construct potential interaction effects. The justifications of choosing πNaïve, σE,

EXRET and NI/TA are the same as those in DSW07-S Model and S01 Model. The use

of logE and logF is justified by interpreting them altogether as a proxy for normalized

debt face value. As such we get six potential interaction effects within BS08 Model.

To select ã in Equation (4), i.e. proxies for the degree of noise a, there is a wide range

of choices in the finance literature. In our study, we try a number of popular candidates

described as follows.34

One natural choice of ã is firm size. Greater firm size implies less degree of noise (see,

for example, Zhang [2006], Lin, Ma and Xuan [2011]). To construct interaction effects

within S01 Model, CJ04 Model and DSW07-S Model, we use log(Total Asset) (log(TA))

as the proxy for firm size when reporting our main results. As a robustness check, we

also try another two proxies for firm size: log(equity market value) (logE), and log(Asset

Rank) (log(AR)) where Asset Rank is obtained by ranking all surviving firms every month

according to their total assets.35 Note that, unlike log(TA) or logE that captures firms’

absolute size effect, log(AR) measures firms’ relative size cross-sectionally.36 In BS08

Model, logE is already used as a covariate and is strongly correlated with log(TA).37

Hence, to avoid potential multi-collinearity problems, within BS08 Model we only use

34We stress that we do not intend to search for the “best” proxies for the degree of noise. Our focus
is to study the real-world benefits of using our proposed interaction effects, together with popular (and
reasonable) candidates of ã.

35In this study, we rank firms into 1,000 groups.
36We note that S01 and CJ04 models have a covariate, RSIZE, which might also be viewed as a proxy

for (relative) firm size. We address potential concerns on multi-collinearity, when using RSIZE together
with proxies for firm size, in several ways. First, we compute the contemporaneous correlation between
RSIZE and log(TA) or log(AR), and find it is moderate within our dataset, at around 0.6–0.7. Second,
we find the variance inflation factors (VIF) of RSIZE, log(TA) and log(AR) are typically around 2–5,
below the standard threshold of 10. These diagnostics indicate that multi-collinearity is mild. Moreover,
the out-of-sample results in Section 5.2 confirm that multi-collinearity might be less a problem when
using RSIZE and log(TA) or log(AR) together. Therefore, we include RSIZE as a covariate when using
log(TA) or log(AR) as proxies for firm size. Nevertheless, multi-collinearity does become a problem
when we use logE as a proxy, because the contemporaneous correlation between logE and RSIZE is
0.92. Hence, we exclude RSIZE from S01 and CJ04 models when using logE as the proxy for firm
size. As a robustness check (not shown here), we also take RSIZE as a proxy for firm size within the
augmented S01 and CJ04 models, and obtain similarly strong results supporting our hypotheses.

37The contemporaneous correlation between logE and log(TA) is 0.82 within our dataset.
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logE as a proxy for firm size when constructing interaction effects.

We note that interpreting firm size as a proxy for the degree of noise might reconcile

the conflicting empirical findings on firm size in the extant literature. As can be shown in

Figure 2, log(PB) might be increasing, decreasing, or non-monotonic, with the degree of

noise, depending on the values of other covariates like observed asset returns. Therefore,

in models without our proposed interaction effects, the coefficient on firm size depends

on the slope of log(PB) along firm size at the average levels of other covariates,38 and

thus is data-dependent within our framework. This provides a plausible explanation why

empirical studies can have different findings on statistical significance, or sometimes the

sign, of the coefficient on firm size.

Apart from firm size, analyst coverage and analysts’ forecast variation are also popular

proxies for the degree of noise. Higher coverage and lower variation implies less degree of

noise (see, for example, Thomas [2002], Guo and Masulis [2012]). Therefore, in robustness

checks (Section 5.3), we also use these two proxies, namely, Analyst Coverage (AC),

defined as the number of monthly analyst forecasts on EPS or NAV, and normalized

variation of analysts’ forecasts (− log(CV)), defined as − log(Coefficient of Variation)

where

Coefficient of Variation ,
Standard deviation of analysts’ forecasts

Absolute value of mean analysts’ forecasts
. (5)

Note that − log(CV) is constructed such that it is decreasing in the degree of noise, in

order to be aligned with Hypothesis 1.

4 Data

We construct a comprehensive bankruptcy dataset for North American public firms

during 1979-2012,39 including both Chapter 7 and Chapter 11 filings. We identify

bankruptcies from a variety of sources, namely, New Generation Bankruptcy Database,40

UCLA-LoPucki Bankruptcy Database, and the Fixed Income Securities Database (FISD).

Following Duffie, Saita and Wang [2007], we also identify additional bankruptcies from

firms with Compustat deletion reasons as “02-Bankruptcy” (Compustat items DLRSN,

DLRSNI).41 These data sources are standard in bankruptcy studies.42 Moreover, to en-

38For models with our interaction effects, the coefficient on the main effect of firm size represents the
slope of log(PB) along firm size when other covariates are zero.

39There are few bankruptcies filed in early 2013. We treat them as if they were filed in December 31,
2012.

40The data is publicly available at www.BankruptcyData.com.
41We manually verify bankruptcy date and status using a random sample of the firms with

DLRSN/DLRSNI as “02”, and find this indicator is highly accurate. However, we do not use
DLRSN/DLRSNI value of “03-Liquidation”, as we find it might be unrelated to bankruptcy.

42See, for example, Tang, Subrahmanyam and Wang [2012], Cai, Saunders and Steffen [2012] as more
recent studies.
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sure accuracy of bankruptcy dates and status, which are the response variables in our em-

pirical study, we manually verify more than 1,000 firms that have ambiguous bankruptcy

information, using SEC filings and other public information sources.43 Finally, we link

these bankruptcy events, using CIK and CUSIP, to Compustat North America Quarterly

accounting data (henceforth, Compustat),44 which is further merged with CRSP monthly

stock market data (henceforth, CRSP), resulting a firm-month panel dataset.45

In order to properly develop independent variables, i.e., time-varying covariates and

proxies for the degree of noise, within our dataset, we further require that (i) any bankrupt

firm appear in both Compustat and CRSP; (ii) any bankrupt firm have bankruptcy date

no later than 5 years after the last available observation in Compustat/CRSP;46 and (iii)

each firm-month observation have at least 6 months’ stock returns in the previous one

year, and have non-missing, nonzero equity market value in CRSP. Like Chava and Jarrow

[2004], when there are multiple bankruptcies associated with a firm, we only consider the

first one, and we assume uninformative left censoring.47 Note that we try to avoid data

exclusions due to data quality reasons. This is because we want to better exploit both

cross-sectional and time-series variation in firms’ accounting/market information, and

variation in the degree of noise.48

After applying the above rules, we are able to obtain 2,112 bankruptcies, and 2,152,203

firm-month observations, from a total of 20,180 firms, in our final panel dataset. The

total number of bankruptcies is similar to those observed in recent bankruptcy studies.49

We plot and tabulate the bankruptcy profile of our dataset, for each year during 1979-

2012, in Figure 3. Within Figure 3, Panel 3a depicts the number of bankruptcies and

the bankruptcy rate by year, as blue bars and red lines, with vertical axes labeling on

the left and right respectively. Panel 3b provides the detailed data used to plot Panel

3a. The general patterns, which show peaks of bankruptcies in early 1990s, early 2000s

and around 2009, are consistent with those demonstrated by the previous literature. See,

43We search firms using CIK within SEC Filings including 8-K, Administrative Proceeding, 10-K(or
10-KSB), and so on. We also search firms by combinations of firm name, Chair/CEO name, address,
phone number, IRS number, CUSIP, ticker, CIK and industry, from news, online market information,
online business/company information, court documents, credit reports, and so forth.

44For bankrupt firms identified by UCLA-LoPucki Bankruptcy Database and Compustat
DLRSN/DLRSNI, they already have GVKEY to be merged with Compustat accounting data.

45We carry forward Compustat quarterly observations to make it a monthly dataset.
46If a bankrupt firm exits Compustat/CRSP databases 5 (or more) years earlier than it files

bankruptcy, we treat it as right censored at one month after the final Compustat/CRSP observation.
The choice of 5 years is arbitrary. In practice, it is unlikely that creditors use information older than 5
years to make one-year ahead bankruptcy predictions.

47Right censoring occurs at the following three types of dates: (i) the date that a firm is deleted
from Compustat (the earlier of Compustat items DLDTE and DLDTEI); (ii) if the Compustat delete
date is more than 5 years later than the last available observation in Compustat/CRSP, then the firm is
censored at one month after the final Compustat/CRSP observation; and (iii) otherwise, December 31,
2012.

48In robustness checks (Section 5.3), we follow convention in the previous literature to exclude financial
firms.

49See, for example, Tang, Subrahmanyam and Wang [2012], Cai, Saunders and Steffen [2012].
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for example, bankruptcy rate time-series in Chava and Jarrow [2004], or default rate

time-series in Giesecke, Longstaff, Schaefer and Strebulaev [2011].

While most of the independent variables are developed using Compustat and CRSP

data items, we construct the following variables from Datastream and IBES: three-month

Treasury bill rate is from Datastream, and the two proxies for the degree of noise, namely

Analyst Coverage (AC) and normalized variation of analysts’ forecasts(− log(CV)), are

derived from IBES. Furthermore, we perform a number of data transformations on inde-

pendent variables, as follows.

First, following Shumway [2001], Chava and Jarrow [2004], Bharath and Shumway

[2008], we winsorize all Compustat-related covariates at 1st and 99th percentiles,50 and

impute missing values of Compustat-related covariates for any firm-month observation by

carrying forward the most recent value of the relevant covariate available to that particular

firm. Second, we find that only about 53% of the observations within our dataset have

IBES information. For observations with no IBES information, we treat them as the

noisiest observations, i.e., we set their AC to be 0, and − log(CV) to be the lowest value

in the data.51 Third, where applicable, we translate all Compustat items into US Dollar

using Compustat item CURUSCNQ, before deriving any independent variable.52 Fourth,

if any firm-month observation has less than 12 months’ stock returns in the previous one

year, we calculate the annualized trailing one year return and volatility for that particular

observation.

Table 1 and Table 2 summarize the definitions and key descriptive statistics of the

covariates, and of the proxies for the degree of noise, respectively, after winzorization and

missing value imputation.53 The conceptual descriptions of the independent variables are

also explained in Section 3.

The summary statistics of the covariates in Table 1 are very similar to those in the

previous literature (see, for example, Shumway [2001], Chava and Jarrow [2004], Bharath

and Shumway [2008]), except that the standard deviations of most variables are higher.

Larger variation reflects greater heterogeneity within our sample, both in cross section

and in time series. This is in fact the case that we are particularly interested in.54

50The winsorization is intended to remove potential data errors within Compustat, see Shumway
[2001], Chava and Jarrow [2004].

51We also set − log(CV) to the lowest value in the sample if the standard deviation of analyst forecasts
is undefined when the number of forecasts is 1, and set − log(CV) to the highest value when the standard
deviation of analyst forecasts is zero (i.e., complete consensus among analysts).

52There are more than 10% firms in our dataset are Canadian firms, with native currency of CAD.
53In Table 1, we only report the mean values for the three industry dummy variables, IND2–IND4,

because the mean represents the proportion of observations that fall into an industry group. For example,
IND4 has a mean of 0.18, indicating that 18% of the observations are in the industry group 4.

54The variation is larger because, in contrast to the previous literature which typically focused a
subpopulation of firms (for example, industrial firms or firms listed in large stock exchanges), we try to
include as many firms into our sample as possible. In particular, we notice that the covariates related
to the trailing one year stock returns (e.g. RETURN, EXRET) have few extreme values. Some of the
extreme returns come from “penny stock” firms and some are due to annualization of less-than-12-months
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(a) The number of bankruptcies and bankruptcy rates by year, within our dataset, during 1979–2012.
The bankruptcy rates are calculated as percentages of the number of surviving firms each year. The
number of bankruptcies are plotted as (blue) bars with vertical axis labeling on the left, and bankruptcy
rates are plotted as (red) lines with vertical axis on the right.

(b) This table reports the year, the number of bankruptcies, the number of surviving firms and the
bankruptcy rate as % of the number of firms in the year, for each year within our dataset, during
1979–2012.

Figure 3: The bankruptcy profile of our dataset, for each year during 1979–2012.
Our dataset is constructed by assembling bankruptcy filings of North American public firms, within the
Compustat/CRSP universe, from New Generation Bankruptcy Database, UCLA-LoPucki Bankruptcy
Database, the Fixed Income Securities Database and firms with Compustat deletion reasons as “02-
Bankruptcy”. We also require that (i) any bankrupt firm appear in both Compustat and CRSP; (ii)
any bankrupt firm have bankruptcy date no later than 5 years after the last available observation from
Compustat/CRSP; and (iii) any firm-month observation have at least 6 months’ stock returns in the
previous one year, and have non-missing, nonzero equity market value in CRSP. Applying these rules,
and merging Compustat and CRSP databases, we obtain our final panel dataset that consists of 2,112
bankruptcies and 2,152,203 firm-month observations during 1979–2012.
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Table 1: Summary statistics of the covariates

1979–2012, 2,112 bankruptcies, 2,152,203 firm-months, 20,180 firms in total

Variable Definition Mean Median Min Max Std. Dev.

NI/TA Net Income / Total Asset (NIQ/ATQa) -0.0086 0.0061 -0.4067 0.1047 0.0695
TL/TA Total Liability / Total Asset (LTQ/ATQ) 0.5351 0.5362 0.0315 1.2523 0.2652

RSIZE log Market capitalization of firm equity
NYSE & AMEX market capitalization

(CRSP) -10.66 -10.77 -21.58 -2.48 2.09

3m T-rate Current 3-month U.S. Treasure Bill rate (Datastream) 0.0473 0.0491 0.0001 0.1552 0.0303
SPX Trailing one year return of S&P500 Index (CRSP) 0.0988 0.1125 -0.4476 0.5337 0.1704

σE
Annualized trailing one year standard deviation

0.50 0.41 0.00 24.09 0.38
of monthly stock returns (CRSP)
ri(t−1) − rm(t−1), i.e., firm’s trailing one year excess stock return 258.80

EXRET
over the value-weighted NYSE & AMEX return (CRSP)

0.0374 -0.0749 -1.6387
(P99: 2.89)

1.0257

RETURN ri(t−1), i.e., firm’s trailing one year stock return (CRSP) 0.1642 0.0466 -0.9996
259.02

1.0404
(P99: 3.09)

Market capitalization of firm equity, in millions of USD, (CRSP)
E

Stock price * Number of shares outstanding (PRC*SHROUT)
1,638.41 118.13 0.00 626,550.33 9,788.28

F
Face value of debt, in millions of USD: Debt in Current Liabilities

453.36 16.92 0.02 13,997.57 1,707.48
+ 0.5 * Total Long-Term Debt (DLCQ+0.5*DLTTQ)
A simplified version of Merton “Distance to Default”

(see Bharath and Shumway [2008]):
log[(E+F )/F ]+(ri(t−1)−0.5σ2

V
)T

σV

√
T

,Naïve DD
where σV , E

E+F σE + F
E+F (0.05 + 0.25σE) and we set T = 1

127.41 5.93 -11.46 6,979,022 24,232.59

πNaïve
N(−Naïve DD), where N(·) is

0.07 0.00 0.00 1.00 0.20
the Gaussian cumulative distribution function
Industry group dummy variable, 1 if firm’s CRSP SIC code

IND2
in [1000, 1500) or [2000, 4000), 0 otherwise

0.46 – – – –

IND3
Industry group dummy variable, 1 if firm’s CRSP SIC code

0.09 – – – –
in [4000, 5000), 0 otherwise
Industry group dummy variable, 1 if firm’s CRSP SIC code

IND4
in [6000, 6800), 0 otherwise

0.18 – – – –

This table reports the definitions and summary statistics of all covariates within our firm-month panel data. The definitions include, in parentheses, the relevant
Compustat (Quarterly, North American) items used to calculate a particular variable (or database names if the variable is from other data sources). The sample
period is 1979–2012. There are 2,112 bankruptcies, and 2,152,203 firm-month observations, from a total of 20,180 firms, in the full sample. All Compustat
information is translated into US Dollar where applicable, and all Compustat-related covariates are winsorized at 1st and 99th percentiles. Missing values of
Compustat-related covariates for any firm-month observation are imputed by carrying forward the most recent value of the relevant covariate available to that
particular firm. Trailing one year returns and volatility are annualized if there are less than 12 months’ stock returns in the previous one year. For the three
industry dummy variables, IND2–IND4, we only report their means because they have the meaning of proportions of observations that fall into an industry
group.

aIf ATQ≤0, we use [Total Liability (LTQ) + Equity market value(E)].
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Table 2: Summary statistics of proxies for the degree of noise

1979–2012, 2,112 bankruptcies, 2,152,203 firm-months, 20,180 firms in total

Proxies for a Mean Median Min Max Std. Dev.
log(TA) 5.38 5.28 -6.91 15.17 2.38
log(AR) 5.91 6.22 0.00 6.91 0.99
AC 3.53 1.00 0.00 55.00 5.88
− log(CV) -2.75 -7.25 -7.25 12.08 5.47

This table reports the summary statistics of the proxies for a, the degree of noise, used in this study.
The sample period is 1979–2012. Our firm-month panel dataset has 2,112 bankruptcies, and 2,152,203
firm-month observations, from a total of 20,180 firms. log(TA), which is log(Total Asset), is defined
as log(Compustat item ATQ) where ATQ is in millions of USD. log(AR) is log(Asset Rank), where
Asset Rank is obtained by ranking all surviving firms every month into 1,000 groups based on their
ATQ. AC, i.e., Analyst Coverage, is defined as the number of monthly analyst forecasts on EPS or
NAV, obtained from IBES. − log(CV) is the normalized variation of analysts’ forecasts, and is defined
as − log(Coefficient of Variation) where Coefficient of Variation is defined as (Standard deviation of
monthly analyst forecasts)/(Absolute value of mean monthly analysts forecasts), with both numerator
and denominator obtained from IBES. AC is set to 0 when it has missing value. When − log(CV) has
missing value, we consider two cases. If it has missing value because the standard deviation of analyst
forecasts is zero, it is set to the highest value (12.08). Otherwise, it is set to the lowest value (-7.25).

Table 2 provides the summary statistics of the proxies for the degree of noise, a, used

in this study.55 All proxies are constructed so that they are decreasing in a. As shown

in Table 2, for AC and − log(CV), more than half of the observations in our dataset

have only one or two values (which are the lowest values), due to missing values. Thus,

variation in these two variables are much less than other variables’.

5 Empirical Results

In this section, we report the results of our empirical study. We conduct full-sample

tests to test Hypotheses 1 and 2, and conduct out-of-sample tests, on forecasting accuracy,

to test Hypothesis 3. Finally, we report results on a variety of robustness checks, using

both full-sample and out-of-sample tests.

5.1 Full Sample Tests

To test Hypothesis 1, we estimate four augmented models, by adding our proposed

interaction effects into the reference models, using the full sample during 1979-2012. The

(yet still very large) returns. In Table 1, we report the 99th percentile of these variables (in parentheses),
which are close to the maximum values of these variables reported in the previous literature. We do not
winsorize, however, these market-related variables in our empirical study, following convention in the
previous literature. This poses no problems on our approach, because one advantage of our approach is
in fact the built-in mechanism of handling such outliers. Moreover, we find that results from winsorizing
these variables (not shown in this paper), at 99th percentile, are almost identical to the reported results.

55One proxy, logE, is not summarized here, because it is also a covariate in BS08 Model, and is
summarized in Table 1.
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four reference models are also estimated. The full-sample estimates of all models are

reported in the columns labeled by the model names within Table 3.

As can be seen in Table 3, the signs and magnitudes of the coefficients within the

reference models are consistent with those in the previous literature.56 For augmented

models, we select interaction effects by initially including all the potential ones described

in Section 3 (i.e., four interaction effects in S01 Model, four effects in CJ04 Model, two

effects in DSW07-S Model, six effects in BS08 Model), and then eliminating any inter-

action effect whose coefficient is not significantly different from zero at 10% level.57 As

shown in Table 3, we select three, four, one and three interaction effects in the final

augmented S01, CJ04, DSW07-S and BS08 Model, respectively. We report, in paren-

theses, standard errors that robust to model mis-specification (see, for example, Lin and

Wei [1989], Allison [2010]),58 which are typically larger than conventional model-based

standard errors.59

In Table 3, the signs of the coefficients on the interaction effects, in the augmented

models, are consistent with the predictions of Hypothesis 1. For example, the coefficient

on NI/TA has a negative sign in CJ04 Model. In the augmented CJ04 Model, the

coefficient on interaction effect between NI/TA and log(TA) also has a negative sign,

as predicted by Hypothesis 1. Note that the coefficient on NI/TA is now [−1.57 −

0.26 log(TA)]. Hence, firms with higher total assets, i.e., with lower degree of noise, will

have greater coefficients on NI/TA in magnitude (with a negative sign). This implies that

the slope along the direction of NI/TA becomes steeper for lower degree of noise, which

is precisely what Figure 2b illustrates. Likewise, the coefficient on TL/TA is [2.09 +

0.15 log(TA)], and thus is greater in magnitude (with a positive sign) when the degree of

noise is lower. Again this is consistent with Hypothesis 1. As will be shown in robustness

checks (Section 5.3), this conclusion is robust to the choices of data constructions and

alternative proxies for the degree of noise.60

Therefore, we find strong empirical evidence consistent with Hypothesis 1. We are

56The only exception is the coefficient on “3m T-rate” in DSW07-S Model, which has a different sign
from that in Duffie, Saita and Wang [2007]. However, when we use a dynamic logistic regression (which
implies non-proportional hazard rates), we find that the sign is consistent with that in Duffie, Saita and
Wang [2007]. In spite of this sensitivity of “3m T-rate” to different hazard functional forms, we find
that DSW07-S Model used here has high out-of-sample predictive power, as shown in Section 5.2 below,
which shows its validity. Also note that the magnitude of the coefficient on “3m T-rate” is about 100
times of that in Duffie, Saita and Wang [2007] because they used values in percentage whereas we use
decimal values.

57This variable selection method is called “backward elimination”. The selection of interaction effects
is, of course, not unique. We also try other combinations of interaction effects within the augmented
models, and find similar improvements on model performance.

58Typical model mis-specification includes omission of other covariates or non-linear terms, which are
relevant to reduced-form models studied here.

59The robust standard errors are obtained from the “sandwich" variance estimator. It is unclear
whether the robust standard errors were used in the previous literature.

60We stress that Hypothesis 1 says nothing about the main effect of the proxy for the degree of noise.
We include the main effects in order to facilitate inclusion of interaction effects.
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Table 3: Full-sample estimates of four bankruptcy hazard models, with and without our
proposed interaction effects

Dependent Variable: Time to Bankruptcy
1979–2012, 2,152,203 firm-months, 2,112 bankruptcies

(Robust standard errors in parentheses)

Variable S01 Model
Augmented

CJ04 Model
Augmented

S01 Model CJ04 Model
NI/TA -0.40** ( 0.20 ) -0.45 ( 0.31 ) -0.38 ( 0.29 ) -1.57*** ( 0.38 )
TL/TA 2.98*** ( 0.09 ) 2.76*** ( 0.09 ) 2.85*** ( 0.13 ) 2.09*** ( 0.19 )
EXRET -1.77*** ( 0.13 ) -0.20** ( 0.10 ) -1.64*** ( 0.13 ) -0.14 ( 0.10 )
RSIZE -0.18*** ( 0.02 ) -0.31*** ( 0.02 ) -0.18*** ( 0.02 ) -0.35*** ( 0.02 )
σE 0.21*** ( 0.02 ) 0.14*** ( 0.04 ) 0.20*** ( 0.02 ) 0.12*** ( 0.04 )
IND2 -0.50*** ( 0.14 ) -0.53*** ( 0.15 )
IND3 -0.14 ( 0.26 ) 0.22 ( 0.26 )
IND4 -0.64 ( 0.49 ) -0.24 ( 0.47 )
NI/TA*IND2 0.89** ( 0.39 ) 0.77** ( 0.37 )
TL/TA*IND2 0.51*** ( 0.18 ) 0.56*** ( 0.18 )
NI/TA*IND3 0.13 ( 0.60 ) 0.69 ( 0.58 )
TL/TA*IND3 0.29 ( 0.30 ) -0.39 ( 0.30 )
NI/TA*IND4 -3.30*** ( 0.72 ) -2.40*** ( 0.78 )
TL/TA*IND4 -0.24 ( 0.56 ) -1.13** ( 0.54 )
log(TA) -0.02 ( 0.02 ) -0.04 ( 0.04 )
EXRET*log(TA) -0.32*** ( 0.02 ) -0.30*** ( 0.02 )
NI/TA*log(TA) -0.51*** ( 0.06 ) -0.26*** ( 0.08 )
σE*log(TA) 0.04** ( 0.02 ) 0.04** ( 0.02 )
TL/TA*log(TA) 0.15*** ( 0.04 )

DSW07-S Model
Augmented

BS08 Model
Augmented

DSW07-S Model BS08 Model
Naïve DD -0.40*** ( 0.02 ) -0.32*** ( 0.03 )
RETURN -1.10*** ( 0.15 ) -0.92*** ( 0.15 )
3m T-rate 21.70*** ( 2.90 ) 20.45*** ( 2.87 )
SPX 1.62*** ( 0.29 ) 1.57*** ( 0.28 )
log(TA) -0.06*** ( 0.01 )
(Naïve DD)*log(TA) -0.02*** ( 0.00 )
πNaïve 1.47*** ( 0.14 ) 1.42*** ( 0.14 )
logE -0.24*** ( 0.02 ) -0.08** ( 0.04 )
logF 0.25*** ( 0.02 ) 0.22*** ( 0.02 )
1/σE -0.59*** ( 0.04 ) -0.52*** ( 0.04 )
EXRET -0.79*** ( 0.12 ) -0.74*** ( 0.12 )
NI/TA -3.37*** ( 0.18 ) -1.80*** ( 0.27 )
NI/TA*(logE) -0.77*** ( 0.09 )
(logE) ∗ (logE) -0.05*** ( 0.01 )
(logF ) ∗ (logE) 0.02*** ( 0.01 )

This table reports on the parameter estimates of the four reference models, and the corresponding
augmented models which have additional effects related to information noise. The reference models are
labeled as “S01”, “CJ04”, “DSW07-S” and “BS08” models respectively, in the corresponding columns. The
augmented models are next to the corresponding reference models. The sample period is 1979–2012.
There are 2,112 bankruptcies, and 2,152,203 firm-month observations in the full sample. All models
are Cox [1972] proportional hazard models with time-varying covariates. All explanatory variables are
described in Table 1, and all logarithms are natural logarithms. A positive coefficient on a particular
variable in the reference models implies that the hazard rate is increasing in that variable, and vice versa.
In the augmented models, the coefficient on a covariate (if it also has an interaction effect) is a linear
function of the proxy for the degree of noise. Robust standard errors are are reported in parentheses (see
Lin and Wei [1989] or Allison [2010]). (*** significant at 1% level, ** significant at 5% level, * significant
at 10% level).
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unaware of, apart from our study, any prediction, or alternative explanation, about the

signs of the coefficients on these interaction effects, in the empirical literature of credit

risk.

To test Hypothesis 2, following Chava and Jarrow [2004], we conduct a likelihood

ratio test to test if our proposed effects as a whole, i.e., interaction effects and proxies for

the degree of noise, significantly improve the in-sample Goodness-of-Fit. The results are

reported in Panel A of Table 4. Here we treat the reference models as the constrained

versions of the augmented models, by constraining the coefficients on our proposed effects

to zero. The unconstrained versions are simply augmented models. The difference in (the

minimized) -2log-likelihood (−2 logL) of the two versions provides a likelihood ratio test

(χ2-test), under the null hypothesis that the constrained model is the true model. As can

be seen from the column labeled as “χ2 Statistics” in Panel A of Table 4 (which is the

difference in −2 logL of two models), the likelihood of the augmented models is much, and

significantly, larger than that of the corresponding reference models, implying that we can

easily reject the null hypothesis and conclude that the augmented models are significantly

better in terms of in-sample Goodness-of-Fit. This is consistent with Hypothesis 2, and

again strongly supports the validity of our proposed hazard specifications in bankruptcy

forecasting.

We also report, in Panel B of Table 4, alternative Goodness-of-Fit measures that

are popular in the literature, namely McFadden’s pseudo-R2 (pseudo-R2) and Akaike

Information Criteria (AIC).61 Higher pseudo-R2 or lower AIC implies better in-sample

model fit. As shown in Panel B of Table 4, the augmented models have better Goodness-

of-Fit by either measure, which are again consistent with Hypothesis 2.62

5.2 Out-of-Sample Tests of Forecasting Accuracy

With respect to Hypothesis 3, we conduct out-of-sample tests, in three steps, to assess

forecasting accuracy of the reference and augmented models.

First, similar to Chava and Jarrow [2004], Duffie, Saita and Wang [2007], we build ten

holdout samples, one for each year during 2003–2012.63 Any firm whose information is

available at the beginning of a holdout year is included as one observation into the hold-

out sample for that particular year.64 Every observation also has an indicator variable,

61I thank Jens Hilscher for suggesting these measures. Examples in the previous literature that used
pseudo-R2 include Campbell, Hilscher and Szilagyi [2008] or Campbell, Hilscher and Szilagyi [2011].

62Like the results in Panel A of Table 4, measures in Panel B are also based on log-likelihood.
Therefore, it might be unsurprising that we find similar conclusions using likelihood ratio tests and
alternative measures.

63Like Chava and Jarrow [2004], we also generate 1,000 bootstrapped holdout samples over 2003-
2012. The results on the bootstrapped samples are very similar to those reported in this paper, and are
available upon request.

64Note that a firm is included only if it has information available at the beginning of a holdout year.
Thus, for example, firms entering the database in the middle of a holdout year will not be included into
the holdout sample of that year.

23



Table 4: In-sample Goodness-of-Fit on our proposed hazard specifications

Panel A: Likelihood Ratio test

−2 logL −2 logL χ2 Degree of
p-value

Unconstrained Constrained Statistics Freedom

Augmented S01 Model 30301.24 31199.65 898.40 4 < 0.001
Augmented CJ04 Model 30047.78 31048.98 1001.20 5 < 0.001
Augmented DSW07-S Model 31297.20 31364.65 67.45 2 < 0.001
Augmented BS08 Model 30203.37 30418.94 215.57 3 < 0.001

Panel B: Alternative Goodness-of-Fit measures

Pseudo-R2 AIC

S01 Model 0.1511 31209.65
Augmented S01 Model 0.1755 30319.24

CJ04 Model 0.1552 31076.98
Augmented CJ04 Model 0.1824 30085.78

DSW07-S Model 0.1466 31372.65
Augmented DSW07-S Model 0.1484 31309.20

BS08 Model 0.1723 30430.94
Augmented BS08 Model 0.1782 30221.37

This table reports on a Likelihood Ratio test and alternative Goodness-of-Fit measures, in Panel
A and B respectively. The Likelihood Ratio test tests the statistical significance of all effects
related to information noise as a whole (including both main and interaction effects). The aug-
mented models, with our proposed effects, are considered as unconstrained models, and the
reference models, without these effects, are considered as constrained models (by constraining
the coefficients on our proposed effects to zero). The difference in −2 logL between the con-
strained and unconstrained models are listed in the column labeled as “χ2 Statistics”. The
alternative Goodness-of-Fit measures include McFadden’s pseudo-R2 (pseudo-R2) and Akaike
Information Criteria (AIC), which are listed in the corresponding columns for the reference and
augmented models respectively. Higher pseudo-R2 or lower AIC implies better in-sample model
fit. The sample period is 1979–2012. There are 2,112 bankruptcies, and 2,152,203 firm-month
observations in the full sample.
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indicating whether it files bankruptcy within the relevant holdout year. In total, within

the entire ten-year holdout period, we have 53,636 observations to be predicted, and 558

bankruptcy events, from 8,905 (distinct) firms.

Second, we produce one-year-ahead forecasts for all models. We use the same set of

independent variables as those in Table 3. At the beginning of each holdout year, we

re-estimate coefficients on all independent variables based on the information available

at that time. We then forecast bankruptcies within the particular holdout year, using

the re-estimated models and available information. For example, to predict bankruptcies

within the holdout sample of 2005, we re-estimate all models using the firm-month panel

data from January 1, 1979 to December 31, 2004, and then use information available

at December 31, 2004, together with the re-estimated models, to produce forecasts of

bankruptcy in 2005. Like most studies in the previous literature, we consider rank or-

dering, not the exact probability of bankruptcy. Hence, the model forecasts are in fact a

score. For example, the scores for the augmented models are65

Score = β̄′Xt + γ̄0ã+
I

∑

i=1

γ̄i(ã ∗X
i
t), (6)

where the notations are the same as in Equation (4), and β̄, γ̄0, . . . , γ̄I are estimated from

data.

Finally, we rank observations within each holdout year according to the model scores,

and assess forecasting accuracy of the rankings. The standard measures of bankruptcy

forecasting accuracy are Receiver Operating Characteristic (ROC) curve together with

its summary statistics, Area Under ROC Curve (henceforth, AUC), and Cumulative

Accuracy Profile (CAP) curve together with the associated summary statistics, Gini

coefficient (GINI). Because AUC and GINI are equivalent,66 we only report AUC as our

first measure of forecasting accuracy, both year-by-year and on average. AUC is also used

in, for example, Chava and Jarrow [2004], Duffie, Saita and Wang [2007]. The second

measure we employ is the one adopted in Shumway [2001], Chava and Jarrow [2004],

Bharath and Shumway [2008], which is the captured proportions of the total number of

bankruptcies within deciles. To calculate this measure, for each holdout year, we count

the number of captured bankruptcies, within each decile that is formed by sorting and

grouping model scores. Then we aggregate the number of bankruptcies in each decile

across the entire 10-year holdout period, and calculate them as percentages of the total

number of bankruptcies. We recognize that this measure is equivalent to a bankruptcy-

65In our case, the one-year-ahead survival probability produced by the Cox model, assuming all firms
have updated information at the beginning of a holdout year, is a monotonic transformation of the score
in Equation (6). Consequently, the rank orderings produced by survival probability and the score are
the same.

66GINI = 2AUC−1. For more details of these, and other, measures of discriminative power of rating
systems, see, for example, Engelmann, Hayden and Tasche [2003].
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weighted aggregate CAP curve over the entire 10-year holdout period. We adopt this

measure because it provides another perspective and more details on models’ predictive

performance.

We report the out-of-sample AUC of all models, in corresponding columns of Table 5

(labeled by model names). Higher AUC implies better forecasting accuracy. To compare

AUC of an augmented model with AUC of its corresponding reference model in each

holdout year, we conduct a χ2-test of DeLong, DeLong and Clarke-Pearson [1988], which

tests the difference of two correlated ROC curves.67 The test results are reported in the

four columns labeled as “AUC Difference”, with χ2 statistics in parentheses.68 We also

report the average AUC difference over the 10 holdout years. In spirit of the Lyapounov

Central Limit Theorem, we conduct a χ2-test to test if the average AUC difference is

significantly different from zero.69

In Table 5, the reference models have notably very high forecasting accuracy, all with

average out-of-sample AUC above 0.9. This is consistent with the results from the pre-

vious literature, and might be attributed to proper variable selection, high frequency

(monthly frequency) in observations, availability of market information and high-quality

accounting information in Compustat. On top of such predictive models, Table 5 shows

that our interaction effects still achieve statistically significant and persistent improve-

ments on forecasting accuracy. Typically, in more than half of the 10 holdout years, the

augmented models, with our interaction effects, significantly outperform their correspond-

ing reference models, at <10% level, but never perform significantly worse.70 In fact, out

of the 10 holdout years, there are very few years in which the augmented models’ AUC

is less than that of their corresponding reference models.71 Not surprising, the average

improvements in AUC of the augmented models are highly significant.72

To the best of our knowledge, the above out-of-sample results, especially the year-by-

year AUC improvements, are one of the strongest pieces of evidence in the literature.73

67Because we calculate AUC of two models within the same holdout year, a test on correlated ROC
curves is deemed appropriate.

68We only focus on out-of-sample results in Table 5, for each holdout year and averaged over the
entire holdout period. The in-sample Goodness-of-Fit statistics (based on data before any holdout year)
are omitted here for brevity and are available upon request.

69Assuming each AUC difference is drawn independently from different normal distributions, the
Lyapounov Central Limit Theorem gives the sampling distribution of the average AUC difference. We
can then conduct a χ2-test in a standard way, on the null hypothesis that the mean of the sampling
distribution is zero.

70We also find similar results on the 1,000 bootstrapped holdout samples. The augmented models are
typically significantly better than the reference models in around 60% of the 1,000 holdout samples, and
insignificantly better in 25%–30%, insignificantly worse in about 10%, significantly worse in less than
5%.

71Note that the χ2-test has the null hypothesis of “AUC Difference= 0”. Had it been an one-tailed
t-test with the null hypothesis of “AUC Difference< 0”, we would have seen more holdout years with
significant improvements.

72Similar to Chava and Jarrow [2004], we also conduct (paired) t-tests and nonparametric tests on
the 1,000 bootstrapped holdout samples, which confirm the results.

73We note that Chava and Jarrow [2004], Duffie, Saita and Wang [2007] conducted similar out-of-
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Table 5: Out-of-sample forecasting accuracy: Area Under ROC Curve (AUC)

2003–2012, 53,636 one-year-ahead forecasts for each model, and 558 bankruptcies, from a total of 8,905 firms
(χ2 statistics in parentheses)

Holdout # of # of Bank- S01 Augmented AUC
(χ2)

CJ04 Augmented AUC
(χ2)

Period Firms ruptcy Model S01 Model Difference Model CJ04 Model Difference
(1) (2) (2)-(1) (3) (4) (4)-(3)

2003 6172 101 0.9244 0.9353 1.09× 10−2 ** ( 5.29 ) 0.9244 0.9350 1.06× 10−2 ** ( 4.92 )
2004 5845 52 0.9058 0.9296 2.38× 10−2 *** ( 11.99 ) 0.9218 0.9391 1.73× 10−2 *** ( 8.56 )
2005 5593 40 0.9259 0.9357 9.80× 10−3 *** ( 7.52 ) 0.9340 0.9426 8.60× 10−3 *** ( 14.09 )
2006 5531 30 0.8841 0.9075 2.34× 10−2 ** ( 4.94 ) 0.8884 0.9162 2.78× 10−2 ** ( 4.07 )
2007 5471 26 0.9145 0.9011 −1.34× 10−2 ( 1.25 ) 0.8993 0.8907 −8.60× 10−3 ( 1.28 )
2008 5275 61 0.8857 0.8942 8.50× 10−3 * ( 3.58 ) 0.8882 0.9051 1.69× 10−2 *** ( 8.81 )
2009 5150 122 0.8823 0.8797 −2.60× 10−3 ( 0.21 ) 0.8734 0.8791 5.70× 10−3 ( 0.85 )
2010 4839 43 0.9205 0.9296 9.10× 10−3 ( 1.79 ) 0.9292 0.9387 9.50× 10−3 * ( 3.47 )
2011 4704 37 0.8942 0.9081 1.39× 10−2 ( 1.75 ) 0.9019 0.9139 1.20× 10−2 ( 1.41 )
2012 5056 46 0.8993 0.9115 1.22× 10−2 * ( 2.82 ) 0.9091 0.9215 1.24× 10−2 ( 2.25 )

Average 0.9037 0.9132 9.57× 10−3 *** ( 15.26 ) 0.9070 0.9182 1.12× 10−2 *** ( 21.79 )

Holdout # of # of Bank- DSW07-S Augmented AUC
(χ2)

BS08 Augmented AUC
(χ2)

Period Firms ruptcy Model DSW07-S Difference Model BS08 Model Difference
(5) (6) (6)-(5) (8) (7) (8)-(7)

2003 6172 101 0.9245 0.9277 3.20× 10−3 ** ( 6.47 ) 0.9273 0.9317 4.40× 10−3 ** ( 4.34 )
2004 5845 52 0.9230 0.9279 4.90× 10−3 ( 1.80 ) 0.9467 0.9510 4.30× 10−3 * ( 2.72 )
2005 5593 40 0.9390 0.9372 −1.80× 10−3 ( 0.35 ) 0.9440 0.9481 4.10× 10−3 ( 0.75 )
2006 5531 30 0.8777 0.8946 1.69× 10−2 *** ( 7.56 ) 0.9230 0.9283 5.30× 10−3 ( 0.80 )
2007 5471 26 0.9089 0.9133 4.40× 10−3 ( 0.32 ) 0.9235 0.9156 −7.90× 10−3 ( 0.26 )
2008 5275 61 0.8786 0.8860 7.40× 10−3 ** ( 4.17 ) 0.9188 0.9154 −3.40× 10−3 ( 0.19 )
2009 5150 122 0.8654 0.8666 1.20× 10−3 ( 0.38 ) 0.8573 0.8619 4.60× 10−3 ( 1.96 )
2010 4839 43 0.8921 0.9030 1.09× 10−2 *** ( 6.75 ) 0.9204 0.9377 1.73× 10−2 *** ( 7.65 )
2011 4704 37 0.9284 0.9366 8.20× 10−3 ** ( 5.18 ) 0.9268 0.9328 6.00× 10−3 ( 0.79 )
2012 5056 46 0.8742 0.8863 1.21× 10−2 *** ( 10.12 ) 0.8976 0.9108 1.32× 10−2 ** ( 5.31 )

Average 0.9012 0.9079 6.74× 10−3 *** ( 24.57 ) 0.9185 0.9233 4.81× 10−3 ** ( 4.70 )

This table reports on Area Under ROC Curve (AUC) of all models for every holdout year during 2003–2012. There are 558 bankruptcies, and 53,636 firm-year
observations to be predicted in the entire 10-year holdout period. At the beginning of each year, all models are estimated using data available at that time,
and produce one-year-ahead forecasts. The accuracy of a model, for a particular year, is measured by AUC, using the forecasts and actual bankruptcies within
that year. The AUCs of the reference and the corresponding augmented models, together with their differences, are reported in columns labeled by their model
names. A positive (negative) AUC difference, in a particular year, implies that a model with the proposed interaction effects predicts bankruptcies more (less)
accurately than the model without, in that year. A χ2-test, which compares two correlated ROC curves (see DeLong, DeLong and Clarke-Pearson [1988]), is
conducted to test the statistical significance of the AUC differences being different from zero, with the χ2 statistics reported in parentheses. Finally, the average
AUC and average AUC difference, over the entire holdout period, are calculated. A χ2-test, in spirit of the Lyapounov Central Limit Theorem, is conducted to
test if the average AUC differences are significantly different from zero (*** significantly different from zero at 1% level, ** significant at 5% level, * significant
at 10% level).
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The high statistical significance of the AUC increments manifests the robustness and

persistence of the improvements in forecasting accuracy.74 By controlling the main effects

of the covariates from the reference models, we ensure that the improvements come purely

from our proposed interaction effects. Therefore, the tests on out-of-sample AUC provide

strong evidence that our interaction effects markedly improve hazard model specifications.

We examine the second measure of forecasting accuracy, the fractions of the total

number of bankruptcies captured within deciles, aggregated over the entire 10 holdout

years, in Panel A of Table 6. Panel B is similar to Panel A, except that, in each decile,

we calculate the cumulative fractions (over the previous deciles) of the total number of

bankruptcies.

To interpret the results in Panel A of Table 6, a model is deemed better than another

if it captures more bankruptcies in the first few deciles. Apparently, the augmented

models capture more bankruptcies, than their corresponding reference models, in all of

the top two or three deciles.75 For example, Augmented BS08 Model captures 75.45%

of the total number of bankruptcies in the first decile, higher than 74.74% captured by

BS08 Model. Likewise, in the second and third deciles, Augmented BS08 Model also

captures more bankruptcies (13.26% vs 12.72%, and 4.3% vs 4.12%, respectively). We

also note that, within the low-risk deciles (deciles 6-10), the augmented models capture

less bankruptcies, and thus has less misclassification, than the corresponding reference

models. Therefore, Panel A of Table 6 demonstrates that our proposed interaction effects

indeed improve the discriminative power of the reference models.

In Panel B of Table 6, we report the cumulative captured proportions of total

bankruptcies, which are effectively CAP curves. As a standard criterion to compare

two CAP curves, one model unambiguously outperforms another if its CAP curve is no

lower than the CAP curve of another model in all deciles. Clearly, this is the case in

Panel B of Table 6, where the CAP curves of the augmented models are higher than

or equal to, in all deciles, those of the corresponding reference models. The evidence is

unambiguous, and further confirms the superior predictive performance of the augmented

models.

Altogether, Table 5 and Table 6 provide strong empirical evidence that our proposed

interaction effects significantly improve the out-of-sample forecasting accuracy of hazard

sample tests. However, Chava and Jarrow [2004] reported the average AUC difference but no year-by-year
results. Duffie, Saita and Wang [2007] reported year-by-year AUC but without comparing them to any
benchmark using statistical tests.

74The absolute magnitude in the AUC differences depends on how noisy a specific sample is. In
robustness checks (Section 5.3), we show that, when data is noisier and less frequently updated, the
absolute magnitude in AUC improvements can be substantial.

75We note that the augmented models not only outperform in the first decile, as usually seen in the
previous literature, but are also better in the second, and sometimes third, deciles. This is expected,
because our proposed interaction effects impact the rankings of firms if firms have different degrees of
noise. Such impacts are not necessarily associated with the predicted probability of bankruptcy. Thus,
the improvements on captured bankruptcies might occur in multiple deciles.
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Table 6: Out-of-sample forecasting accuracy: captured bankruptcies within deciles ranked by model forecasts

2003–2012, 53,636 one-year-ahead forecasts for each model, and 558 bankruptcies, from a total of 8,905 firms

Panel A: Fractions of bankruptcies captured within deciles ranked by model forecasts (%)

Decile
S01 Augmented CJ04 Augmented DSW07-S Augmented BS08 Augmented

Model S01 Model Model CJ04 Model Model DSW07-S Model Model BS08 Model
1 74.01 74.91 75.63 76.34 71.15 72.22 74.73 75.45
2 11.47 11.83 11.29 11.29 14.34 14.87 12.72 13.26
3 6.09 5.56 5.20 5.02 4.66 5.02 4.12 4.30
4 3.23 2.15 2.51 2.51 3.41 1.97 3.05 2.69
5 1.43 1.79 1.43 1.25 1.43 1.43 1.25 1.25
6-10 3.76 3.76 3.94 3.58 5.02 4.48 4.12 3.05

Panel B: Cumulative fractions of bankruptcies captured within deciles ranked by model forecasts (%)

1 74.01 74.91 75.63 76.34 71.15 72.22 74.73 75.45
2 85.48 86.74 86.92 87.63 85.48 87.10 87.46 88.71
3 91.58 92.29 92.11 92.65 90.14 92.11 91.58 93.01
4 94.80 94.44 94.62 95.16 93.55 94.09 94.62 95.70
5 96.24 96.24 96.06 96.42 94.98 95.52 95.88 96.95
6-10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

This table reports on the forecasting accuracy of all models during the holdout period of 2003–2012, by first sorting firms each year into
deciles according to model forecasts, and then counting and aggregating the number of bankruptcies captured within each decile. There
are 558 bankruptcies, and 53,636 firm-year observations to be predicted in the entire holdout sample. Panel A reports the fractions
of total number of bankruptcies captured within each decile. Panel B reports the cumulative fractions of bankruptcies (i.e., captured
bankruptcies within a decile and its previous deciles). Both panels report the results of the reference and corresponding augmented models
in the columns labeled by the model names. There are three key indicators that one model predicts bankruptcies more accurately than
another model: (i) it captures more bankruptcies in the first few deciles (deciles 1 and 2, or 3); (ii) it captures less bankruptcies within
the low-risk deciles (deciles 6-10); (iii) the cumulative fractions of bankruptcy that it captures are no lower in all deciles.
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models. Hence, these results strongly support the use of our hazard specifications in

real-world bankruptcy forecasting, where firm-specific information is likely to be noisy.

5.3 Robustness Check

In this section, we test the robustness of our proposed hazard specifications in three

aspects. First, we check if our empirical results are robust to the choices of proxy for the

degree of noise. Second, following convention in the literature, we remove financial firms

from our sample and check if the results persist. Third, instead of using the empirical

setup in the previous sections, we test the impact of our hazard specifications in an envi-

ronment where information quality is a more serious problem. Within this environment,

we have no market information, less frequently updated financial reports, fewer explana-

tory covariates, and many outliers. This environment is typical for creditors (or rating

agents) to predict bankruptcy/default of private firms.76 In the following, we present all

results using robust standard errors, although the standard errors are not reported here

for brevity.

As the first robustness check, we report, in Table 7, the combined results of the full-

sample estimates and out-of-sample forecasting accuracy, using a number of alternative

proxies for the degree of noise (the second column of Table 7), including firm’s asset rank

(log(AR)), equity market value (logE),77 analyst coverage (AC) and normalized variation

in analyst forecasts (− log(CV)), as described in Section 3. The datasets (including 10

holdout samples) and reference models we use here are the same as those described before,

in Sections 3 and 4. Using these alternative proxies, we construct new augmented models

by adding the interaction effects (the third column of Table 7) into the corresponding

reference models (the first column of Table 7). For brevity, we only report the full-

sample estimates of the interaction effects in the augmented models (the fourth column

of Table 7), and the average out-of-sample AUC differences, between the augmented and

corresponding reference models (the fifth column of Table 7).78

As shown in Table 7, the coefficients on all interaction effects have the same signs as

those predicted by Hypothesis 1, irrespective of what proxies for the degree of noise are

adopted, and what reference models are used. This result is striking, and shows that the

predictions of Hypothesis 1 are indeed general rules rather than special cases. As for out-

of-sample forecasting accuracy, compared to results using log(TA) as a proxy, log(AR)

76Such creditors include, for example, banking institutions, or investors in private firm debts.
77Recall that when adding logE, as a proxy for the degree of noise, to S01 Model and CJ04 Model,

we exclude RSIZE as a covariate to prevent multi-collinearity problems, due to strong contemporaneous
correlation between them (0.92). As another robustness check, we also use RSIZE as a proxy, and get
similarly favorable results on our proposed interaction effects. The results are not shown for brevity, and
are available upon request.

78The details of other in-sample and out-of-sample tests, omitted here for brevity, are available upon
request.
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Table 7: Robustness check: alternative proxies for the degree of noise

Full sample: 1979–2012, 2,152,203 firm-months, 2,112 bankruptcies
Holdout samples: 2003–2012, 53,636 one-year-ahead forecasts for each model, 558 bankruptcies

Reference Proxy for the Our Proposed Full Sample Average Uplift of
Model Degree of Noise Interaction Effect Estimate Out-of-Sample AUC

S01

log(AR)
EXRET*log(AR) -0.38***

1.03× 10−2 ***

Model

TL/TA*log(AR) 0.30***
σE*log(AR) 0.11***

logE

EXRET*logE -0.15***

7.50× 10−3 ***
NI/TA*logE -0.80***
TL/TA*logE 0.09**
σE ∗ logE 0.10***

− log(CV)
EXRET*(− log(CV)) -0.15***

3.98× 10−3 **
σE*(− log(CV)) 0.03***

CJ04

log(AR)
EXRET*log(AR) -0.35***

1.19× 10−2 ***

Model

TL/TA*log(AR) 0.37***
σE*log(AR) 0.09***

logE

EXRET*logE -0.13**

7.51× 10−3 ***
NI/TA*logE -0.79***
TL/TA*logE 0.12***
σE ∗ logE 0.09***

− log(CV)
EXRET*(− log(CV)) -0.15***

2.98× 10−3 *
σE*(− log(CV)) 0.03**

DSW07-S
log(AR) (Naïve DD)*log(AR) -0.06*** 7.68× 10−3 ***

Model
− log(CV) RETURN*(− log(CV)) -0.10*** 3.71× 10−3 ***
AC RETURN*AC -0.09** 2.06× 10−3 ***

BS08 − log(CV) RETURN*(− log(CV)) -0.11*** 3.40× 10−3 ***
Model AC RETURN*AC -0.12*** 2.18× 10−3 *

This table provides a summary of both full-sample estimates, and average improvements in
out-of-sample forecasting accuracy, of the augmented models when alternative proxies for the
degree of noise are adopted. The full-sample period is 1979–2012. There are 2,112 bankruptcies,
and 2,152,203 firm-month observations in our dataset. The holdout sample period is 2003–
2012. There are 558 bankruptcies, and 53,636 firm-year observations to be predicted within the
entire holdout sample. We construct the augmented models by adding the interaction effects
(the third column) into the corresponding reference models (the first column). The interaction
effects are created using alternative proxies for the degree of noise (the second column). When
using logE as a proxy within S01 and CJ04 Models, we exclude RSIZE as a covariate to prevent
multi-collinearity problems, due to strong contemporaneous correlation between them (0.92).
For brevity, we only report the full-sample estimates of the coefficients on the interaction effects
(the fourth column), and the average out-of-sample AUC differences between the augmented and
corresponding reference models (the fifth column). The statistical significance of the full-sample
estimates is tested using robust standard errors (not reported here). (*** significantly different
from zero at 1% level, ** significant at 5% level, * significant at 10% level)
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and logE give similar improvements in AUC.79 This confirms the validity of using firm

size to create our interaction effects. For AC and − log(CV), the AUC improvements

are also significant on average, at <10% level, although the absolute magnitude of the

improvements is marginal. Given the lack of variation in these two variables due to the

high proportion of missing values,80 this out-of-sample predictive performance is in fact

surprisingly good. It indicates that they are appropriate proxies for the degree of noise,

and that our hazard specifications work reasonably well even when data availability of

good proxies is low.

In the second robustness check, we follow convention in the previous literature to

exclude financial firms in our sample, i.e. firms with CRSP SIC between 6000 and 6800.

We then re-run all the models specified in Table 3.81 We report the combined results of

the full-sample estimates and out-of-sample forecasting accuracy in Table 8, which has a

similar format to that of Table 7.

We find that both in-sample and out-of-sample results, in Table 8, are actually slightly

better than those using data without exclusions (i.e. results reported in Sections 5.1 and

5.2). Our interaction effects now have even higher in-sample statistical significance, again

with the expected signs. For example, the variable “σE*log(TA)” in the augmented S01

Model now has a p-value of <0.0001, as opposed to 0.04 in Table 3. The improvements in

out-of-sample forecasting accuracy brought by our interaction effects are also greater. For

example, now the augmented BS08 Model has an average uplift of AUC 0.0074 (significant

at 1% level), increasing from 0.0048 (significant at 5% level) reported in Table 5. Similar

results are observed for all augmented models in Table 8. Therefore, we demonstrate that

our hazard specifications are robust to the choices of firm subpopulation.

In the third robustness check, we consider a different empirical setup, where firms’

market information is unavailable, firms’ accounting reports are updated annually, and

there are fewer explanatory covariates available, potentially with many outliers. Such

environment might be more realistic for practical default prediction, for instance, on

bank loans within an internal rating system. While the setup poses more difficulties for

modeling, our proposed hazard specifications are expected to bring substantially more

benefits in this case where imperfect information becomes a more severe problem. We

show this is indeed the case, in the following investigation.

Now we use Compustat Annual (North America) accounting data to construct in-

dependent variables. Without the requirements of joining CRSP data, we are able to

include more bankruptcy events in the new dataset, 2,537 in total. The full sample now

has 290,811 firm-year observations, from a total of 27,443 firms. As before, we perform

79In the case of log(AR), results are even better.
80Recall that, as shown in Section 4, these two variables have more than half of their values with only

one or two values, due to missing value.
81We also use asset rank as a proxy for the degree of noise on this dataset, and obtain similar results

(not reported here).

32



Table 8: Robustness check: non-financial firms

Full sample: 1979–2012, 1,769,316 firm-month observations, 1,895 bankruptcies
Holdout samples: 2003–2012, 41,955 one-year-ahead forecasts for each model, 470 bankruptcies

Reference Our Proposed Full Sample Average Uplift of
Model Interaction Effect Estimate Out-of-Sample AUC

S01 Model
EXRET*log(TA) -0.25***

1.12× 10−2 ***NI/TA*log(TA) -0.36***
σE*log(TA) 0.10***

CJ04 Model

EXRET*log(TA) -0.24***

1.24× 10−2 ***
NI/TA*log(TA) -0.26***
TL/TA*log(TA) 0.19***
σE*log(TA) 0.09***

DSW07-S Model (Naïve DD)*log(TA) -0.03*** 6.69× 10−3 ***

BS08 Model
NI/TA*logE -0.72***

7.42× 10−3 ***logE ∗ logE -0.05***
logF ∗ logE 0.02***

This table provides a summary of both full-sample estimates, and average improvements in out-
of-sample forecasting accuracy, of the augmented models when financial firms (with CRSP SIC
between 6000 and 6800) are excluded. The full-sample period is 1979–2012. There are 1,895
bankruptcies, and 1,769,316 firm-month observations in our dataset. The holdout sample period
is 2003–2012. There are 470 bankruptcies, and 41,955 firm-year observations to be predicted
within the entire holdout period. Based on this dataset, we test all the models specified in Table
3. For brevity, we only report the full-sample estimates of the coefficients on the interaction
effects in the augmented models (the third column), and the average out-of-sample AUC dif-
ferences between the augmented and corresponding reference models (the fourth column). The
statistical significance of the full-sample estimates is tested using robust standard errors (not
reported here). (*** significantly different from zero at 1% level, ** significant at 5% level, *
significant at 10% level)
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winsorization (at 1st and 99th percentiles), missing value imputation (by carrying for-

ward) and currency conversion (CAD to USD). To facilitate this “private firm” modeling

environment, we choose the “Private Firm Model” in Chava and Jarrow [2004] as our ref-

erence model, which uses the two financial ratios, NI/TA and TL/TA, from S01 Model.82

The augmented model is developed by using total assets (log(TA)) as the proxy for the

degree of noise, and interacting it with NI/TA and TL/TA respectively.83 We report the

combined results on the full-sample estimates and out-of-sample forecasting accuracy in

Table 9.

We make a number of notes on Table 9. Within the reference model, interestingly the

full-sample estimate of coefficient on NI/TA is insignificant. Further investigation of the

data reveals that the insignificance might be caused by many (more than 1%) extreme

values in this variable, or outliers.84 These outliers turn out to be less correlated with

bankruptcy events, and thus cause the main effect of NI/TA to be insignificant. We note

that these outliers typically have very low total assets, and, as small firms, their account-

ing information might have high degree of noise. A potential solution is to further win-

sorize NI/TA at, for example, 5th percentile. Nevertheless, although further winsorization

can make this variable statistically significant in sample, the out-of-sample forecasting

accuracy deteriorates significantly.85 This is probably because over-winsorization distorts

the data too much and produces unintended consequences (for example, biased estimates),

which poses a dilemma for the winsorization approach to handle outliers.

On the contrary, our approach does not excessively distort the data. We augment the

data with a new variable, i.e., the degree of noise, and use our interaction effects to take

into account of noise in the data. As shown in Table 9, this approach remarkably improves

the hazard specification. First, the full-sample estimates of our interaction effects (-0.09

and 0.14, respectively) are highly significant, at <1% level. Second, with our interaction

effects, the coefficient on NI/TA becomes [−0.05−0.09 log(TA)], which is now statistically

significant because both -0.05 and -0.09 are significantly different from zero.86 Third, the

column labeled as “−2 logL” shows that the log-likelihood, as an in-sample Goodness-

of-Fit measure, of the augmented model is significantly higher than that of the reference

model, as demonstrated by the difference of −2 logL and its p-value, in the last two rows

82The reference model adopted here is, of course, a simplistic one. It is not central to us how to build
a full-fledged model for private firms, or bank loans. Our intention is to show the potential benefits of
our hazard specifications when they are used within a similar setup.

83We also use asset rank as the proxy to create interaction effects. The results, not reported here, are
similar.

84Obviously, winsorization at 1st percentile does not solve this problem, because there are more than
1% outliers, and NI/TA still has extreme values after winsorization.

85The average out-of-sample AUC of the model built on the 5-percentile-winsorized data is 0.7618,
significantly worse than that of the reference model (0.7882, as shown in Table 9), which is built on the
1-percentile-winsorized data but has insignificant NI/TA.

86In this case, we might say that the coefficient on NI/TA is not significantly different from zero if
neither -0.05 nor -0.09 are significantly different from zero, a hypothesis that we can easily reject here.
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Table 9: Robustness check: private firm models

Full sample: 1979–2012, 290,811 firm-year observations, 2,537 bankruptcies
Holdout samples: 2003–2012, 90,407 one-year-ahead forecasts for each model, 758 bankruptcies

Model Variable
Full Sample

−2 logL
Average of

Estimate Out-of-Sample AUC

Private Firm NI/TA -0.02 45,933 0.7882
Model TL/TA 0.24***

NI/TA -0.05** 44,596 0.8304
Augmented TL/TA 0.17***
Private Firm log(TA) -0.12***

Model NI/TA*log(TA) -0.09***
TL/TA*log(TA) 0.14***

Difference (= Private Firm Model - Augmented Model) 1,337 -0.0422

p-value from a χ2-test < 0.0001 < 0.0001

This table provides a summary of full-sample estimates, in-sample Goodness-of-Fit and average
out-of-sample forecasting accuracy, of the reference and augmented models within a “private
firm”-style empirical setup. We use Compustat Annual (North America) accounting data, with-
out joining CRSP data. The full-sample period is 1979–2012. There are 2,537 bankruptcies,
and 290,811 firm-year observations in our dataset. The holdout sample period is 2003–2012.
There are 758 bankruptcies, and 90,407 firm-year observations to be predicted within the entire
holdout period. We perform winsorization (at 1st and 99th percentiles), missing value imputa-
tion (by carrying forward) and currency conversion (CAD to USD). We adopt the “Private Firm
Model” from Chava and Jarrow [2004] as our reference model. We develop augmented models
using total assets (log(TA)) as the proxy for the degree of noise, and interact it with NI/TA
and TL/TA respectively. The full-sample estimates of the coefficients on independent variables
of both models are reported in the third column. The statistical significance of the full-sample
estimates is tested using robust standard errors (not reported here). In the the fourth and fifth
columns, respectively, we report -2log-likelihood (−2 logL), as an in-sample Goodness-of-Fit
measure, and the average out-of-sample AUC, of both models, together with their differences
and p-values from χ2-tests. (*** significant at 1% level, ** significant at 5% level, * significant
at 10% level)
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in Table 9.

Furthermore, to shed lights on how our approach improves the in-sample model fit,

we note that the coefficient on NI/TA is now dynamic, depending on TA. When TA

is small, which implies that the degree of noise is high, the coefficient automatically

decreases in magnitude, reflecting that NI/TA becomes less responsive to bankruptcy

risk when information is noisier. Therefore, our hazard specifications, represented by

the “Augmented Private Firm Model” in Table 9, have a built-in mechanism to handle

outliers driven by information noise.

Finally, our specifications dramatically improve the out-of-sample forecasting accu-

racy. As can be seen from the last column of Table 9, the average improvement in

out-of-sample AUC (over 10 holdout samples) is 0.0422, which is highly significant, both

statistically and in magnitude. If we translate AUC into GINI, which is a popular mea-

sure used in the industry, GINI of the reference and augmented models are 0.57 and 0.66,

respectively. They are in different magnitude from a practical perspective. Thus, this in-

vestigation demonstrates that our proposed hazard specifications are robust to empirical

setup, and their potential benefits might be substantial in real-world applications.

The third robustness check also reconciles the conflicting empirical findings on NI/TA

in the literature. The statistical insignificance of the coefficient on NI/TA in the reference

model is the same phenomenon documented in the previous literature (see, for example,

Chava, Stefanescu and Turnbull [2011]). Our approach provides a plausible explanation

why the coefficient on NI/TA can be insignificant, and how to handle these situations.

6 Conclusions

We introduce new hazard specifications that explicitly handle information noise in

the input data, and empirically show their efficacy, using full-sample tests, out-of-sample

tests, and a variety of robustness checks.

Our paper advances the literature in a number of ways. First, our specifications im-

prove the empirical performance of popular hazard models, on both in-sample Goodness-

of-Fit and out-of-sample forecasting accuracy. Second, we provide an empirical imple-

mentation of a theory of modeling credit risk with incomplete information (Duffie and

Lando [2001]). Third, we highlight the importance, and provide a tool, to take into ac-

count of information noise within credit risk-related studies. Fourth, our specifications

have a built-in mechanism to elegantly handle outliers, without excessively distorting

data.

We also expect our proposed hazard specifications have a broad range of real-world

applications in the financial industry. Our approach is theoretically justified, and prac-

tically easy to implement. We demonstrate the empirical success of our specifications,

and potentially substantial benefits of using them in cases where data quality is a more
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serious problem. These advantages of our specifications are particularly appealing to the

industry.

There are several possibilities for future work. First, while this paper predicts

bankruptcy events for public firms, if data is available, it might also be interesting to test

our proposed hazard specifications using default events, and for private firms. Second,

we might explore alternative ways to construct proxies for the degree of noise. Potential

candidates include corporate governance quality, expert judgments, or syntheses of mul-

tiple information quality measures. Third, we can conduct empirical study comparing

different ways to handle outliers in default prediction. Finally, we might study other

forms of incomplete information, like biased accounting reports or delayed information,

or other ways to handle information quality issues.

Appendices

A Theoretical Probability of Bankruptcy with Incomplete Information

The conditional probability of bankruptcy (PB) of the debt issuer (firm), in Equation

(1), is a function of the following parameters (see Duffie and Lando [2001]), when we set

t = 1, s = 2,

1. V0: the initial value of firm assets. We normalize it to be 1 throughout this paper,

so that all other parameters can be expressed as a multiple of V0;

2. µ: the expected growth rate of firm assets;

3. σ: the volatility of firm assets’ growth rate;

4. δ > 0: total cash flow generated by firm, expressed as a fraction of assets. In other

words, the amount of cash flow at time t is δVt;

5. r: the constant discount rate used to discount future cash flows by both firm and

creditors. Because the DL model assumes all economic agents are risk-neutral, r is

thus the riskless interest rate determined by the market;

6. θ > 0: tax rate of firm;

7. α: a fraction of assets, ∈ [0, 1], representing the loss due to friction costs in event

of default/bankruptcy (i.e., bankruptcy costs);

8. D > 0: the face value of debt issued by firm, modeled as a consol bond;

9. C > 0: a constant coupon paid by the firm debt;

10. V̂1: the observed (noisy) assets;
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11. a > 0: the standard deviation of noise associated with log(assets);

12. u = −a2

2
: the mean of noise associated with log(assets), assuming accounting report

is unbiased.

Note that the bankruptcy threshold, v, in Equation (1) is determined endogenously by

other parameters.

To plot Figures 2 and 6, we vary V̂1 and a, and then calculate rN = ( V̂1

V0
− 1) and D

V̂1
,

in Figure 2 and 6 respectively. We fix other parameters at the following set of values,

V0 = 1; µ = 1.125%; σ = 5%; δ = 5%; r = 6%; θ = 35%; α = 30%;

D = 1.28; C = 0.0787. (7)

Note that Equation (7) implies that the coupon rate of the debt is C/D = 6.15% per

annum.

Likewise, to plot Figure 4, we vary µ and a, fixing other parameters at the following

set of values,

V0 = 1; V̂1 = 1; σ = 5%; δ = 5%; r = 6%; θ = 35%; α = 30%;

D = 1.28; C = 0.0787. (8)

To plot Figure 5, we vary σ and a, fixing other parameters at the following set of

values,

V0 = 1; V̂1 = 1; µ = 1.125%; δ = 5%; r = 6%; θ = 35%; α = 30%;

D = 1.28; C = 0.0787. (9)
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Figure 4: Theoretical log(probability of bankruptcy), varying the degree of noise and
expected growth rate of assets

Figure 5: Theoretical log(probability of bankruptcy), varying the degree of noise and
volatility of asset growth rate
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Figure 6: Theoretical log(probability of bankruptcy), varying the degree of noise and
normalized debt face value (normalized by observed, noisy assets)
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