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Abstract

We explore a particular historical episode that switched from a market institution (auctions) to a

non-market institution (fixed quotas with a ban on trading) to allocate water. This water is used by

farmers for agricultural purposes; some of the farmers are liquidity constraints. We present a model

in which farmers face liquidity constraints to explain why the change took place. From a positive

perspective, we show that demand is underestimated if these liquidity constraints are not taken into

account. We use a dynamic discrete choice model to estimate demand during the auction period; we

also estimate the probability of being liquidity constrained by a farmer. From a normative perspective,

auctions achieve the first-best allocation only in the absence of liquidity constraints; the quota achieves

the first best allocation only if farmers are homogeneous in productivity. We compute the welfare under

both institutions using the estimated parameters of the structural model.
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1 Introduction

Water regulations are central in policy discussions in many regions in the world today. Seventy percent

of fresh water consumption worldwide is used for irrigation. Water is becoming increasingly scarce at an

accelerated rate in regions such as India, Latin America and, more recently, the U.S. (Barnett et al., 2005).

Water markets are emerging as a preferred institution in the developed world, in particular in dry regions

of the U.S. and Australia (Grafton et al., 2011). In these cases, the implementation of markets increases

efficiency because the users are heterogeneous in demand and gains from trade are realized. However,

there is controversy about their efficiency in general (Johansson, 2000). In particular, when farmers are

relatively homogeneous in demand (i.e., there are little gains from trading to be realized) and when farmers

face liquidity constraints (LC) (i.e., they might not have the cash to pay for the water when they want to

buy), there might be other mechanisms that perform better than markets.

Water markets, where they are used, are usually heavily regulated. These regulations and the overlap

of public and private water rights imply that we rarely see undistorted water markets to estimate water

demand. As noted by Libecap (2011), price differences signal gains from trade, but such comparisons are

difficult due to barriers across districts and different regulatory frameworks.

In this paper we look at a centralized free market, within a stable regulatory framework, that was in

place for over 700 years. Citizens in the Spanish town of Mula ran auctions to allocate (scarce) water

from the river among farmers beginning in the Middle Ages, soon after the Christians recovered the city

from the Muslims, in 1244 (see Espín-Sánchez, 2013, for the details on the institutional persistence and

change). In 1966, the auction was replaced by a system of fixed quotas: each farmer owning a plot of land

near the water channel was entitled to some water for irrigation, in proportion to the size of their plot.

This institutional change might be puzzling for economists, who regard auctions as an “ideal” allocation

mechanism. This change is even more puzzling if we consider that most of the other towns in the region

employed the quota system for centuries: the auction system was the oddity, not the rule. Moreover, the

farmers of Mula were happy to end it (González Castaño and Llamas Ruiz, 1991).

Contemporaneous observers did not agree on whether the auctions were efficient or not. The historian

Musso y Fontes (1847) argued that auctions were unequivocally good: “When the farmer irrigates for

free, he demands a lot of water. When he is paying for the water, he demands as little as possible. With

the auction, the allocation [of water] occurs at the proper level.” However, we should take this opinion
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with a grain of salt, since Musso y Fontes owned water property rights. A more neutral commentator,

Juan Subercase (1783-1856), Director of the National Engineering School, stated: “[The Waterlords sell

the water] piece by piece, during the critical season when the crops are at risk, speculating [. . . ] over

the desperate and distressed farmer, who is willing to make the highest sacrifice in order to get a drop

of water” (cited by Muñoz, 2001), suggesting that auctions are a bad way to allocate water during the

“critical” season.1

Katherine Coman’s “Some Unsettled Problems of Irrigation” (1911), the lead article in the first issue

of the American Economic Review, also hinted at the problem with the market during the critical season:

“In southern Spain, where this system obtains and water is sold at auction, the water rates mount in a

dry season to an all but prohibitive point.” Meaning that during the dry season only wealthy farmers could

afford to buy water. Since poor farmers would also benefit from buying water during the dry season, one

plausible theoretical explanation is that poor farmers faced LC. We indeed find that “poor” farmers buy

less water during the critical season (when prices are higher) than “wealthy” farmers with the same crop

type and number of trees.

We propose a theoretical model in which water for irrigation has diminishing returns and farmers are

heterogeneous in both their productivity and their ability to pay for the water (cash holdings). We show

that when farmers do not face LC, an auction system achieves the first-best (FB) allocation. However,

when farmers are homogeneous in their productivity, a fixed quota system will achieve the FB allocation.2

In general, farmers are heterogeneous in their productivity and some farmers might face LC. In this general

case the relative efficiency of both institutions is ambiguous. It is then an empirical question to assess

which of these institutions is more efficient.

The interaction between the LC and the strategic timing of purchases implies that liquidity constrained

farmers are more likely to buy off-season than unconstrained farmers. In order to estimate demand, we

account for inter-temporal substitution. Water increases the moisture of the land, thus reducing future

demand. Hence, irrigation demand is similar to demand for durable or storable goods. Hendel and Nevo

(2011) study inter-temporal price discrimination with unobserved inventory. They find that storability

creates incentives for consumers to strategically delay their purchases in order to benefit from future price

reductions. In our case, in addition to the strategic delay in purchases, there is also strategic anticipation

1Both translations from the original in Spanish are ours.
2In particular, there are two limiting cases. If capital markets are perfect or all farmers are sufficiently wealthy, then the

auction system achieves FB. If farmers are completely homogeneous, i.e., they have the exact same production function,
then the quota system achieves the FB allocation. If all farmers are homogeneous in their productivity and are sufficiently
wealthy, both mechanisms achieve the FB allocation (see sub-section 3.3 for details).
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in purchases due to LC. Wealthy farmers strategically delay their purchases and buy (expensive) water if it

does not rain. Poor farmers who expect an increase in prices during the harvest season will buy beforehand,

since they could not afford water during the harvest season.

The data from water auctions in Mula is ideal because we observe detailed individual characteristics,

both financial and demand-related. Moreover, we study the market for an intermediate good, thus we

can disregard income effects on the demand for water, i.e., the demand for water is independent of the

income (or wealth) of the farmer as long as the farmer has enough cash to pay for the water. We study

the last years of the auction system in order to estimate demand in the presence of LC. We show that

not accounting for the constraints biases estimated demand downward. We use the estimated demand to

show that quotas outperformed the auctions due to LC.

The evolution over time of land moisture is a key determinant for demand, but it is not directly

observable. However, we observe both rain and irrigation and we apply results from the agricultural

engineering literature to construct a moistness variable for each farmer. After controlling for moistness,

crop type and number of trees, productivity is assumed to be homogeneous up to an idiosyncratic shock

across farmers. This assumption helps us to identify the other source of heterogeneity, liquidity constraints.

Our identification strategy is straightforward. Wealthy farmers face no LC while poor farmers might

not have the cash needed nor have access to credit. Estimating demand with data on all farmers results in a

demand underestimation. Wealthy farmers demand water without any constraints. Hence, we estimate the

demand parameters of the model using data on wealthy farmers. We employ conditional choice probability

(CCP) estimation (Hotz and Miller, 1993). We use the estimated demand parameters and the data on

poor farmers to estimate the financial parameters of the model. There are two observed sources of financial

heterogeneity that we exploit: real estate value and revenue from the harvest of the previous year. There

might also be unobserved sources of financial heterogeneity. Our econometric estimation is flexible enough

to take these sources of unobserved heterogeneity into account.

We use the estimated demand parameters to compute welfare under the quota system. We compute

several counterfactual scenarios in order to decompose the changes in efficiency due to different factors.

We conclude that the institutional change improved efficiency. In the intensive margin, the presence of LC

and the smaller sized units used in the quota improved efficiency while the fact that farmers cannot choose

when to irrigate with the quotas reduced efficiency. There was an net increase in efficiency, especially

for the poor farmers. In the extensive margin, the quota improved efficiency because it allows farmers

to undertake risky investments (trees) without risk. This is a direct consequence of the structure of the
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quotas.

By exploring a particular historical episode, in which an institutional change from a market mechanism

(auctions) to a non-market mechanism (quotas) took place, we compare the two allocation systems in the

presence of LC. We combine a new model in which agents face LC with a novel data set (with detailed

information regarding both financial and demand aspects). We propose a new structural estimation method

to identify demand and LC. We estimate whether the output generated by the quota system is greater

than the output generated by the auction system.

1.1 Literature Review

This review is not intended to be exhaustive but rather to present the reader with the most representative

references from each field to which this paper is related.

Scholars studying the efficiency of irrigation communities in Spain have proposed two competing hy-

potheses to explain the duality in institutions. On the one hand, Glick (1967) and Anderson and Mass

(1978) claim that the auctions are more efficient if we do not take into account operational costs. Accord-

ing to them, we observe both systems because the less efficient system (quotas) is simpler and easier to

maintain. This hypothesis is based on the fact that we observe auctions in places where water is extremely

scarce (Musso y Fontes, 1847; Pérez Picazo and Lemeunier, 1985). However, it has an important flaw:

the size of the land used for irrigation is, at least in part, endogenous. Farmers could increase the land

designated for irrigation (regadío) if needed. Hence, the causation could go the other way: in places with

auctions, the owners of the water would allow for more lands to be irrigated, than in places with quotas.

Ruiz Funés (1916) also shares this criticism.

On the other hand, both contemporaneous and current historians who study the traditional organiza-

tions of the Huertas (irrigated orchards) in Spain take a different approach.3 They argue that the owners

of the water rights had political power and were concerned only about their revenues, regardless of the

overall efficiency of the system. This might be the reason why Mula and Lorca (both cities of Murcia,

Spain) established different institutions than neighboring cities. Politics might have differed in these two

towns during the 13� 15th centuries due to their strategic position on the border between a Christian and

a Muslim kingdom and due to military rule.

Along the same lines, Garrido (2011) has claimed that auctions were used in places where the local

elite was powerful. Therefore, we would expect a quota system only when/if the local elite is not powerful

3Contemporaneous historians include Aymard (1864), Passa (1844), Díaz Cassou (1889) and Brunhes (1902). Current
historians include González Castaño and Llamas Ruiz (1991) and Gil Olcina (1994).
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(Acemoglu and Robinson, 2008). As Rodriguez Llopis (1998) pointed out, the institutional configuration

in place in each town by the end of the Middle Ages was the outcome of the tensions between the Crown,

the Castilian aristocracy, the regional nobility and the local elites since the 13th century. Nonetheless, none

of these scholars have considered that auctions might be less efficient than quotas. Hence, none of these

hypotheses can explain the change from auctions to quotas, unless there was a shift in political power.

Elinor Ostrom (1990, 1992) extensively studied self-governed irrigation communities. However, both

institutions are self-governed and self-regulated (see also Ellickson, 1991; Posner, 2000). Hence, self-

governance is not of interest here, so, we focus on the relative efficiency of both institutions. Our paper is

also related to the recent literature on institutional persistence (Guiso, Sapienza and Zingales, 2008; Jha,

2012) and competing institutions (Greif, 2006).

The theoretical literature on auctions with LC is recent (Maskin, 2000; Pai and Vohra, 2008). Che,

Gale and Kim (2012) assume that agents can consume at most one unit of the good with linear utility

in their type. They conclude that markets are always more efficient than quotas. We instead consider

a model in which agents can consume as much as they want and the utility function is concave. In our

setting there is no strict ranking between markets and quotas.

The empirical literature on the effect of LC in auction settings is non-existent. There are, however,

some papers in the industrial organization literature that use supermarket data and use constraints similar

to ours in their estimation. Gilbride and Allenby (2004) propose an estimator for a two stage decision

process. In the first stage, agents set a maximum price they will pay. In the second stage, agents choose

among all objects with a price lower than the threshold. Pires and Salvo (2013), using a similar method,

find that low income households buy smaller sized storable products (detergent, toilet paper, etc.) than

high income households, even though smaller sized products are more expensive per pound. They attribute

this puzzle to low income households being liquidity constrained.

In addition to LC, we estimate a dynamic demand model with seasonal demand and storable goods.

Storability and the implications that inter-temporal substitution has on demand estimation have been

studied by Boizot et al. (2001), Pesendorfer (2002) and Hendel and Nevo (2006a). Gowrisankaran and

Rysman (2012) estimate a model with new durable goods, and seasonal demand and found the same

incentives for strategic delay as in Hendel and Nevo (2011). None of these papers addresses LC. As far as

we know, ours is the first paper that proposes and estimates a model with durable/storable goods, seasonal

demand and LC.

There are not many papers in the dynamic demand estimation literature that deal with water markets.
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Timmins (2002) is the closest to our paper but he estimates demand for urban consumption and not for

irrigation. He uses parameters from the engineering literature to estimate the supply of water, while we

use parameters from the agricultural engineering literature to determine the demand structure as well as

the evolution of the moisture in the farmer’s plot (see Appendix A.2).

2 Historical background and Data

2.1 History and Origins4

During the reign of Ibn Hud (1228-1238), the Kingdom of Murcia enjoyed some prosperity and stability.

When Ibn Hud was murdered in 1238, the kingdom was dismembered. This same year Jaime I (King

of Aragon) conquered Valencia and prepared to march south. Castile was also advancing to the south,

expanding its territory at the expense of the now fragile Kingdom of Murcia. By 1242, Castile had conquered

most of the Kingdom. Ahmed, the son of Ibn Hud, traveled to Alcaraz (Toledo) to meet the (then) prince

Alfonso. They agreed that what remained of the Kingdom of Murcia would become a protectorate of

Castile.

The cities of Cartagena, Mula and Lorca rejected the agreement. In April 1244, Alfonso was in Murcia

with his army ready to attack Mula (the closest of the three rebel cities). After Mula was conquered, the

army moved to Lorca, which surrendered by the end of June. The government of Mula and Lorca was

given to the Order of Santiago, while the government of the city of Murcia was given, in part, to the

descendents of Ibn Hud according to the terms of the Alcaraz Treaty. However, the rulers of Castile had

absolute authority on the cities of Mula and Lorca, since those were conquered by force.5 As with much

of the Spanish Reconquista, Christian populations were brought to the area with the goal of establishing a

Christian base. Hence, the new Christian settlers in Mula started tabula rasa and created new institutions.6

Mula and Lorca were both frontier cities between a Christian kingdom and a Muslim kingdom, and,

until the conquest of Granada in 1492, were in a constant state of war. This meant that the City Council

was always in need of money, even though as a frontier city they were exempted from paying taxes to

the Crown. The Council permitted the separation of ownership of water and land and eliminated the ban

imposed on water rights’ trading. There is no exact date for this process for the city of Mula, although

this probably happened during the middle third of the 13th century, since the first document that explicitly

4This section is based on Rodriguez Llopis (1998).
5This event had, as a consequence, stronger reprisals taken against the (mostly Muslims) citizens of Mula, which increased

the local demand for new Christians settlers.
6Notice that this initial shock in institutions is similar to that in Chaney (2008).
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shows evidence about auctions dates from this time. We know that this was indeed the case for Lorca

(Musso y Fontes, 1847).7

After that, the owners of the water property rights (Waterlords) were clearly different persons than

the land-owners (farmers). The Waterlords then established a well-functioning cartel. The situation did

not change during the pre-modern era, despite the many political changes that occurred in Spain. It was

not until the 19th century (with the creation of the 1843 ordinances) that the cartel was formalized under

the name of Heredamiento de Aguas.8 The land-owners were small proprietors, with family-size plots,

who soon after created their own association, Sindicato de Regantes. The aim of this association was to

regulate and settle disputes that arose between neighbors, as well as to keep the balance of power in the

market for water.

2.2 Environment

Southeastern Spain is the most arid region of Europe. It is located on the east of a mountain chain (the

Prebaetic System, which includes the Mulhacen, the second highest mountain in Europe).9 The rainfall

frequency distribution is skewed: most years are dryer than the average. The number of days of torrential

rain is not very high but when they occur, they can reach high intensity (for example, 681 millimeters

(mm) of water fell in Mula on one day, 10th October 1943, while the yearly average in Mula is 320 mm).

Summers are dry and rain occurs mostly during fall and spring. Insolation is very high, with more than

3,000 hours of solar exposure per year, the highest in Europe. Despite the fact that this region is dry,

rivers flowing down the Prebaetic System provide the region with the water needed for irrigation.

Weekly prices for water are very volatile and depend mostly on the season and rain. However, rain is

hard to predict accurately, making the need for cash hard to predict months in advance. Additionally, water

demand is seasonal, being especially high during the weeks before the harvest when the fruit is growing

most rapidly. Farmers sell their output after the harvest, and only then have cash. Hence, the weeks when

the farmers most need the cash to pay for the water are precisely the weeks farthest from the last harvest.

As a consequence, they might be liquidity constrained.

Given that demand is seasonal, the farmers should take into account the joint dynamics of their demand

and that of the prices, when making purchasing decisions. The farmers should notice that water today is

7However, as noted by Rodriguez Llopis (1998), documents at the time of the conquest of Lorca (1244) suggest that the
separation between land and water ownership happened right after the conquest.

8According to Rodriguez-Llopis (1998), the formalization was a response to the threat of broad disentailments and
confiscations from the central government during the 19th century.

9The Prebaetic System is located on Southeastern Spain.
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an imperfect substitute for water tomorrow and, adjusting for the current price and their expectation about

future prices, act accordingly. This problem becomes even more complicated when the farmer might be

facing liquidity constraints (LC) in the future. A farmer who expects to be liquidity constrained during the

harvest season (when her demand is highest), might decide to buy water several weeks before the harvest,

when the price is lower. This is true even if she would have bought during the harvest season had she

known that she would not be constrained.

A farmer who expects to be constrained in the future would try to borrow money. However, even if

a credit market is in place, she might not get the loan she needs. In the presence of limited liability (the

farmer is poor) and non-enforceable contracts, endogenous borrowing constraints emerge (see sub-section

3.4). Hence, even if a credit market exists, non-enforceable contracts would prevent the farmer from having

the cash when she needs it most. It is irrelevant in our case whether the credit market existed or not. What

matters is whether the farmers have access to it and whether the LC affected their behavior. Personal

interviews with surviving farmers confirm that farmers were usually constrained (they have less cash than

needed to buy the water they demanded) yet they do not borrow money from others.

2.3 Institutions

In this sub-section, we describe two different institutions/mechanisms used in several cities of Southeastern

Spain to allocate water from the river.

Auctions Although the process of allocating water in Mula has varied slightly over the years, it is

remarkable that its basic structure has been unchanged since the 15th century. The mechanism to allocate

water to those farmers is a sequential English-auction. The auctioneer sells each of the units sequentially

and independently from each other, keeping track of the name of the buyer of every unit and the price.

The units bought need to be paid in cash the day of the auction.10

The basic selling unit is a cuarta (quarter): the right to the water that flows through the main channel

during three hours at a specific date and time. The property rights of water and land are independent:

some people are the Waterlords (that is, they own the right to use the water flowing through the channel)

and some people are the land-owners. The Waterlords will meet once a week and decide how many units

of water are going to be sold.

10Allowing the farmer to pay after the harvest would mitigate the problems created by the LC, and would increase the
revenue obtained in the auction. The fact that the payment should be made in cash and reasons explained in the ordinances,
suggest that the water owners were concerned with not getting their money back after the harvest, i.e., contracts were not
enforceable.
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Water storage is done at the main dam (Embalse de La Cierva).11 Water will be delivered through a

system of channels to the farmer’s plot. Each unit corresponded to the right to use the water flowing from

the river for three hours. Water flows from the dam through the channels at 40 liters per second (l/s).

As a result, one unit carries 432,000 liters of water. During our sample period auctions were carried out

once a week, every Friday.

In every session, forty units were auctioned: four units for irrigation during the day (from 7:00 AM to

7:00 PM) and four units for irrigation during the night (from 7:00 PM to 7:00 AM), every weekday (Monday

to Friday). The auctioneer sells, first, twenty units corresponding to the night-time and, afterwards, twenty

units corresponding to the day-time. Within each of these groups (day and night), units are sold starting

from Monday (four units), and finishing with Friday’s units.

Quotas Our sample consist of all water auctions in Mula from January 1955 until July 1966, when the last

auction was run. On August 1, 1966 the allocation system was modified from being an auction allocation

system to a two-sided bargaining system. In the bargaining system, the Heredamiento the Aguas (water-

owners) and the Sindicato de Regantes (land-owners association) arranged a fixed price (renegotiated at

the beginning of every six months) for the water. Gradually, the Sindicato de Regantes bought shares in

the Heredamiento the Aguas association until they finally merged in 1974.12 Since 1966, the Sindicato de

Regantes allocates the water to each farmer following a fixed quota.

Under this system, water ownership is tied to land ownership. Every plot of land has assigned some

amount of time of irrigation during each tanda (quota) and every tanda lasts three weeks. The amount of

time allocated to every farmer is proportional to the size of her plot. Every year, in December, there will

be a lottery to assign the order of irrigation of each farmer, within each tanda. The order will not change

during the entire year. At the end of the year farmers pay a fee to the Sindicato, that is proportional to the

size of their plot.13 The fees paid by all farmers should cover all costs of operations (paying the guards,

cleaning the channels, etc) incurred during the year.14

This system has the advantage that every farmer gets some “fair” amount of water once in a while,

so it is especially desirable during a drought. Another important feature is that because of the insurance

11This dam was built in 1929. Before this dam was built, water was stored at the smaller dam Azud del Gallardo.
12The purchase of shares was possible due to a line of credit obtained by the Sindicato de Regantes soon after the end of

the auctions. According to surviving farmers from this time, the transition would not have been possible without the credit
line.

13Notice that, since the farmer has to pay after the harvest, there are no LC. Moreover, the farmer is the owner of the
water under the quota system, so the price the farmer pay is the average exploitation cost, which is much smaller that the
price paid under the auction system.

14During the first year of the quota system, the fee also included the payments made to the Heredamiento de Aguas to
buy the water rights.
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property of this institution, farmers have less uncertainty when carrying out risky investments, such as

trees. A tree will take several years to be fully productive, but it can die if it does not get enough water

in a given year. On the other hand, vegetables grow faster, and can be harvested within a year of being

planted. Hence, a farmer with a secure supply of water is more likely to plant trees and get a higher

expected profit from them.

2.4 Data

The data set consist of a panel in which each period represents one week and each individual represents

one farmer. The unit of observation then is a farmer-week. The data set is collected from four different

sources. The first source contains information regarding the weekly auction: how many units each farmer

bought and at what price, from January 1955 until July 1966 (when the last auction was run). This data

is obtained from the historical archive of Mula.15 We also have information on rainfall in Mula.16 Since

the frequency of the auctions is weekly (there is an auction every Friday), we compute the sum of rain

during the seven days prior to each auction. We merge this data set with a cross sectional agricultural

census (1955) that contains information regarding the farmer’s plots, including crop types, number of trees,

production and output price.17 Finally, we also merge the data set with financial information regarding

the real estate tax records in 1955. This last piece of information is crucial to identify liquidity constraints

(LC) from demand shocks as we will show later.

Table 1 shows the summary statistics of some of the variables used in the empirical analysis. Detailed

information about the data can be found in the Appendix A.1.

15From the section Heredamiento de Aguas, boxes No.: HA 167, HA 168, HA 169 and HA 170.
16We obtain the rainfall information from the Agencia Estatal de Metereologia, AEMET (the Spanish National Meteoro-

logical Agency).
17Detailed census data is obtained from the section Heredamiento de Aguas in the historical archive of Mula, box No.

1,210.
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Table 1: Summary Statistics of Selected Variables

Variable Mean SD Min Med Max Obs

Weekly Rain (mm) 8.29 37.08 0 0 423.00 602

Water Price (pesetas)a 326.157 328.45 0.005 217.9 2,007 602

Real Estate Tax (pesetas) 482.10 1,053.6 0 48 8,715 496

Area (ha) 2.52 5.89 0.024 1.22 100.1 496

# Treesb 311.3 726.72 3 150 12,360 496

Units bought 0.0295 0.3020 0 0 4 145,684

Source: Own elaboration. We found 496 census cards in the archive. We were able to fully match 242 individuals
to the auction data. The agricultural census include farmers that have only secano lands and thus, are not in our
sample. The sample after matching consist on 602 weeks and 242 individuals, thus 145,684 observations. a) Water
Price is the Weekly Average price. b) # Trees includes vines.

Auction data Based on bidding behavior and water availability, auction data (602 weeks) can be divided

into three categories: (i) Normal periods (300 weeks), where for each transaction the name of the winner,

price paid, date and time of the irrigation for each auction is registered, (ii) No-supply periods (295), where

due to water shortage in the river or dam/channel damages (usually because of intense rain), no auction

is carried out, and finally (iii) No-demand periods (7 weeks), where not all 40 units are sold due to lack of

demand. In the main estimation we use data for the period 1955-66.

Rainfall data Mediterranean climate rainfall occurs mainly in spring and fall and peak water requirements

for the products cultivated in the region are reached in spring and summer, between April and August.

The rainfall is also very volatile, we can see in Table 1 that the standard deviation is several times greater

than the mean.18

Agricultural Census data The 1955 census was conducted by the Spanish government to enumerate all

cultivated soil, producing crops and agricultural assets available in the country. Individual characteristics

for the farmers’ land include the type of land and location, area, number of trees, production and the price

at which this production was sold in the census year. We match the name of the farmer in each census

card with the name of the winner in each auction from the auction data. In this paper we focus on farmers

with only apricot trees.

18The reason that the mean rainfall presented in Table 1 (326 mm) is slightly greater than the 320 mm mentioned in the
introduction is that the 326 mm correspond our estimation period (1955-66) while the 320 mm correspond to the complete
series (1933-2010).
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Real Estate Tax data In order to credibly identify the source of financial constraints we need a variable

that is related to the farmers’ wealth but unrelated to their demand for water (production function). We

use the tax records paid by the farmers for urban real estate ownership. The idea is that farmers with

big/expensive real estate are wealthier than farmers who own small/inexpensive (or no) real estate and,

thus, are less likely to be financially constrained. On the other hand, owning more or less (urban) real

estate should not affect the farmer’s production function (farmer’s willingness to pay), once we condition

on type of crop and the size of the plot. Hence, after controlling for all the other variables, especially the

type of crop, the number of trees and the area under cultivation, the value of the real estate should not

be correlated with the farmer’s demand for water.

2.5 Preliminary Analysis

In this sub-section, we show some patterns in the data. In Table 2, we restrict attention to farmers that

only have apricot trees. We regress the number of units bought by each farmer in a given week on several

covariates. The variable “Real Estate (dummy)” is a variable that equals 1 if the value of the real estate

owned by the farmer is greater than the sample median, and 0 otherwise.19 In columns 1 and 2 we see

that farmers that are “wealthy” buy more water overall. We then include in the regressions the interaction

between “Real Estate” and “Harvest Season”. “Harvest Season” is a dummy variable that equals 1 if the

observation belongs to a week during the harvest season and 0 otherwise.20 This interaction captures

precisely the effect we are interested in: farmers that face liquidity constraints (LC) are not able to buy

water precisely during the weeks in which they need it the most: the harvest season. In the case of apricots

the harvest season also coincide with the beginning of summer, when the prices are highest. This makes

the LC more likely to be binding for apricot farmers. What we see in columns 3 and 4 is that the effect

that LC have on the demand for water is concentrated mostly in the harvest season. The results are

robust when we include relevant variables like the number of trees in the farmer’s plot, the moisture in the

farmer’s plot, the price of the water in the given week and the rain during the week before the auction.

As seen in Table 4, wealthy farmers tend to have bigger plots. Since farmers can only buy whole

units, the effect that we see in Table 2 could be explained by differences in the size of the plots: there

are economies of scale when purchasing water, and only wealthy farmers (who own big plots) could take

19Using other percentiles to define this dummy variable produce similar results. The effect that LC have on water demand
is not linear. Moreover, it is not strictly increasing: two farmers that are wealthy enough to buy the water (unconstrained)
should have exactly the same demand, regardless of how much cash they have left. Hence, using a dummy variable is
consistent with the idea that demand is identical for all unconstrained farmers. Another advantage of using a dummy
variable is that we have a direct interpretation of the coefficient in the regression.

20See sub-section 5 for a discussion on how the harvest season is defined.
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Table 2: Demand for Water.

# Units Bought (1) (2) (3) (4)

Real Estate 0.0255 *** 0.0235 *** 0.0133 ** 0.0126 *

(0.0063) (0.0062) (0.0066) (0.0066)

Real Estate 0.0702 *** 0.0602 ***

X Harvest Season (0.0117) (0.0122)

Covariates N Y N Y

Sample Size 14,448 14,448 14,448 14,448

* Covariates include: Price, Rain, Moisture (individual) and # trees (individual).
standard errors in parentheses (* p<0.10; ** p<0.05; *** p<0.01)

Table 3: Demand for Water. Variables normalized per tree.

# Units Bought (1) (2) (3) (4)

Real Estate 0.0131*** 0.0073 0.0066 0.0017

(0.0042) (0.0044) (0.0044) (0.0047)

Real Estate 0.0374*** 0.0315***

X Harvest Season (0.0091) (0.0094)

Covariates N N Y Y

Sample Size 14,448 14,448 14,448 14,448

* Covariates include: Price, Rain, Moisture (individual) and # trees (individual).
standard errors in parentheses (* p<0.10; ** p<0.05; *** p<0.01)

advantage of them. In Table 3, we normalize for the number of trees in the plot of each farmer. We can

see that the wealth of the farmer has a small effect on the amount of water bought year long. However,

the effect during the harvest season is still present. The magnitude of the effect during the harvest season

is similar to that in Table 2.

We now focus on the extensive margin in which LC can affect welfare. Since the composition and size

of the plots are (partially) endogenous, this is just another effect of the LC of the farmers. Some farmers

have smaller-than-optimal plots and hence, cannot buy water during the harvest season. Here the financial

constraints are affecting the inefficiency of the system through the extensive margin: size and composition

of the plots. The size and composition of the plot of each farmer are correlated with the wealth of each

farmer. A poor farmer might not be able to buy a big plot of land, or maybe the reason that she is poor

is that she only owns a small plot of land. Moreover, a poor farmer, in anticipation of her inability to

buy water during the harvest season, would choose not to own a plot of land with trees. Trees are a

risky investment and require more care than vegetables. A tree will usually take five years to become fully

productive, so the farmer will have forgo earnings, and it could die during a drought if not irrigated.

In Table 4 (columns 1 and 2) we can see that wealthy farmers own bigger plots than poor farmers. In

column 3 we see that the fraction of the land that is planted with trees is not correlated with wealth. This

14



Table 4: Relation between Size and Composition of the plots, and wealth.

(1) (2) (3) (4) (5)

Area Total
(Ha)

Area w trees
(Ha)

Fraction
w trees

Revenue
(pesetas)

Rev/area
(pesetas/m2)

Real Estate 34,023*** 22,069*** -0.0355 23,894*** -0.1797

(9,747) (7,031) (0.0320) (4,024) (0.7543)

N 388 388 388 388 388

standard errors in parentheses (* p<0.10; ** p<0.05; *** p<0.01)

Table 5: Revenue, Apricot trees.

Revenue per tree (1) (2) (3) (4) (5)

# trees 107.53*** 245.61** -0.3857

(31.098) (104.18) (0.9668)

(# trees)2 -0.6059 0.0000

(0.4372) (0.0040)

Real Estate 0.0383** -0.0009 -0.0017

(0.1418) (0.0710) (0.0740)

(RealEstate)2 0.0000 0.0000

(0.0000) (0.0000)

Sample Size 24 24 24 24 24

standard errors in parentheses (* p<0.10; ** p<0.05; *** p<0.01)

suggest that the allocation of crops with trees is mostly exogenous. This is not surprising since many of

the trees were centenarian. Column 4 shows that wealthy farmers get more money from their plots. This

is just a mechanical result, since wealthy farmers own bigger plots. Moreover, as column 5 shows, wealthy

farmers are not getting more revenue per unit of area.

Finally, we can also use the census data to see the determinants of revenue. In Table 5 we restrict

attention to farmers that only grow apricot trees. The data base is cross sectional and it is based on the

agricultural census of 1955. In columns 1 and 2 we can see, as expected, that the revenue is increasing and

concave in the number of trees owned. In the absence of LC, the revenue obtained in a given plot should

be independent of the wealth of the farmers. Column 3 suggest that revenue is increasing on wealth.

Notice that this is in contrast with the result of column 5 in Table 4. This is consistent with the fact that

LC are important for apricots trees, because the harvest season takes place in the summer.

There is a concern for an omitted variable bias here. If farmer is more productive (i.e., better), she

will earn more revenues and will also invest more in trees. She will then become wealthier. Although this

story is appealing, it is unlikely to be driven the results. The differences in revenue per farmer are too

small compared with the differences in wealth. A back of the envelope calculation shows that it will take
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more than a century for a farmer to use the excess in revenues to buy the real estate needed for the story

to be true.

Finally, one can express the lower-than optimal purchases of the poor farmers as a problem of input

misallocation. In this case, one solution to the misallocation would be for the wealthy farmers to buy

the land from the poor farmers and then irrigate the land properly. This would indeed be the solution if

there were no dis-economies of scale. If there are dis-economies of scale or the optimal exploitation size

is small, then the reduction in output due to the diminishing return might overcome the gains from the

optimal irrigation (see Banerjee and Moll, 2010). The land distribution for orchards and the technology

for exploitation suggest that dis-economies of scale are important.21 The same argument is present in

Hoffman (1996).

3 Model

In this section we present the theoretical model. In sub-section 3.1 we present the general model that we

will estimate in Section 4. It is a model with infinite horizon and in which the farmers demand includes

storability, seasonality and liquidity constraints (LC). Due to the complexity of the general model we will

not solve for the equilibrium.22

Nonetheless, we show two particular cases of the general model in order to stress the main results that

arise in the general case.

The first case is presented in sub-section 3.2, we provide a two-period model in which farmers value

differently the water bought during the harvest season and the off season, but water could be stored. The

second case is presented in sub-section 3.3 we present a static model, with farmers being heterogeneous

in both their productivity and their wealth. We show that the relative efficiency of each institution depend

on the parameters of the model: if differences in productivity are important and LC are not, then Markets

are more efficient than Quotas, and vice versa.In each case, the particular model proposed is the simplest

model we can construct that still has the properties that we want to highlight. When omitted the proofs

are in Appendix B.

In sub-section 3.4 we show a model of endogenous LC. LC do not arise exogenously. Rather they are the

consequence of limited liability (farmers are poor) and non-enforceable property rights (poor institutions).

21Dis-economies of scale here take the form of diminishing return of effort and increasing marginal cost of monitoring
employees.

22We do not need to solve for the equilibrium in order to estimate the parameters (see Section 4).
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The combination of these two factors make the existence of a credit market unlikely.23

3.1 General Model

The economy consists of N farmers, denoted by i, and one auctioneer. There are two goods in the

economy: water x (moisture) measured in liters and money µ measured in pesetas. Time is denoted by t,

the horizon is infinite and the discount between periods (weeks) is �. Demand is seasonal, hence some of

the functions will depend on the season. We denote the season by w 2 {1, 2, ..., 52}, representing each of

the 52 weeks of any given year. The supply of water in the economy is stochastic and equals Xt ⌘ X (wt)

in period t.24 In particular, supply follows a binomial conditional on the week, there will be an auction

during week wt = w with probability ⇢w. If there is an auction there will be X units to be sold.

Farmers will only get utility for the water consumed during the harvest season. Notice that water here is

an intermediate good. Hence, utility here refers to profit or outcome and is measured in pesetas, not in utils.

Water bought in any period could be carried forward into the next period, but it will depreciate according

to some function �. Farmers’ preferences over water and money are represented by u (jt,Mt, wt;µt; ✓t) =

h (jt,Mt, wt; ✓t) + (µt � ptjt) where the production function h (·) is twice continuously differentiable and

strictly increasing in Mt and ✓t and concave in the moisture on the farmer’s plot Mt; jt is the number of

units bought in period t; pt is a scalar that represents price in period t; and µt is the amount of cash that

the farmer has in period t. Limited liability requires that (µt � ptjt) � 0, 8jt > 0. Finally, the trees on

the farmers plot will die if the water (moisture) in her plot decreases beyond the Permanent Wilting point

PW .

Farmers in the economy differ from each other in two ways. First, a productivity shock ✓it is drawn

from a distribution F (✓), with f (✓) > 0, defined on a compact interval of R+,[✓, ✓], independently from

other farmers’ draws.25 Second, their initial wealth levels µit are drawn from a distribution G (µ), with

g (µ) > 0, defined on a compact interval R+,[µ, µ], where we assume that µ > 0. The realization of ✓it

is independent of the realization of µit; and both ✓it and µit are private information.26

The expected discounted utility of farmer i at t = 0 is then:

23Moreover, even if such a market exists, it would require a high interest rate, which was forbidden under the Spanish
Usury Law.

24In our empirical application the supply can be considered exogenous. Although the seller had the authority to cancel an
auction in any given week, they rarely do so and only when the price drops to zero.

25In the empirical application this productivity shock can be decompose into a permanent (or persistent) attribute of farmer
i production function and a idiosyncratic time independent productivity shock.

26In section 4 we characterize the evolution of all state variables.
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P

t=0
�tu (jit,Mit, wit;µit; ✓it) |jit,Mit, wit;µit; ✓it

�

s.t. mit � PW

s.t. jitpt  µit, 8jit > 0

3.2 Dynamic Model: On-Season vs Off-Season

In this sub-section, we propose a simple two-period model that captures the dynamics of an economy

with storability, seasonal demand and liquidity constraints (LC). This is a simplified version of the model

presented in sub-section 3.1. Here we only consider two periods, with a particular evolution for the

moisture stored in a farmer’s plot and a particular evolution for the cash that the farmer has. Due to these

simplifications we are able to solve the model analytically while still preserving the main features of the

dynamics of the general model.

The economy consists of a continuum of unit mass of farmers, denoted by i, and one auctioneer. There

are two goods in the economy: water (x) measured in liters and money (µ) measured in pesetas. There

are two periods, denoted by t, and there is no discounting between periods. The supply of water in the

economy is constant and equals Xt in period t. There will be an auction in the first period (Off-Season) and

X1 units of water will be auctioned. There will also be another auction in the second period (On-Season)

and X2 units of water will be auctioned.

Farmers will only get utility for the water consumed in the second period. Water bought in the first

period, however, could be carried forward into the second period, but it will depreciate at a rate �. That

means that for every unit of water bought in the first period, the farmer will only consume (1� �) units in

the second period. In the second period, there will be an amount of water equal to X ⌘ (1� �)X1+X2 to

be consumed in this economy. For ease of exposition we consider the case in which farmers are homogeneous

in productivity.27 Farmers, however, will differ in their wealth µi, which are drawn from a distribution G (µ),

with g (µ) > 0, defined on a compact interval R+,[µ, µ]. Farmers can buy only a discrete amount of water

xt 2 N in each period and will get a utility of u (x1, x2, p1, p2;µ) = h ((1� �)x1 + x2)+(µ� p1x1 � p2x2)

where h (x) is the production function that transforms water into output (pesetas), and it is increasing

and concave. Moreover, LC imply that (µ� p1x1 � p2x2) � 0.

We first define and solve for an equilibrium in an economy without LC. It serves as a benchmark when

analyzing the results in the general case. If there are no LC, farmers will be indifferent between buying 1

27The results are similar when farmers are also heterogeneous in productivity.
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unit in the first period or (1� �) units in the second period. We will restrict attention to the case in which

water is scarce, i.e., X1 +X2 < 1. This assumption implies that, in the unconstrained case, farmers are

buying at most one unit of water.

Let the vector p be a pair of prices, i.e., p ⌘ (p1, p2), where pt is the equilibrium price in period t. The

allocation of water in this economy is characterized by the allocation matrix:

Q ⌘

2

6

6

6

6

4

q00 q10 q20

q01 q11 q21

q02 q12 q22

3

7

7

7

7

5

where qx1,x2
represents the mass of individuals that buy x1 units in period 1 and buy x2 units in period

2. Each allocation matrix satisfies
P

x1

P

x2

(qx1,x2
) = 1. We call a pair (x1, x2) an optimal allocation if there

is no other pair
⇣

x
0

1, x
0

2

⌘

such that u
⇣

x
0

1, x
0

2, p1, p2;µ
⌘

> u (x1, x2, p1, p2;µ).

Definition. A Equilibrium is characterized by a price vector pFB and an allocation matrix QFB that

satisfy:28

• Optimality (O). At prices p = pFB each farmer is maximizing her expected utility, i.e., when p =

pFB and each pair (x1, x2) such that qx1,x2
> 0, we have u (x1, x2, p1, p2;µ) � u

⇣

x
0

1, x
0

2, p1, p2;µ
⌘

for any other pair
⇣

x
0

1, x
0

2

⌘

.

• Resource Constraint (RC). The allocation Q satisfies the Resource Constraint in each period, i.e.,

P

x1

P

x2

(x1 · qx1,x2
) = X1 and

P

x1

P

x2

(x2 · qx1,x2
) = X2

The only prices that are consistent with equilibrium in this case are pFB
1 ⌘ h (1� �) and pFB

2 ⌘ h (1) in

the first and second period respectively.29 The only allocation consistent with equilibrium is:

QFB ⌘

2

6

6

6

6

4

(1�X1 �X2) X2 0

X1 0 0

0 0 0

3

7

7

7

7

5

; pFB ⌘ [h (1� �) , h (1)]

Hence, the mass of farmers buying one unit in the first period, one unit in the second period and

buying no water are qFB
10 = X1, q

FB
01 = X2 and qFB

00 = 1 � X1 � X2 respectively. Since each unit of

28Since this is a dynamic game, we also have to check for Dynamic Consistency (DC): for every farmer, the surplus in the
second period is no greater than the surplus in the first period.

29Given the discreteness in the allocation, if instead of an auction we had a price posting scheme, we will always have
a continuum of prices consistent with equilibrium, but a unique allocation. The unique solution in the case of the auction
coincide with the highest of those prices.
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water is being allocated to a different farmer, the equilibrium achieves the first-best (FB) allocation. The

equilibrium is also revenue maximizing because it extracts all the surplus from the farmers.

We now define and solve for the equilibrium when some farmers face LC. We restrict attention to the

case in which the wealth can take only two values {µL, µH} with µL < µH , Pr (µi = µL) = gL and

Pr (µi = µH) = gH = 1� gL. For simplicity, we focus on the case when µH ! 1. We will focus on the

cases where gH < X1 +X2, otherwise the equilibrium is trivial, and wealthy farmers can buy all the water

at the FB prices. For simplicity of exposition, we also restrict attention to the case when wealthy farmers

buy at most two units and there are “enough” wealthy farmers to buy all the water in the second period,

i.e., 2gH > X1 +X2 and gH > X2.
30

The allocation of water in this economy is characterized by two allocation matrices:

QL ⌘

2

6

6

6

6

4

qL00 qL10 qL20

qL01 qL11 qL21

qL02 qL12 qL22

3

7

7

7

7

5

and QH ⌘

2

6

6

6

6

4

qH00 qH10 qH20

qH01 qH11 qH21

qH02 qH12 qH22

3

7

7

7

7

5

,

where qi,x1,x2
represents the mass of individuals with wealth µi that buy xi1 units in period 1 and

buy xi2 units in period 2. Each allocation matrix satisfies
P

xi1

P

xi2

(qxi1,xi2
) = gi. We call a pair (xi1, xi2)

an optimal allocation for farmer i if there is no other pair
⇣

x
0

i1, x
0

i2

⌘

such that u
⇣

x
0

i1, x
0

i2, p1, p2;µi

⌘

>

u (xi1, xi2, p1, p2;µi).

Definition. A Constrained Equilibrium is characterized by a price vector p⇤ ⌘ (p⇤1, p
⇤

2) and an allocation

matrix [Q⇤

L;Q
⇤

H ] that satisfy:31

• Optimality (O). At prices p = p⇤ each farmer is maximizing her expected utility, i.e., when p = p⇤

and each pair (xi1, xi2) such that qxi1,xi2
> 0, we have u (xi1, xi2, p1, p2;µi) � u

⇣

x
0

i1, x
0

i2, p1, p2;µi

⌘

for any other pair
⇣

x
0

i1, x
0

i2

⌘

.

• Resource Constraint (RC). The allocation Qi satisfies RC in each period,

i.e.,
P

i=L,H

P

xi1

P

xi2

(xi1 · qxi1,xi2
) = X1 and

P

i=L,H

P

xi1

P

xi2

(xi2 · qxi1,xi2
) = X2.

• Liquidity Constraint (LC). For each i, the allocation Qi satisfies LC, i.e., (xi1 · p1 + xi2 · p2) 

µi, 8i.

30When 2gH < X1 +X2 the intuition of the results is the same, but we need to keep track of the amount of units bought
by each farmer in each period. The equilibrium in this case has many cases and it is not worth presenting here. The results
are similar when gH < X2.

31Since this is a dynamic game, we also have to check for Dynamic Consistency (DC): for every type, the surplus in the
second period is no greater than the surplus in the first period.
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We say that a Constrained Equilibrium is Efficient if all the units are consumed by some farmer and

there are no farmers consuming more than one unit. We say that a Constrained Equilibrium is Revenue

Maximizing if p = pFB.

We now solve for the equilibrium assuming that µL � [h (2� 2�)� h (1� �)]. For the complete

solution and the proof see Appendix B.1.

Poor farmers would buy one unit in the first period, but not in the second period. Since there are

“enough” wealthy farmers, i.e., gH > X2, they will buy all the water in the second period and some of the

water in the first period.

(X2 � gH) wealthy farmers will buy one unit in the first period and X2 wealthy farmers will buy one

unit in the second period, i.e., qH10 = (X2 � gH) and qH01 = X2.

(X1 �X2 + gH) poor farmers will buy water in the first period, and (gL �X1 +X2 � gH) poor

farmers will not buy water, i.e., qL10 = (X1 �X2 + gH) and qL00 = gL �X1 +X2 � gH .

Therefore, in this simple model, due to the concavity of the production function, the homogeneity of

productivity across farmers and the scarcity of water (X1 + X2 < 1), any allocation in which a farmer

consumes more than one unit of water is inefficient.

It should be noticed, however, that when farmers are heterogeneous in productivity, the allocation

is also inefficient when LC are binding. If farmers are heterogeneous in productivity, efficiency requires

not only that farmers consume at most one unit, but also that no low-productivity farmer is consuming

any water unless all high productivity farmers are consuming one unit, and that more productive farmers

consume on-season and less productive farmers consume off-season.32

When LC are binding, the model predicts that poor farmers will not buy water in the second period.

Moreover, poor farmers never buy more water than wealthy farmers On-Season . However, it could be the

case that the poor farmers are buying more water than the wealthy farmers Off-Season.

3.3 Static Model: Auction vs Quotas

In this sub-section, we propose a static version of the general model presented in sub-section 3.1. Due

to the static nature of this model, there is no storability nor seasonality, but LC are still present. In

this simplified version we are able to solve the model analytically and make normative claims about the

efficiency of both the auctions and the quotas. The reader should notice that the claims made about the

static model should apply mutatis mutandi to the dynamic case.

32We do not report in this paper the solution for the case in which farmers are also heterogeneous in productivity.
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The model presented here is a generalization of Che, Gale and Kim (2012).33 The economy consists

of a continuum of farmers with unit mass and one auctioneer. Farmers will be denoted by i. There are

two goods in the economy: water (x) measured in liters and money (µ) measured in pesetas. The supply

of water in the economy is constant and represented by X. Farmers’ preferences over water and money

are represented by u (x;µ; ✓) = h (✓, x) + (µ� px) where h (·) is twice continuously differentiable and

strictly increasing in each argument and concave in x; p is a scalar that represents the transfer per unit of

water received and (µ� px) � 0. We also required the cross derivative to be positive, i.e., hθx (·) > 0.

Farmers in the economy differ from each other in two ways. First, a productivity shock ✓i is drawn from

a distribution F (✓), with f (✓) > 0, defined on a compact interval of R+,[✓, ✓], independently from other

farmers’ draws. Second, their wealth levels µi are drawn from a distribution G (µ), with g (µ) > 0, defined

on a compact interval R+,[µ, µ], where we assume that µ > 0. The realization of ✓i is independent of the

realization of µi.
34 Both ✓i and µi are private information.

Given a number p, define the optimal allocation x⇤ (✓i, p), to be the one that solves:

hx [✓i, x
⇤ (✓i, p)] = p (1)

Under our assumptions on h (·), we have that x⇤ (✓i, p) = (hx)
�1 [✓i, x

⇤ (✓i, p)]. We say that an agent

is liquidity constrained at price p if p · x⇤ (✓i, p) > µi.

In order to characterize the first-best (FB) allocation in this economy, we need a welfare criterion.

The utility function here represents a production function in which h (✓i, xi) is the output measured in

pesetas. Thus, we will use the utilitarian welfare criterion, which in a quasi-linear economy corresponds to

maximizing the sum of utilities. FB allocations are defined as those allocations that maximize welfare in

the absence of wealth constraints subject to the feasibility constraint:

max
{x(θi)}

θ́

θ

h (✓i, x) dF

s.t.
θ́

θ

xdF = X

(2)

Given a number pFB, define the FB allocation xFB
�

✓i, p
FB

�

, to be the one that solves:

33Che, Gale and Kim (2012) restrict attention to the special case in which the utility function is linear until x = 1. Strictly
speaking, they consider the case in which there is a continuum of indivisible objects and consumers have unit demand.
Mathematically, their model and results is identical to our model when we consider a utility function that is linear, with slope
equal to 1, until x = 1 and is flat afterwards.

34The independence of ✓i and µi is irrelevant for the results presented here. The correlation between ✓i and µi will matter
when trying to solve for the optimal mechanism.
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hx
⇥

✓i, x
FB

�

✓i, p
FB

�⇤

= pFB

θ́

θ

xFB
�

✓i, p
FB

�

dF = X
(3)

Notice that, without liquidity constrained agents the optimal allocation coincide with the FB allocation.

We denote the welfare level achieved in the FB allocation by:

Ω
FB ⌘

θ̂

θ

h
⇥

✓i, x
FB

�

✓i, p
FB

�⇤

dF (4)

3.3.1 Auctions

We study the allocation that arises under the auction system assuming that all the units are allocated

simultaneously.35 At each price p each farmer demands the quantity of water she would be willing to

purchase at that price, and the price adjusts so that the market clears. In the static case, a simultaneous

auction is equivalent to a centralized market, since the supply of water is fixed.

Given a price p, an agent of type (✓i, µi) will demand:

y (✓i, µi, p) =

8

>

>

<

>

>

:

x⇤ (✓i, p) if µi > p · x⇤ (✓i, p)

µi

p
otherwise

(5)

Farmers with sufficient wealth will buy the optimal amount of water, given the price, while farmers that

do not have enough wealth will spend all their wealth. Denote by ✓̂i ⌘ ✓̂i (µi, p) a farmer of type (✓i, µi)

such that µi = p · x
h

✓̂i (µi, p) , p
i

, i.e., the marginal farmer. This is a farmer that is using all her wealth

but would not buy more water even if she has more wealth. Aggregate demand at price p is given by:

Y (p) ⌘

µ̂

µ

θ̂

θ

y (✓i, µi, p) dFdG (6)

Aggregate demand can be decomposed into constrained and unconstrained farmers:

Y (p) =

µ̂

µ

θ̂i
ˆ

θ

x⇤ (✓i, p) dFdG+

µ̂

µ

µi

p

⇣

1� F
h

✓̂i (µi, p)
i⌘

dG (7)

The first term corresponds to farmers who are unconstrained, thus they buy the optimal amount at

35In the next subsection we consider the case in which units are allocated sequentially.
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price p. The second term corresponds to farmers who are constrained, thus they expend all their wealth.

In equilibrium we need demand to equal supply: Y
�

pA
�

= X. Using this fact, we can decompose the

aggregate demand and compare it with the FB case. Rearranging we get:

µ̂

µ

θ̂

θ̂i(µi,pA)



µi

pA
� x⇤

�

✓i, p
A
�

�

dFdG =

µ̂

µ

θ̂

θ

⇥

x⇤
�

✓i, p
FB

�

� x⇤
�

✓i, p
A
�⇤

dFdG

Since the left hand side (LHS) is non-positive we need the right hand side (RHS) to be non-positive

as well. If pFB < pA then the RHS is positive, because demand is decreasing in p. Hence, we have

pA < pFB. Welfare in a centralized auction would be equal to:

Ω
A ⌘

µ̂

µ

θ̂i
ˆ

θ

h
⇥

✓i, x
⇤
�

✓i, p
A
�⇤

dFdG+

µ̂

µ

h

✓

✓i,
µi

pA

◆

⇣

1� F
h

✓̂i
�

µi, p
A
�

i⌘

dG (8)

We can establish the following results:

Proposition 1. Under the Auction system:

i) Welfare is lower than it would have been without LC. In particular, the Auction system does not

achieve the FB allocation when LC are binding for some farmers.

ii) The equilibrium price is lower than it would have been without LC. Moreover, there are farmers

whose marginal utility in equilibrium is greater than the equilibrium price.

3.3.2 Quotas

A quota system means that each farmer will get the same amount of water, regardless of their type

(✓i, µi).
36 Hence, x (✓i, µi) = X. Welfare in this case is:

Ω
Q ⌘

θ̂

θ

h (✓i, X) dF (9)

We can establish an efficiency result here too:

Proposition 2. Under the Quota system:

i) Welfare is lower than it would have been with heterogeneous farmers, i.e., ✓i = ✓ 8i. In particular,

the Quota system does not achieve the FB allocation when farmers are heterogeneous.

36In a dynamic setting the amount of water allocated at every given week could be different for each farmer based on
observables like the type of crop and past rain.
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ii) When farmers are homogeneous, i.e., ✓i = ✓ 8i, the Quota system does achieve the FB allocation.

The explanation for these results is straightforward. When farmers are homogeneous, since h (✓, x) is

concave in x, the FB allocation requires that all farmers are allocated the same amount of water. Hence,

the Quota system achieves FB. When farmers are heterogeneous, FB allocation requires more productive

farmers to be allocated a greater amount of water.

3.3.3 Auction vs Quotas

The previous results imply that there is not a complete ranking in efficiency between the Auction and the

Quota system. Since each of them achieves full efficiency under particular circumstances, it is easy to find

a pair of distributions F (✓) and G (µ) in which either system outperforms the other. In particular, when

F (✓) is degenerate (homogenous farmers) and G (µ) is binding (constrained farmers), the Quota system

outperforms the Auction system and achieves FB. On the other hand, when G (µ) is not binding (uncon-

strained farmers) and F (✓) is not degenerated (heterogeneous farmers), the Auction system outperforms

the Quota system and achieves FB.

The intuition behind the previous argument is that when farmers have similar productivity and LC are

important, we will expect the Quota system outperforms the Auction system. Moreover, we can identify,

given the parameters, when the Quota system outperforms the Auction system:

Proposition 3. The Quota system outperforms the Auction system if and only if:

µ̂

µ

θ̂̄

θ̂i



h (✓i, X)� h

✓

✓i,
µi

pA

◆�

dFdG �

µ̂

µ

θ̂i
ˆ

θ

⇥

h
�

✓i, x
⇤
�

✓i, p
A
��

� h (✓i, X)
⇤

dFdG (10)

Proof. Use equations 8 and 9, and rearrange terms.

The objects inside the brackets in each side of the equation represent the gains and losses respectively

of the Quota system with respect to the Auction system. Broadly speaking, constrained farmers will get

more water under the Quota system, hence the expression in brackets in the LHS is positive. Along the

same lines, unconstrained farmers will get more water under the Auction system than under the Quota

system, hence the expression in brackets in the RHS is positive. Given the concavity of the production

function, which system is more efficient will depend then on the differences of utility of each group. These

relative gains in efficiency would have to be weighted by the number of farmers in each group. Hence, the

efficiency ranking will also depend on the relative size of each group.
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Given the structure of the model, we would expect a market for water to exist between regions. Between

regions, each individual in the model represents a whole region. It is unlikely that a whole region or a

big association of farmers is liquidity constrained. Also, it is very likely that different regions, specially if

they are far apart, are affected by idiosyncratic shocks and, thus, can benefit from trading. We would also

expect a non-market mechanism for water to exist within a region. Within a region, each individual in the

model represents a farmer. It is likely that a given farmer is liquidity constrained. Also, it is unlikely that

farmers within the same region are affected by important idiosyncratic shocks. They are more likely to be

affected by aggregate shocks.

3.4 Endogenous Borrowing Constraints

This sub-section is a direct application of Albuquerque and Hopenhayn (2004). Interviews with farmers

reveal that credit markets were not used by farmers. There was no centralized credit market and farmers

will not ask for a loan from a relative unless their situation was desperate. Moreover, there was no easy

way to enforce a loan but reputation (poor macro institutions).37

The intention of this sub-section is twofold. On the one hand, to show that it is unlikely that a short

term credit market would emerge, hence the farmers would be financially constrained. On the other hand,

even if such short term credits did exist, the amount of the loan would be sub-optimal, meaning that the

farmers would be partially financially constrained. There are two characteristics of the situation depicted

here that make this situation extremely likely: lack of perfect enforceable property rights and the relatively

low long-term profits compared with the price of water. Lack of enforceable property rights means that

the farmer can take the money from the loan (or the money from the harvest) and walk away, without

repaying the loan. This imposes a constraint in the amount of cash that the potential lender would give to

the farmer. The expenses in water during a dry year suppose a big part of the cost of that year. Long term

profits are not very sensitive to past rain. Hence, the maximum amount of cash that the potential lender

would lend to the farmer will be particularly low in those years in which the farmers need a particularly

high amount of cash.

Time is discrete and infinite. At time zero the farmer is pursuing a project (planting some trees) and

needs an initial investment of I0 � 0.38 The plot of the farmer will produce a flow of revenues each period

37In contrast to German credits cooperatives (Guinnane, 2001), the farmers in southeastern Spain were not able to create
an efficient credit market. Spanish farmers were poorer then German farmers and, more importantly, the weather shocks were
aggregate (not idiosyncratic) and greater in magnitude. Hence, in order to reduce the risk, Spanish farmers should resort
to external financing. However, external financing have problems such as monitoring costs and information acquisition that
credit cooperatives do not have.

38Notice that I0 = 0 is a possibility here, meaning that the results will follow even if the farmer only needs short term
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that depend on the amount of water purchased and the rain R̃ (w, r). Without loss of generality, we can

define R (k, s) ⌘ R̃ (w, r), where k is the cash that the lender lends to the farmer (and the farmer uses

to buy water) and s 2 S ⇢ < is a revenue shock. Notice that s includes both the variability in rain and in

the price of water. The revenue shock s follows a Markov process with conditional cumulative distribution

function L
⇣

s
0

, s
⌘

. L (·) is jointly continuous. In every period, the shock s (publicly known) is realized,

and then revenues R (k, s) are collected.

The farmer has limited liability; she starts with zero wealth and the lender is required to finance both

the initial investment and the advancement of cash every period.39 Both the farmer and the lender have

the same discount rate �. The lender can commit to a long-term contract with the farmer, but contracts

have limited enforceability as the farmer can choose to default. This means that the lender will continue

with the policy agreed in the contract until the farmer defaults, while the farmer can walk away any time.

If the match is ended, the residual value for the farmer is O (k, s).

A long-term contract specifies a contingent liquidation policy et 2 {0, 1}, cash advancements kt and

a cash flow distribution consistent on a dividend dt � 0 for the farmer (and its complement R (kt, st)� dt

for the lender). We assume that there is competition in the credit market. Hence, lenders will break even

in equilibrium while farmers will make profits. Notice that this is the most conservative approach since it

maximizes the set of parameters under which there will be a loan.

Under perfect enforceability is easy to see that the lender will give the farmer the money she needs

for the initial investment, provided that the project is profitable. The lender will also give the farmer in

each period the optimal amount of cash k⇤ = argmax
k

{R (k, s)� (1 + �) k}. However, under imperfect

enforceability there would be inefficiencies both in the extensive margin (the lender would not offer any

contract to the farmer) and the intensive margin (the lender would only advance an amount of cash lower

than the optimal). If the contract is implemented it will have two phases, depending on the history. At the

beginning, the farmer will pay all the revenues generated to the lender in order to repay the loan. During

this phase, the cash advances that the lender provides the farmer will be suboptimal. If the match is not

broken before that, there will be a point at which the farmer has a sufficiently high value of the match

(since the farmer has paid a big amount of the loan) so that the lender will lend him the efficient amount

of cash advances, and the farmer will get part of the revenue generated.40

Following Albuquerque and Hopenhayn (2004) the optimal contract will have the following properties:

financing.
39If the farmer starts with some wealth Ĩ0, then the project only needs financing of I

0

0 = I0 − Ĩ0.
40Notice that, due to the stochastic process of s the relation could go back and forth between the two phases. Moreover,

since the revenue could be negative the principal of the loan could increase over time.
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• Inefficiency at the extensive margin: The set of parameters under which a credit contract is

feasible is strictly smaller than the set of parameters under which the investment is profitable.

• Inefficiency at the intensive margin: Even when a loan is awarded, the amount of cash advance-

ments will be suboptimal. This case is indistinguishable from the case in which the farmer has a

fixed amount of cash to expend or has exogenous financial constraints. Since the amount of cash is

lower than optimal, the amount of water bought at the auction will also be lower than optimal.

• Inefficient liquidations: Although the farmer cannot commit to a contract, the lender can. The

lender will commit to early (inefficient) liquidation in order to prevent the farmer from walking

away with the cash. Remember that, given the perfect observability of this model, in the perfect

enforceability case, a relation was never liquidated.

As a summary, the credit is not awarded to the farmer even though it would have been profitable. Even

when a loan is awarded, the amount of water bought at the auction will also be lower than optimal.

Whether because of lack of credit of lack of sufficient credit, the farmer will be liquidity constrained.

Finally, due to imperfect enforceability, the lender will commit to early liquidation. This could be the

reason why the Heredamiento committed to a policy of “only cash”, even though it seemed to reduce its

revenue.

4 Econometrics

In Section 3 we showed evidence of LC. However, a reduced-form analysis, although useful to identify

the patterns on the data, is not so useful if we are trying to construct a counterfactual. In particular, it

is unclear how to incorporate some features of the empirical setting that are essential when estimating

demand, such as the seasonality of demand, the inter-temporal substitution due to the “storability” of water

and the inter-temporal dependence of cash holdings and the interaction among them. Hence, we need

to incorporate these singularities into an econometric model. In this section, we propose an econometric

model that takes into account all those features and an estimation procedure.

The database is a panel. Each week the farmers can buy up to J units of water. Each individual i

represents a farmer while each period t represents a week. We restrict the data to analyze this simple case

to farmers that have only apricot trees. We are down to 24 farmers. We are going to use the following

variables:

• jit 2 {0, 1, ..., J}, is the number of units that farmer i buys at period t.
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• pt is the price (in pesetas) per unit of water during period t.

• rt is the amount of rain (measured in mm) that fall in the town of Mula during period t. We actually

compute the amount of water during the seven days prior to the auction.

• areai (m) is the farmer’s plot area.

• rei is the value of the real state that the farmer owns (measured in pesetas).

We are going to estimate the following parameters:

• � is a vector of parameters that determine the payoff function.

• � is a vector of parameters that determine the cash flow function.

4.1 Model without Liquidity Constraints

The value function has five arguments:

• Mit (deterministic, measured in l/m2): is the moisture of the plot. It represents the amount of

water “stored” in the farmer’s plot.

• wt (deterministic): is the weekly seasonal effect. Its support is {1, 2, ..., 51, 52}.

• pt (random, measured in pesetas): is the price for each unit of water during week t. Prices are a

big determinant of demand. Here, prices play a twofold role. Higher prices means that farmer would

demand less water or that farmer will not demand any water at all, if the price is above their cash

holdings.

• rt (random, measured in l/m2): is the amount of rain that fell on the town during period t.

• ✏it ⌘ (✏i0t, ..., ✏iDt) (random): is a choice specific component of the utility function.

The law of motion for the moisture Mit is:

Mit = min

⇢

Mi,t�1 + rt +
jit · 432, 000

areai
� ET (Mit, wt) , FC

�

(11)

where jt is the option chosen by the farmer at period t (here the option chosen is equal to the number

of units bought), ET (Mit, wt) is the adjusted Evapotranspiration at period t and FC is the Full Capacity

of the farmer’s plot. For details about this formula see Appendix A.2. Moisture is the main determinant of
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demand (together with the seasonality). Although, we do not directly observe the moisture in each plot,

we can compute it. The moisture of a given plot will increase only with rain or irrigation, both of which are

observable, and will decrease due to Evapotranspiration (Evaporation and Transpiration ET). We follow

the literature in agricultural engineering to compute the ET, which will depend on the season of the year

and on the level of moisture on the plot (see equation 11 below).

The evolution of the weekly season is mechanical:

wt =

8

>

>

<

>

>

:

wt�1 + 1 if wt�1 < 52

1 if wt�1 = 52

(12)

Farming is a seasonal activity and each crop has different water requirements depending on the season.

Since the market for water has a weekly frequency, we have a state variable with a different value for every

week of the year.

We assume that (pt, rt) is jointly i.i.d. conditional on wt. We can compute (non-parametrically) the

joint probability distribution of prices and rain. Hence, this assumption is testable. While assuming that

(pt, rt) is jointly i.i.d. unconditionally is unrealistic (and we can reject it empirically), assuming that (pt, rt)

is jointly i.i.d. conditional on wt is both realistic and testable. Price is fully determined by the rain during

last week, the season and some measure of the moisture in all farmers plot. In our data, it is the case that

rain and season (rt, wt) are a sufficient statistic to predict price. In other words, after controlling for rain

and season, the remaining “error” on prices is a white noise (uncorrelated to past rain, past prices or past

“errors”).

The error term ✏ijt is choice-specific. Hence, we are more interested on the differences in ✏ijt across

choices than in ✏ijt per se. For example, in the case in which J = 1, the farmer has to choose whether to

buy 1 unit or buy nothing. In this case the farmer will measure the difference in utility between buying or

not for the observable components and the unobservable components. Taking the observable components

(and the parameters) fixed, the probability of a farmer buying the good is increasing on the expectation of

the difference in ✏ijt, i.e. E [✏i1t � ✏i0t]. If we assume that ✏ijt follows a extreme type I distribution then

(✏i1t � ✏i0t) follows a logistic distribution.

We allow the flow payoff function h (·) to depend on the moisture of the plot every week, the season

and an unobserved vector of parameters �. We will also allow for an unobserved choice-specific component

of the purchase/irrigation ⇣j . The intuition for including ⇣j is that the farmer might have to incur in

additional cost (disutility) when irrigating, and this cost depend on the amount of units bought, e.g., if
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the farmer has to hire a laborer to help him during the irrigation, the wage of the laborer will be increasing

on the number of unit bought. The value function is then:

V (Mit, wt, pt, rt, ✏it) ⌘ max
jit2{0,1,...,J}

{h (Mi,t, wt; �)� (jitpt + ⇣j + ✏ijt)+

+�E [V (Mi,t+1, wt+1, pt+1, rt+1, ✏i,t+1) |Mit, wt, pt, rt, jit]}

s.t. Mit � PW

(13)

where h (Mit, wt; �) is the payoff function and PW is the Permanent Wilting point, i.e., the level of

moisture below which the tree will die (see Appendix A.2.

4.2 Model with Liquidity Constraints

The value function has six arguments. In addition to the five arguments used in Subsection 4.1, we have

now an additional state variable:

• µit: represents the amount of cash that the individual has at period t.

The law of motion for the”cash” variable:

µit = µi,t�1 � pt�1ji,t�1 + �i0 + ⌘it + ⌫it (14)

where �i0is the weekly net cash flow of the farmer, ⌘it is the revenue that the farmer gets when she

sells the harvest and ⌫it is an idiosyncratic financial shock with variance equal to �2
iν .

41 We should interpret

�i0 not only as the cash generated (or not expended) by the real estate owned by each farmer but also as

the cash generated by other activities which in turn are correlated with real estate. Other activities include

another job the farmer may have or other investments.

The value function is then:

V (Mit, wt, pt, rt, µit, ✏it) ⌘ max
jit2{0,1,...,J}

{h (Mit, wt; �)� (jitpt + ⇣j + ✏ijt)+

+ �E [V (Mi,t+1, µi,t+1, wt+1, pt+1, rt+1, ✏i,t+1) |Mit, wt, pt, rt, µit, jit]}

s.t. Mit � PW

s.t.jitpt  µit, 8jit > 0

(15)

41Hence, ⌘it is equal to 0 all weeks expect the week after the harvest when it is positive. We estimate this revenue
non-parametrically using out-of-sample data and the rain and purchases of each harvest year.
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5 Estimation

We estimate the parameters of the model using a three-step estimator. This estimator is an expansion of

the two-step estimator proposed by Hotz and Miller (1993), in which we include a third step in order to

estimate the parameters of the liquidity constraint. In the first step we estimate (non-parametrically) the

transition probability matrices as well as the conditional choice probabilities (CCP).42 In the second step,

we use only the data of those farmers that we know are not liquidity constrained, using a CCP estimator

(see Hotz and Miller, 1993) and the econometric model in sub-section 4.1.43 With this estimator, we will

get a consistent estimate of Θ ⌘ (�, ⇣), because these farmers are not constrained. We call this estimator

Θ̂0. We will then treat this estimator as the “true” value of Θ. In the third stage, we will estimate the

vector of financial parameters � using the econometric model in sub-section 4.2, taking the parameters

estimated in the first and second stage as given.44 See Appendix C for details about the estimation.

5.1 First Step

The first step of the estimator includes the estimation procedures outside the dynamic routine. We estimate

the transition probability matrices for the relevant states using a (non-parametric) bin estimator. We also

compute smooth conditional choice probabilities using the methods described in Srisuma and Linton (2012).

5.1.1 Transition Probabilities

We estimate the transition matrices for each of the state variables of the model (moisture, week, price,

rain) except the cash holdings. The transition probability of the cash holdings will be estimated in the

third stage. As explained in the previous section the transition of the moisture and rain are deterministic.

Rain and price are assumed to be jointly i.i.d. conditional on the weekly seasonal effect.

5.1.2 Conditional Choice Probabilities

We also compute smooth conditional choice probabilities (CCP) in the first step (see Appendix C.1).

One of the shortcomings of dynamic discrete choice estimation methods is that the state space needs to

be finite and discrete. If one or more of the state variables are continuous, the econometrician usually

42In our data set there are many states, this means that the probability of purchasing in a given (discretized) state is very
low. Instead of defining a coarser state space we compute non-parametric smooth CCP. See Appendix C.1 for details.

43See Appendix C.
44Aguirregabiria and Mira (2007) proposed and algorithm to incorporate permanent unobserved heterogeneity into dynamic

games. However, their algorithm only allows for unobserved heterogeneity in the payoff function. In addition to that, CCP
is much faster than other estimation methods, and speed is also a binding constraint when estimating a model with a big
parameter space dimensionality.
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Figure 1: Seasonal Stages for “Búlida” Apricot trees

Source: Pérez-Pastor et al (2009).

resort to “discretize” the continuous variables. Sometimes, even if the state variable is discrete in nature

the econometrician group several values together in order to reduce the dimensionality of the problem.

Without this discretization, the high dimensionality of the state space would make some problem intractable.

Moreover, if some state variable has a big support, there might be no observations in some of the bins,

making it impossible to compute the CCP. This is an issue in our specification in which we allow for 52

seasonal effects and want the moisture variable to be as fine as possible.

An alternative method to deal with continuous or very fine discrete variables is to compute smooth

CCP. With smooth CCP we can have a richer state space. Smooth CCP are probabilities created from

the raw probabilities and a smoothing non-parametric kernel. The kernel assigns positive probability not

only to the bin that corresponds to the observation, but also to bins that are “close” to it. Moreover,

grouping several values of a discrete variable can be seen as a particular case of smooth CCP, in which the

probability assigned to each data point is positive and uniform within the new bin and zero outside the

bin.

5.2 Second Step

In this sub-section, we estimate the parameters affecting the production function (�; ⇣) using the CCP

estimated in the first step and the model presented in sub-section 4.1. Since we are estimating a model

without liquidity constraints (LC), in the second step we will only use data on unconstrained farmers.

Following Torrecillas et al (2000) we can specify the weeks of the year in which irrigation is “critical”

for apricot trees, as shown in Figure 1. The critical weeks include the second rapid fruit growth period

(Stage III) and two months after the harvest, i.e., Early Post-Harvest (EPH). Both periods are located

consecutively: before and after the harvest.

Stage III corresponds to the period of high growth before the harvest. This stage is critical because

it is the stage at which the trees “transform” water into fruit at the highest rate. The EPH period is also

important because of the stress that the trees suffer during the summer after the harvest. Before and

during the harvest the trees use the water at a high rate. Hence, the levels of moisture in the trees are
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very low after the harvest. In order for the trees to survive the summer, they need to be irrigated. Failure

to do so will result in a lower output during the next season (see Pérez-Pastor et al, 2009).

For the main estimation we will consider a simple payoff function with � ⌘ (�1, �2):

h (Mt−1, wt; �) = [�1 · (Mt−1 � PW ) ·KS (Mt) · Z1 (wt) + �2 · (Mt−1 � PW ) ·KS (Mt) · Z2 (wt)] ·areai (16)

where h (Mt�1, wt; �) is the harvest at period t, areai is the size of the land (m2) that farmer i owns,

KS (Mt) is the hydric stress coefficient (see Appendix A.2), Z1 (wt) is a dummy variable that equals 1

during weeks 18-23 and 0 otherwise:

Z1 (wt) =

8

>

>

<

>

>

:

1 if 18  week  23

0 otherwise

(17)

and Z2 (wt) is a dummy variable that equals 1 during weeks 24-32 and 0 otherwise:

Z2 (wt) =

8

>

>

<

>

>

:

1 if 24  week  32

0 otherwise

(18)

The characterization of � is just a direct application of the results in the agricultural engineer literature

(Torrecillas et al, 2000; Pérez-Pastor et al, 2009). �1 measures the transformation rate of the fruit during

the fruit growth (stage III) season. �2 measures the recovery of the tree during the early post-harvest

stress season. Both parameters are measured in pesetas per millimeters and square meter, or in pesetas

per liter.

With this payoff function we can compute the revenue that the farmer obtains in a given year:

Revenuet =

52
X

wt=1

h (Mt−1, wt) =

23
X

wt=18

�1·(Mt−1 � PW )·KS (Mt)·areai+

32
X

wt=24

�2·(Mt−1 � PW )·KS (Mt)·areai

(19)

5.3 Third Step

Figure 2 shows the liters of water bought, on average, for both the wealthy and the poor farmers, as

a function of the season (week). We can see from the data that, for the wealthy farmers, which are

unconstrained, the periods in which irrigation is more likely are the weeks before the harvest (weeks 18-23)

that correspond to Stage III and the weeks after the harvest (weeks 24-32) that correspond to EPH.
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Figure 2: Liters bought by week.

* The vertical lines mark the critical irrigation period. The vertical solid line indicate the harvest. The first vertical dotted
line indicates the beginning of the pre-harvest season (Stage III) and the second vertical dotted line indicates the end of the
post-harvest season (EPH).
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Table 6: Structural Estimation. Demand Parameters.

Structural Baseline
Parameters (1)

Transformation rate pre-season �1
0.4404

-

Transformation rate post-season �2
0.4404

-

Irrigation cost ⇣�0

10.0149
-

In specification 1 we restrict the value of the transformation rate to be the same pre- and post-season, i.e. �1 = �2.

5.4 Estimation Results

In this sub-section, we present the estimation results of the structural model under different specifications.

We present the structural estimates obtained using a tolerance level of 1.0e � 25. In table 6 we present

the results of the second stage of the estimator, i.e., the demand parameters (�; ⇣), of equation 13. We

use the functional form presented in equation 19. In the baseline case we restrict the values of the vector

⇣ so that it is constant if the farmer irrigates a positive amount and zero if the farmer does not irrigate,

i.e., ⇣0 = 0 and ⇣j = ⇣k = ⇣�0 8j, k > 0. Hence, we are estimating three parameters in the second stage

(�1, �2; ⇣�0).

The results in Table 6 refer to the estimation of the model expressed in equation 13 using the specifica-

tion shown in sub-section 5.2 (see Appendix C.2 for details in the estimation). The value of �i correspond

to the transformation rate of the median farmer, with 76 apricot trees. Hence, a value of 0.44 corresponds

to a transformation rate of 0.006 pesetas per tree, per millimeter of moisture above the Permanent Wilting

point. The irrigation cost represents the cost in pesetas that a farmer must incur every time he wants to

irrigate.

In Table 7 we show the values of the estimated parameters of equation 23 in the third stage. We

can see that there is a lot of variation both in the estimated consumption rate �i0 and in the estimated

variance of the idiosyncratic shock ⌫it. The consumption rate is an estimation of the net consumption of

each farmer. The differences in mean annual revenue are driven by both differences in purchase patterns

and differences on the number of trees.

6 Discussion

In this section we compute the welfare under both the auctions and the quotas. The structural model

allow us to see what differences in the allocation from the two institutions are more important, including

Liquidity Constraints (LC). In sub-section 6.1 we describe our welfare estimations for both markets and
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Table 7: Structural Estimation. Liquidity Parameters.

Farmer ID
Consumption

Rate
Variance

Mean Yearly
Revenue

i �i0 �2

iν ⌘i

1 12.1 18.9 924.4

2 7.7 8.6 1,980.9

3 51.8 0.2 5,089.4

4 10.3 144.6 1,646.1

5 17.9 30.1 2,664.8

6 11.2 13.9 1,696.0

7 8.5 51.2 1,216.5

8 3.0 2.5 1,102.1

9 11.3 20.2 1,820.2

10 0.2 0.7 1,955.3

11 51.9 162.9 3,508.4

12 22.5 17.0 2,475.8

Mean 17.2 39.2 2,173.3

SD 17.2 55.5 1,166.1

All terms expressed in pesetas. Results for the third stage using the values in specification 1 in the previous table for the
second stage.

quotas, under different assumptions. In sub-section 6.2 we show a summary of the results. In sub-section

6.3 we show the results disaggregated by year. In sub-section 6.4 we discuss the limitations of our analysis.

6.1 Welfare Measures

In this section we use the results from the previous section and perform counterfactual analysis. The goal of

this section is to use the demand parameters estimated in the previous section �̂ and compute the welfare

under different scenarios. For the auction system we compute both the Revenue and the Welfare per tree

and year. In the quotas system, Revenue and Welfare coincide in expectation. In particular, following

equation 19 we have:

Revenuei =
1

# treesi

1

T

T
X

t=1

[Revenueit] =
1

# treesi

1

T

T
X

t=1

"

52
X

wt=1

h (Mi,t�1, wt)� (⇣j)

#

(20)

Welfarei =
1

# treesi

1

T

T
X

t=1

[Welfareit] =
1

# treesi

1

T

T
X

t=1

"

52
X

wt=1

h (Mi,t�1, wt)� (⇣j + ✏ijt)

#

(21)

Notice that we do not take into account the expenses in water. Since this is a welfare comparison,

transfers should not be taken into account. Notice also that the only difference between Revenue and

Welfare corresponds to the choice specific unobservable component. Since the error term ✏ijt is choice-
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specific the relevant elements are differences in ✏ijt across choices, and not ✏ijt. For example, in the case

in which J = 1, the farmer has to choose whether to buy 1 unit or buy nothing. In this case the farmer will

balance the difference in utility between buying or not, considering both the observable components and

the unobservable components. The probability of a farmer buying water increases with the expectation of

the difference in ✏ijt, i.e., E [✏i1t � ✏i0t].

By construction, the unconditional mean of the differences in the error term is zero. Hence, in the

quota system, since the farmers cannot choose when to irrigate, the expectation of the differences in the

error term is zero, i.e., E [✏i1t � ✏i0t] = 0. However, in the auction system, farmers can choose when

to irrigate. Hence, the expectation is not zero. Moreover, farmers are more likely to irrigate when their

(unobserved) utility of irrigation is high, i.e., ✏̂i1t > ✏̂i0t. This implies that under the auction system we

have E [✏i1t � ✏i0t|j = 1] > 0 and E [✏i0t � ✏i1t|j = 0] > 0. In other words, with the auction, gains from

trade can be realized. In the model presented here gains from trade are translated into the timing of the

irrigation. Farmers “trade” with each other in order to irrigate at their preferred time.45

We compute the revenue generated by the auction system, for poor and wealthy farmers, using the

actual allocation of water during the sample period. We also compute the revenue generated by the

counterfactual allocation under the quota system under different scenarios:46

Auctions

• Poor farmers: We compute the revenue produced during the period of study using �̂ and the actual

purchases made by the poor farmers. We use equation 19 and the actual moisture in the farmers’

plots and compute the revenue for each farmer and for the whole economy.

• Wealthy farmers: We compute the revenue produced during the period of study using �̂ and the

actual purchases made by the wealthy farmers. We use equation 19 and the actual moisture in the

farmers’ plots and compute the revenue for each farmer and for the whole economy. Notice that

this welfare could be greater than the first best average welfare. Since poor farmers are sometimes

constrained, wealthy farmers are buying more water than what the first best establishes and thus,

getting a greater revenue.

45Farmers do not actually trade with each other, they just “select” when they want to trade. The auction system is more
flexible than the quota system in this aspect.

46Alternatively, we could simulate the optimal decision of each farmer in the case in which they are not liquidity constrained
and compute the revenue. We could use the actual prices and rain patterns, and then compute the counterfactual moisture.
Notice that this case is an overestimation of what the welfare under the auction without liquidity constraints would be,
because we are using the actual prices. If all farmers were not liquidity constrained, as we have seen in sub-section 3.2, the
prices would be greater. With greater prices the farmers would buy less water overall and thus, will produce a lower revenue.
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Quotas

• Based on # of trees: There were 53,020 trees in the Huerta of Mula in 1955 according to

the agricultural census and there are 24 individuals with 2,069 apricot trees in total (86.2 trees on

average) in our sample. We consider a counterfactual case in which all the irrigated land was planted

with apricot trees. Hence, we consider an economy with 616 farmers, each of them with 86 apricot

trees. In this case each farmer consumes 0.2 units of water every three weeks, if there was any water

available during that week.

• Based on # units bought: The 24 apricot farmers bought 750 units over our sample period. We

consider as a counterfactual an economy with 24 farmers with 86.2 apricot trees each. Hence, this

economy has also 2,069 apricot trees. In this case, every time one unit was bought in the real data,

all farmers will receive an equal amount of water.

• Based on # units bought, adjusted: We also adjust the previous case by making farmers receive

water only once every three weeks, if there is any water available during that three-week period.

Hence, farmers will receive a greater amount of water each time, compared to the previous case.

However, farmers will irrigate at most once every three weeks.

6.2 Welfare Results

In Table 8 we show the weighted (by # of trees) average of revenue and welfare, across farmers. The

first thing to notice in Table 8 is that our estimation for 1955-66 has a greater average revenue and a

lower dispersion than the data corresponding to 1954. One explanation is that 1954 was a dry year, hence

the revenue was lower than average and the gap in revenue was greater than average.47 In addition to

that, we cannot rule out that the wealthy farmers are more productive due to unobservables that the

poor farmers. The differences in revenue estimated in Table 8 are based on differences in moisture only,

since our specification assumed that all farmers are equally productive, up to an idiosyncratic shock. One

explanation for this unobserved differences in productivity could be that wealthy farmers also used other

productive input (such as manure or hired labor) in greater quantities than poor farmers. This explanation

would consistent with the idea that poor farmers get a lower revenue due to their LC, but also through a

different input.

We can also see in Table 8 the results from the counterfactual welfare measures. As expected, under

47In Figure 3 we can see that this was indeed the case for 1958 and 1963.
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the auction system, poor farmers have a lower revenue than wealthy farmers (17% less). Also expected

is the fact that, under the auction system welfare is greater than revenue, while welfare is identical to

revenue under the quota system. Finally, we can see that the Quota system increases the revenue of the

poor farmers (17% increase in revenue), but not for the wealthy farmers (0% increase in revenue). Overall,

the change to a quotas improved the welfare of the average farmer (8% increase in revenue).

The welfare computed using the # trees in the sample seems too high. The reason is that not all the

area under cultivation is planted with trees. If we do not take into account that fact we are left with a

smaller area. This translates into a greater amount of water available for irrigation per tree. The high

value is a direct consequence of farmers getting a lot of water for irrigation using this counterfactual.48 In

order to avoid this issue, we compute another counterfactual allowing the farmers to use only the amount

of water actually bought in the sample. This computation is more realistic as we can see in column 4. The

results in columns 4 and 5 are very similar since the only thing that changes is the frequency of irrigation.

The counterfactual results in columns 4 and 5 are just a redistribution of water from wealthy apricot

farmers to poor apricot farmers. In reality, if apricot farmers are poorer than the rest of the farmers, there

would also be a redistribution from non-apricot farmers to apricot farmers, and vice versa.

Table 8: Welfare (pesetas per tree and year) - Counterfactual.

Auctions Quotas

Revenue
1954

Revenue Welfare # trees # units # units⇤

(0) (1) (2) (3) (4) (5)

ALL 118.8 122.1 - 169.2 132.2 135.8

Poor 82.8 112.0 - 169.2 132.2 135.8

Wealthy 145.3 132.2 - 169.2 132.2 135.8

In column (0) we report the revenue reported by the farmers in the Agricultural census. In column 1 we report just the value
of the production h (·) minus the cost of irrigation ⇣, under the auction system. In column 2 we report the total welfare,
that is including the ✏ when farmers irrigate. Notice that the quantities in column 2 are always greater than the quantities
in column 1: in the auction system, since farmers can choose when to irrigate, they irrigate when the value of (✏1 − ✏0) is
big. In columns 3, 4 and 5 we report the revenue, since in the case of quotas the expectation of (✏1 − ✏0) = 0. In column 3
we report the revenue of the counterfactual quota system when we use a uniform amount of water in each week, assuming
there are 53,020 apricot trees in the economy. In column 4 we report the revenue of the counterfactual quota system when
we redistribute the water that farmers actually used and they irrigate once every week. In column 5 we report the revenue
of the counterfactual quota system when we redistribute the water that farmers actually used and they irrigate once every
three weeks.

Table 9 shows the estimated revenue for both institutions disaggregated by season. We can see there

that quotas outperform auctions in terms of revenue. However, this comparison is made without considering

the irrigation costs. Since the quota system requires a more frequent irrigation, adding these costs means

48Alternatively one could compute the welfare if we assume that all the area not planted with trees (but planted with
vegetables) were to be planted with trees. In this case the area is too big, and the welfare computations too small.
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Table 9: Revenue comparison.

pesetas per tree Pre-season Post-season Total

Quotas All 50.9 81.3 132.2

Auctions
All 47.5 74.6 122.1

Poor 44.1 67.9 112.0

Wealthy 50.8 81.4 132.2

* All terms are expressed in pesetas per tree. Quotas based on # units bought.

that the reduction in revenues in the quota system will be greater than the reduction in revenues in the

auction. Moreover, in order to fully compare both mechanisms, we need to add to the auction system the

gains in welfare due to the gains from exchange, as explained above.

6.3 Yearly Results

In Figure 3 we can see that there is substantial variation on revenue across time. This variation is due to

the variation in rainfall. Revenue is lowest for both poor and wealthy farmers during 1961-63, which were

also the driest years in our sample (see Figure 9 in Appendix A). It is also interesting to see how the profits,

i.e., the difference between expenses and revenue per tree, decreases during the drought of 1961-63 and

then increases again after it.

In Figure 4 we can see the profits of the poor and wealthy farmers. We can see in the figure that the

profit of both types of farmers is low when the price is high (1957 and 1962). What is more interesting is

that the gap between profits goes up the year after the price is high (1958 and 1963). We interpret this

increase in the profit gap as the financial effect that a drought has on the savings of the poor farmers.

The poor farmers can “survive” during a dry year, by using some of the accumulated savings from previous

years. However, if the drought persists, then the farmers cannot keep up and the profit gap increases.

In Figure 5 we decompose both the expenses and the revenue into pre- and post-season. We can then

see how the revenue in the pre-season in 1961 was high, due to the rains of the spring of 1961 and the

generous winter of 1960-61 (see Figure 9 in Appendix A). After that we can see the drop in pre-season

revenue in 1962-63. It is worth noticing that the differences in revenue between poor and wealthy are

mostly driven by the pre-season revenue after 1961. This is consistent with the idea that poor farmers will

buy water and get a level of moisture similar to the wealthy farmers only during the post-season when they

have the money from the harvest. This effect is more clear after the drought of 1961-63, since the savings

of the poor farmers are more exhausted than during the rest of the period.

In Figure 6 we can compare the revenue obtained with the auction system for both poor and wealthy
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Figure 3: Average Revenue (estimated) and Expenses (data)

Figure 4: Profits (Revenue - Expenses)

Figure 5: Average Revenue (estimated) and Expenses (data).
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Figure 6: Seasonal Revenue per tree (pesetas).

farmers as well as the counterfactual with quotas (based on # units bought). We can see that, in terms

of revenue, the quotas perform best overall. Farmers under quotas would obtain a similar revenue to the

wealthy farmers with the auction during the beginning and the end of our sample period and a greater

revenue during the middle of the sample period. Notice as well that the greatest difference between

the revenue of the poor and the quotas, especially during the dry years of 1962-64, happen during the

pre-season.

6.4 Limitations

In addition to the redistribution of water, there are other margins in which a system of quotas could improve

the efficiency with respect to the market. We have taken into account some of them when making the

comparison, but others are harder to quantify. Here are those that are harder to quantify:

Strategic Supply Whether to run an auction or not was a decision made by the president of the

Heredamiento the Aguas. There is no evidence of a strategic decision on whether to run the auction:

if there was enough water in the dam, the auction was run. However, we know that the president could

stop the auction at any time, and indeed used to do so if the price fell considerably (usually to less than 1

peseta). This situation was uncommon and happened only after an extraordinary rainy season. However,

we should take into account that the decision on when and whether to sell water, made by the seller, need

not be welfare-maximizing but would be revenue-maximizing.

Strategic Size and Sunk Cost The results obtained when comparing revenue from quotas and auctions

suggest that the choice of size of the units allocated is not innocuous. In particular, the fact that in some
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years the farmers under the quota system produce a greater revenue than the wealthy farmers under the

auction system suggest that the size of the units sold at the auction (3 hours) might be too big. The size

of the units sold at the auction has not changed since the Middle Ages. This could be due to institutional

persistence or due to technical reasons, i.e., 3 hours could be the size that maximizes revenue. Based on

the results, it could be the case that 3 hours maximizes revenue but not welfare. The optimal size would

be determined by a trade-off between the sunk cost incurred every time a farmer irrigates (due to the loss

of water flowing through a dry channel) and the diminishing returns of water.

As shown in Donna and Espín-Sánchez (2013), the first unit of water allocated to a plot has to

flow through a dry channel, thus, some of the water will be lost. Subsequent units associated with the

same channel will then flow through a wet channel, thus not losing any water. In the auction system,

subsequent units are allocated to different farmers, depending on who has won each unit. However, in the

quota system, units are allocated to each farmer in geographical order, i.e., every unit will be allocated to

a neighbor farmer down the channel with respect to the previous farmer.49

The sunk cost implied by the dry channel would only be incurred by the farmer that irrigates first. In

our estimation, ⇣ is capturing the effect of both the sunk cost and the irrigation cost. Ideally we would

like to include the irrigation cost but not the sunk cost when computing the welfare with Quotas. Hence,

if we include the ⇣ in the welfare analysis for the quotas, we might be underestimating the welfare, and if

we do not include it, we might be overestimating it.

Optimal crop mix In our computations and counterfactuals, we are only considering cases in which the

farmers are growing one crop only. Since different crops have different needs for irrigation in different

seasons, the optimal crop mix will involve several crops. For example, oranges are harvested in winter,

and their need for water peaks in December. Apricots are harvested in summer, and their need for water

peaks in June. Hence, a crop mix with apricot and orange trees would outperform a single crop. This is

indeed what we see in the data; many farmers have orange trees and either apricot, peach or lemon trees

(all three are harvested during summer).

7 Conclusions

In this paper, we investigated a unique historical episode. A market that was active for more than 700

years came to an end and was replaced by a system of fixed quotas. The puzzle here is not so much

49In the neighboring city of Lorca, auctions are carried out independently for farmers with lands in each sub-channel. This
way, the water has to travel shorter distances and the amount of water lost is smaller.
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that the institution changed, as it is that the old institution was a market institution while the new

institution prohibited trading. Under general conditions, markets are considered the most efficient allocation

mechanism. Theoretically, we showed that when agents face liquidity constraints (LC), markets are no

longer the most efficient allocation. Moreover, a mechanism as simple as a fixed quota could outperform

markets if LC are sufficiently severe. However, if LC are not sufficiently severe, the market would still be

more efficient than the quota. Hence, whether the institutional change improved efficiency is an empirical

question.

As suggested by some historians, we showed empirically that LC were present. Poor farmers bought less

water than rich farmers during the critical seasons and they had lower revenue per tree as a consequence.

However, estimating demand when LC are present is not simple: a reduction in the amount purchased

after an increase in price could be due to either downward sloping demand or LC. The inter-temporal

substitution of water demand further complicates the analysis. We used a detailed data set and structural

dynamic demand estimation methods to identify LC from demand. We showed that neglecting LC would

result in an underestimation of the demand parameters.

With the recovered demand parameters we computed the welfare under the market and under the

quotas. We also proposed an econometric test, based on the model proposed, to test which system was

more efficient. Based on the results we concluded that the institutional change improved efficiency, i.e.,

the quotas generated greater revenue than the market. Hence, the end of the water market in Mula was

a “settled problem of irrigation”.50

The contributions of this paper are manifold. From a historical perspective we have provided empirical

evidence of a source of inefficiency in water markets, as well as empirical support for the institutional

change proposed by Espín-Sánchez (2013). From a theoretical perspective we have proposed a dynamic

model that includes storability, seasonality and LC, and shown the dynamics of this economy under a

market institution. Moreover, we have discussed the relation between storability and LC and shown how

ignoring LC would result in biased estimates. We also expanded the conditional choice probability estimator

proposed by Hotz and Miller (1993) and computed unobserved heterogeneity outside the payoff function.

We believe the three-step estimator proposed here could also be used in other applications.

Finally, the empirical results in this paper apply only to this specific setting, and one should not conclude

50Nowadays the institution in place is a two-tiered pricing. Farmers pay a low price for the water used up to a certain
threshold (quota) and they pay a high price for the water if the want to use more water than their quota. The two prices
are set every year and are meant to cover all operational costs. This system has the best features of Markets (people get to
choose when to irrigate, and if they want to irrigate “more”, they can do so at a premium) and Quotas (payments are made
after the harvest and each farmer is entitled to some water at a low price).
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that all water markets are inefficient. We have presented an empirical framework with the main ingredients

found in water markets: seasonal demand, storability and LC. The empirical framework can be used by

other researchers in other cases to assess the efficiency of water markets. We have also shown how ignoring

the financial situation of the farmers will lead to biased demand estimations. This result applies to a more

general case and implies that researchers should place more emphasis on the financial characteristics of

the farmers and not only on their demand characteristics.
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A Data Appendix

In this section we add detailed information regarding the data gathering and the moisture computation.

A.1 Detailed Data Information

In this sub-section we describe in greater detail the data set and show some graphs to better understand

the context of the imperial setting. We also present sample of the pictures used to create the data set.

Auction Data

In this paper we will not take into account the price differences within each week. Although we have all

the prices (40 prices per week), we only use the average price paid during that week and assume that all

farmers pay the same price. This simplification is not without cost but it greatly simplifies our analysis and

helps us focus on the main points of the paper: Liquidity Constraints and its implications for efficiency and

dynamic demand estimation. Nonetheless, in Appendix C.5 we provide an econometric model to estimate

the demand when we average over 4-unit auctions rather than the 40-unit auction. For details about the

dynamics and strategic behavior within 4-unit auctions see Donna and Espín-Sánchez (2013).

Figure 7 shows a sample picture of auction data. We can see the names of the 40 farmers that bought

water during that week and the prices they paid, which corresponds to May 17 1963.

Figure 8 shows the weekly average price paid by the farmers during our sample period. There is a lot

of variation with prices ranging from (virtually) zero to 2000 pesetas. The fall of 1955 saw a big flood that

damaged the dam for several months, thus auctions could not be carried out until the next fall. We can

also see some especially dry years like 1961-63 when there were no auctions in winter, causing the prices

to soar in spring and summer. Finally, after 1964, prices are less volatile than in the rest of the sample.

52



Figure 7: Sample of Auction Sheet

Figure 8: Prices of water 1955-66 (pesetas)

Source: Own elaboration from the data from the Municipal Archive in Mula. Weekly average.

Rainfall Data

Mediterranean climate rainfall occurs mainly in spring and fall and peak water requirements for the products

cultivated in the region are reached in spring and summer, between April and August. Between these

months, more frequent irrigation is recommended because during this period trees quality of production is
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Figure 9: Weekly Rainfall in Mula (mm).

Source: Own elaboration from the data from AEMET.

Figure 10: Samples of Agricultural Census (left) and Real Estate Census (left)

more sensitive to water deficits. In Figure 9, we can see that there are very few weeks in which it rains.

Moreover, its median is zero. However, in some of the rainy weeks the amount of rain is substantial. In

our short sample, on two occasions - September 1957 and October 1960 - the weekly rain exceeded the

yearly average.

Agricultural Census Data

Figure 10 shows a sample card of a farmer taken from the census data. It can be seen in Table 1, that

Area and # Trees varies considerably across farmers. If we focus on apricot trees, on average, each farmer

has 86 trees and buys 31.5 units for the period 1955-66.
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Figure 11: Composition of the plots in Mula.

Figure 11 shows the composition of the land in Mula, based on the area of the plots. We can see that

the most common crops are apricot and orange trees, followed by lemon and peach. There are also other

trees such as pear and apple trees present in the area. Finally, there is a variety of vegetables (tomatoes,

red peppers, cucumbers) and a considerable area planted with potatoes. The role of the vegetables

and potatoes is complementary to the trees. Fruit trees produce greater returns than vegetables, but

they require irrigation at specific times of the year and up to five years to reach maturity. By contrast,

vegetables, although they have lower returns, can be harvested a few months after the sowing. Hence,

they can produce a high output during a rainy year and the cost of drying up during a drought is not very

high; they can be sown again and be ready to produce the year after.

Real Estate Tax Data

The value in the real estate data records corresponds to the taxable income for urban real estate only.

Farmers have to pay an annual tax equal to 17% of the taxable income. The rural real estate holdings are

subject to different taxes and are kept in a different directory. This is important because the real estate

tax data is capturing precisely the effect that we are interested in: non-agricultural wealth.

A.2 Moisture Computation51

Trees are traditionally positioned in a square grid, each trunk 9 meters (m) from each other. Hence, there

is a tree for every 81 m2. This corresponds to our data in which for apricot trees the average ratio of trees

51This section follows closely Allen et al. (2006)
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per m2 is 79.96 m2/tree and the ratio between total number of trees and total area is 78.25 m2/tree.

These numbers are slightly smaller than 81 m2/tree because some farmers place some trees very close to

the edge of their plot.

Evapotranspiration (ET) is the loss of water suffered by the trees due to both Evaporation (E) of the

water stored underground and Transpiration (T) of the water stored within the plant through the surface

of the leaves. We use the method recommended by the Food and Agriculture Organization (FAO) to

compute the evolution of the moisture due to ET:

ETc = Kc · ET0

where ETc is the weekly ET of crop c, ET0 is the weekly reference ET and Kc is the crop coefficient.

Both ETc and ET0 are measured as millimeters per week (mm/week). ET is affected by climatic factors:

radiation, air temperature, atmospheric humidity and wind speed. The effect of those parameters is

summarized in ET0. We will use the estimations of ET0 in Franco et al (2000).

ET would also change depending on the phase of the growing cycle:

ETcb,t = Kcb,t · ET0

We can then distinguish four phases (initial, development, median and final) in the growing season.

Following (Allen et al. p 107) we have that Lini = 20, Ldev = 70 Lmed = 120 and Lfin = 60; 270 days

in total, finishing at the harvest season. The coefficient Kcb,t will be flat during the initial period (with

Kcb,ini = 0.35). It will be linearly increasing during the development period until it reaches the median

period. It will be flat during the median period (with Kcb,med = 0.85). It will be linearly decreasing during

the final period until it reaches the harvest (with Kcb,fin = 0.60 during the estimated harvest day). It will

then be linear during the no-growth period until it reaches the initial period of the next year at Kcb,ini.
52

Evapotranspiration Under Hydric Stress

ETc refers to the ET of crop c under standard conditions. We should nonetheless adjust the value of ETc

(ETc,adj) when those conditions are not met. When the soil is wet, the water has a high potential energy,

meaning that it can be easily absorbed by the roots of the tree. When the soil is dry, water is not so easily

absorbed by the roots. When the moisture of the plot falls below a certain threshold, we say that the crop

52Allen et al. (2006) formula (66).
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is under Hydric Stress (HS). The effects of HS are incorporated by multiplying Kcb by the Hydric Stress

coefficient KS:

ETc,adj = KS ·Kcb · ET0

Water availability refers to the ability of a soil to keep water available for plants. After a heavy rain

or irrigation, the soil will drain water until the full capacity is reached. The Full Capacity (FC) of a soil

represents the moisture that a well drained soil keeps against gravitational forces, i.e., the moisture of a

soil when the downward vertical drainage has decreased substantially. In our case:

FC = 1000 · ✓FC · Zr

where ✓FC is the moisture content of the soil at Full Capacity (m3 m�3) and Zr is the depth of the

tree’s roots (m).

In absence of a source of water, the moisture in the soil will decrease due to the water consumption

of the tree. As this consumption increases, the moisture level will go down, making it harder for the tree

to absorb the remaining water. Eventually, a point will be reached beyond which the tree could no longer

absorb any water: the Permanent Wilting (PW) point. The PW point is the moisture level of the soil at

which the tree will permanently die. In our case:

PW = 1000 · ✓WP · Zr

where ✓WP is the moisture content of the soil at the Permanent Wilting point (m3 m�3) and Zr is

the depth of the tree’s roots (m).

Moisture levels above FC cannot be sustained, given the effect of gravity. Moisture levels below PW

cannot be extracted by the roots of the trees. Hence, the Total Available Water (TAW) will be the

difference between both:

TAW = FC � PW

Zr = 4m in the case of apricot trees irrigated with traditional flooding methods. The soil in Murcia

is limestone, hence (✓FC � ✓WP ) 2 [0.13, 0.19] and ✓WP 2 [0.09, 0.21]. For our estimation we take the

middle point, i.e., ✓FC = 1240, ✓WP = 600 and TAW = 640.
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In practice, the tree will absorb water from the soil at a slower rate, even before reaching the PW point.

When the tree is under HS, the tree is not absorbing water at the proper rate. The fraction of water that

the tree can absorb without suffering HS is the Easily Absorbed Water (EAW):

EAW = pcTAW

where pc 2 [0, 1]. For the case of the apricot tree pc = 0.5, thus EAW = 320.53 The Hydric Stress

coefficient KS ⌘ KS (Mt) is a function of the moistness of the plot Mt:

KS (Mt) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if Mt > EAW

Mt�PW
EAW

if EAW � Mt > PW

0 if Mt  PW

Adding the subscripts for the periods we can write:

ETc,adj,t (Mt) = KS (Mt) ·Kcb,t · ET0

Finally, we have to take into account that, regardless of the amount of rain or irrigation, the moistness

of the soil can never get beyond the TAW . The evolution of the moisture Mt over time is then:

Mt = min {Mt�1 + raint�1 + irrigationt�1 � ETc,adj,t�1 (Mt) , TAW}

We get an average value for ETc of 8.77, which is smaller than Franco et al (2000) who find values

of 23.1-30.8 mm per week (3.3-4.3 mm per day) for almond trees in the same region. Pérez-Pastor et al

(2009) report an Evapotranspiration of 1,476 mm per year (28.4 mm per week). This difference is due

to the fact that recent studies are done using intensive dripping irrigation. Since the level of moisture of

the land is greater, so is the level of Evapotranspiration.

We can also look at empirical methods used in the literature to estimate ET based on the annual rain

R (mm) and is the annual temperature T (C). For Mula we have R = 347 and T = 16.7.

• Turc formula:

ET =
1
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6
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R
r

0.9 +
⇣

R
300+25T+0.05T 2

⌘2

3

7

7

5

=
327.15

7
= 6.29

53Sometimes pc is adjusted using the formula pc = 0.5 + 0.04 (5− ETc).
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• Coutagne formula:

ET =
1
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R�
R210�3

0.8 + 0.14T

�

=
308.63

7
= 5.94

Our value of ETc, computed following Allen et al (2006) is greater than those computed using these

empirical methods. They do not take into account irrigation, but are used as an average value. As

expected, our estimation of ET for traditional flooding irrigation is greater than the estimation without

irrigation but smaller than the estimation for intensive dripping irrigation.

B Theory Appendix

In this section we show the proof and the details of the models presented in sub-sections 3.2 and 3.3.

B.1 Dynamic Model

In this sub-section we show the proofs corresponding to the static model presented in sub-section 3.2.

Farmers can buy only a discrete amount of water x 2 N in each period and will get a utility of

u (x1, x2, p1, p2) = h ((1� �)x1 + x2) � p1x1 � p2x2. The only prices that are consistent with equi-

librium in the unconstrained case are pFB
1 ⌘ h (1� �) and pFB

2 ⌘ h (1), in the first and second period

respectively. The only allocation consistent with equilibrium is:

QFB ⌘

2

6

6

6

6

4

(1�X1 �X2) X2 0

X1 0 0

0 0 0

3

7

7

7

7

5

; pFB ⌘ [h (1� �) , h (1)]

Hence, the mass of farmers buying one unit of water in the first period, in the second period or buying

no water is qFB
10 = X1, q

FB
01 = X2 and qFB

00 = 1�X1�X2, respectively. Since each unit of water is being

used by a different farmer, the equilibrium is efficient. The equilibrium is also revenue maximizing because

it extracts all the surplus from the farmers.

O: We need to check that this is an equilibrium for each allocation such that qx1,x2
> 0. We need

to check that u
�

x1, x2, p
FB
1 , pFB

2

�

� max
x
0

1
,x

0

2

n

u
⇣

x
0

1, x
0

2, p
FB
1 , pFB

2

⌘o

. This case is trivial since

u
�

x1, x2, p
FB
1 , pFB

2

�

= 0 and max
x
0

1
,x

0

2

n

u
⇣

x
0

1, x
0

2, p
FB
1 , pFB

2

⌘o

. It is trivial to see why this is the

unique equilibrium. If pt > pFB
t , then the utility of the farmers buying only at period t would be

negative, and they would prefer not to buy. If pt < pFB
t , then the utility of the farmers buying only
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at period t would be positive, while the utility of farmers not buying water at all would be zero, thus

those farmers would be willing to pay a price p
0

t such that pFB
t > p

0

t > pt and get a positive utility.

They can do that as long as pt < pFB
t .

Q:
P

x1

P

x2

(qx1,x2
) = q01 + q10 + q00 = X1 �X2 + (1�X1 �X2) = 1

RC:
P

x1

P

x2

(⌧1 · qx1,x2
) = qFB

10 = X1 and
P

x1

P

x2

(x2 · qx1,x2
) = qFB

01 = X2

DC: Since the surplus is zero in both periods for all farmers, DC is trivially satisfied.

We will say that a Constrained Competitive Equilibrium is Efficient if all the units are consumed by some

farmer and there are no farmers consuming more than one unit. We will say that a Constrained Competitive

Equilibrium is Revenue Maximizing if p = pFB.

Case a) No Binding Liquidity Constraints, pFB
1 < pFB

2 < µL

If there are no binding liquidity constraints the equilibrium will be the same as in the FB case.

Case b) Mild Liquidity Constraints, pFB
1 < µL < pFB

2

If pFB
1 < µL < pFB

2 , then poor (µi = µL) farmers would buy one unit in the first period, but not in the

second period. Since there are “enough” wealthy (µi = µH) farmers, i.e., gH > X2, they will buy all the

water in the second period and some of the water in the first period.

qH01 = X2 wealthy farmers will buy one unit in the second period and qH10 = (X2 � gH) wealthy

farmers will buy one unit in the first period. qL10 = (X1 �X2 + gH) poor farmers will buy water in the

first period and qL00 = (gL �X1 +X2 � gH) poor farmers will not buy water.

Prices will not be affected by the liquidity constraints (LC), i.e., p⇤ = pFB. In this case, the auction

will still be efficient, but the model predicts that poor farmers will not buy water in the second period.

O: The utility of all farmers is zero. Hence, this condition is trivially satisfied as in the case with no LC.

Q:
P

xH1

P

xH2

(qxH1,xH2
) = qH01 + qH10 = X2 + X2 � gH = gH and

P

xL1

P

xL2

(qxL1,xL2
) = qL10 + qL00 =

X1 �X2 + gH + gL �X1 +X2 � gH = gL

RC:
P

i=L,H

P

xi1

P

xi2

(xi1 · qxi1,xi2
) = 1 · qH10 + 1 · qL10 = (X2 � gH) + (X1 �X2 + gH) = X1 and

P

i=L,H

P

xi1

P

xi2

(xi2 · qxi1,xi2
) = 1 · qH01 = X2 = X2

LC: Since µL > pFB
1 = p⇤1, LC is trivially satisfied.
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DC: Since p⇤ = pFB, DC is trivially satisfied.

Case c) Severe Liquidity Constraints, µL < pFB
1 < pFB

2

If µL < pFB
1 < pFB

2 , then poor farmers will not be able to buy one unit of water in the first period

at pA1 = pFB
1 . Water in the second period will be bought by wealthy farmers only. However, since

gH > X2, there will be (gH �X2) < X1 wealthy farmers that will not buy any water in the second period.

Those farmers will be willing to pay pFB
1 for a unit of water in the first period. We will have to check

whether wealthy farmers will buy a second unit of water or poor farmers will buy one unit of water. Since

h
0

(1� �) > h0 (1), all the wealthy farmers that are already buying one unit in the first period will be the

ones competing with the poor farmers for the remaining units in the first period. The price in the first

period will have to go down until supply meets demand:

1. p⇤1 = µL > [h (2� 2�)� h (1� �)]. In this case qL10 = (X1 �X2 + gH) poor farmers will buy one

unit of water in the first period and qL00 = (gL �X1 +X2 � gH) poor farmers will buy no water.

qH01 = X2 wealthy farmers will buy one unit in the second period and qH10 = (X2 � gH) wealthy

farmers will buy one unit in the first period. The equilibrium is efficient but not revenue maximizing.

O: We need to check that this is an equilibrium for each allocation such that qi,x1,x2
> 0 for each

type i.

Poor Farmers. Since µL < p⇤2 they cannot afford to buy any water in the second period:

• qL10 farmers are buying 1 unit in the first period and expending all their cash, hence they

cannot buy any more water. Also, since µL < pFB
1 they are getting a positive utility so

they are better off than if they were not buying any water.

• qL00 farmers are not buying any water. They would like to buy a unit of water in the first

period so they participated in the rationing but were unlucky and got no water.

Wealthy Farmers. Since p⇤1 � pFB
1 = p⇤2 � pFB

2 , they are indifferent between buying one

unit in the first period or one unit in the second period. Moreover, they are all getting a

positive utility, so they are better off than if they were not buying any water. Notice that

p⇤2 = p⇤1 � pFB
1 + pFB

2 is an equilibrium because, in the second period there are exactly

X2 wealthy farmers, and in the sub-game of the second period where there are the same

number of farmers and units, any price such that p⇤2 2
⇥

0, pFB
2

⇤

is an equilibrium.
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Q:
P

xH1

P

xH2

(qxH1,xH2
) = qH01 + qH10 = X2 +X2 � gH = gH and

P

xL1

P

xL2

(qxL1,xL2
) = qL10+ qL00 =

X1 �X2 + gH + gL �X1 +X2 � gH = gL

RC:
P

i=L,H

P

xi1

P

xi2

(xi1 · qxi1,xi2
) = 1 · qH10 + 1 · qL10 = (X2 � gH) + (X1 �X2 + gH) = X1 and

P

i=L,H

P

xi1

P

xi2

(xi2 · qxi1,xi2
) = 1 · qH01 = X2

LC: Since p⇤1 = µL, LC is trivially satisfied.

DC: Farmers buying water in the first period are obtaining a surplus, i.e., p⇤1 = µL < pFB
1 ⌘

v (1� �), while the wealthy farmers buying water in the second period are getting zero surplus,

i.e., p⇤2 = pFB
2 ⌘ v (1). Hence, we do not have to worry about strategic delay of purchases.

Since p⇤2 = pFB
2 , DC is satisfied.

2. If the price goes down enough before reaching µL, i.e., p⇤1 = [h (2� 2�)� h (1� �)] > µL, then

wealthy farmers who are not buying any unit in the second period will be willing to buy two units

in the first period. Poor farmers will buy no water, i.e., qL00 = gL. qH10 = [2 (gH �X2)�X1]

wealthy farmers will buy one unit in the first period, qH20 = (X1 +X2 � gH) wealthy farmers will

buy two units in the first period and qH01 = X2 wealthy farmers will buy one unit in the second

period. In this situation, all farmers buying water in the first period are obtaining a surplus, i.e.,

p⇤1 < pFB
1 ⌘ h (1� �), while the wealthy farmers buying water in the second period are getting a

smaller surplus, i.e., p⇤2 2
⇥

p⇤1 � pFB
1 + pFB

2 , pFB
2

⇤

. Hence, we do not have to worry about strategic

delay of purchases. The equilibrium is inefficient and not revenue maximizing.

O: We need to check that this is an equilibrium for each allocation such that qi,x1,x2
> 0 for each

type i.

Poor Farmers. Since µL < p⇤t they cannot afford to buy any water in any period.

Wealthy Farmers. If p⇤1 � pFB
1 = p⇤2 � pFB

2 they are indifferent between buying one unit

in the first period or one unit in the second period. Moreover, they are all getting a

positive utility, so they are better off than if they were not buying any water. Since

there are exactly X2 wealthy farmers that have not bought any water when the auction

in the second period begins, any price between that price and the FB is consistent with

equilibrium, i.e., p⇤2 2
⇥

p⇤1 � pFB
1 + pFB

2 , pFB
2

⇤

.

Q:
P

xH1

P

xH2

(qxH1,xH2
) = qH10 + qH20 + qH01 = [2 (gH �X2)�X1] + (X1 +X2 � gH) +X2 = gH

and
P

xL1

P

xL2

(qxL1,xL2
) = qL00 = gL
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RC:
P

i=L,H

P

xi1

P

xi2

(xi1 · qτi1,τi2) = 1 ·qH10+1 ·qH20 = [2 (gH �X2)�X1]+2 (X1 +X2 � gH) = X1

and
P

i=L,H

P

xi1

P

xi2

(xi2 · qxi1,xi2
) = 1 · qH01 = X2

LC: Since p⇤1 = µL, LC is trivially satisfied.

DC: Farmers buying water in the first period are obtaining a surplus, i.e., p⇤1 < pFB
1 ⌘ h (1� �).

Since p⇤2 > p⇤1 � pFB
1 + pFB

2 , DC is trivially satisfied.

B.2 Static Model

In this sub-section we show the proofs corresponding to the static model presented in sub-section 3.3.

B.2.1 Auctions

Proposition. Under the Auction system we have:

i) Welfare is lower than it would have been without LC. In particular, the Auction system achieves the

FB allocation if and only if LC are not binding for any farmers.

ii) The equilibrium price is lower than it would have been without LC. Moreover, there are farmers

whose marginal utility in equilibrium is greater than the equilibrium price.

Proof. i) This result is a direct consequence of equation 8. The definition of welfare in the FB case and

the conditions that it satisfies are identical of those under the auction mechanism, except for the liquidity

constraint. Hence, the welfare under the auction system is no greater than the FB. It is also immediate to

see that if the constraint is binding for some farmers, these farmers will get less water than in the FB case,

and other farmers will get more water than in the FB case (since the total amount allocated is the same).

ii) Price is determined by demand and supply. Supply in this case is constant. Demand, as shown by

equation 5 is decreasing in wealth µi. In particular, when the liquidity constraint is not binding, demand

is independent of wealth, but when the liquidity constraint is binding for some farmers, demand is strictly

decreasing in the wealth of each farmer.

A simple look at equation 5 shows that farmers that are constrained are buying less water than they

would, if they were not constrained. The amount of water that they would buy in the unconstrained case

is, by definition, the amount of water that make their utility equal to the price. Since the utility is concave,

consuming a lower amount of water means that the marginal utility is greater. Hence, the marginal utility

of constrained farmers is greater than the price.
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B.2.2 Quotas

Proposition. Under the Quotas system we have:

i) Welfare is lower than it would have been with heterogeneous farmers, i.e., ✓i = ✓ 8i. In particular,

the Quotas system does not achieve the FB allocation when farmers are heterogeneous.

ii) When farmers are homogeneous, i.e., ✓i = ✓ 8i, the Quotas system does achieve the FB allocation.

Proof. i) When farmers are heterogeneous the FB allocation implies that more productive farmers will

receive more water. Since the quota system assigns all farmers the same amount of water, it cannot

achieves the FB allocation.

ii) When farmers are heterogeneous, the FB allocation implies that all farmers will receive the same

amount of water. Since the quota system assigns all farmers the same amount of water, it does achieve

the FB allocation.

C Estimation Appendix

C.1 First Stage

We estimate the conditional choice probabilities (CCP) non-parametrically. There are four observable state

variables in the structural model without liquidity constraints: moistness, week of the year, price of water,

and rain. Moistness is a deterministic continuous variable that represents the amount of water accumulated

in the farmers’ plot; it goes from 300 to 1200. Week of the year is a deterministic discrete variable; it goes

from 1 to 52. Price of water and rain are random variables. We model the joint probability distribution

of prices and rain as an independent and identically distributed (i.i.d.) process conditional on the week of

the year. Note that seasonality is the the main determinant of prices. Thus, the week-conditional i.i.d.

assumption seems reasonable in our setting. Each week, prices may take three discrete values: low, high,

or no-auction. Each week, rain may take two discrete values: zero (no rain) or 31 mm (positive rain).54

For each week, low price is the mean price below the median of the same week across years; high price

is the mean price above the median of the same week across years. We estimate the joint distribution of

prices and rain non-parametrically using a frequency estimator.

Rather than using a traditional frequency-based approach in the presence of discrete variables, to

compute the CCP we smooth both discrete and continuous variables. There are two reasons for this. First,

it allows us to extend the reach of the nonparametric methods to our empirical model. It is well known that

5431 mm is the median of the rain distribution, conditional on rain being positive.
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nonparametric frequency methods are useful only when the sample size is large and the discrete variables

take a limited number of values: this allows the number of discrete cells to be smaller than the sample

size.55

Second, since moistness is a continuous variable and its evolution over time depends on both the

decisions to buy water of the farmers and the realizations of rain. Therefore, certain values of moistness

are never reached in the sample even when their probability of occurrence is not zero.56 To estimate

the demand, however, we need to integrate the value function for each possible combination of the state

variables in the state space.57 Thus, we estimate the CCP non-parametrically using kernel methods to

smooth both discrete and continuous variables.

We define now the nonparametric CCP estimator. Following Li and Racine (2003) we use generalized

product kernels for a mix of continuous and discrete variables. Let St =
�

Mt, S
d
t

�

✏ R⇥ R
3 be the vector

of state variables, where Mt✏ R is moistness and Sd
t = (wt, pt, rt) ✏ R

3 is the vector of discrete state

variables: week, price, and rain. Let sdk bet the kth component of sd and Sd
t = (t = 1, . . . , T ). For

Sd
tk, s

d
k ✏ {0, 1 . . . , ck � 1} (the support of each discrete variable) define the univariate kernel (Aitchison

and Aitken, 1976):

lu
⇣

Sd
tk, s

d
k,�k

⌘

=

8

>

>

<

>

>

:

1� �k if Sd
tk = sdk

λk

ck�1 if Sd
tk 6= sdk

We use the above kernel for prices and rain. For the ordered discrete variable week we use the following

kernel function (Wang and van Ryzin, 1981):

lo (wt, v,�1) = �
|w�v|
1

55The frequency approach would not be feasible in our setting, even if we discretize the (continuous variable) moistness
in a reasonable number of values. With four discrete variables and assuming we discretize moistness into just 22 values the
number of discrete cells that arise is 22×52×3×2 = 6864. Thus, the average number of observations (the effective sample
size) in each cell would be T/6864 = 6864/6864 = 1, where T = 6864 is our sample size. Note that: T = 6864 = 12
unconstrained farmers × 52 weeks per year × 11 years. Discretizing moistness into 22 values would be too low and will not
capture the variability of the data.

56For example, for week 23 the joint probability of no rain and low price conditional on this week is 9.1%. This is because
only in 1 out of 11 years was registered low rain and low price in the week 23 (1/11 = .0909). The observed different values
of inventories for the 12 unconstrained farmers are (at most) 12× 1 = 12. In the simulation, however, a value of moistness
different from (although close to) these 12 observed values may be reached. But the frequency estimator would not be
defined for any value of moistness different from those 12 values .

57That is, we also need to integrate over values of moistness discussed in previous footnote where the frequency estimator
is not defined. These values of moistness are never reached in our finite sample.
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where �1✏ [0, 1].

Therefore, for the multivariate vector of discrete state variables we use the product kernel:

L
⇣

Sd
t , s

d,�
⌘

= lo (wt, v,�1)

3
Y

k=2

lu
⇣

Sd
tk, s

d
k,�k

⌘

= �
|w�v|
1

3
Y

k=2

✓

�k

ck � 1

◆Ntk(s)

(1� �k)
1�Ntk(s) (22)

where � = (�2,�3) and Ntk (s) = 1
�

Sd
tk 6= sdk

�

is an indicator function that equals 1 if Sd
tk 6= sdk and

0 otherwise.

Let f (s) = f
�

m, sd
�

be the joint probability density function (PDF) of St =
�

Mt, S
d
t

�

. We use the

following kernel estimator of f (s):

f̂ (s) =
1

T

T
X

t=1

LtsdWh,tM

where Wh,tM = h�1w
�

Mt�m
h

�

, w (·) is a standard univariate second order Gaussian kernel, and

Ltsd = L
�

Sd
t , s

d,�
�

is given by equation 22. We select bandwidth using likelihood cross-validation.

We estimate the f̂ (s)using the observed values of the variables in the state space (in the sample).

We then use the estimated density and evaluate it at the unobserved values of the state space needed to

integrate the value function (out of the sample).

C.2 Second Stage

We restrict the sample to the twelve farmers that are unconstrained. We estimate the vector of structural

parameters, (�, ⇣), of the dynamic model in Section 4 using the conditional choice simulation estimator

proposed by Hotz et al (1994) which is based on the inversion theorem by Hotz and Miller (1993). We

integrate the value function using the smoothed CCP as computed in the previous sub-section. We set

the discount factor � equal to 0.99.58 Prices and rain are simulated using the joint distribution of prices

and rain estimated with the procedure described in the previous sub-section. When rain is positive we

assign an amount of rainfall equals to 31 mm, the median rain in the sample conditional on rain being

positive. We normalize the number of trees of the farmers using the median number of apricots trees for the

unconstrained farmers, 76 trees. We let moistness follow the evolution described by equations in Appendix

A.2 with the following values calibrated for our setting: TAW = 1200, PW = 300, EAW = 0.5 · TAW ,

E = 4 and ET is 5% higher than the values from Appendix A.2 .

58Since each period represents one week, using a smaller value of � would be unrealistic.

66



The observed number of units that farmers buy varies from 0 to 4 units per week. To compute the

smooth CCP as described in previous sub-section we model farmers’ decision as binary: to buy (jit = 1) or

not to buy (jit = 0). To compute the evolution of moistness in the estimation, when a farmer buys water

we assign the median number of units in the sample conditional on buying: two units. We extrapolate

CCP on unobserved states using the estimated density from the sample (see previous sub-section).

For the estimation, we minimize the distance between the smooth CCP and the predicted choice

probabilities from our model. We use 200 simulations with T = 11 years⇥ 52weeks⇥ 12 individuals =

6864 observations in each simulation. We use the contraction by Berry, Levinsohn, and Pakes (1995). We

perform the estimation using KNITRO, a solver for non-linear optimization, with tolerance level of 1.0e-25.

With the estimated demand we recover the annual revenue for all farmers (constrained and uncon-

strained). We compute farmer-specific revenue by adjusting the revenue predicted by the model for the

representative farmer (that uses the median number of trees) multiplying it by the number of trees of each

farmer relative to the median number of trees.

C.3 Third Stage

Cash of farmer i in period t, µit, evolves according to:

µit = µi,t�1 � pt�1ji,t�1 + Φt (rei;�) + ⌘it + ⌫it (23)

where Φt (rei;�) = �i0 + �1rei captures the (weekly) cash flow function derived from the real estate

�rei minus the weekly consumption of individual i that is constant over time, �i0; ⌘it is the revenue

that the farmer obtains when he sells the harvest (more about this below), and ⌫it is an idiosyncratic

financial shock.

The farmer obtains its revenue after the harvest, in week 24. Thus, the revenue is:

⌘it =

8

>

>

<

>

>

:

0 if wt 6= 24

Rit if wt = 24

where Rit =
52
P

wt=1

h (Mt−1, wt) =
23
P

wt=18

�1 · (Mt−1 � PW ) · KS (Mt) · areai +
32
P

wt=24

�2 · (Mt−1 � PW ) ·

KS (Mt) · areai.

For the estimation in the text we set �1 = 0 (that is, we did not include the cash flow derived from

the farmers’ real state) and we let ⌫it ⇠ N
�

0,�2
ν

�

.
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For the initial condition of the cash flow we use the revenue after the first harvest (wt = 24) in 1955,

the first year in our sample (which varies by farmer), assuming that all farmers had no cash before. That is,

we use the first 24 weeks of the first year to generate the accumulated cash flow of each farmer assuming

that before January 1955 (unobserved in the data) the amount of cash is zero (for all farmers).

In the data we only observe if the farmer buys water or not (and the number of units he buys in case

he buys). When a farmer does not buy water, we do not know whether it is because he does not need the

water (no demand) or because she is liquidity constrained. That is, for the liquidity constrained farmers,

the dependent variable is censored. An additional complication is that we know which farmers are not

liquidity constrained (the wealthy ones), but we do not observe which farmers are liquidity constrained

and in which week. This is why we need the structural model to compute the probability that farmer i is

liquidity constrained in week t given his demand in that week: P (ptjit > µit).

Using equation 23:

P (ptjit < µit) = P (ptjit < µi,t�1 � pt�1ji,t�1 � �i0 + ⌘it + ⌫it) = P (⌫it > Ct)

where Ct ⌘ µi,t�1 � pt�1ji,t�1 � �i0 + ⌘it � ptji,t. Using the distribution of ⌫it we have:

P (ptjit < µit) = P (⌫it > �Ct) = 1� Fν (�Ct)

where we have used the symmetry of the distribution of ⌫it, and Fν (·) is its cumulative distribution

function.

Similarly:

P (ptjit � µit) = P (⌫it  Ct) = Fν (�Ct)

To simplify notation, in what follows we omit conditioning on the state variables. Everything is,

however, conditional on the state. Let the estimated smooth CCP (from the first stage) of not buying

water, i.e., jit = 0, for an unconstrained farmer be P̂CCP (jit = 0). Similarly, let the estimated smooth

CCP of buying water, i.e., jit = 1, for an unconstrained farmer be P̂CCP (jit = 1). For (potentially)

liquidity constrained farmers, define the latent variable:
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j̃it =

8

>

>

<

>

>

:

jit if ptjit < µit

0 if ptjit � µit

Then:

P(j̃it = 0) = P[(jit = 0 ^ ptjit < µit) _ (ptjit � µit)]

= P(jit = 0)P(ptjit < µit) + P(ptjit � µit)

Thus:

P̂
�

j̃it = 0;�
�

= P̂CCP (jit = 0) [1� Fν (�Ct;�)] + Fν (�Ct;�) (24)

where � ⌘
�

�i0,�
2
ν

�

is a parameter vector.

Similarly:

P(j̃it = 1) = P[(jit = 1 ^ ptjit < µit)]

= P(jit = 1)P(ptjit < µit)

Thus:

P̂
�

j̃it = 1;�
�

= P̂CCP (jit = 1) [1� Fν (�Ct;�)] (25)

Note that P
�

j̃it = 0
�

+ P
�

j̃it = 1
�

= 1.

We estimate the parameter vector in the third stage, � ⌘
�

�i0,�
2
ν

�

, by maximizing the log-likelihood

function:

� = argmax
χ

L = argmax
χ

XI

i=1

XT

t=1
1
�

j̃it = 0
�

logP̂
�

j̃it = 0;�
�

+ 1
�

j̃it = 1
�

logP̂
�

j̃it = 1;�
�

where P̂
�

j̃it = 0;�
�

and P̂
�

j̃it = 1;�
�

are given by equations 24 and 25, respectively.

We perform the estimation using KNITRO, a solver for non-linear optimization, with tolerance level of

1.0e-25.
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C.4 Aggregate Demand, No liquidity Constraints

Following Aguirregaviria and Mira (2007) we now establish some properties of our estimator. Time is

discrete and indexed by t. Each period represents a week. We index agents by i. Agents have preferences

defined over a sequence of states of the world from period t = 0 until period t = 1. The state of the

world at period t for individual i has two components: a vector of state variables sit = (xit, wt,Mit; ✏it) =

(Mit, wt, pt, rt; ✏it) that is known at period t; and a decision vector jit chosen at period t that belongs to the

discrete set J 2 {0, ..., J}. The vector of state variables sit also includes the error vector ✏it ⌘ (✏i1t, ..., ✏iJt)

The time index t can be a component of the state vector sit, which may also contain time-invariant

individual characteristics. Farmer’s preferences over possible sequences of states of the world can be

represented by a utility function
P

1

τ=0 �
τU (ji,t+τ , si,t+τ ), where � 2 (0, 1) is the discount factor and

U (jit, sit) = h (Mit, wt) � (jitpt + ⇣j + ✏ijt) = is the current utility function. The decision at period

t affects the evolution of future values of the state variables, but the agent faces uncertainty about

these future values. The farmer’s beliefs about future states can be represented by a Markov transition

distribution function F (si,t+1|jit, sit). These beliefs are rational in the sense that they are the true

transition probabilities of the state variables. Every period t the farmer observes the vector of state

variables sit and chooses her action jit 2 J to maximize the expected utility

E

 

1
X

τ=0

�τU (ji,t+τ , si,t+τ ) |jit, si,t

!

This is the farmer’s Dynamic Programming (DP) problem. Let ↵ (si,t) and V (si,t) be the optimal decision

rule and the value function of the DP problem, respectively. By Bellman’s principle of optimality the value

function can be obtained using the recursive expression:

V (sit) = max
j2J

⇢

h (Mit, wt; �)� (jitpt + ⇣j + ✏jt) + �

ˆ

V (si,t+1) dF (si,t+1|j, sit)

�

and the optimal decision rule is then ↵ (si,t) = argmax
j2J

{v (j, si,t)} where, for every j 2 J ,

v (j, si,t) ⌘ h (Mit, wt; �)� (jitpt + ⇣j + ✏jt) + �

ˆ

V (si,t+1) dF (si,t+1|j, sit)

is a choice-specific value function.

We are interested in the estimation of the structural parameters in preferences, transition probabilities,

and the discount factor �. Suppose that a researcher has panel data for N individuals who behave

70



according to this decision model. For every observation (i, t) in this panel data-set, the researcher observes

the individual’s action jit and a sub-vector xit of the state vector sit. Therefore, from an econometric point

of view, we can distinguish two subsets of state variables: sit = (xit, wt,Mit; ✏it), where the sub-vector

(Mit, ✏it) is observed by the agent but not by the researcher. Note that ✏itis a source of variation in the

decisions of agents conditional on the variables observed by the researcher. It is the models “econometric

error”, which is given a structural interpretation as an unobserved state variable.

In summary, the researcher’s data set is:

Data = {jit, xit : i = 1, 2, ..., N ; t = 1, 2, ...,1}

Let Θ be the vector of structural parameters and let gN (Θ) be an estimation criterion. For instance,

if the data are a random sample over individuals and the criterion is a log-likelihood, then gN (Θ) =

PN
i=1 li (Θ), where li (Θ) is the contribution to the log-likelihood function of individual i history:

li (Θ) = log Pr{jit, xit : t = 1, 2, ...,1|Θ}

= log Pr{↵ (xit, ✏it,Θ) = dit, xit : t = 1, 2, ...,1|Θ}

Whatever estimation criterion, in order to evaluate it for a particular value of Θ it is necessary to know

the optimal decision rules ∆ (xit, ✏it,Θ). Therefore, for each trial value of Θ it is necessary to know the

optimal decision rules ∆ (xit, ✏it,Θ). Therefore, for each trial value of Θ the DP problem needs to be

solved exactly, or its solution approximated in some way.

So far we have not made any assumption on the relationship between observable and unobservable

variables. These are key modeling decisions in the econometrics of dynamic discrete structural models.

The form of li (Θ) and the choice of the appropriate solution and estimation methods crucially depend on

these assumptions. The first 6 assumptions define the Rust’s model.

ASSUMPTION AS (Additive Separability). The one-period utility function is additively separable

in the observable and unobservable components: U (jit, sit) ⌘ U (jit, xit, wt,Mit; ✏it) = h (Mit, wt; �) �

(jitpt + ⇣j + ✏jt), where ✏ijt is a zero mean real random variable with unbounded support. That is, there

is one unobservable state variable for each choice alternative, so the dimension of ✏it is (J + 1)⇥ 1.

ASSUMPTION IID (i.i.d. Unobservables). The unobserved state variables in ✏it are independently

and identically distributed over agents and over time with cumulative density function (CDF) Gε (✏it)

which has finite first moments and is continuous and twice differentiable in ✏it.

ASSUMPTION CI-X (Conditional Independence of Future x). Conditional on the current values of
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the decision and the observable state variables, next period observable state variables do not depend on

current ✏it:

CDF (xi,t+1|jit, xit, wt,Mit, ✏it) = Fx (xi,t+1|jit, xit, wt,Mit)

CDF (wt+1|jit, xit, wt,Mit, ✏it) = Fw (wt+1|jit, xit, wt,Mit)

CDF (Mi,t+1|jit, xit, wt,Mit, ✏it) = FM (Mi,t+1|jit, xit, wt,Mit)

This assumption holds trivially for wt. It also holds trivially for xit, since the covariates are constant

for a given individual, calendar effects, rain (which is absolutely exogenous) and prices. Notice that this

assumption holds for prices because the auction format is a English (Second Price) auction. Thus, the price

that individual i is paying is independent of her bid or her type. Finally, the law of motion of the inventory is

independent of ✏it. We use Θf to represent the vector of parameters that describe the transition probability

function Fx.

ASSUMPTION CLOGIT. The unobserved state variables {✏ijt : j = 0, 1, ..., J} are independent

across alternatives and have an extreme value type 1 distribution.

ASSUMPTION DIS (Discrete Support of x). The support of (xit, wt,Mit) is discrete and finite:

(xit, wt,Mit) 2 X =
�

x(1), ..., x(|X|)
 

with |X| < 1.

Since our model fits with all those assumptions, we can use a simulation-based CCP estimator, Hotz,

Miller Sanders and Smith (1994).

C.5 Disaggregated Demand, No Liquidity Constraints

In this section, we consider the case in which every week the farmer can buy several units of water. The

purchase will be sequential. The farmer is offered a price for the first unit and has to decide whether to

purchase the unit or not. After this decision is made, the farmer is offered a price for the second unit,

and so forth. The prices the farmer is offered follow a stochastic Markov process. The farmer knows the

parameters governing this process.

There will be forty units auctioned every week. Before the first price is offered, the farmer observes

the rain in the previous week and a 10X1 vector containing the shocks to her utility for the next week

(Monday to Friday=5 days; day or night=2; ✏it = (✏it1, ..., ✏it10)). Each value of the shock represents a

shock to the utility for all four units in a 4-unit auction. We abstract here from the equilibrium played

within each 4-unit auction, see Donna and Espín-Sánchez (2013) for details.

We index each of the ten units by k. We denote a purchase of j units of water by farmer i, during

period t and within the kth 4-unit auction by jitk, with 0  jitk  4, and
Pk=10

k=1 jitk = jit  40. We
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denote by ptk the price associated with buying any unit within the kth 4-unit auction in period t. We

denote by Vit (sit,Mit, xit) the value of a farmer to participate in a 40-unit auction at week t, where st is

an unobserved state and xt is an observed state. st is now a vector of epsilons ✏it = (✏it1, ..., ✏it10), thus

sit = (✏it) = (✏it1, ..., ✏it10). Let �itk be a state variable in the within-period game. �itk includes the units

of water already bought by the farmer in period t up to auction k�1, thus �it1 = 0 and �itk =
Pl=k�1

l=1 jitl

.

Hence:

Vit (sit,Mit, xit) = h (Mit, wt; �)�

k=10
X

k=1

(j⇤itkptk + ⇣jk + ✏ijtk) + �Vi,t+1 (si,t+1,�i,t+1,1, xi,t+1)

where j⇤itk are the elements of the solution to the game below. We define the value of the farmer of

entering the within-week game as:

Vit (sit,Mit, xit) ⌘ Wit1 (sit, 0,Mit, xit)

The (finite) within-week game then is:

Wit1 (sit, 0,Mit, xit) = Max
jit12{0,1,2,3,4}

{h (Mit, wt; �)� (jit1pt1 + ⇣j1 + ✏ijt1) +Wit2 (sit,�it2,Mit, xit)}

...

Witk (sit,�itk,Mit, xit) = Max
jitk2{0,1,2,3,4}

{� (jitkptk + ⇣jk + ✏ijtk) +Wit,k+1 (sit,�it,k+1,Mit, xit)}

...

Wit10 (sit,�it10,Mit, xit) = Max
di,t,102{0,1,2,3,4}

{� (jit,10pt,10 + ⇣j,10 + ✏ijt,10) + �Vi,t+1 (si,t+1,Mit + �it,11, xi,t+1)}

Or, if we do not assume that all prices are learn at the beginning of the week, but rather, prices are

learnt at the beginning of each 4-unit auction, then we have:
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Wit1 (sit, 0,Mit, xit) = Max
jit12{0,1,2,3,4}

{h (Mit, wt; �)� (jit1pt1 + ⇣j1 + ✏ijt1) + E [Wit2 (sit,�it2,Mit, xit)]}

...

Witk (sit,�itk,Mit, xit) = Max
jitk2{0,1,2,3,4}

{� (jitkptk + ⇣jk + ✏ijtk) + E [Wit,k+1 (sit,�it,k+1,Mit, xit)]}

...

Wit10 (sit,�it10,Mit, xit) = Max
di,t,102{0,1,2,3,4}

{� (jit,10pt,10 + ⇣j,10 + ✏ijt,10) + �Vi,t+1 (si,t+1,Mi,t + �it,11, xi,t+1)}

where the expectation is taken with respect to the remaining prices to be disclose in the current week,

and the price sequence follows a Markov chain.

We do not include a discount factor because the time from one auction to the next is just a few minutes

and the discount factor in this case is virtually 1. Notice that, since this is finite game, we do not need

a discount factor to have solution. Instead, we can solve this game by backward induction if we know

the value of Vi,t+1 (·). The solution concept will be Sub-game perfection (or Bayesian Perfect if price are

learned at every step).
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