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Abstract

We use data on sequential water auctions to estimate demand when units are com-

plements or substitutes. A sequential English auction model determines the estimating

structural equations. When units are complements, one bidder wins all units by paying

a high price for the first unit, thus deterring others from bidding on subsequent units.

When units are substitutes, different bidders win the units with positive probability,

paying prices similar in magnitude, even when the same bidder wins all units. We re-

cover individual demand consistent with this stark pattern of outcomes and confirm it

is not collusive, but consistent with non-cooperative behavior. Demand estimates are

biased if one ignores these features.
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1 Introduction

This paper investigates sequential auctions in which buyers’ preferences for multiple units

exhibit both sunk costs and decreasing marginal returns. Sunk costs and decreasing returns

are important because they affect the relationship among the valuation of subsequent units,

determining bidder behavior and price dynamics. Price dynamics are central in relating

observed bids to the underlying distributions that characterize individual demand, which is

fundamental to discuss positive and normative questions. Greater variation in prices caused

by a high sunk cost, for instance, will affect even relatively simple tasks such as measuring

the dispersion in individuals’ private valuations. Moreover, a competitive environment in

such a case could be incorrectly interpreted as collusive.

Depending on the importance of sunk costs relative to decreasing marginal returns of

sequential units, these units could be complements (when the marginal utility of subsequent

units is greater than the marginal utility of the first unit) or substitutes (when the marginal

utility of subsequent units is lower than the marginal utility of the first unit). The existing

literature, although abundant, has provided little empirical evidence on the effect that, by

creating complementarities or substitutabilities, the valuation of subsequent units has on

bidder strategies and price behavior in sequential auctions.1

The main reason for this lack of evidence is insufficient variation in the degree of comple-

mentarity (in our setting, sunk costs relative to decreasing returns) required to perform the

empirical investigation. Our aim is to address this empirical gap. To that end, we develop

an economic model to assess the relative importance of sunk costs and decreasing returns in

bidding behavior. Ours is the first empirical paper where sequential units of the same good

serve as either complements or substitutes within the same market.

1In addition to the literature on sequential independent objects (Ashenfelter 1989; Ashenfelter and
Genesove 1992), the relationship between auctioned objects has also been studied by a number of authors
for the case of either complements (Branco 1997; Gandal 1997) or substitutes (Black and De Meza 1992;
Liu 2011). Albeit more scarce, models encompassing the possibility of both complementarities and substi-
tutabilities have been investigated when analyzing how this feature relates to the auction format (Jeitschko
and Wolfstetter 2002; Jofre-Bonet and Pesendorfer 2012) or, outside the auction literature, when analyzing
print and online newspapers to study the value of new goods (Gentzkow 2007). Unlike this prior literature,
we examine, in an English-auction setting, how the degree of complementarity, as determined by the im-
portance of sunk costs relative to decreasing returns, affects price patterns by endogenizing the number of
bidders with the introduction of an arbitrary small participation cost as in McAfee and McMillan (1987),
Engelbrecht-Wiggans (1993); and von der Fehr (1994).
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We examine a unique panel data set on sequential water auctions from a self-governed

community of farmers in southern Spain (Mula, Murcia). We estimate our model to recover

the structural parameters and the distribution of private valuations. Our study of sequential

auctions exploits a unique scenario to analyze a stark pattern of outcomes not previously

documented in the literature. Sometimes, winning prices exhibit a standard competitive

pattern, where regardless of whether the same or different bidders (farmers) win the sequen-

tial units, winning prices are similar in magnitude.2 Other times, one farmer wins all the

units; this farmer pays a high price for the first unit, deterring other farmers from entering

subsequent auctions, thus paying a very low price for the remaining units. We call this the

deterrence effect. We show that this pattern of outcomes is consistent with a non-cooperative

equilibrium, where the observed price dynamics are not collusive, but competitive.

The data for our analysis consist of individual winning bids and auction covariates, which

includes the amount of rainfall. The basic unit for sale is the right to use three hours of

water for irrigation (432,000 liters). For each weekday, eight units are sold sequentially for

each schedule: four for daytime (7AM-7PM) and four for nighttime (7PM-7AM) irrigation.

Same-day (or same-night) units are not conditional-independent due to the presence of sunk

costs. Thus, the relevant unit of analysis for investigating individuals’ demand and the

pattern of outcomes is four-unit auctions. Observing the identity of the winner allow us to

estimate the model, as outlined in Section 3. Local weather conditions determine the relevant

agricultural irrigation technology and, hence, water demand. Additionally, as summers have

little rainfall compared to winters, the presence of seasonalities provide us with the necessary

variation in sunk costs relative to decreasing returns (varying the degree of complementarity

or substitutability by season) to perform the empirical investigation.

The interpretation of the data based on our economic model is fundamental to our struc-

tural approach. We model the environment as a sequential (ascending price) English-auction

along the lines of Engelbrecht-Wiggans (1993) and von der Fehr (1994) in which bidders, by

incurring a participation cost, decide whether to attend each sale. We focus on the symmet-

2Declining prices for identical objects in this type of setting is an empirical regularity known as the declining
price anomaly, which has been broadly studied in the literature and was first documented by Ashenfelter
(1989) in his seminal paper. Under stylized conditions the price should follow a martingale. However, under
specific assumptions, like risk aversion, the price should follow a super-martingale.
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ric conditional-independent private values (CIPV) paradigm that has dominated the prior

literature (Donald and Paarsch 1996). A sunk cost is incurred for the first unit bought,

and decreasing marginal returns are present for subsequent units. The rationale for this is

found in our empirical setting. First, because water flows through a channel dug into the

ground, some water is lost when the channel is dry (the first unit), but the loss is negligible

for subsequent units. Engineers have estimated that 20% of the water of the first unit that

travels through a dry channel is lost (see González-Castaño and Llamas-Ruiz 1991). Second,

given that the amount of land that needs to be irrigated is fixed, subsequent units of water

exhibit decreasing marginal returns.

The relative importance of the sunk cost and the decreasing marginal returns generates a

trade-off, whereby buyers’ bidding strategies depend on whether different units are comple-

ments or substitutes. When goods are complements, the same bidder wins all the objects:

he pays a high price for the first unit equal to his valuation for the whole bundle (four times

the second highest valuation for the first unit, adjusted for the complementarity effect and

participation cost), and he thus deters others from bidding on the remaining three units, for

which he pays a very low price (close to zero).3 The resulting non-cooperative equilibrium

price pattern, along with the same bidder winning all the units, may lead to an incorrect

collusive interpretation. When goods are substitutes, different bidders win the objects with

positive probability, paying prices similar in magnitude, even when the same bidder wins all

the objects. We provide empirical evidence for participation and sunk costs, key features

of our model. We argue that bidders are better informed than the seller, whose mecha-

nism ignores bidder preferences for multiple units. Nevertheless, a sequential English auction

achieves (ex-ante) efficiency.4 The simplicity of the mechanism reduces costs associated with

its implementation, with the additional advantage that bidders are not required to reveal

their marginal valuations.

The price patterns that our model predicts in each regime (complements or substitutes)

provide us with a straightforward empirical method to determine the regime under which the

3For clarity, we refer to each farmer as “he” although occasionally is a woman who bids.
4Ex-ante and ex-post efficiency are not equivalent due to the presence of participation costs. Neither one

implies the other. Moreover, in our model there is no mechanism that achieves ex-post efficiency. Stegeman
(1996) discusses the single-unit case. In our model, when goods are complements, the proof for efficiency is
analogous to the single-unit case; the analysis when goods are substitutes is more cumbersome.

5



game is being played: when goods are complements, very low prices are paid by the same

winner (the winner of the first unit) for the second, third, and fourth units.

Aside from the particular features of our specification, our identification exercise is closest

to that of Athey and Haile (2002). Using a parametric distribution specification along with

the English structure for the auction, we construct the likelihood of our model and we use

maximum likelihood to estimate the parameters of the distribution of private valuations.

To estimate the remaining parameters (sunk cost and decreasing marginal returns) we form

moment conditions based on the structural equations of the model. We infer participation

costs using data from auctions in which bidders were present, but no one placed bids.

Our empirical work establishes three main results. First, we recover individual de-

mand—characterized by private valuations and the model’s structural parameters—that is

consistent with the described price patterns, and the deterrence effect in particular. Second,

the equilibrium price dynamics are consistent with competitive behavior. Non-cooperative

behavior is not only consistent with the deterrence effect, but also predicts such price differ-

entials. Incentives to deviate from a collusive strategy are higher in the spring/summer (when

the water is more valuable). However, it is in spring/summer when we observe this behavior

more often. Finally, we show that estimates that ignore the importance of participation and

sunk costs will be biased. We test whether price variations, conditional on covariates, are

better explained by our proposed model or a standard English-auction model without partic-

ipation costs, using that the latter is encompassed by the former. The approach of Haile and

Tamer (2003), that relies on two basic behavioral assumptions, provides a robust structural

framework for inference. These minimal assumptions are not satisfied in the present context.

We also discuss how Haile and Tamer’s structure can be interpreted in the current setting.

Contributions and Related Literature

In this subsection we describe the related literature and highlight how our paper contributes

to the current body of work. While this paper includes new theoretical results, it is most

similar to the empirical literature on sequential auctions with multi-unit demand investigat-

ing strategic bidding’s predictions. While most of the literature do not consider participation
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costs in their analyses, we show that the presence of participation costs affect the equilib-

rium outcomes; we then use our model to partially identify participation costs and estimate

informative bounds.

In his seminal paper, Weber (1983) finds that in a sequential auctions model with single-

unit demand for identical objects, the sequence of prices follows a martingale (same expected

prices). However, relatively slight modifications to Weber’s model lead to different conclu-

sions. For example, including risk-aversion in his model generates lower expected prices for

later objects. In this case, expected utility (not expected price) follows a martingale, as

the expected utility is lower for a risk averse bidder. McAfee and Vincent (1993) found that

declining prices in equilibrium requires non-decreasing absolute risk aversion. Sequential auc-

tions for different objects that are stochastically identical have also been studied (Benhardt

and Scoones 1994; Engelbrecht-Wiggans 1994). In those cases, objects are identical ex-ante

but not after uncertainty has been resolved. The relationship between early and latter objects

is broken because of the stochastic component: the demand for latter objects is lower than

for early ones. Thus, the strategical incentive for bidding lower for early objects disappears.

Contrary to our case, these models do not allow for multi-unit demand.5

While the theoretical literature has studied price dynamics and the relationship between

sequentially auctioned goods, there is no precedent that deals with cases when both com-

plementarities and substitutabilities (generated by sunk cost and decreasing returns in our

empirical setting) are present with participation costs.6 Similar evidence to the one we de-

5The literature in multi-unit auctions can be divided into sequential auctions, in which the auctioneer
sells the units following a series of sequential steps using a single-unit auction each time, and simultaneous
auctions, in which the auctioneer uses a complex auction mechanism to allocate all units simultaneously
(for recent contributions see Kastl 2011, who investigates bidders submitting step functions as their bids
in multi-unit treasury bills auctions, and Reguant 2013, who studies complementarity bidding mechanisms
used in wholesale electricity auctions). Implementing a simultaneous auction requires a strong commitment
from the auctioneer either to not renege in the promised mechanism, or to use the information elicited in the
process to demand a higher price for the good. This also imposes technical difficulties in the way bidders
frame their contingent bids (Cramton, Shoham and Steinberg 2006). Neither of these conditions are satisfied
in our setting. Hortaçsu (2011) discusses recent progress in the empirical study of multi-units auctions. See
Kagel and Levin (2001) for an experimental investigation when bidders demand multiple units in sealed bid
and ascending auctions.

6Hendricks and Porter (2007) present a comprehensive review of the theoretical and empirical literature on
auctions emphasizing their connection, and the different approaches followed by researchers in practice. For
standard IPV parametric models, Donald and Paarsch (1996) provide an early discussion on identification,
estimation, and inference under this paradigm, while Athey and Haile (2002) extensively discuss identification
of different models, and derive testable restrictions that allow discrimination between models. For first-price
sealed-bid auction models within the independent private value paradigm, Guerre, Perrigne and Vuong (2000)
show that the underlying distribution of bidders’ private values is nonparametrically identified from observed
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scribe in Subsection C.2 in the Online Appendix has been broadly discussed in the empirical

auctions literature. Early works have documented declining or downward price trends in

sequential wine auctions (Ashenfelter 1989; McAfee and Vincent 1993) and the real-state

market (Ashenfelter and Genesove 1992). In our setting the presence of complementarities

and substitutabilities within the same market generate a stark pattern of outcomes not doc-

umented in the literature before: sometimes (when goods are substitutes), winning prices

exhibit a standard competitive pattern, where regardless of whether the same or different

bidders win the sequential units, winning prices are similar in magnitude; other times (when

goods are complements), the same bidder wins all units by paying a high price for the first

unit, thus deterring others from bidding on subsequent units. We show that this pattern of

outcomes is consistent with a competitive market structure.

Several authors have studied cases of either complements due to synergies among auc-

tioned goods, or substitutes due to decreasing marginal utility (Black and De Meza 1992;

Branco 1997; Liu 2011). For instance, Branco finds expected decreasing prices for comple-

ments. In that model, individuals bid above their value in early auctions because there is

an option value for doing so. In latter auctions, and when early objects have already been

assigned, the winner bids aggressively, but the losers bid their residual value. Thus, the price

for later units reflects the willingness to pay from a bidder without synergies. This value is

lower than the price paid for earlier units that reflect both the willingness to pay from an

individual without synergies and the option value.

Selling goods in a bundle increases sellers’ revenue when goods are complements (Palfrey

1983; Levin 1997, Armstrong 2000). Our setting differs from these in that we consider se-

quential auctions instead of simultaneous.7 Numerous empirical studies have highlighted the

bids and the number of actual bidders. For interdependent costs, asymmetric bidders, and statistically
dependent private information, Somaini (2013) shows that the joint distribution of private information and
each bidder’s full information expected cost is nonparametrically identified from the distribution of bids
conditional on observable cost shifters. For English auctions with correlated private values, Aradillas-López,
Gandhi and Quint (2013) exploit variation in the number of bidders to nonparametrically identify bounds on
seller’s profit and bidders’ surplus (rather than the joint distribution of private valuations). Bajari, Houghton
and Tadelis (2013) empirically investigate ex post adaptation costs that result from incomplete contracts in
highway procurement in California.

7See Milgrom (2000) and Ausubel (2004) for recent contributions to this literature. Edelman, Ostrovsky
and Schwarz (2007) study the properties of a “generalized English auction” (used to sell Internet advertise-
ments) and show their proposed mechanism has a unique equilibrium. Kagel and Levin (2005) experimentally
investigate multi-unit demand auctions with synergies, and compare behavior in sealed-bid and ascending-bid
uniform-price auctions. See Kagel (1995) for a survey on laboratory experimental auction markets.
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importance of complementarities. They arise in different industries such as defense contracts

(in Anton and Yao 1987 complementarities emerge in sequential competition due to higher

experience that reduces costs), sequential cable television license auctions (Gandal 1997), se-

quential electricity auctions (in Wolfram 1998 the start-up price generates complementarities

in electricity generation between adjacent time periods), sequential procurement auctions

for school milk contracts where, similar to our analysis, complementarities arise due to the

presence of sunk investments (Pesendorfer 2000), or between adjacent school milk contracts

(Marshall et al. 2006).

Regarding substitutabilities, Liu’s model, for instance, shows that competition for ear-

lier goods is lower than for latter ones. Therefore, winning an early auction generates an

externality on other bidders (because of the competition they face in the future). In later

stages, this effect is smaller because there are less goods in which a loser can take advantage

of the resulting competition. Thus, competition (and prices paid by the winners) will be

greater. In the last auction the externality effect disappears, and each person bids their own

valuation for that last good. Substitutabilities also arise, as in our case, when the value

of sequential goods fall (in the number of acquired units) generally because of decreasing

returns and limited capacity. Substitutabilities are a major component in several industries

such as sequential highway construction procurement auctions (Jofre-Bonet and Pesendorfer

2003 estimate a repeated auction game under the presence of capacity constraints with bidder

asymmetry), sequential timber auctions (List, Millimet and Price 2004), or sequential cattle

auctions (Zulehner 2009).

Before we advance to the description of our model, it is important to note that while prior

investigations on the relationship between sequential auctions and the complements or substi-

tutes property are more scarce (Jeitschko and Wolfstetter 2002; Jofre-Bonet and Pesendorfer

2012), their approaches show the importance of this feature. Jeitschko and Wolfstetter ana-

lyze optimal sequential auctions in a binary-valuations case. They find that English-auctions

extract more rent than first-price auctions.8 Our model differs as we consider the class of

continuous valuation distributions. Along with a literature review that provides a compre-

hensive guide on the methods and applications in the subject, Jofre-Bonet and Pesendorfer

8Recall that the English-auction is optimal among a general class of sequential auctions (Lopomo 1998).
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propose a different set-up in their model of sequential auctions that also encompasses both

complementarities and substitubilities among the goods auctioned (in the sense that an ob-

ject’s value increases or decreases with the number of items already acquired). They find that

while first-price auctions give greater revenue than a second-price (English) auctions when

the goods are substitutes, the opposite is true for complements. Both mechanisms are effi-

cient in this model. Their predictions about price trend are consistent with previous findings.

Contrary to our analysis with participation costs, where buyers are better informed than the

seller, they examine buyers’ procurement auctions in a two period auction game where sell-

ers have private information about their costs. Finally, although different from the strategy

used in this paper, an early influential investigation on how interdependencies among the

objects auctioned affect auction’s outcome has been studied by Hendricks and Porter (1988),

where they analyze auctions for drainage leases and show that better informed firms (who

hold neighboring tracts to the drainage tracts that were auctioned) earned higher rents than

uninformed ones.

This paper makes a methodological contribution by developing a structural empirical

model of sequential English auctions with participation costs that allows units to complement

or substitute within the same market; the model has distinguishable price pattern predictions

in each regime. This feature allows us to determine the regime under which the game is

being played using a straightforward empirical method: end-digit preferences. Similar to

the work of Hendricks and Porter (1988) and Haile (2001) we show evidence inconsistent

with the equilibrium predictions of standard models and in favor of our model that captures

the specific features in our empirical setting (sunk costs, decreasing marginal returns, and

participation costs). Not accounting for these features may lead to incorrectly interpret a

competitive market as collusive.

In addition to recovering the structural parameters that characterize individual demand

consistent with this stark pattern of outcomes and confirming it is consistent with non-

cooperative behavior, which are of interest to the literature on empirical auctions, we examine

a market institution that was active and stable for eight centuries in a self-governed commu-

nity of farmers in southern Spain. Understanding this strategic non-cooperative behavior of
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bidders in this stable market institution is of independent interest.9

We build upon the existing literature on participation costs and entry fees (McAfee and

McMillan 1987; Engelbrecht-Wiggans 1993; von der Fehr 1994), by constructing our sequen-

tial English-auction model similar to that of Von der Fehr. However, our set up differs in that

bidders are allowed to buy more than one unit of the good. Von der Fehr considers the case

when goods are independent, and finds the same equilibrium as that in our complementarities

case. We are not aware of any study analyzing the presence of both complementarities and

substitutabilities when participation costs are present. Moreover, to our knowledge, we are

the first to empirically investigate in the sequential auctions literature the case where sequen-

tial units of the same good may either complement or substitute within the same market.

We do this by allowing the relative size of sunk cost and decreasing returns to vary across

auctions.10

In the next section we describe our theoretical model. Section 3 contains a description

of the auction system and the data. We address the empirical regularities that serve as

the foundation for the existence of two regimes (the size of sunk costs relative to decreasing

marginal returns), and we show how the modeling assumptions fit our context. In Section 4 we

discuss identification. Section 5 examines the estimation procedure, presents the results, and

analyze the importance of sunk costs and the interpretation of complementarities. Finally,

Section 6 concludes. The extension to the model where four units are sold and all proofs are

in Section A in the Online Appendix. In Section B in the Online Appendix we show that

regime determination is consistent with end-digit preferences.

9In the lead article of the first issue of the American Economic Review Coman (1911) provides an early
discussion of the institution. For an extensive study of self-governed irrigation communities see Ostrom
(1992).

10The presence of seasonalities in our empirical setting (due to rainfall and water requirements for farming)
provides us the required variation for the empirical analysis.
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2 The Model

In this section we present the theoretical model. We first explain our strategy for using

variation in the relative size of sunk costs and decreasing marginal returns to account for

complementarities and substitutabilities among different units of the same good (water). We

then proceed with the formal model. All proofs are in Section A in the Online Appendix.

A sunk cost is incurred only for the first unit bought while decreasing marginal returns are

present for second to fourth units. The relative importance of the sunk cost and decreasing

marginal returns generate a trade-off, whereby bidders coordinate their behavior based on

whether different units are complements or substitutes. A simple way to show this intuition

is by assuming that the initial sunk cost is proportional to the value of water, and decreasing

marginal returns are linear in the number of units bought. Then, the marginal utility for

bidder i for each unit u is:

MUi (u) = [1� α 1 {u = 1}� β (u� 1)] vi

where vi, only known by bidder i, is a scalar that captures the valuation that the bidder

assigns to a (complete) unit of water (when α = 0 we have MU (1) = vi), α is a parameter that

measures the sunk cost incurred when consuming the first unit bought (MU (1) = (1� α) vi),

β is a parameter that measures the slope of decreasing marginal returns of subsequent units

(when α = 0 we have MU (u) = [1� β(u� 1)] vi), and 1{·} is an indicator function.

2.1 Set Up

We proceed now to present the theoretical model. For each regime we derive the equations

that we use later for the structural estimation. When goods are complements we compute

the unique symmetric pure strategy perfect bayesian equilibrium. We also prove that the

strategies played by every player in this equilibrium are dominant strategies. This strong

result allows us to partially identify the parameters of the model without imposing further

structure to the distribution of bidders’ valuations. When goods are substitutes we compute

necessary and sufficient conditions for equilibrium. Technical details and the solution of the

model for this case are provided in Section A in the Online Appendix.
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We consider vi to be independent and identically distributed on the interval [0,Wi], ac-

cording to the increasing distribution function Fi (vi). We assume that Fi (vi) admits a

continuous density fi (vi) > 0 and has full support. We allow for the possibility that the

support of Fi (vi) be the non-negative real line, [0,+1]. It is assumed that E[vi] < 1. The

assumption that the support of Fi (vi) is bounded below by 0 is not restrictive, since bidders

with negative valuations will not enter the auction. The private valuation, vi, is only known

by bidder i, and it is learned before entering the first auction.

The seller wants to allocate K identical units. These units are auctioned off sequentially

by the seller using an English (ascending price) auction for every unit. All participating

bidders observe the total number of individuals who take part of the auction, N . After every

auction, each participant observes the price paid by the winner and the winner’s identity.

The seller continues to run subsequent auctions sequentially until all the units are allocated.

We assume that all bidders share the same utility function, U (·). The primitives of the

model, K, N , Fi(·), U (·), are common knowledge.

The strategy set for every bidder is the vector S ⌘
�

yki , b
k
i

�k=1,...,K

i=1,...,N
, where yki 2 {0, 1},

yki = 1 indicates that bidder i participates in the auction for unit k (yki = 0 if bidder i does

not participate in the auction for unit k), and bki is the maximum amount that bidder i is

willing to pay for unit k. Bidders play sequentially, or stage by stage. This means that they

choose ski =
�

yki , b
k
i

�

after learning the outcome of the previous (k � 1) auctions. Bidders

participating in auction k observe the price at which each bidder is no longer active (bids

are observable) except for the winning bid. It is important to note that this information

transmission is consistent with the auction being an English (or ascending price) auction

rather than a second price auction.11

The seller allocates the unit to the highest bidder: xk
j 2 {0, 1} and xk

j = 1 when j =

argmax
�

bki
�

i

(and 0 otherwise), at a price equal to the second highest bid: pk = bkl , where

l = argmax
i 6=j

�

bki
�

. If only one bidder participates in a specific auction this bidder obtains the

object for free. Each object is either allocated to one of the N bidders, or it is lost if none of

11We model the game as in a button auction. Each bidder is holding a button while the price is continuously
rising. A bid for bidder i is the value at which bidder i stop holding the button. When there are only two
bidders active (holding the button) and one of them releases the button, the auction ends. The active bidder
wins the object and pays the price at which the runner up stopped. See Cassady (1967) and Milgrom and
Weber (1982) for details.
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the bidders decide to participate in the auction.

Participation decisions in each auction are done simultaneously by all bidders. To take

part in auction k, bidders incur a participation cost, ck, at the beginning of the period. As

explained before, if only one bidder participates this bidder obtains the object for free, but he

bears the participation cost, ck, nonetheless. The process is then repeated in every sequential

period. We restrict the analysis to the case where the participation cost is zero for the first

unit, c1 = 0, and the remaining costs are constant across auctions: ck = c > 0, 8k > 1.12

The assumption ck 6= 0, 8k > 1 is not without loss of generality because after the first

auction has been resolved information is transmitted before the decision of entering another

auction. As we further explain in Subsection C.3 in the Online Appendix, this assumption is

consistent with the data in our empirical setting, where we observe no demand for some of the

units, even though the reservation price is zero. The interpretation is that, in those situations

where no-demand is observed, the value that bidders assign to that unit is smaller than the

participation cost, c. (We later use this information in Section E in the Online Appendix

to partially identify participation costs; see Subsection C.3 in the Online Appendix for a

justification of this assumption in our specific empirical setting.)

2.2 Two Units

We first analyze the situation where only two goods are sold, K = 2. In this case, the

marginal utility for the first unit is MU (1) = (1� α) vi, while the marginal utility for the

second one is MU (2) = [1� β (2� 1)] vi = (1� β) vi. Let us normalize the marginal utility

of the first unit and define the normalized marginal utility as: NMU (u) = MU(u)
1�α

.

With this normalization, NMU (1) = vi, and NMU (2) =
�

1�β

1�α

�

vi = (1 + ρ) vi, where

ρ ⌘ α�β

1�α
. This representation allows us to characterize the utility function in a simple way

12Note that the assumption that c1 = 0 is not restrictive as there are no informational shocks before the
decision to enter the first auction. If we consider a case with c1 6= 0, and given the equilibrium outcome,
we can compute the expected utility for every type. Bidders enter the (first and maybe subsequent) auction
if, and only if, the expected utility they obtain from the game is positive. The ex-ante expected utility
is continuous and increasing in the agent’s type. Therefore, we could perform the analysis considering the
distribution:

F ⇤ (wi) ⌘ F (vi | EU (vi) � 0)
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where the interpretation of complementarities or substitutabilities depends on the sign of one

parameter, ρ. The sign of the complementarity parameter, ρ, is ultimately linked to the size

of the sunk cost, α, relative to the size of the deceasing marginal returns, β:

• ρ > 0 iff β < α: When ρ > 0, we say that goods are complements. The reason is that

in this case, the marginal utility for the second unit is greater than the marginal utility

for the first unit. This is a situation where the sunk cost is relatively more important

than the decreasing returns. In our empirical setting, and for reasons that we explain

in Section 3, this is an instance that will be more likely (although not exclusively) to

occur in spring/summer.

• ρ < 0 iff β > α: When ρ < 0, we say that goods are substitutes. In this case, the

marginal utility for the second unit is lower than the marginal utility for the first unit.

Now the decreasing marginal returns effects is relatively more important than the sunk

cost effect. This situation is more likely to manifest in autumn/winter, as we discuss

in Section 3.

The following is the utility of bidder i in the English-auction:

Ui (·) =
�

x1
i + x2

i + ρx1
ix

2
i

�

vi � y2i c (1)

where vi ⇠ Fi [0,Wi] is a scalar (with Wi finite or infinite), c > 0, is a scalar arbitrarily

close to zero, and yki , x
k
i 2 {0, 1} as defined in Subsection 2.1. As discussed above, after

normalizing the marginal utility of the first unit to be equal to vi, the marginal utility of the

second unit is (1 + ρ) vi.

We will only consider pure strategy symmetric equilibrium. Cases where ρ  �1 and

ρ = 0 are close to von der Fehr (1994), in Subsections 3.2 and 3.4, respectively. Uniqueness,

however, is not proved by von der Fehr in any of those cases.

In the remainder of the paper we refer to vN :N as the highest realization of the random

variable vi among N distributions Fi (one draw from each distribution), and vN�1:N , as the

second highest realization. More generally, vj:N is the jth order statistic for a sample of size

N from the distribution Fi (vi).
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Proposition 1. When ρ > 0, the unique pure strategy symmetric sequential equilibrium is:

• First auction:

- Participation: Bidder i always participates in the first auction, i.e., y1i = 1

- Bidding Strategy. We have two cases:

(a) If (1 + ρ) vi ⌘ ṽi  c, then b1i (vi) = b1 (vi) = vi

(b) If (1 + ρ) vi ⌘ ṽi > c, then b1i (vi) = b1 (vi) = (2 + ρ) vi � c

• Second auction:

- Participation. We have two cases:

(a) If (1 + ρ) vi ⌘ ṽi  c, then do not participate in the second auction

(b) If (1 + ρ) vi ⌘ ṽi > c, then participate in the second auction if, and only if,

the bidder won the first auction, i.e.: y2i = 1 iff x1
i = 1

- Bidding Strategy: If bidder i participates in the second auction (y2i = 1), he

will continue bidding until the price reaches his own valuation, i.e.: b2 (vi) =

[x1
i (1 + ρ) + (1� x1

i )] vi

One should note that this equilibrium is also an equilibrium in weakly dominant strategies.

Hence, the strategies played by all players in this case are optimal (best responses) for any

belief that any player might have about other players’ beliefs, or actions, or both.

Note that, in this case, the allocation is efficient, and only one bidder will enter the second

auction and pay the cost, c. This is the minimum cost we can expect to be paid if we want

the object to be allocated. Thus, the mechanism is also efficient in terms of minimizing entry

costs.

We proceed now to introduce three propositions that will help us identify the model’s

primitives. Note that, in this case, we do not need to solve the complete model to obtain the

results we will use in the estimation.

Proposition 2. When α < β, the probability that a bidder different from the winner enters

the last auction is decreasing in the participation cost, c. Moreover, this probability goes to 1

when c goes to zero. That is: Lim
c!0

�

Pr
�

y2i = 1 | x1
j = 1, i 6= j

� 

= 1.

The intuition is the following. Since ρ < 0, the winner of the first auction will have a

valuation for the second unit lower than his utility for the first unit. Hence, there is a positive
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probability that his utility for the second unit is lower than the utility of other bidders. Thus,

other bidders will enter the second auction.

Proposition 3. When goods are substitutes, �1 < ρ < 0, it is a dominant strategy for all

bidders to bid their valuations for the last unit in the last auction, conditional on entering

the auction.

Since this is the last stage of the game, bidders will behave as in a single-unit auction.

Thus, it is a dominant strategy to bid one’s own valuation.

Proposition 4. When ρ = c = 0, it is a weakly dominant strategy for all bidders to enter

all auctions and bid their valuations in every auction, that is, yki = 1 and bki = vi, 8i, k.

When ρ = c = 0 this is indeed the unique equilibrium in weakly dominant strategies, but

not the unique Nash equilibrium. Since all the valuations are revealed to all bidders in the

first stage, equilibria can be constructed where some players do not enter the second auction,

or players enter the second auction and bid below their valuations, provided that the two

highest types bidders enter both auctions and bid their valuations in both. Note, however,

that in any case the bidder with the highest valuation will win both units and will pay a

price equal to the valuation of the bidder with the second highest valuation.

We can construct any such equilibrium by using a parameter τ 2 (0, 2), and define the

strategies for all players as yki = 1, b1i = (τ) vi and b2i = (2� τ) vi, 8i, k. Then, for any

τ 2 (0, 2) this is an equilibrium. Also, for τ 6= 1 these strategies are not weakly dominant.

See, for example, b2i = (2� τ) vi. Since this is the last action of the game, the only weakly

dominant strategy is to bid one’s valuation: b2i = vi. A corollary of Proposition 4 is that,

when τ = 1, this is indeed an equilibrium in weakly dominant strategies.13 These results will

also hold when ρ > 0 and c = 0. When ρ < 0, c = 0 and k = 2, the model is identical to

Black and De Meza (1992) and the proposition no longer holds. Hence, there is continuity

in strategies only when ρ > 0 and ρ ! 0 (but not when c > 0 and c ! 0).

13Note that, due to the revelation principle, the revenues for each player will be the same regardless of the
equilibrium played.
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2.3 Four Units

The relevant unit of analysis are four-unit auctions (we provide further details about this in

the next section). We present now the following two corollaries that extend the results from

the previous subsection to the case where four units are sold, K = 4 (see Subsection A.2 in

the Online Appendix for the details).

We say that goods are pure complements if the marginal utility for the first unit is below

the marginal utility for the remaining units (3β  α). Goods are non pure complements oth-

erwise (3β > α). The following two corollaries summarize the results we use in the structural

estimation:

Corollary 1. When goods are pure complements, β  α
3
, the marginal utility of the winner

(of all four auctions) satisfies:

4
X

k=1

pk = [4� α� 6β] vN�1:N � 3c (2)

Corollary 2. When goods are not pure complements, β > α
3
, the marginal utility of the

winner in the last auction, depending on how many units the winner won, satisfies:

If the winner won all four units:

p4 = (1� α)vN�1:N � c (3)

If the winner won three units, two out of the first three, and the last one:

p4 = (1� β)vN�1:N � c (4)

3 Data Description

In this section we describe the auction allocating system and the data. For our analysis, it

is critical to introduce the empirical regularities that support the contention that the size

of sunk costs relative to decreasing marginal returns provide the basis for the existence of

two regimes and to justify the modeling assumptions made in Section 2 within our empirical

context. We perform these tasks in Section C in the Online Appendix.

The data in this paper come from all water auctions in Mula, Spain, from January 1954

18



through August 1966, when the last auction was run.14 On August 1st, 1966, the alloca-

tion system was modified from being an auction allocation system to a two-sided bargaining

system. In the bargaining system, the Heredamiento the Aguas (water-owners holding) and

Sindicato de Regantes (land-owners association) arranged a fixed price (renegotiated at the

beginning of every six months) for every cuarta of water (the smallest unit auctioned). Grad-

ually, the Sindicato de Regantes bought shares in the Heredamiento the Aguas association

until they finally merged in 1974. Thereafter water was allocated to each farmer following a

fixed quota, and each piece of land was entitled to some proportion of the water every year.

The reasons for focusing on the period from 1954 to 1966 are, first, that it represents

the final period of the auction allocating system that was used for at least eight centuries in

this region. Second, given that the government carried out a special agricultural census in

1954/55, we are able to obtain a detailed profile information about the farmers that bid in

the auctions for this period.

Apart from being a remarkably stable market institution that had been active since the

13th century, the study of sequential auctions in the present scenario introduces a unique

circumstance for analyzing a stark pattern of outcomes not documented in the literature

before. Sometimes, winning prices exhibit a standard competitive pattern where, regardless of

whether the same or different farmers win the sequential units, prices are similar in magnitude

(Figure 1). Other times, one farmer wins all sequential units; he pays a high price for the

first unit, deterring other farmers from entering subsequent auctions, thus paying a very low

price for the remaining units. We call this the deterrence effect (Figure 2).15

The relative importance of sunk costs and decreasing marginal returns cause farmers to

coordinate, affecting their marginal utility for subsequent units (within four-unit auctions).

This feature must be taken into account if any estimations or inferences are to be accurate. An

alternative hypothesis to the behavior of farmers in the case of complementarities, discussed

in Subsection 5.4, is that bidders might be playing some collusive (non-competitive) strategy.

When the former effect is relatively high (as defined in previous section), the deterrence effect

becomes apparent and the price pattern documented in Figure 2 is observed.

14Data available in the historical archive of Mula go back until 1803.
15In terms of purchasing power, one peseta from 1950 is approximately equivalent to 0.43 U.S. dollars from

2013 (for details see footnote 14 in Subsection C.1 in the Online Appendix).
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Figure 1: Auction Sample: Goods Are Substitutes

Auction # Name Price Day
1 Pedro Fernández 123

Mo
2 Pedro Fernández 111
3 Pedro Fernández 111
4 Pedro Fernández 109
5 Pedro Blaya 115

Tu
6 Jose Ruiz 116
7 Mauricio Gutierrez 117
8 Mauricio Gutierrez 106
9 Ambrosio Ortiz 116

We
10 Ambrosio Ortiz 100
11 Ambrosio Ortiz 100
12 Carlota Pomares 116
13 Eliseo Gutierrez 120

Th
14 Antonio Muñoz 112
15 Antonio Navarro 110
16 Vicente Ledesma 106
17 Jose Galvez 103

Fr
18 Juan Martinez 91
19 Juan Martinez 90
20 Jesus Gutierrez 100

Sample from original data obtained from the historical archive: Goods Are Substitutes (Winter - February 18, 1955, Day). Units
1 to 4 are the units bought on Monday (Mo) during day (unit 1 corresponds to right to irrigate from 7AM to 10AM, unit 2
from 10AM to 1PM, unit 3 from 1PM to 4PM, and unit 4 from 4PM to 7PM). Similarly, units 5 to 8 are the units bought on
Tuesday (Tu) during day; units 9 to 12 are the units on Wednesday (We) during day; units 13 to 16 are the units on Thursday
(Th) during day; and units 17 to 20 are the units on Friday (Fr) during day.

Figure 2: Auction Sample: Goods Are Complements

Auction # Name Price Day
1 Juana Fernández 1580

Mo
2 Juana Fernández 50
3 Juana Fernández 50
4 Juana Fernández 50
5 Francisco Gabarrón 1401

Tu
6 Francisco Gabarrón 50
7 Francisco Gabarrón 50
8 Francisco Gabarrón 50
9 Jose Fernández 1401

We
10 Jose Fernández 25
11 Jose Fernández 25
12 Jose Fernández 25
13 Antonio Belijar Boluda 1401

Th
14 Antonio Belijar Boluda 25
15 Antonio Belijar Boluda 25
16 Antonio Belijar Boluda 25
17 Manuel Gutiérrez 1406

Fr
18 Manuel Gutiérrez 50
19 Manuel Gutiérrez 50
20 Manuel Gutiérrez 50

Sample from original data obtained from the historical archive: Goods Are Complements (Summer - July 22, 1966, Day). See
notes in Figure 1.
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3.1 Water Auctions as Allocation System

Although the process of allocating water in Mula has varied slightly over the years, its

basic structure has remained, essentially, unchanged since the 15th century. Land in Mula is

divided into regadío (irrigated land) and secano (dry land). Irrigation is only permitted in

the former. A channel system allows water from the river to reach all regadío lands.16 The

fundamental reason for this division is that regadío are fertile lands close to rivers, and thus

allow a more efficient use of the scarce water in the region. Since it is forbidden to irrigate

lands categorized as secano, only the farmers that own a piece of regadío land in Mula are

allowed to buy water.

The mechanism to allocate water to those farmers is a sequential outcry ascending price

(or English) auction. The auctioneer sells by auction each of the units sequentially and

independently of each other. The auctioneer keeps track of the name of the buyer of every

unit and the price paid by the winner.17

The basic selling unit is a cuarta (quarter), which is the right to use water that flows

through the main channel for three hours. Water storage is done in the De La Cierva dam.

Water flows from the dam through the channels at approximately 40 liters per second. As

a result, one cuarta carries, approximately, 432,000 liters of water. Traditionally, auctions

were made every 21 days to complete a tanda (quota), which is the basic aggregate unit of

irrigation time. During our sample period, auctions were carried out once a week on Friday.

In every session, 40 cuartas were auctioned: four cuartas for irrigation during the day

(from 7:00 AM to 7:00 PM) and four cuartas for irrigation during the night (from 7:00 PM

to 7:00 AM), for each weekday (Monday to Friday). The auctioneer would first sell the 20

cuartas corresponding to the night-time, and then the 20 cuartas corresponding to the day-

time. Within each of these groups (day and night), units were sold beginning with Monday

16The channel system was expanded from the 13th to 15th century, as a response to the greater demand
for land due to the increase in population. The regadío land structure has not change since the 15th century.

17The farmers could not store water in their plots, and reselling water was forbidden. While a farmer
could steal water by opening the gate next to his own parcel, the technology for detection of this crime was
effective as irrigation was done by flood irrigation (see Subsection C.3 in the Online Appendix). It was easy
to determine who stole water just by identifying a flooded parcel from a farmer who did not buy water in
the auction for that specific day-schedule (conditional on rainfall). The Tribunal de los Hombres Buenos
(Council of Wise Men), composed by elected members among the farmer community, was responsible to
provide justice when conflicts between the farmers arose (mostly, irrigating without the right to do so). We
investigate this behavior in Donna and Espin-Sanchez (2013).
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(four cuartas), and finishing with Friday’s quartas.

3.2 Sources of Data

We combine data from different sources for our analysis. Auction data, the primary source

of data for this study, are obtained from the historical archive of Mula.18 Based on bidding

behavior and water availability, auction data can be divided into three categories: (i) Regular

periods, where the name of the winner, price paid, date and time of the irrigation for each

auction transaction is registered, (ii) No-supply periods, where no auctions are conducted

due to water shortage in the river or dam/channels damages (usually because of intense

rain), and finally (iii) No-demand periods, where auctions are held but no one bids and

the registration auction sheet is blank. As we mentioned above, the sample for this study

includes almost 13 years of auction data spanning January 1954 to August 1966. Every week,

40 units (corresponding to 40 cuartas) are sold, with the exceptions being when no auction

is run (no-supply) or no bids are observed (no-demand). A total of 17,195 auctions were run

during the period under analysis (Table A3 in Subsection C.2 in the Online Appendix).

We supplement auctions data with daily rainfall data for Mula and monthly price indexes

for Spain, which we obtain from the Agencia Estatal de Metereología, AEMET (which is the

National Meteorological Agency), and the Instituto Nacional de Estadística de España, INE

(which is the National Statistics Institute of Spain), respectively. Mediterranean climate

rainfall occurs mainly in spring and autumn. Peak water requirements for the products

cultivated in the region are reached in spring and summer, between April and August. We

discuss how seasonality affects water demand in our empirical setting in Section C in the

Online Appendix.

We further augment our data with individual characteristics of the farmers’ land, which

we obtain from the 1954/55 agricultural census.19 This census was conducted by the Spanish

government to enumerate all cultivated soil, producing crops and agricultural assets available

in the country. Individual characteristics for the farmers’ land (potential bidders which we

18From the section Heredamiento de Aguas, boxes No.: HA 167, HA 168, HA 169, and HA 170.
19Detailed census data is also obtained from the section Heredamiento de Aguas in the historical archive

of Mula, box No. 1,210.
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Figure 3: Sample of Individual Data Obtained from the Agricultural Census

Sample Card from a Farmer Obtained from the Agricultural Census. Individual characteristics include:
farmers’ name (that we match to the names in the auctions), type of land and location, area, number of
trees, production and the price at which this production was sold in the census year.

match with the names in the auctions data) include the type of land and location, area,

number of trees, production, and the price at which this production was sold in the census

year. Figure 3 shows a sample card for one farmer from the census data. As we discuss in

Section 5, during the 13-year period under analysis, there are approximately 500 different

bidders in our sample. The number of bidders that win auctions during a specific year is

considerably lower—the mean for our sample is around 8 (see table 2 that is discussed in

Subsection 5)—and conditional on participating, each farmer wins on average 22 units per

year. This is consistent with the census data we have collected, where mean land extension

is 5.5 ha. with an average of 33 trees per ha.20

In Section B in the Online Appendix we show that regime determination is consistent

20Average annual rainfall during the period is 320 mm. Recent irrigation studies on young citrus plantings
have shown a water use of 2-5 megalitres per hectare annually (Chott and Bradley 1997). Water savings are
possible if irrigations can be allocated to similar units of production, such as young trees or reworked sections
of a property. In arid regions, like Murcia, water requirements are around 20% less and they are lower for
mature trees. Note that, as discussed in Section C in the Online Appendix, some farmers that are part of
water-owner holding use their own water instead of selling it through auctions. Although water stress during
droughts affects the quality of production, trees would hardly die as a result. During a normal year without
drought, trees could survive the whole year from rainfall alone. For further details see, for example Chott
and Bradley (1997), Wright (2000), and du Preez (2001). Finally, note that although the average number of
trees per farmer is 161 (see Table A4 in Subsection C.2 in the Online Appendix), the average number of trees
per hectare in our sample is 33 (this number is relatively lower than the conventional agricultural standard
spacing for citrus trees of 100 trees per hectare).
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with end-digit preferences.

We provide a detailed description of the data in Section C in the Online Appendix: in

Subsection C.1 we provide an overview of the industry context, in Subsection C.2 we discuss

empirical regularities of the raw data and its summary statistics, and in Subsection C.3 we

justify the modeling assumptions made in Section 2 within our empirical context.

4 Identification

In this section we discuss identification of the distribution of private valuations and structural

parameters conditional on the specific regime being played. The theoretical model in Section

2 along with the procedure described in Section B in the Online Appendix allow us to separate

data into four categories:

a) Same bidder wins all four units and goods are pure complements, β  α
3
.

b) Same bidder wins all four units and goods are non pure complements, β > α
3
.

c) Last winner also bought two out of the first three units, three units in total, β > α
3
.

d) Otherwise.

According to our model, categories b, c, and d are only consistent with a regime where

goods are non pure complements.

Our model does not require symmetry in the distribution of private valuations. However,

in our empirical application we only observe the identity of the winner who pays the valuation

of the runner up (second highest valuation). For the rest of our analysis, we focus in the

symmetric case (i.e., Fi = F 8i). The foundations for identification come from corollaries

1 and 2 (equations 2, 3, and 4). This system provides us with three restrictions in the

parameter space.

Parametric Identification

We now discuss identification by using a specific parametric functional form for the dis-

tribution of private valuations.21 The question is whether the joint distribution of private

21Note, however, that for the case of an English auction, the conditional distribution of private valuations
is non-parametrically identified when the transaction price and the number of bidders are observable (Athey
and Haile 2002).
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valuations can be recovered from the distribution of (observed) winning bids alone. The

distribution of the J th order statistic from an i.i.d. sample of size N from an arbitrary dis-

tribution FV (.) is given by:22

FJ :N(x) =
N !

(N � J)!(J � 1)!

ˆ FV (x)

0

tJ�1(1� t)N�Jdt 8x (5)

Since the right-hand side is strictly increasing in FV (x), for any J and N we can define

the function φ(FK:N(v);K,N) : [0, 1] ! [0, 1] implicitly by:

F (x) =
N !

(N � J)!(J � 1)!

ˆ φ(x)

0

tJ�1(1� t)N�Jdt 8x

This result is immediately useful in our sequential English auction model where bids

are conditional-independent draws from a distribution FV (.) and the equilibrium (observed)

transaction price is a function of the second highest valuation, vN�1:N .23 Thus, conditional on

goods being pure complements, the distribution of valuations is identified up to the multiply-

ing constant using equation 2 and the previous result. To identify the remaining structural

parameters, α and β, we use Corollary 2. Equations 3 to 4 jointly identify the distribution

of private values and the structural parameters α and β.

For our estimation we will allow decreasing marginal returns, βt, to vary across auctions.

Specifically, we are going to model them as a function of farmers’ expectations of rain that

we are going to proxy by actual (observed) future rain:

βt = β0 + β1R
F
t

where RF
t is a dummy variable that is linked to expectations about future rain. RF

t = 1 if

farmers expect that rain is going to be positive (for the day for which they are buying water)

and zero otherwise. Additionally, we further let βt have different intercepts in each regime:

22Arnold, Balakrishman and Nagaraja (1992) provide an extensive discussion on order statistics, while
Athey and Haile (2002) discuss its application for the case of empirical auctions.

23Note that this result extends immediately to cases where valuations are affected by auction-specific
covariates, Zt. In this case, FV (.|Zt) is uniquely identified by FN�1:N (.|Zt) 8Zt (see Athey and Haile 2002).
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βS
t = βS

0 + βS
1 R

F
t

βC
t = βC

0 + βC
1 R

F
t

(6)

Table 1 provides an heuristic argument to understand the reasons behind this equation.

Table 1: Rain Expectations and Regime Coordination

Variables (1) (2) (3)

Future Rain -0.0030*** -0.0030*** -0.0034***
(0.0013) (0.0013) (0.0013)

Weekday FE NO YES YES
Schedule FE NO YES YES
Month FE NO NO YES

Sample restricted to the one used in the structural estimation in Table 3. Almost identical results are
obtained using the whole sample. All specifications are probit regressions. Marginal effects are reported.
Robust standard errors in parenthesis. Dependent variable is a dummy variable equal to one if the regime is
pure complements (see Section B in the Online Appendix). Future Rain is a moving average of rain in Mula
for seven days after the corresponding date of the auction (Future Rain is a proxy variable for farmers’ rain
expectations for the day where they are buying water). Past Rain (a moving average of rain in Mula for
seven days before the corresponding date of the auction) and Actual Rain (the amount of rain in Mula in the
day of the auction) are not statistically significant in any of the above regressions. *** p<0.01, ** p<0.05,
* p<0.1.

This table presents probit regressions of a dummy variable identifying the regime (pure

complements and non pure complements) on future rain and other covariates. As noted

above, we interpret future rain in these regressions as a proxy for (aggregate) expected future

rain for the farmers. Table 1 shows that low expected rain and high demand months (May

to August) significantly increase the likelihood of being in a pure complement regime. The

interpretation is that farmers have some information (expectations) about future rain. While

the idiosyncratic component of this information is captured by their type, vi, the common

component is captured by βt. When farmers expect, on aggregate, no rain in a given day,

they will coordinate to play in the pure complements regime. Seasonality also affects the

demand for water and affects the position of a farmer in the production curve (Figure 4).

The results in Table 1 show that it is the slope on the marginal returns effect that drives the

change of regime.

Finally, let vi ⇠ F (v;µ), where µ is a parameter characterizing the distribution of valua-

tions, F . Equations 2, 3, 4, and 6 jointly identify the parameter vector
�

µ,α, βC
0 , β

S
0 , β

C
1 , β

S
1

�

,
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Figure 4: Marginal Returns of Irrigation Water

Marginal returns of water in summer (left) and autumn (right).

conditional on regime identification (that we identify non parametrically as described in Sec-

tion B in the Online Appendix) and exogenous covariates. The full system of equations is

given by:24

4
P

k=1

pka =
⇥

4� α� 6βC
t

⇤

vN�1:N � 3c

p4b = (1� α)vN�1:N � c

p4c = (1� βS
t )vN�1:N � c

βS
t = βS

0 + βS
1 R

F
t

βC
t = βC

0 + βC
1 R

F
t

(7)

Finally, note that in our parameterization we fix α across auctions (and seasons) but

we allow βt to vary. This is necessary to identify them separately but, ultimately (and as

evident in the sequential auction model), it is the relative magnitude of the effects that

matters. The rationale for why we let βt vary (instead of α) is that a regime switch is driven

by the (residual) demand for water by the farmers, as determined by rain and seasonal effects.

We expect α to vary across auctions and seasons as well. Given that this variation is not

24 The third equation in the system is, actually, p4b = Max {(1� α)vN�1:N , (1� β) vN�2:N}, since we do
not know whether the runner-up in the last auction was the bidder who already won one unit or a bidder
without previous purchases. However, when N is large, (1 � α)vN�1:N < (1� β) vN�2:N if β ' α. But, in
the case that β ' α, the same bidder will not win three out of four units. That is, in an auction where N

is large and the same bidder wins three out of four units, we expect β to be significantly greater than α.
Therefore, the equation can be simplified to p4b = (1� α)vN�1:N .
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separately identified from the variation on βt, we should interpret the estimated changes in

βt as relative changes with respect to α.

We discuss identification and estimation of participation costs in Section E in the Online

Appendix.

5 Estimation

In this section we discuss the estimation procedure with homogeneous bidders and how we

handle the difficulties that arise from it.

The econometric problem consists of finding the common distribution of valuations F and

structural parameters that best rationalize the bidding data. As discussed in the previous

section, the bid levels at which bidders drop out of the auctions are not observed, except the

bidder with the second-highest valuation.

A second concern arises from the likely heterogeneity across auctions. Observed hetero-

geneity arises due to seasonal effects, rain, and the day and time of the week when the auction

occurs. This means that the distribution of private values for the tth auction, Ft(·), is not

constant across auctions. In our estimation we recover the family of distributions F (·|Zt, γ).

That is, we assume for every four-unit auction that Ft(·) = F (·|Zt, γ), where γ 2 Rk is a pa-

rameter vector and Zt is a vector of fully observed characteristics describing the environment

of the tth auction. We describe the inclusion of these covariates in next subsection.

The number of potential bidders in each auction, Nt, is not observed. Moreover, it is not

identified (Athey and Haile 2002). We assume that it is constant for every four-unit auction,

Nt = N . Table 2 displays the timing structure for different bidders in our sample. For our

estimation, we let the number of potential bidders in each auction be the yearly average of

different farmers that win auctions in our sample.25 We estimate the model using different

values of N for robustness.26

25The agricultural products that are cultivated in the area are mainly citrus trees, which are harvested
once per year. The number of different bidders who bought at least one unit during a specific year constitutes
a good approximation to the number of farmers that were actively bidding in each four-unit auction during
that year (see Section C in the Online Appendix for further details). The monthly average of different bidders
who bought water in the sample (years 1954 to 1966) is 8.31 (Table 2).

26In Table 3 we present the results for N 2 {8, 10}. We have performed a sensitivity analysis to different
values of Nt that are consistent with the pattern observed in Table 2 and the evidence described in Section
C in the Online Appendix. In addition, we have performed the estimation by breaking the sample into four
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Table 2: Timing Structure of Different Winners: Estimation Sample

Month 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 Total
1 4 6 0 3 1 11 3 0 0 0 28 0 11 61
2 4 4 0 2 4 2 3 0 0 0 19 0 21 57
3 5 3 0 9 0 1 2 0 0 10 29 8 23 79
4 0 2 0 6 2 5 4 6 0 17 28 38 28 121
5 5 7 0 6 1 13 9 6 9 4 32 30 31 130
6 3 7 0 7 0 8 10 7 10 14 23 25 29 119
7 2 3 0 6 9 26 8 5 13 15 17 21 23 117
8 9 3 0 3 4 10 7 14 18 15 21 16 3 102
9 8 8 0 3 8 10 5 13 0 8 35 19 0 97
10 8 7 3 2 11 2 0 9 0 10 16 19 0 78
11 7 2 3 0 8 2 0 4 0 21 29 23 0 82
12 1 0 2 2 3 1 0 0 0 36 18 12 0 69

Total 48 43 8 43 48 80 47 54 44 106 179 147 128 537

Total, in the last row, refers to the total number of different winners for the specific year (column). Given
that, within a year, the same bidders win multiple units in several months, this number is below the sum
over months, by year. Similarly for the last column, where Total is the number of different bidders for the
specific month (row) during the 13-year sample. Finally, 537, refers to the total number of different bidders
in the whole sample. The monthly average of different bidders who bought water in the sample (years 1954
to 1966) is 8.31.

An additional concern that, ultimately, maintains an important relation with the empir-

ical setting is that the econometrician may be less informed than the bidders. Throughout,

we have assumed that the vector Zt of covariates is fully observed by the econometrician. In

our environment, unobserved heterogeneity implies that the distribution of bids may not be

conditional-independent across t. All farmers may, for example, observe some factor (unob-

servable by the researcher) that shifts the location of the distribution values. This unobserved

heterogeneity could lead to correlation among bidders’ valuations, causing an identification

problem and inconsistent estimates to arise.27 Modeling unobserved heterogeneity may re-

quire additional assumptions on the behavior of unobservables (independence, separability,

strict monotonicity) and is outside the scope of this paper.28

Finally, it is important to understand what is the meaning of vi in a dynamic model.

periods and performing the estimation independently in each period allowing the mean value of Nt to vary
by period. We obtained similar results to the ones reported in Table 3.

27From the agricultural census data we observe individual characteristics of the farmers which we are able
to link to the winning bids. Given the structure of the agricultural water market we are modeling, it does not
appear to be an important concern once we consider the homogeneity of the selling good and the observed
characteristics we introduce in our estimations (seasonality, past and future rain, among others).

28For a discussion on this issue see, among others, Athey, Levin and Seira (2011) for an application to timber
auctions, and Krasnokutskaya (2011) for a semi-parametric approach to Michigan highway procurement
contracts. In a recent investigation, Roberts (2009) uses information contained in reserve prices to allow
bidders’ private signals to depend on the realization of the unobserved heterogeneity.
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When modeling a single-unit auction, we normalize, by simplicity, the outside option to zero.

That is, the interpretation of vi is not the value that the bidder assigns to the object but the

difference between the value that the bidder assigns to the object and the value of not having

the object (the option value). In the single-unit case, these two definitions coincide, but not

in a dynamic setting. In our case, the option value of not winning the first (out of ten, four-

units) auction (say, Monday-Night) is positive, since there are many options to buy water

before the end of the process. However, the value of not winning the last auction (say, Friday-

Day) is zero, since this is the last auction until next week. Hence, what the econometrician

is estimating in a sequential auction setting is the difference between the utility of the bidder

when he wins the object and when he does not. This difference is changing as the auction

process evolves. We are aware that this effect is present, and we capture it by including

dummy variables for the 10 (four-units) different auctions.

These dummy variables account for this option value effect. Although the dummy variable

capture a linear effect, the option value need not be linear. We analyze this by checking for

correlation and auto-correlation between the errors within and between four-units auctions.

We find no significant correlation. We interpret this in favor of the assumption of conditional-

independence between four-units auctions.

Unlike in Donald and Paarsch (1993) and Laffont, Ossard and Vuong (1995), the sup-

port of the distribution of the winning bid as defined in the previous section does not de-

pend on the parameter vector. Maximum Likelihood Estimation (MLE) is possible in our

setting where losing bids are not observed.29 Let θ ⌘ (α, βC
0 , β

S
0 , β

C
1 , β

S
1 ) and let vi be a

conditional-independent draw from a parametric distribution (known by the econometrician)

F (·;µ|θ, Zt, γ) where µ 2 Θ
l is the parameter of a family of distributions. Then, the likelihood

function is given by:

29Another potential concern with the likelihood approach in this context is the assumption that the winning
bid equals the second highest valuation (after considering sunk cost and decreasing marginal returns effects).
This assumption is likely to be violated when bids rise in discrete steps, and especially in cases where bids
increase faster than the required minimum (that is, jumping bidding). This is not the case in our setting.
Winner prices exhibit great variation (see summary statistics in Tables A4 and A5 in Subsection C.2 in the
Online Appendix) and cents bids are frequently observed.
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where fN�1:N(v;µ) is the probability density function (PDF) of the (N � 1)th order statis-

tic from a sample of N from the distribution of valuations F , Da
t +Db

t +Dc
t = 1 8t, and Da

t ,

Db
t , D

c
t are, respectively, indicator variables for cases a, b, and c, outlined in Section 4.

5.1 Distribution of Private Values

Our model and the context of the market under analysis provide insight on how the charac-

teristics of farmers and auctions should affect private values, but it offers little guidance on

the functional form of this distribution. We assume that farmers’ valuations, vi, follow an

an exponential distribution for each four-unit auction.30, 31 In Subsection 5.2 we report the

results from a Kolmogorov-Smirnov test where the null hypothesis that the distribution of

private valuations are draws from an exponential distribution cannot be rejected.

To recover both, the structural parameters and the distribution of values conditional on

the vector of covariates, we let the mean of the distribution of valuations depend on various

characteristics that are drawn from our data. We assume that observed prices follow a linear

function of the following exogenous variables and estimate all parameters using the likelihood

function:32

30Following our notation above, the CDF is given by F (v;µ) = (1� e�µv) 1 {v � 0} and is completely
characterized by the scalar µ > 0.

31In our earlier working paper Donna and Espin-Sanchez 2012 we used an Exponentiated Gamma (EG)
distribution The EG distribution gives us a closed-form solution for the PDF of the jth order statistic and it
is characterized by a single parameter; additionally, the PDF of the jth order statistic of a EG is a weighted
average of several PDF of EG. This implies that the PDF of any order statistic of an EG distribution also
has a closed-form solution.

32Laffont, Ossard and Vuong (1995) assume that private values follow a log-normal distribution and let
the mean of the logarithm of the valuations be a linear function of exogenous characteristics. Haile and
Tamer (2003) condition on covariates by constructing the conditional empirical distribution functions using
Gaussian kernels. See Hickman, Hubbard and Saglam (2011) for a recent guide to the literature on structural
econometric methods in auctions.
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The first exogenous variable, RP
t , refers to Past Rain, a moving average of the daily rain

beginning seven days prior to the date of the auction; we include a quadratic term to allow

for non linearities in past rain. The second variable is a dummy variable that equals one if the

water was bought for night use. The next four variables are a set of dummy variables for each

weekday. Finally, the last eleven variables are a complete set of monthly dummy variables

to condition on seasonality. Water prices soar in this market during the dry summer and

drop in winter. We accommodate these shocks to demand with seasonal monthly dummy

variables. See Sections D and E in the Online Appendix for details about the estimation

procedure.

5.2 Estimation Results

In this section we present the estimation results of the structural model associated with the

theoretical benchmark of Section 2 under various econometrics specifications. We present the

structural estimates obtained using a tolerance level of 1.0e�25. We let private valuations for

each four-unit auction follow an exponential distribution, and follow the described estimation

procedure. As discussed above, the number of bidders, N , is determined by the monthly

average of different bidders who bought water in the sample (years 1954 to 1966). In this 13-

year sample, the average is slightly above 8. Each of these farmers regularly won auctions.

It is reasonable to assume that they attended the auctions.33 Tables 3 and 4 present our

estimation results. Columns 1, 3, and 5 present the estimates for N = 8, while columns 2, 4,

and 6 do it for N = 10.34

33See Section C in the Online Appendix for further details.
34In their simulated NLLS estimation, Laffont, Ossard and Vuong (1995) search for the best value of N by

minimizing a lack-of-fit criterion (proposition 4). Note that, as discussed in Subsection 4, identification of the
distribution of valuations and structural parameters of our model requires observation of the total number of
bidders. The rationale for this is straightforward: whether second highest realization of the random variable
vi is from a sample of size N = 10, or from a sample of size N = 100, is crucial to interpret the second
highest bid (observable in our data). Although observation of an additional order statistic can eliminate this
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Table 3: Structural Estimation

Structural parameters
Specifications

Sequential Auction Model Standard Model
(1) (2) (3) (4) (5) (6)

Mean Valuation [ ˆE(V )]
148.25 127.11 152.93 138.94 166.99 142.73

(10.129) (8.153) (70.832) (61.847) (87.373) (81.648)

Sunk Cost (α̂)
0.0301 0.0300 0.0301 0.0303

(8.2e-04) (9.7e-04) (3.0e-03) (9.1e-03)

β̂c
0

0.0101 0.0103 0.0102 0.0105
(1.2e-05) (1.3e-04) (4.9e-03) (1.3e-03)

β̂s
0 0.0100 0.0110 0.0101 0.0112

(0.0024) (0.0020) (4.9e-03) (1.3e-03)
Future Rain

β̂c
1 5.99e-10 1.54e-10 5.29e-10 5.94e-10

(1.6e-04) (1.5e-04) (1.1e-10) (3.2e-10)

β̂s
1 0.21279 0.18280 0.21278 0.18282

(0.0059) (0.0037) (0.0267) (0.0775)

Mean ρ̂

- Pure complements 0.3801 0.2456 0.6811 0.4239
- Non-complements -0.3056 -0.2655 -0.3085 -0.2637

N 8 10 8 10 8 10
Past Rain Polynomial No No Yes Yes Yes Yes
Schedule Dummy No No Yes Yes Yes Yes
Weekday Dummy Variables No No Yes Yes Yes Yes
Month Dummy Variables No No Yes Yes Yes Yes
Pseudo R2 0.2832 0.2751 0.5303 0.4842 0.1414 0.1333
Log likelihood -12,870 -13,940 -11,423 -12,375 -50,930 -54,956
# of Auctions 5,951 5,951 5,951 5,951 5,951 5,951

Bootstrapped standard errors (B = 1, 000) are reported in parenthesis (for the Mean Valuation it corresponds
to the bootstrapped standard error corresponding to Z 0

tγ). Estimates in columns 1 to 4 (sequential auction
model) are obtained using the estimation procedure described in Section 5 using KNITRO, a solver for non-
linear optimization, with tolerance level of 1.0e-25 (see Sections D and E in the Online Appendix for details).
For the distribution of private values and inclusion of covariates, we use the parametric specification described
in Subsection 5.1. Estimates in specifications 5 and 6 (standard model) are MLE obtained by maximizing the
likelihood function from a standard English auction model allowing the mean of the distribution of valuations
depend on the same characteristics as in the other specifications as indicated in equation 9, without fixed
costs nor decreasing marginal returns (the sample is the same as the one in columns 1 to 4, including in this
case all sequential prices in the estimation). Although not reported in the table, the coefficients form an OLS
regression of the residuals from the model in specification 3 against the covariates in that specification are
not statistically different from zero. Number of years in the sample is 13. Number of months in the sample
is 119. The number of different winners (across all 13 years) is 537. The complementarity parameter, ρ, is
computed as detailed in the theoretical model in Section 2. When the goods are pure complements is given

by ρCt =
α�3βC

t

1�α
=

α�3(βC
0
+βC

1
RF

t )
1�α

. The table reports, for each specification of the sequential auction model

in columns 1 to 4: ˆ̄ρC =
α̂�3

⇣

β̂C
0
+β̂C

1
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PT
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Table 4: Structural Estimation (continued)

Structural parameters
Specifications

Sequential Auction Model Standard Model
(1) (2) (3) (4) (5) (6)

Covariates

Past Rain (γ̂1)
-1.668 -2.076 -1.416 -1.2422
(0.301) (0.547) (0.379) (0.664)

(Past Rain)2 (γ̂2)
0.0076 0.0126 0.0034 0.0032

(0.0448) (0.0958) (0.1496) (0.1520)

Night (γ̂3)
-27.230 -23.56 -30.003 -25.916
(7.556) (9.649) (5.039) (3.629)

Tuesday (γ̂4)
-0.2873 -10.985 -2.7134 -2.4331
(0.6449) (9.7063) (7.1630) (2.6197)

Wednesday (γ̂5)
-2.4616 -2.1883 -5.8751 -5.0944
(0.5406) (0.9572) (2.5602) (6.0395)

Thursday (γ̂6)
-8.8423 -8.366 -15.755 -13.502
(0.6169) (0.8544) (4.7014) (2.5863)

Friday (γ̂7)
-17.805 -9.795 -28.154 -24.271
(5.016) (3.418) (12.903) (2.118)

Feb (γ̂8)
-11.373 -41.023 -4.8293 -5.0584
(23.299) (35.705) (2.330) (4.949)

Mar (γ̂9)
27.356 18.067 34.954 30.126

(12.386) (8.491) (5.218) (1.676)

Apr (γ̂8)
82.481 53.902 78.799 67.396

(23.456) (17.127) (3.426) (11.579)

May (γ̂10)
115.140 81.751 114.483 96.142
(24.822) (30.187) (4.366) (15.015)

Jun (γ̂11)
49.771 40.248 57.478 48.341

(23.112) (18.698) (8.429) (15.16)

Jul (γ̂12)
195.980 115.752 225.337 191.341
(26.035) (48.982) (216.025) (102.962)

Aug (γ̂13)
233.750 183.06 247.57 210.08
(28.562) (27.608) (195.347) (87.953)

Sep (γ̂14)
74.494 160.78 88.173 74.259

(23.684) (34.040) (39.318) (12.133)

Oct (γ̂15)
77.623 62.664 81.093 69.953

(14.532) (22.385) (30.165) (10.558)

Nov (γ̂16)
3.3622 -13.302 13.2099 10.6131

(2.3941) (7.513) (16.725) (9.6974)

Dec (γ̂17)
7.4696 -0.9495 2.8462 2.2106

(2.2226) (2.5513) (3.6735) (4.0308)

Intercept (γ̂0)
148.253 127.117 90.885 96.131 101.717 87.978
(10.121) (8.153) (32.274) (25.754) (179.285) (74.073)

N 8 10 8 10 8 10
Pseudo R2 0.2832 0.2751 0.5303 0.4842 0.1414 0.1333
Log likelihood -12,870 -13,940 -11,423 -12,375 -50,930 -54,956
# of Auctions 5,951 5,951 5,951 5,951 5,951 5,951

See notes in Table 3.
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For each specification, we present the estimates of the model’s structural parameters in

Table 3 and the estimates of the covariates in Table 4. Table 4 is the continuation of Table

3. That is, for each specification (column) in Table 3, Table 4 displays the estimates of the

covariates in that specification.

All parameters have the expected signs. We use the estimate of the parameter γ (that

characterizes the distribution of private valuations), to compute the mean valuation of the

first complete unit of water. In the case of column 3, the value of the first complete unit

of water is 152.93 pesetas. As expected, in the specification in column 4 (with 10 different

bidders), the mean value of the first complete unit of water is slightly lower, 138.9 pesetas.

The parameter βR
1 , R 2 {C, S} captures the effect of future rain. As farmers’ expectations

of future rain increase, decreasing marginal returns (DMR) are more severe (βR
1 > 0, R 2

{C, S}). This increases the likelihood of coordinating in a non pure complements regime (see

Table 1) and thus reduces their valuation of subsequent units of water (
∂pi

t

∂RF
t

< 0). Predicted

DMR are obtained by adding the estimates of intercepts β̂R
0 , R 2 {C, S} to that of β̂R

1 ,

R 2 {C, S}, conditional on the rain in the day of the auction.

When evaluated at the average future rain from each regime, the null hypothesis that

overall DMR are lower in the pure complements regime cannot be rejected (p-value above

10%):

H0 : β̂S
0 + β̂S

1 Ês(R
F
t ) > β̂C

0 + β̂C
1 Êc(R

F
t )

where Ês(R
F
t ) =

1
Ts

P

t:Da
t
=0 R

F
t , Êc(R

F
t ) =

1
Tc

P

t:Da
t
=1 R

F
t , Ts, and Tc are the number of

auctions in non pure complements and pure complements regimes, respectively.

The estimates of the sunk cost parameter, α, are statistically significant in all specifi-

cations. Given the choice of parameterization for sunk costs, the parameter estimates can

be interpreted as the percentage loss in terms of a complete unit of water (Section 2). For

our estimate in column 3 this represents a loss of 4.6 pesetas (using the mean value of 152.9

pesetas for a complete unit).

requirement (Song 2004), this would require imposing further structure on the distribution of beliefs in our
model (to interpret auctions where, for example, three different farmers win auctions), which is outside the
scope of this investigation. Moreover, we only observe winning bids in the data (see Section 3).
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As regards the relative size of the sunk cost with respect to DMR in each regime, we fail

to reject the following null hypothesis at the 5% level:

H0 :
α̂

3
> β̂C

0 + β̂C
1 Êc(R

F
t )

H0 :
α̂

3
< β̂S

0 + β̂S
1 Ês(R

F
t )

The estimated coefficients for covariates have the expected sign. For specification 3, for

instance, prices in August (February) are significantly 234 pesetas higher (11 pesetas lower)

than on January. This is consistent with the conventional wisdom that water is more (less)

valuable during these months because of high (low) water demand. Also as expected, past

rain decreases equilibrium prices. For specification in column 3, an increase in the average

rainfall by 1 mm from the previous week (with respect to the day of irrigation), decreases

average conditional price of a unit of water by 1.7 pesetas.

Participation cost are recovered using data where auctions were run with farmers present,

but no bids were placed, along with the identifying restriction that holds in such cases.35 Out

of the 3, 203 auctions where no bids were placed (Table A3 in Subsection C.2 in the Online

Appendix), we use the 2, 423 where some bidders where present (auctions similar to the one

in Figure 5). The interval estimate we obtain using specification 3, (0.0082 < ĉ < 0.1431), is

in line with the intuition from the model (hassle or opportunity costs because farmers value

their time) and the value used in the econometric specification (0.01).

In comparison of columns 1-2 and 3-4, it is clear that the model with covariates out-

performs the model without them, as shown by the significance of past rain and seasonal

dummy estimates, as well as the increase in the likelihood function, and the improvement

in the goodness of the fit. The main reason is the dependence of prices on seasonal factors

which we capture in our specification with seasonal dummy variables. From the residual

analysis we find no evidence that the increase in the log likelihood function is due to the

parametric misspecification of the value distribution itself. Our specification survives the

Kolmogorov-Smirnov test, so that the exponential distribution of private valuations cannot

35See equation A.7 in Section E in the Online Appendix.
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Figure 5: Auction Sample: Auction where Farmers Are Present and No Bids Are Placed

Auction # Name Price Day
1 Sebastian Aguilar 48

Mo
2 Felipe Amaro 42
3 Felipe Amaro 48
4 Diego Guirao 50
5 Felipe Amaro 54

Tu
6 Antonio Llamas 51
7 Cristobal Romero 47
8 Cristobal Romero 50
9 Cristobal Gutierrez 2

We
10 Cristobal Gutierrez 5
11 Cristobal Gutierrez 1
12 Cristobal Gutierrez 1
13 Luis Moya 2.75

Th
14 Luis Moya 1
15 Luis Moya 1
16 Luis Moya 1
17

Fr
18
19
20

Sample from original data obtained from the historical archive: Auction where farmers are present and no
bids are placed (Winter - January 22, 1954, Day).

be rejected (for the specification in column 3 the p-value of the test is 39%).36 37

As regards the goodness-of-fit, our specification in column 3 performs quite well, being the

pseudo� R2 = 53% (obtained by computing predicted prices by our model: pseudo� R2 =

1 �
P

T

t=1
(pt�p̂t)

2

P
T

t=1
(pt�p̄)2

, where p̂t are prices predicted by the model and p̄ is the mean of prices).

These results are in line with the R2 obtained in the reduced-form regressions. Although

not directly comparable given the distribution assumptions in the structural approach, the

R2 = 23% in the reduced-form specification with all covariates (column 3 in Table A6 in

Subsection C.2 in the Online Appendix) can be heuristically interpreted as the proportion

of variability in the data set that is accounted for by the covariates, while the proportion

accounted by the model without covariates in column 1 in Table 3 is R2 = 28%.38 As can

36We perform the nonparametric test to evaluate the equality of two distributions of valuations: our sample
of private values with a reference from an exponential distribution.

37Also, as a robustness check, we tested that residuals from the estimated model (with covariates) display
no correlation with any of the covariates (available in the earlier working paper Donna and Espin-Sanchez
2012).

38If we additionally add individual fixed effects to the reduced-form specification, the R2 just increases
from 23% to 36% (column 4 in Table A6 in Subsection C.2 in the Online Appendix).
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Figure 6: Winning and Estimated Prices

The figure displays real prices against predicted prices using three different models: (i) our structural model (specification 3 in
Table 3), (ii) a standard (button) English auction model (specification 5 in Table 3), and (iii) a reduced-form model for the
sample using as regressors: Past Rain, unit (3 dummy variables), weekday (4 dummy variables), schedule (1 dummy variable),
month (11 dummy variables), year (12 dummy variables), and individual fixed effects, in addition to a constant (for details
about the reduced-form specification see Table A6 in Subsection C.2 in the Online Appendix). The graph shows the mean
monthly averages of the prices. Similar results are obtained using a spline (available in our earlier working paper Donna and
Espin-Sanchez 2012). See Subsection C.4 in the Online Appendix for a high definition version of this figure.

be seen in Figure 6, our model allows us to follow winning prices accurately.39 The figure

displays real prices against predicted prices using three different models: (i) our structural

model (specification 3 in Table 3), (ii) a standard English auction model (specification 5 in

Table 3, that we discuss in next subsection), and (iii) a reduced-form model (specification

4 from Table A6 in Subsection C.2 in the Online Appendix that includes Past Rain and

multiple fixed effects as regressors such as individual fixed effects).

5.3 Understanding the Importance of the Model

We proceed now to analyze our model’s implications with respect to the importance of sunk

costs (SC) and decreasing marginal returns (DMR). Suppose that the researcher neglects

the dynamics that arise from the model and, instead, estimates a standard English auction

model. Suppose, for instance, that we are in the pure complements regime (where α
3
> β > 0),

39See Subsection C.4 in the Online Appendix for a high definition version of this figure.

38



and that valuations follow a distribution with mean, µv, and standard deviation, σv. Then,

using the result from proposition 11 (see Section A in the Online Appendix), the estimated

mean of the distribution of valuations using the standard model, will be underestimated:

ˆE (vi)
SM

< E (vi) = µv, where SM stands for standard model. Similarly, the estimation of

the standard deviation of valuations will overestimated: ˆV (vi)
SM

> V (vi) = σv.
40 The same

is true in the non pure complements case.

The overestimation of the variance of the distribution is caused by attributing the vari-

ation in prices (among different units) to a relatively more disperse underlying distribution.

The farmer is actually paying for the whole bundle in the first unit, thus deterring the en-

trance of other bidders in the remaining three auctions. Failure account for the (common)

SC and DMR in the estimation is the cause for the underestimation of the mean. In the case

of the exponential distribution that it is used in our specifications, this will translate into an

underestimation of the parameter µ.

Columns 5 and 6 in Table 3 present the estimates from a standard English (button) auc-

tion (see proposition 11). Aside from the mentioned bias in the parameter that characterizes

the distribution, the results in these columns indicate that taking SC and DMR into account

significantly contributes to the explanatory power. Figure 6 shows predicted prices by the

standard (button) English auction model (specification 5 in Table 3), and compares them

with actual prices and our structural model (specification 3 in Table 3).41 Consistent with

these results, the p-value for the null hypothesis that α̂ = β̂C
0 = β̂S

0 = β̂C
1 = β̂S

1 = ĉ = 0 is

less than 10�4.

An alternative approach is to ask how the incomplete model approach from Haile and

Tamer (2003) can be adapted to the present case.42 They rely on two basic assumptions

that have intuitive appeal: (i) bidders do not bid more than they are willing to pay for a

unit, and (ii) bidders do not allow an opponent to win at a price they are willing to beat.

In our case, with SC and DMR, these two simple assumptions are violated. In the pure

40In the pure complements case and given a fixed number of potential bidders N , the (true) mean and
variance of the N � 1 order statistic will be greater than the estimated using the standard model because
the (true) price paid will be [4� α� 6βt,c] vN�1:N � 3c and not 4vN�1:N (predicted by the standard model).

41See Subsection C.4 in the Online Appendix for a high definition version of this figure.
42Larsen (2013) uses a similar approach to Haile and Tamer to obtain bounds about the primitives in an

auction model followed by dynamic bargaining with two-sided incomplete information without solving for
the equilibrium of the game.
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complements regime bidders bid according to b1i (vi) = [4� α� 6β] vi�3c > vi, violating (i),

and no bidder (except the highest type) participates in second to four unit auctions, violating

(ii) (proposition 8 in Section A in the Online Appendix). In the non pure complements

regime, both assumptions are also violated, though the intuition is different. In this case,

the equilibrium is not fully, but partially revealing: bidders’ strategies are step functions,

so the equilibrium is semi-pooling. When α is greater but close to β, bidders bid above

their valuations to intimidate other bidders and deter entry in the second auction, thus

(i) is violated. Additionally, the same argument as in Black and De Meza (1992) and Liu

(2011) applies when goods are substitutes: the winner of the first auction imposes a negative

externality on himself. His willingness to pay for the second unit is lower than it was for

the first unit, making him a weaker bidder in such situation. Given that all bidders will

internalize this effect, some of them will bid below their marginal utility for the object in the

first auction. The greater are DMR, β, the greater this effect will be.

Although an adaptation of these assumptions to the whole four-units bundle seems like

the natural extension of Haile and Tamer’s approach to our case, it is unlikely to produce

informative bounds since marginal valuations of the units differ according to the regime and

the number of different winners per four-unit auction. Bundling the four-unit or even applying

Haile and Tamer’s approach separately for each regime, requires the model in Section 2 as

an interpretation of the underlying behavior.43

Finally, note that Haile and Tamer’s results are based on weakly dominant strategies. As

we have shown in Section 2, our results are also based on weakly dominant strategies. If we

restrict attention to weakly dominant strategies, the standard model—the one analyzed by

Haile and Tamer—is a particular case of our model in which α = β = c = 0.

5.4 Complementarities are not Collusion

An alternative hypothesis to farmers’ behavior in the pure complements regime is that bidders

might be playing some collusive (non-competitive) strategy. As emphasized in Section 3 (see

also Section C in the Online Appendix), the demand side of this market for water is composed

43Note also that failure to consider the effect of the structural parameters (SC and DMR) explicitly intro-
duces difficulties.
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by potentially hundreds of farmers (Table 2). Even when they attend the auction and do

not bid, the observed number of different winners is relatively high (Figure 5). Because

of weather conditions, farmers are competing for water that will ultimately determine the

quality and quantity of their crop, and in some cases, even the survival of their trees (drought

years). It is unlikely that in this situation farmers can make credible collusive commitments.

Contemporaries emphasize the opposite situation: farmers compete aggressively for water

(especially during droughts), and water owners are reluctant to lower the price of the water

to meet the needs of the poorer farmers.44

An important argument against collusion is the high number of non-collusive auctions.

Farmers meet every week, hence the discount rate from one week to the next one is close

to 1. If we focus on two consecutive 4-unit auctions, the discount rate is virtually 1. Thus,

any collusive agreement would be easy to sustain and we will observe no “price-wars”, or

deviations from collusive strategies. If the collusion hypothesis were true, all auctions will

look collusive except, perhaps, during certain periods where we will observe price-wars. We

observe in many cases, however, that both regimes are present for the same week. Unlike

Baldwin, Marshall and Richard (1997) this is not a formal test.45

Nevertheless, taking the analysis one step further, if the collusion hypothesis were true

(instead of the sunk-and-entry-cost hypothesis), we would expect more collusion in autumn-

winter and less collusion in spring-summer. Incentives to deviate from the collusion strategy

are higher in spring-summer because the value of the water is higher due to seasonalities

(Figures A2 and A5 in Section C in the Online Appendix). Punishment is about the same

in any season: maximum punishment would be to play the competitive equilibrium forever.

Future discounted earnings in this case are similar in summer and in winter. Hence, deviating

from the collusive strategy is more profitable in summer than in winter. However, the data

show exactly the opposite pattern. Figure 7 displays the distribution of auctions in the

complementarities regime by month: complementarities are more likely to be observed in

summer than in winter, where water requirements (and, hence, equilibrium prices) soar.

44These opinions, along with a qualitative analysis can be found in Vera Nicolás (2004).
45Collusion in repeated auctions has been analyzed conditional (Hopenhayn and Skrzypacz 2004) and

unconditional (Porter and Zona 1999 and Pesendorfer 2000) on the history of the game. A discussion on how
to detect collusion can be found in Porter (2005).
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Figure 7: Regime Frequency Disaggregation by Month

The figure depicts the frequency of auctions where the same farmer buys all four consecutive units (4CU), by regime (see Section
B in the Online Appendix) and month. (Note that the sum of 4CU over months and regimes—the vertical lines in the graph—is
equal to 1470 = 5880/4. See Tables A3 and A5 in the Online Appendix.) It can be seen that complementarities are more likely
to be observed in summer than in winter, where water requirements (and, hence, equilibrium prices) soar. We interpret this as
evidence in favor of the competition hypothesis (according to our model with entry and sunk costs) and against the collusion
hypothesis.

This is in line with our interpretation according to the model with sunk and entry costs

described above.

A “competitive” collusion?

When we introduced the model and explained how it fit the data, we implicitly assumed

that farmers’ plots were sufficiently spaced from each other. Specifically, we assumed that

no other farmer could use the same sub-channel that was (just) used by his neighbor. This is

not true in reality in some cases. Because the cost of watering the sub-channel is sunk, if the

plots of two farmers are located next to each other and they share the same sub-channel, then

one farmer could free-ride and outbid the first winner in the second auction. Knowing this,

the first winner would bid lower in the first auction. This situation would reduce the revenue

of the auction and create inefficiencies. Since farmers might not internalize this free-riding

effect, they would take into account the equilibrium outcome for the remaining auctions, and

lower their bid in the first auction. They would then will try to outbid their neighbors in

later auctions.
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In a situation like the one described above, it would be relatively easy to sustain a collusive

agreement among neighboring farmers. The number of members of the coalition would be

small (say, three or four farmers), and because they are neighbors, they would know each

other well and might even share animals or machinery for agricultural purposes. Each farmer

in the coalition would compete in the auction for the first unit, but would not enter the

remaining auctions if one member of the coalition won the first unit. With this agreement

they would achieve efficiency by solving the free riding problem. With the resulting increase

in efficiency, the revenue of the auction would also increase, and the auctioneer would not

be opposed to the “collusion”. This situation would not affect our results unless farmers

coordinate to not outbid neighboring farmers also in the first auction (bidding rings).46 47

5.5 Efficiency

The model displayed in Section 2 assumes that it is costly for the bidders to enter the auction.

To compare this mechanism (sequential ascending price auction) with other possibilities, this

cost has to be taken into account. In this context, and following Stegeman (1996), we

interpret this cost as the cost that the farmers have to incur when they send a message to

the auctioneer (or to some other farmers). Here, the notions of ex-ante and ex-post efficiency

are no longer equivalent, for although it might be ex-ante efficient that more than one player

sends a message, it is always ex-post efficient that at most one player sends a message.

For this case, where it is costly to send messages to the coordinator, Stegeman has showed

that the ascending price auction has an equilibrium that is ex-ante efficient. In contrast, the

first-price auction may have no efficient equilibrium, and the author only considers the single-

unit case. In our sequential unit case, we have shown that when goods are pure complements

46It will only affect the outcome when both the bidder with the highest valuation and the bidder with the
second highest valuation belong to the same ring, but the bidder with the third highest valuation belong
to a different ring. In this case, our model predicts that the observed price is the valuation of the second
highest bidder, but it actually corresponds to the valuation of the third highest bidder. This is unlikely in
our empirical setting because the nearly 500 farmers would form around 150 rings (based on the geographical
locations that we obtained from the census data). The probability that the two bidders with the highest
valuation belong to the same ring is virtually zero. Moreover, the difference between the second highest and
the third highest valuation will be small in any case.

47There is an extensive literature on the theory of bidding cartels (see, for example, Graham and Marshall
1987; Hendricks, Porter and Guofu (2008); Hopenhayn and Skrzypacz (2004); and McAfee and McMillan
1992). For English auctions, Asker (2010) empirically investigates a bidding cartel of collectable stamps. See
Harrington (2008) for a survey.
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(ρ � 0 or α � 3β) the analysis is identical as in the single unit case. Hence, the result applies

here as well. However, when goods are non pure complements, the result only applies to the

last auction. Although outside the scope of this paper, further work to investigate whether

a sequential ascending price auction is ex-post efficient when the coordinator has to allocate

several objects to players that face SC, DMR, and costly messages, would be useful for an

adequate comparison among other mechanism allocations.

6 Conclusions

By affecting bidders’ behavior in sequential auctions, the presence of sunk costs and decreas-

ing marginal returns (along with participation costs) generate very different price dynamics

within the same market. This difference in price dynamics is attributed to the varying extent

to which the value of sequential goods complements or falls relative to previous units. The

deterrence effect, where the same bidder pays a high price for the first unit (deterring others

from entering subsequent auctions), and a low price for the remaining units, arises when

sunk costs are relatively high compared to the decreasing marginal returns, thus creating

complementarities among the goods. Substitutability arises due to decreasing returns when

sunk costs are relatively small. In this case, equilibrium prices are similar in magnitude,

regardless of whether the same or different bidders win the objects. Careful consideration

of these features is fundamental to demand characterization, a cornerstone of many positive

and normative questions in economics.

Using a novel data set from a decentralized market institution that operated privately for

eight centuries in southern Spain, we document these price dynamics and develop a model

to recover the underlying structural parameters and distribution of valuations. Although

the bidders are better informed than the sellers in our model, the latter know that the

sequential English auction allocates water (ex-ante) efficiently. Not requiring farmers to

reveal their marginal valuations is an advantage of the mechanism, whose simplicity reduces

costs associated with its implementation and helps explain its extraordinary stability. We

address three main questions. Are water units complements or substitutes, and why? Is

the deterrence effect consistent with a competitive market structure or a consequence of
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collusive behavior among farmers? What would happen to the estimates in this setting if the

researcher, by ignoring the importance of participation and sunk costs, failed to account for

the complementarity feature of the sequential goods?

First we document that in the period under study, both complementarities and substi-

tutabilities are observed in the data, generating two different equilibrium price dynamics.

Seasonality, related to the water requirements of the crops and the expected rainfall, affects

the relative importance of sunk costs and decreasing returns, causing bidders to coordinate

their actions in these regimes. Second, the apparent collusive behavior, where the same bidder

wins all the goods, paying very low prices for all the units following the first unit, is actually

competitive (non-cooperative). Contrary to the collusion hypothesis, this behavior is caused

by complementarities, and is observed when the value of water (as well as the average price

paid per unit and, thus, the incentive to deviate from a collusion strategy) increases relative

to the standard competitive pattern registered in the non-complements regime. This shows

the importance of interpreting the data through the economic model. Finally, by estimating

our model, we confirm the relevance of participation and sunk costs in our empirical environ-

ment. By testing the performance of our model relative to a standard English auction model

without participation costs, we confirm that estimations using the latter are not accurate.

Aside from the bias generated by ignoring sunk costs and decreasing returns, price dynamics

play an important role, as it is not appropriate to attribute the variation in prices among

sequential units (when the goods are complements) to a relatively more disperse underlying

distribution of valuations.
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