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Abstract

This paper presents a model in which government may affect outcomes
by manipulating individual choice probabilities through the design of the
domain of choice or the use of fiscal instruments. Such manipulations are
ineffective when individuals are perfectly rational, provided all alternatives
are permitted. However, even a small deviation from perfect rationality is
shown to call for policy that substantially manipulates choice probabilities.
This policy aims to lend weight to alternatives preferred by individuals who
are prone, more than others, to make mistakes.
At very low levels of rationality, when choices are largely random, it is
always socially optimal to entirely eliminate individual choice in order to
prevent the errors generated by such choice. It is better to impose one
alternative that is not the preferred one for some individuals instead of
inducing a completely random draw by everybody.
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1 Introduction

Providing choice to individuals is a good thing if they can be assumed always to

choose their preferred alternative, that is, when they are ’perfectly rational’ 1. In-

dividuals, however, do not always choose what is best for them (they are ’bound-

edly rational’) and the probabilities of making errors may depend on the domain

of choice. In particular, because of intrinsic limits on cognitive capacity, a larger

number of alternatives may exacerbate the errors compared to selection from

a smaller set. A government whose objective is to maximize a social welfare

function which is an aggregate of expected utilities of a heterogeneous popula-

tion may then find it optimal to constrain the choice set which individuals face.

Such constraints may be detrimental to the welfare of some individuals but may

increase the welfare of others who will make fewer mistakes. More generally, un-

der bounded rationality, utilitarian governments will view certain policies aimed

at manipulating individual choice probabilities as socially desirable. The entire

elimination of some alternatives is an extreme case of such policy.

There is convincing evidence on the effects that policy design has on indi-

vidual choice probabilities. Most striking are the effects attributed to the design

of default options. For example, a recent study (Johnson and Goldstein (2003))

surveys the effects of opt-in vs. opt-out plans for organ donations after death.

In the former, the presumption is that people agree to donate their organs, but

may ask to be excluded. The later, in contrast, requires active consent to par-

ticipate. Cross-country evidence (most European countries have opt-out plans,

while the US, Israel and some others have opt-in designs) shows that on average

the former design doubles the percent of participants. The same study surveys

numerous other real-world situations, such as health care plans, privacy policies

1In a broader social context, provision of choice can be considered desirable in itself, as
an expression of freedom. Also, choice can have positive effects on costs and prices through
producer’s competition.
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and mandatory car insurance, in which people are assigned to a certain program

but are given a chance to choose among a set of alternatives. In each of these

cases, the assignment to a default has a substantial role in determining what

is chosen. Another impressive recent study provides evidence on the dramatic

effect that the design of 401(K) retirement programs in the US has on employees’

participation rates (Choi, et-al, 2002).

When a government considers the design of policies that affect individ-

ual choice probabilities, three factors seem a-priory important: (a) The ability

of individuals to comprehend and decipher the implications of the alternatives

which they face (’degree of rationality’); (b) The distribution of preferences in

the population. Governments are unable to identify directly individuals’ prefer-

ences but can infer from their revealed self-selection the aggregate distribution

of preferences. Policy should be designed to accommodate those alternatives

which have a high density concentration of preferences; and (c) Government has

to evaluate the intensity of preferences among various individuals. A utilitarian

policy cannot avoid such cardinal comparisons among conflicting preferences.

This paper presents an asymmetric informationmodel of probabilistic choice

among a finite set of alternatives by boundedly rational individuals. Following

Luce (1959), we adopt the multinomial logit model as the basis for specifing

individual choice probabilities.

This model enables a quantification of the precision of individual choice,

ranging from ’perfect rationality’ to uniformly random choice. There is an under-

lying distribution of individual preferences over the alternatives that they face.

The government may use policies that affect the probability that each alternative

be chosen. Such policy is represented by weights assigned to the probability of

each alternative independent of personal characteristics which are private infor-

mation. The objective of the government is to find the weights that maximize

the sum of individuals’ expected utilities.
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Our major conclusions are:

(a) At low degrees of rationality it is best to entirely eliminate individual

choice. The single remaining alternative depends on the distribution of prefer-

ences and on their intensity;

(b) At high degrees of rationality, all alternatives should be assigned a

positive probability;

(c) The optimal weight assigned to each alternative may not vary mono-

tonically with the degree of rationality;

(d) While policy to shift choice probabilities becomes ineffective when in-

dividuals are perfect choosers, substantially shifting choice probabilities is called

for even at high degrees of rationality, when errors of choice made by individu-

als are very small. Such policy aims at reducing differentially the larger errors

made by individuals with less pronounced preferences and hence prone to make

mistakes.

2 A Probabilistic Choice Model

Consider a population consisting of heterogeneous individuals, each characterized

by a parameter θ (”individual θ”). Individuals choose one among a finite number,

n, of alternatives, i = 1, 2, ..., n. Individual θ’s utility of alternative i is denoted

ui(θ)
2. We follow Luce (1959) by postulating that the probability that individual

θ chooses alternative i is given by the multinomial logit function:

pi(q, θ) =
equi(θ)

nP
j=1
equj(θ)

, i = 1, 2, ..., n (1)

2Cost considerations can be incorporated by assuming that utility is linearly separable in a
numeraire good and ui(θ) is interpreted as the net (of cost) utility of alternative i.
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where q is a positive constant representing the precision of choice. When

q = 0, all alternatives have an equal probability to be chosen: pi(0, θ) =
1

n
, for

all i and θ. Let M(θ) = {i|ui(θ) ⊆ argmax [u1(θ), u2(θ), ..., un(θ)]}, and suppose
that the number of elements (number of ties) in M(θ) is R(θ). For all i ∈M(θ),
pi(q, θ) strictly increases monotonically with q, approaching

1

R(θ)
as q → ∞.

Denote by M(θ) the complementary set of M(θ). For all i ∈ M(θ), pi(q, θ)
strictly decreases monotonically as q increases, approaching 0 as q → ∞. With
these properties, it is natural to call q the ’degree of rationality’ (with q = ∞
called ’perfect rationality’).

Individuals’ welfare is assumed to be represented by expected utility, V (q, θ),

V (q, θ) =
nX

i=1

pi(q, θ)ui(θ) (2)

Clearly, V (q, θ) continuously increases in q (strictly, when not all ui are

equal), approaching the maximum utility, denoted V (θ), where V (θ) = ui(θ) for

all i ∈M(θ), as q →∞.

It is assumed that all individuals have the same q3 and that social welfare,

W , is utilitarian:

W (q) =
Z
V (q, θ)dF (θ) (3)

where F (θ) is the distribution function of θ in the population.

3Generalizing to include gropes with different q’s would not essentially change the results
below. In a broader context, however, if individuals with low q’s are aware of their tendency
to make errors, they may attempt to mimick or delegate choice to others that are considered
to have similar preferences, but are less prone to errors. This complex question of optimal
strategies is not discussed here.
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3 Optimal Policy to Affect Individual Choice

The individual characteristic θ is assumed to be private information (e.g. health

or attitude towards work), the government having only information on it’s dis-

tribution, F (θ). Hence, policy which depends on observables can discriminate

between alternatives but cannot depend on θ.

The government has various ways to influence choice probabilities, includ-

ing the design of the choice set itself, lending weight to default alternatives or by

the use of fiscal instruments. The following is an example of such tax/subsidy

policy but its representation can support other interpretations4. Consider a pol-

icy of imposing a tax/subsidy, ti, on alternative i. The policy t = (t1, t2, ..., tn)

affects the choice probabilities, (1), which are now written:

pi(g, q, θ) =
eq(ui−ti)
nP
j=1
eq(uj−tj)

=
equigi
nP
j=1
equjgj

(4)

where gi = e
−qti ≥ 0, i = 1, 2, ..., n and g = (g1, g2, ..., gn).

The objective of the government’s policy is to choose the weights, g, that

yield maximum social welfare:

4For example, a multi-stage choice process can be shown to change, in a predictable way, the
imputed choice probability of each alternative. To demonstrate this, consider three alternatives
with utilities (given θ) ui, i = 1, 2, 3.. In a one-stage choice, the probability of choosing

alternative i is pi = equi/
3P
j=1

equj . Suppose that the choice is first between alternatives 1

and a ’package’ of alternatives 2 and 3. The expected utility of the ’package’, denoted bu23,, is
bu23 = bp2u2+(1− bp2)u3 where bp2 = equ2/(equ2 + equ3). The probability of choosing alternative
1 in a two-round choice is ep1 = equ1/(equ1 + eqbu23). It is easy to show that ep1 ≤ p1, with strict
inequality when there are no ties in the ui’s. Thus, the probabilities that each of the ’package’
alternatives is chosen are raised in the two-stage process. This can be generalized to any finite
numbers of alternatives and multi-stage process.
Another example is along the ”Blue Bus - Red Bus Paradox” pointed out by Debreu (1960)

when discussing the Luce model. He has shown that the introduction of additional alternatives
raises the combined probabilities of similar alternatives (red and blue buses) and reduces the
probabilities of others (private cars).
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W (g, q) =
Z
V (g, q, θ)dF (θ) =

Z "
nX

i=1

pi(g, q, θ)ui(θ)

#
dF (θ) (5)

Tax revenues are assumed to be reimbursed as lump-sum transfers to indi-

viduals. When utilities are (separably) linear in a numeraire good, the distribu-

tion of these lump-sum transfers does not affect the level of social welfare.

Note that pi(g, q, θ) is homogenous of degree zero in g. As only relative

weights matter, we normalize,
nP
i=1
gi = 1.

Suppose that all gi > 0, i = 1, 2, ..., n (no alternative is excluded). It is

seen from (4) that

W (g,∞) = lim
q→∞W (g, q) =

Z
V (θ)dF (θ) =W (6)

Since V (θ) is independent of the specific weights, g, so isW . By continuity,

it follow that for large q, the optimal policy is not to exclude any alternative. It

does not follow, however, as we shall show below, that for large q (that is, with

small deviations from ’perfect rationality’) the government should abstain from

manipulating probabilities.

At the other end, it is seen from (4) and (5) that

W (g, 0) = lim
q→0

W (g, q) =
1

n

nX

i=1

giWi (7)

where

Wi =
Z
ui(θ)dF (θ), i = 1, 2, ..., n (8)

is the level of social welfare when all individuals choose alternative i.
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Let

Wm ⊆ argmax[W1,W2,...,Wn] (9)

It follows from (7) that when all alternatives have an equal probability to

be chosen by all individuals the optimal policy is to assign a weight gm = 1 and

gi = 0 to all i 6= m. Thus, the optimal policy at q = 0 is to eliminate individual

choice5.

Having identified the optimal policy at the two extremes, q =∞ and q = 0,

we wish to examine more closely the dependence of the optimal policy on the

degree of rationality q.

For given q, maximization of W w.r.t. g, yields F.O.C.

gi
∂W

∂gi
=

1

gi

Z
pi(g, q, θ)[ui(θ)− V (g, q, θ)]dF (θ) ≤ 0 (10)

i = 1, 2, ..., n

with equality when gi > 0.

Since, by definition,
nP
i=1
pi(g, q, θ) [ui(θ)− V (g, q, θ)] = 0 for any g, equa-

tions (10) have at most a rank of n− 1. Denote the solution to (10) by g∗(q) =
(g∗1(q), g

∗
2(q), ..., g

∗
n(q)). Condition (10) states that increasing marginally the

weight of any alternative relative to the mean cannot increase social welfare.

It can be shown that when preferences satisfy certain monotonicity condi-

tions, second-order conditions for a local maximum ofW at g∗are satisfied. That

is, the matrix

"
∂2W

∂gi∂gj
(g∗, q)

#
, where

5When (9) contains more than one element, this conclusion applies to any of these alterna-
tives.
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∂2W

∂gi∂gj
= − 1

g∗i g
∗
j

Z
pi(g

∗, q, θ) pj(g
∗, q, θ)[(ui(θ)− V (g∗, q, θ) + (11)

+(uj(θ)− V (g∗, q, θ))] dF (θ)

is negative semi-definite (see Apendix).

From (5) we can derive:

dW

dq
(g∗(q), q) =

∂W

∂q
(g∗(q), q) =

=
nP
i=1

R
pi(g

∗, q, θ)[ui(θ)− V (g∗, q, θ)]2dF (θ) > 0
(12)

It is seen from (12) that W strictly increases in q whenever there are at

least two different alternatives with positive weight.

We summarize the results so far:

Proposition 1. (a) There exists a positive number, q0, and an index

m, such that for all 0 ≤ q ≤ q0, g
∗
m = 1 (g∗i = 0, i 6= m, i = 1, 2, ..., n) and

hence pm = 1 (pi = 0, i 6= m, i = 1, 2, ..., n), um(θ) = V (g∗, q, θ) for all θ

and W (g∗, q) = Wm.; (b) For q > q0, W (g
∗(q), q) strictly increases with q,

approaching W as q →∞.; (c) For large q, g∗i (q) > 0 for all i = 1, 2, ..n.

Figure 1 exhibits the relation between the optimal W and q.
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4 An Example With Two Alternatives

Consider the case n = 2. Then p = p1(g, q, θ) = e
q∆(θ)g/((eq∆(θ)−1)g+1), where

∆(θ) = u1(θ)−u2(θ) and g = g1 = 1−g2. Condition (10) for an interior solution
is now written:

g
∂W

∂g
=
Z eq∆(θ)∆(θ)

[(eq∆(θ) − 1)g + 1]2dF (θ) = 0 (13)

It is seen that the second-order condition is satisfied:

∂2W

∂g2
= −2

Z eq∆(θ)∆(θ)(eq∆(θ) − 1)
[(eq∆(θ) − 1)g + 1]3 dF (θ) < 0 (14)
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Denote the solution to (13) by g∗, 0 ≤ g∗ ≤ 1. By (14), g∗ is unique. Clearly,
from (12), a necessary condition for an interior solution is that ∆(θ) changes sign

at least once in the relevant range: some individuals prefer alternative one over

two and some have the opposite preference.

Suppose that
∂W

∂g
(0, 0) < 0. By (13), this occurs when

R
∆(θ)dF (θ) =

W1 −W2 < 0. At low q, it is best to eliminate alternative 1. If there exists an

open interval of θ with a positive density for which ∆(θ) > 0 (some individuals

prefer alternative 1), then, from (13),
∂W

∂g
(0, q) =

R
eq∆(θ)∆(θ)dF (θ) increases

unboundedly with q. Hence, there exists a q0 > 0, such that
∂W

∂g
(0, q) ≥ 0 for

all q ≥ q0. Consequently, g∗(q) = 0 for all 0 ≤ q ≤ q0 and 0 < g∗(q) < 1 for all
q > q0.

Take the opposite case,
∂W

∂g
(1, 0) =

R
∆(θ)dF (θ) = W1 − W2 > 0. At

low q, it is optimal to eliminate alternative 2. If there is an open interval of θ

with a positive density for which ∆(θ) < 0 (some individuals prefer alternative

2), then, from (13),
∂W

∂g
(1, q) =

R ∆(θ)

eq∆(θ)
dF (θ) decreases, approaching 0 as q

increases. Hence, there exists a q0 > 0, such that
∂W

∂g
(1, q) ≤ 0 for all q ≥ q0.

Consequently, g∗(q) = 1 for all 0 ≤ q ≤ q0, and 0 < g∗(q) < 1 for all q > q0.

Interestingly, the sign of
dg∗

dq
is indeterminate, as can be seen by differenti-

ating (13) totally (the sign of
∂2W

∂g∂q
can be positive or negative). This is verified

in the 2 × 2 example below. The reason for this ambiguity is straightforward.

When q increases, all individuals make fewer errors of choice. The extent of the

reduction in errors, though, depends on the intensity of preferences, ∆(θ). When

those who prefer alternative 1, ∆(θ) > 0, display a more moderate intensity than

the others and therefore are more prone to make mistakes, then an increase in

g∗ aimed at reducing the errors of this group is called for. Of course, the effect

of a change in g∗ on social welfare also depends on the number of individuals at

different θ, i.e. on F (θ).
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To obtain an explicit solution for g∗, consider the following 2× 2 case. In

the case with two alternatives, assume further that there are two individual types

i = 1, 2 (corresponding to θ1 and θ2). Let the density of type 1 in the population

be f, 0 < f < 1. Condition (10) can now be written in a simple form:

p1(1− p1)
p2(1− p2) = α2 (15)

where pi = p(g∗, q, θi) = g∗eq∆
i

/
h
(eq∆

i − 1) g∗ + 1
i
, ∆i = u1(θi) − u2(θi),

i = 1, 2, and α =

"
−∆

2(1− f)
∆1f

#1
2

.

We assume that ∆1 > 0, ∆2 < 0 (or the opposite) and hence the R.H.S.

term in the α definition is positive. Substituting these definitions into (15), we

obtain an explicit solution for g∗:

g∗ =
αeq

∆2

2 − eq
∆1

2

eq
∆1

2 (eq∆2 − 1)− αeq
∆2

2 (eq∆1 − 1)
(16)

There are two basic cases:

(I) α > 1 (Figure 2(a)). From (16), g∗ = 0 for all 0 ≤ q ≤ q0 where

q0 =
lnα

∆1 −∆2
> 0 while 0 < g∗(q) < 1 for q > q0. The limit of g∗(q) as q →∞

is:

lim
q→∞ g∗(q) =





1 when ∆1 +∆2 < 0

1

1 + α
when ∆1 +∆2 = 0

0 when ∆1 +∆2 > 0

(17)

(II) α < 1 (Figure 2(b)). From (16), g∗ = 1 for all 0 ≤ q ≤ q0, where
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q0 =
lnα

∆2 −∆1
> 0. For q0 < q, 0 < g

∗ < 1. As before, the limit of g∗ as q →∞

is given by (17). In the singular case that α = 1, q0 = 0 (that is, no alternative

is eliminated at small q’s).

This example is instructive in a number of ways. As expected, the degree

of rationality at which choice is eliminated, q0, is negatively correlated with the

intensity of choice, ∆1 −∆2 (or ∆2 −∆1).

Interestingly, with asymmetric preferences, for example when ∆1+∆2 < 0

(that is, group 1 prefers alternative 1 less intensely than group 2 prefers alter-

native 2), g∗ rises with q, approaching 1 as q → ∞. Thus, the optimal policy
when individuals are close to ’perfect rationality’ is to substantially increase the

probability of choosing alternative 1. When individuals are close to being ’per-

fectly rational’, shifting relative weights in choice probabilities has little effect,

but it is differentially important for those who have ’weaker’ preferences. In

our example, group 1 is prone to make larger errors due to weaker preferences,

and the increase in g∗ helps this group to select it’s preferred alternative. The

opposite holds when ∆1 +∆2 > 0. It is striking that the optimal weight, g
∗(q),

is close to 1 or to 0 for large q. It would be interesting to find out how general

this result is. Note also that the limit of g∗ as q →∞ depends only on relative

preferences and is independent of the relative size of the groups, (1− f)/f.

5 Controlling Only the Number of Alternatives

It is reasonable to consider the case where the government does not have the

broad set of instruments needed to fine-tune choice probabilities, but it may

not permit certain alternatives. Let us examine in the previous 2 × 2 example

with exogeneously given and equal probability weights the critical value of q

below which one of the two alternatives is eliminated. When, for example, only

alternative 1 is allowed, social welfare is
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W1 = u
1
1f + u

2
1(1− f) (18)

When individuals are allowed to choose between the two alternatives, but

the weights in the choice probabilities are fixed and equal, (g = 1−g = 1

2
), social

welfare is

W (q) = (
eq∆

1

u11 + u
1
2

eq∆1 + 1
)f + (

eq∆
2

u21 + u
2
2

eq∆2 + 1
)(1− f) (19)

Equating W1 = W (bq), we obtain an implicit equation for the level of q, bq,

at which alternative 2 is eliminated:

1 + ebq∆2

1 + ebq∆1
= α2 (20)

where α has been defined in (15). For all 0 ≤ q ≤ bq, mandating alternative

1 is socially preferable to providing choice and vice-versa. It is easy to prove

that with the same parameters, the elimination of alternative 2 occurs at a higher

q than when the government can continuously manipulate probabilities, that is,

bq > q0. It is interesting to calculate the type II errors of each group at bq. Take,

for example, −∆2

∆1
=
1

2
and f =

1

2
. The errors are then 1 − P 1(bq) = .27 and

P 2(bq) = .38, respectively. That is, 27 percent of type 1 individuals erroneously

choose alternative 2 while 38 percent of type 2 individuals erroneously choose

alternative 1.6 These numbers, though, are quite sensitive to parameter values.

6The fact that group 2 errors are larger at the optimum is expected in view of their ’weaker’
preferences.
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Appendix

For the case n = 2 we have seen in the text, eq. (14), that the solution

g∗1, g
∗
2 = 1 − g∗1, is unique. For n > 2, a monotonicity condition on preferences

has to be assumed. For example, from (11) we have that the diagonal terms of

the matrix

"
∂2W

∂gi∂gj

#
are:

∂2W

∂g2i
=

2

g∗2i

Z
p2i (g

∗, q, θ)∆i(g
∗, q, θ)dF (θ) i = 1, 2, ..n (A.1)

where∆i = ∆i(g
∗, q, θ) = ui(θ)−V (g∗, q, θ) and pi(g∗, q, θ) =

eq∆
i

nP
j=1
equjgj

.

Suppose ∆i is monotone in θ. Since pi is strictly monotone increasing in

∆i, it follows that pi∆i is strictly monotone in θ. From (10) we now have that

pi∆i changes sign once.

Let eθ be the value of θ at which pi∆i = 0. Assume that ∆i, and hence pi,

increases in θ.

Then, p2i (g
∗, q, θ)∆i(g

∗, q, θ) > pi(g∗, q, eθ)pi(g∗, q, θ)∆i(g
∗, q, θ), for all

θ. Multiplying both sides by dF (θ) and integrating, using (10),

R
p2i (g

∗, q, θ)∆i(g
∗, q, θ)dF (θ) >

> pi(g
∗, q, eθ)

R
pi(g

∗, q, θ)∆i(g
∗, q, θ)dF (θ) = 0

(A.2)

This proves that the term in (A.1) is strictly negative. This or a broader

monotonicity condition suffices to ensure that

"
∂2W

∂gi∂gj

#
is negative semi-definite.
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