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Abstract

Two salient features of modern economic growth are the rise in aggregate

savings rates and the steady increase in life expectancy. This paper links these
processes, showing that under certain conditions economic theory supports the

hypothesis that increased longevity leads to higher aggregate savings in steady

state. The analysis is based on a lifecycle model with uncertain longevity in
which individuals choose an optimum consumption path and a retirement age.

Conditions on the age-speci�c pattern of improvements in survival probabili-

ties are shown to ensure that individual savings rise with longevity and that
aggregation preserves this result. Population theory (Coale (1972)) is used to

link the steady-state age density function and the population�s growth rate to

individuals� survival probabilities. The importance of a competitive annuity
market in avoiding unintended bequests is underscored.
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1 Introduction

A salient feature of modern economic growth is the increase in aggregate savings

rates, re�ected in the rise of capital-income ratios1. During 1820 - 1992, non-

residential capital in the US grew at 4.1 percent per annum, compared with

GDP growth of 3.6 percent (Kinugasa and Mason (2007)). Consequently, the

ratio of gross non-residential capital to GDP increased more than fourfold,

from .71 to 3.02 (Maddison (1995)). The experience in the UK and Japan is

similar. Even more pronounced, over a shorter period, were the high savings

rates and capital deepening in Asian countries (Lee, Mason and Miller (2001),

Deaton and Paxson (2000)).

Parallel to the increase in savings rates there was a steady rise in life

expectancy. Mortality has fallen substantially in the past hundred years: in

1900, about 2.5 people per hundred died in the US and the UK in a typical

year. Today mortality is two-thirds lower. As Cutler (2004) points out, the

trend of declining mortality has three distinct phases. Early in the twentieth

century there has been a signi�cant drop in infant mortality due to improved

nutrition and improvement in health conditions. This was followed by a major

reduction in mortality rates of adults due to infections diseases: "until the

1950�s there was no evidence in any society of people reducing mortality from

chronic diseases of old age... and then cardiovascular disease mortality started

declining extremely rapidly" (Cutler (2004, page 8). In recent decades, the

rise of longevity is concentrated in life lengthening of the old due to medical

advances.

The objective of this paper is to analyze whether economic theory supports

the hypothesis, suggested in a number of empirical studies (see below), that the

rise in aggregate savings rates was largely driven by higher life expectancy. It

is shown that under certain conditions on the pattern of survival improvements

the answer is positive. The analysis is based on a lifecycle model with uncertain

longevity and on explicit aggregation of individuals� response functions. Two

e¤ects are recognized and analyzed in detail:

1Naturally, aggregate savings in absolute terms are expected to increase with the growth
of population (due, say, to higher longevity, birth rates or other reasons).
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(a) Behavioral E¤ects

An increase in survival probabilities a¤ects individuals� consumption and re-

tirement decisions. One has to identify the patterns of mortality declines that

lead individuals to increase their savings, taking into account the response of

endogenously chosen retirement ages. For example, when survival probabili-

ties increase mainly at older ages, individuals are expected to save more during

their working years in order to support a longer retirement. Although in this

case retirement age is also shown to rise with longevity, this compensates only

partially for the need to decrease consumption. The opposite response can be

expected when survival probabilities rise mainly for adults in their early life.

Demonstrating the dependence of individuals� responses on the age related pat-

tern of improvements in survival probabilities is particularly pertinent in view

of the uneven history of age-speci�c declines in mortality rates outlined above.

(b) Age Composition E¤ects

An increase in survival probabilities changes the population�s age density func-

tion. The direction of this change depends on which of two opposite e¤ects

dominates. First, an increase in survival rates raises the size of all age co-

horts, some more than others depending on the speci�cation of the age related

improvements in survival probabilities. Second, with given age-speci�c birth

rates, an increase in survival probabilities raises the population�s growth rate.

A higher growth rate, in turn, increases the relative weight of younger age

groups. Since older ages are typically retirees who are dissavers while younger

ages are workers who save towards retirement, the �rst e¤ect tends to reduce

aggregate savings while the second e¤ect raises savings. Conditions provided

below ensure that the latter e¤ect is dominant.

The dynamics of demographic processes generated by a change in survival

probabilities is quite complex. There exists, however, a well developed theory

of the dependence of steady-state age density distributions on the underlying

parameters (e.g. Coale (1972)). Building on this theory, we shall study the

long-run e¤ects of changes in longevity on aggregate savings, taking into ac-

count endogenous changes in the age density function.
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Starting with Yaari�s (1965) seminal work, a number of papers analyzed

the e¤ects of rising life expectancy on individual savings (e.g. Leung (1994),

Bloom and Canning (2003), Zilcha and Friedman (1985), Kinugasa and Mason

(2007)). These papers study the response of individuals to changes in longevity

but none provides a general characterization of the pattern of age-speci�c im-

provements in survival probabilities that lead to an increase in individual sav-

ings. Furthermore, these works do not incorporate endogenous changes in the

chosen retirement age due to changes in longevity.

The e¤ects of a longevity increase on aggregate savings have been explored

empirically or by simulations in a number of the above and other papers (e.g.

Miles (1999), Deaton and Paxson (2000) and Lee, Mason and Miller (2001)).

All these papers �nd a positive correlation between longevity and aggregate

savings but, in the absence of explicit aggregation of individuals� response

functions it is impossible to identify the underlying factors which determine

the direction of the age composition e¤ects.

This paper performs two tasks: �rst, it derives individual response func-

tions based on a model of individual lifetime decisions about consumption and

retirement in the presence of longevity risks with access to a competitive annu-

ity market. Second, it aggregates individuals� response functions, linking their

survival functions with the steady-state population age density function.

Existence of a competitive annuity market is crucial for individual deci-

sions on savings and retirement. In the absence of this market, these decisions

have to take into account the existence of unintended bequests, that is, as-

sets left at death because individuals do not want to outlive their resources.

In these circumstances, uncertain lifetime generates a random distribution of

bequests which become initial endowments for a subsequent generation. A

general analysis of the long-term e¤ects of longevity changes on the ergodic

distribution of these bequests and endowments is beyond the scope of this pa-

per. Section 7, however, provides an example of savings and random bequests

in the absence of annuities. Not surprisingly, in this case the direction of the

e¤ect of a rise in longevity cannot generally be ascertained.
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2 A Simple Life-Cycle Model With Uncertain

Survival

Consider a simple individual life-cycle model with uncertain survival. At age

0; the probability of surviving to age z is F (z) : F (0) = 1, and F 0(z) � 0;

z � 0: There may be a �nite age T > 0 for which F (T ) = 0; but this is not

necessary2.

Individuals derive instantaneous utility u(c) (u0 > 0, u00 < 0); independent

of age, from consumption, c, and can decide to work or retire (disregarding the

choice of labor intensity). Work is normalized to a level of unity.

Disutility from work at age z, e(z) > 0; is assumed to be independent

of consumption and, in order to ensure that work precedes retirement, non-

decreases with age (e0(z) � 0). In the absence of time-preference, expected

lifetime utility, V , is therefore

V =

1Z

0

u(c(z))F (z)dz �

RZ

0

e(z)F (z)dz (1)

where c(z) is consumption at age z and R is the age of retirement.

Let a(z) be the amount of annuities held by an age z individual3. Then

the dynamic budget constraint is

_a(z) = r(z)a(z) + w(z)� c(z) (2)

where _a(z) is the amount of annuities purchased (> 0) or sold (< 0); r(z)

is the instantaneous rate of return on annuities and w(z) is the wage rate

(w(z) = 0 for z > R) of an age z individual. It is assumed that w(z) non-

increases in z. As shown below, this assumption ensures that the individual

2A commonly used function is F (z) =
e��z � e��T

1� e��T
(� > 0 constant) de�ned over 0 �

z � T: Its limit is the exponential, lim
T!1

F (z) = e��z:

3We know from Yaari (1965) that when longevity is the only uncertainty then rational
individuals will annuitize all their assets. The modi�cations required when individuals have
a positive time preference and/or there is a positive rate of interest on non-annuitized assets
are well-known and have no impact on the following analysis.
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will choose a working phase followed by a retirement phase. Solving (2) for a

given consumption path, c(z); the holdings for annuities at age z are

a(z) = e

zR

0

r(x)dx zR
0

e
�

xR

0

r(h)dh
(w(x)� c(x))dx (3)

with a(0) = 0:

In a competitive annuity market equilibrium, the rate of return on annu-

ities is equal to the Hazard-Rate, the conditional probability of dying at age

z

r(z) = �
d lnF (z)

dz
=
f(z)

F (z)
(4)

where f(z) = �
dF (z)

dz
is the probability of dying at age z4.

From (3), (4) and the transversality condition lim
z!1

a(z) e
�

zR

0

r(x)dx
= 0; we

obtain the lifetime budget constraint

1Z

0

c(z)F (z)dz �

RZ

0

w(z)F (z)dz = 0; (5)

Thus, equilibrium condition (4) implies that expected consumption is equal

to expected wages, that is, zero expected pro�ts. Maximization of (1) s.t.(5)

yields constant optimum consumption and an optimum retirement age which

satisfy

c� =

R�R
0

w(z)F (z)dz

z
(6)

u0(c�)w(R�)� e(R�) = 0 (7)

where z =
1R
0

F (z)dz is expected lifetime5. We denote the solution to (6) - (7)

by (c�; R�): Inserting (6) into (7), it is seen that the solution (c�; R�) is unique

4See Sheshinski (2007).

5Integrating by parts, z =
1R
0

zf(z)dz.
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if the �rst term in (7) strictly decreases with R�: For this, the assumption that

w0(z) � 0 is a su¢cient condition6.

Condition (6) makes optimum consumption equal to expected wages di-

vided by expected lifetime. Condition (7) equates the marginal bene�ts and

costs of a small postponement of retirement.

Individual savings at age z, s�(z), are positive during the working phase

and negative during retirement:

s�(z) =

(
w(z)� c�; 0 � z � R�

� c�; R� < z <1
(8)

In the absence of a bequest motive, expected savings over the whole life-

time are zero:
1R
0

s�(z)F (z)dz = 0:

3 E¤ects of Longevity Changes on Individual

Decisions

Suppose that the survival function depends on a parameter denoted �, F (z; �),

representing longevity. We take a decrease in � to cause an upward shift in

survival probabilities,
@F (z; �)

@�
< 0, at all ages, z > 07. Obviously, expected

lifetime, �z(�) =
1R
0

F (z; �)dz; decreases with �:

Denote by �(z; �) the proportional change in the survival function at age

z due to a change in �: �(z; �) =
1

F (z; �)

@F (z; �)

@�
(< 0): Di¤erentiating (3)

partially w.r.t. �, holding R� constant, yields

1

c�
@c�

@�
= '(R�; �) (9)

6For an interior solution when T is �nite, it is su¢cient to assume that e(z) strictly
increases from zero to 1 as z rises from zero to T .

7Of course, F (0; �) = 1 for any �. If the e¤ect of a change in � on F (z; �) is continuous,
the implication is that the e¤ect of a change in � around z = 0 is small. See Assumption 1
below. When there is a �nite T for which F (T; �) = 0, T depends on �. In view of the rise
in survival probabilities at very old ages, this is an expected outcome.
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where

'(R�; �) =

R�R
0

�(z; �)F (z; �)dz

R�R
0

F (z; �)dz

�

1R
0

�(z; �)F (z; �)dz

1R
0

F (z; �)dz

(10)

Clearly, lim
R�!1

'(R�; �) = 0. Hence, when
@'

@R�
(R�; �) � 0 (� 0) (with

strict inequality for some R�), then '(R�; �) > 0 (< 0) for all R�.

We have

@'(R�; �)

@R�
=

F (R�)
R�R
0

F (z; �)dz

R�Z

0

[�(R�; �)� �(z; �)]F (z; �)dz (11)

The following assumption ensures that (11) is negative:

Assumption 1. �(z; �) non-increases in z;
@�(z; �)

@z
� 0; for all z:

This assumption has a straightforward interpretation: improvements in

survival rates are proportionately larger at later ages. It is equivalent to as-

suming that an increase in � raises the Hazard-Rate8.

It follows from (10) and (11) that under Assumption 1,
@c�

@�
> 0. That is,

an increase in longevity, holding retirement age constant, decreases consump-

tion. Note that when �(z; �) non-decreases in z; then
@c�

@�
< 0. When increases

in survival probabilities are proportionately larger at early ages compared to

later ages then, as could be expected, individuals increase consumption (and

decrease savings).

The e¤ect of a change in survival probabilities on optimum retirement is

obtained by totally di¤erentiating (6) � (7) w.r.t. �. In elasticity form:

8According to a standard de�nition of Stochastic Dominance (see Sheshinski (2007)),
when this assumption is satis�ed then a survival function with a lower � stochastically
dominates any survival function with a higher �:
Note that the function in f.n. 2 above satis�es Assumption 1 (for any T ).
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�

R�
dR�

d�
= �

�
�

c�
@c�

@�

�
R�

c�
@c�

@R
+
R�e0(R�)

e(R�)

(12)

where � = �
u00(c�)c�

u0(c�)
> 0 is the coe¢cient of relative risk aversion.

From (6),
R�

c�
@c�

@R
=
F (R�; �)R�

R�R
0

F (z; �)dz

. Since F non-increases in z, it is seen that

0 <
R�

c�
@c�

@R
< 1. Hence,

dR�

d�
Q 0 ,

@c�

@�
R 0.

The total change in consumption is, using (12),

dc�

d�
=
@c�

@R
(
�dR�

R�d�
) +

@c�

@�
=

0
BB@

R�e0(R�)

e(R�)

�
R�

c�
@c�

@R
+
R�e0(R�)

e(R�)

1
CCA
@c�

@�
: (13)

By Assumption 1, an increase in longevity increases the optimum retire-

ment age, but this only partially compensates for the required decrease in con-

sumption (and, correspondingly, the increase in savings) and hence,
dc�

d�
> 0.

We summarize the analysis so far:

Proposition 1 Under Assumption 1, an increase in longevity increases opti-

mum retirement,
dR�

d�
< 0, and decreases optimum consumption,

dc�

d�
> 0.

It is of interest to �nd the e¤ect of a change in � on optimum lifetime

utility, V � = u(c�)z �
R�R
0

e(z)F (z; �)dz.

By the envelope theorem, (3) � (4), (6) and (7),

dV �

d�
=

@V �

@�
= [u(c�)� u0(c�)c�]

1Z

0

@F (z; �)

@�
dz +

+

R�Z

0

[e(R�)� e(z)]
@F (z; �)

@�
dz (14)
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Strict concavity of u(c) and the assumption that e0(z) � 0 ensure that
dV �

d�
< 0. An increase in longevity always increases welfare9.

4 Longevity Changes and Aggregate Savings

Suppose that the population grows at a constant rate, g. The steady-state age

density function of the population, denoted h(z; �; g), is given by10

h(z; �; g) = me�gzF (z; �) (15)

where m =
1

1Z

0

e�gzF (z; �)dz

is the birth rate.

The growth rate g, in turn, is determined by the second fundamental

equation of stable population theory:

1Z

0

e�gzF (z; �)b(z)dz = 1 (16)

where b(z) is the age speci�c fertility function.

The e¤ect on g of a change in �, can be determined by totally di¤erenti-

ating (16):

9This result depends on our assumption that u(c) > 0 independent of age, compared to
zero utility at death. In discussions of life extending treatments this assumption has at times
been questioned.

10Equations (15) and (16) are derived as follows (see Coale (1972): let the current number
of age z females be n(z), while the total number is N . When population grows at a rate g,
the number of females z periods ago was Ne�gz: If m is the birth rate, then z periods ago
mNe�gz females were born. Given the survival function F (z; �);

h(z; �; g) =
n(z)

N
=
Ne�gzmF (z; �)

N
= me�gzF (z; �):

Since
1R
0

h(z; �; g)dz = 1 if follows that the birth rate m is equal to m =

1

�
1R
0

e�gzF (z; �)dz : This yields equation (15). By de�nition, m =
1R
0

h(z; �; g)b(z)dz; where

b(z) is the speci�c fertility rate at age z. Substituting the above de�nition of h(z; �; g) we
obtain (16).
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dg

d�
=

1Z

0

e�gz
@F (z; �)

@�
b(z)dz

1Z

0

e�gzzF (z; �)b(z)dz

< 0: (17)

An increase in longevity raises the steady-state growth rate of the popu-

lation. The magnitude of g depends implicitly on the form of the survival and

fertility functions, F (z; �) and b(z), respectively. It can be solved explicitly

in some special cases. For example, with F (z; �) = e��z and b(z) = b > 0;

constant, for all z � 0, (16) yields g = b � �. The population growth rate is

equal to the di¤erence between the birth rate and the mortality rate. Indeed,

substituting
1

F

@F

@�
= �z into (17), we obtain that in this case

dg

d�
= �1.

Aggregate steady-state savings per capita, S, are

S =

1Z

0

s�(z; �)h(z; �; g)dz =

from (8)

=

R�Z

0

w(z)h(z; �; g)dz � c� =

=

R�Z

0

w(z)

2
6666664

e�gz

1Z

0

e�gzF (z; �)dz

�
1

1Z

0

F (z; �)dz

3
7777775
F (z; �)dz: (18)

It is seen that S = 0 when g = 0. A stationary economy without popula-

tion growth has no aggregate savings per capita, corresponding to zero personal

lifetime savings. We shall now show that S > 0 when g > 0. Denote average

life expectancy of the population below a certain age, R, by ez(R). From (15),
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ez(R) =
RZ

0

e�gzzF (z; �)dz

, RZ

0

e�gzF (z; �)dz (19)

The average population age, ez; is

ez = ez(1) =
1Z

0

e�gzzF (z; �)dz

,1Z

0

e�gzF (z; �)dz: (20)

Clearly, ez(R) < ez for any R:

Di¤erentiating (18) partially w.r.t. g;

@S

@g
=

0
@
R�Z

0

e�gzF (z; �)dz

,1Z

0

e�gzF (z; �)dz

1
A (ez � ez(R�)) > 0 (21)

A positive population growth rate, g > 0, entails positive aggregate

steady-state savings per capita.

To examine the e¤ect of a change in � on aggregate savings, di¤erentiate

(18) totally,

dS

d�
= w(R�)h(R�; �; g)

dR�

d�
�
dc�

d�
+

R�Z

0

w(z)
dh(z; �; g)

d�
dz (22)

We have seen that under Assumption 1,
dR�

d�
< 0 and

dc�

d�
> 0: Hence,

when the last term in (22) is non-positive this ensures that
dS

d�
< 0:

The sign of
dh(z; �; g)

d�
re�ects two opposite e¤ects: an increase in longevity

raises the survival function at all ages and, as shown above, also raises the pop-

ulation growth rate. The �rst e¤ect raises h while the second decreases it. Since
1Z

0

dh(z; �; g)

d�
dz = 0; the crucial question is which of these e¤ects is dominant

at di¤erent ages. Since w(z) non-increases in z, it can be seen that the last

term in (22) is negative when
dh

d�
is negative for small z and positive for large

z. The interpretation is straightforward: a rise in longevity which raises the

population steady-state density in "working ages", when individuals save, and

12



decreases the density in "retirement ages", when individuals dissave, tends

to increase aggregate savings (and vice-versa). This is the Age Composition

E¤ect.

We now provide conditions which ensure that, in steady-state, aggregate

savings increase with longevity. These conditions further highlight the tension

between the opposing e¤ects discussed above.

Two additional assumptions are made:

Assumption 2 The age speci�c birth rate, b(z), non-increases with age,

b0(z) � 0:

Recall that we denote z = 0 as the age when individuals plan for their

future. So this is a natural assumption, certainly at the more advanced ages.

Assumption 3 The elasticity of �(z; �) w.r.t. z does not exceed unity,
z

�(z; �)

@�(z; �)

@z
� 1; for all z11.

Recall that in order to determine that individuals increase their lifetime

expected savings as survival probabilities rise, it was assumed that improve-

ments in longevity are tilted towards older ages (Assumption 1). Taken by

itself, this implies that the population�s density function increases proportion-

ately more at older ages. Higher longevity also raises the population�s growth

rate. As seen in (15), this leads to a steeper rate of decline of the population

density with age, as the ratio of the size of any two successive age groups rises.

Assumption 3, constraining the rate of increase of survival probabilities with

age, ensures that between these two e¤ects, the latter e¤ect dominates.

We can now state our central result:

Proposition 2 Under Assumptions 1, 2 and 3, aggregate steady-state savings

rise with longevity,
dS

d�
< 0:

11Note that the limiting case which satis�es this assumption is the exponential function,

F (z; �) = e��z; 0 � z � 1; where
z

�

@�

@z
= 1:
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Proof Appendix

It is worth noting that the assumptions underlying Proposition 2, whose

empirical validity can be ascertained, are su¢cient conditions and hence a

positive relation between longevity and aggregate savings may be found (and

empirically observed) in special cases which do not satisfy some of these as-

sumptions. These conditions ensure, however, that the outcome pertains to a

wide class of individual preferences and survival functions.

5 Example: Exponential Survival Function12

The above expressions can be solved explicitly for the particular survival func-

tion F (z; �) = e��z, z � 0, a constant wage rate, w(z) = w; and a constant

age speci�c birth rate, b(z) = b:

Equation (6) becomes

c� = w(1� e��R
�

) (23)

and (11) and (12) are (in elasticity form):

�

R�
dR�

d�
= �

�

� +
R�e0(R�)

e(R�)

�
e�R

�

� 1

�R�

� (24)

�

c�
dc�

d�
=

�R�

e�R
� � 1

�
1 +

�

R�
dR�

d�

�
(25)

Clearly, �1 �
�

R�
dR�

d�
� 0 and 0 �

�

c�
dc�

d�
� 1.

The steady-state age density function, (15), is

h(z; �; g) = (g + �)e�(g+�)z (26)

while the population growth rate, g, with constant birth rate, b, is solved from

12See Sheshinski (2006).

14



(16), g = b� �. Hence,
dg

d�
= �1.

Aggregate steady-state savings, (18), are

S = e��R
�

(1� e�gR
�

) (27)

Totally di¤erentiating (27),

dS

d�
= �we��R

�

�
1 +

�

R�
dR�

d�

�
1�

be�gR
�

�

��
< 0 (28)

6 No Annuitization

It was assumed that annuitization is available at all ages, which means that

individuals can take full advantage of risk pooling. To demonstrate that this is a

critical assumption, consider the case of no insurance13. The budget constraint

(5) now becomes:
1Z

0

c(z)dz �

RZ

0

w(z)dz = 0 (29)

In the absence of insurance, there is also a constraint that assets must be

non-negative at all ages (individuals cannot die with debt). Equating expected

marginal utility across ages yields decreasing optimum consumption, whose

shape re�ects the individual�s degree of risk aversion. To demonstrate that

the e¤ects of a change in longevity on savings and retirement are, in general,

indeterminate, it su¢ces to take particular utility and survival functions. Thus,

assume that u(c) = ln c and F (z; �) = e��z: For a constant wage w(z) = w,

optimum consumption, ĉ(z), now becomes (instead of (6)):

ĉ(z) = w�R̂e��z (30)

Accordingly, individual savings, (8), are now:

13Social Security systems provide such annuitization. Mandatory uniform formulas may,
however, be inadequate for some individuals and excessive for others. See Sheshinski (2003,
p. 27-54).
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ŝ(z) =

8
><
>:

w(1� �R̂ e��z) 0 � z � R̂

�w�R̂ e��z R̂ � z � 1

(31)

and optimum retirement is obtained from condition (7):

1

�R̂
e�R̂ = e(R̂): (32)

For this condition to have a unique solution it is assumed that the L.H.S.

of (32) strictly decreases with R̂. This holds i¤ R̂ <
1

�
, i.e. optimum retirement

age is lower than expected lifetime, which is reasonable. When this condition

holds then
dR̂

d�
� 0, that is, as before, an increase in longevity leads to an

increase in retirement age.14

Aggregate steady-state savings, (14), now become:

S = w

"
1� e�(g+�)R̂ �

�R̂(g + �)

g + 2�

#
(33)

Taking into account that
dg

d�
= �1, it is seen that, holding R̂ constant, a

decrease in � a¤ects S positively. However, when the change in R̂ is also taken

into account, the direction of the change in S is indeterminate, depending on

parameter con�guration.

7 Unintended Bequests

The analysis in the previous section disregards the fact that in the absence

of full annuitization there are unintended bequests which a¤ect individual be-

havior, in particular individual savings15. A general equilibrium analysis of

14The same condition ensures the non-negativity of assets at all ages
(S�(0) = w(1� �R�) > 0).

15The empirical importance of bequests and intergenerational transfers is debated exten-
sively, among the inconclusive issues is the separation of planned bequests from those due
to lack of annuity markets.
See, for example, Kotliko¤ and Summers (1981) and more recently Kopczuk and Lupton

(2005).
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longevity e¤ects on aggregate savings has to take these intergenerational trans-

fers into account.

In the absence of full annuitization, uncertain lifetime generates a distri-

bution of bequests which depends on survival probabilities. A proper compar-

ison of steady-states with and without annuitization requires derivation of the

ergodic, long-term, distribution of bequests which, in turn, generates a distrib-

ution of individual and aggregate savings. A general analysis of this process is

beyond the scope of this paper. The issue can, however, be clari�ed by means

of a simple example.

Suppose that individuals live one period and with probability p, 0 � p � 1;

two periods. With no time preference, expected lifetime utility, V; is

V = u(c) + pu(c1) (34)

where c is �rst period consumption and c1 is second period consumption.

Without annuities and a zero interest rate, the budget constraint is

c+ c1 = w + b (35)

where w > 0 is income and b � 0 is initial endowment. Let u(c) = ln c: Then

optimum consumption, ĉ and ĉ1, is

ĉ(b) =
w + b

1 + p
; ĉ1(b) =

p(w + b)

1 + p
(36)

Having no bequest motive, individuals who live two periods leave no be-

quest. Consequently, some individuals will have no initial endowments. Others

will have positive endowments which depend on the history of parental sur-

vivals. In fact, the steady-state distribution of initial endowments is a Renewal

Process.

Denote by b̂k the initial endowment of an individual whose k previous

generations of parents lived one period only. If p0 is the probability of a zero

endowment, then the probability of b̂k is (1 � p)
k p0: Since p0

1P
k=0

(1 � p)k = 1;

it follows that p0 = p: We can calculate b̂k from (38):

b̂k = w + b̂k�1 � ĉ(b̂k�1) =

�
p

1 + p
+ (

p

1 + p
)2 + :::+ (

p

1 + p
)k
�
w =

= p

�
1� (

p

1 + p
)k�1

�
w k = 1; 2; ::: (37)
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Thus, savings of an individual with endowment b̂k; s(b̂k); is

s(b̂k) = w � ĉ(b̂k) = (
p

1 + p
)k+1 w (38)

and expected total savings, S, is

S = p
1P
k=1

s(b̂k)(1� p)
k =

p2

1 + p

1P
k=1

�
p(1� p)

1 + p

�k
(39)

While S > 0 for any 0 < p < 1; the sign of the e¤ect on S of an increase

in the survival probability p is indeterminate.

Incorporating a positive birth rate would not change this conclusion: in

the absence of a competitive annuity market, the e¤ect of increased longevity

on steady-state aggregate savings is indeterminate.
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Appendix

From (15),

dh(z; �; g)

d�

�
h(z; �; g) =

1

m

dm

d�
� h(z; �; g)z

dg

d�
+

+h(z; �; g)�(z; �): (A.1)

Since m = 1

,1Z

0

e�gzF (z; �)dz ;

1

m

dm

d�
=

0
@

1Z

0

h(z; �; g)zdz

1
A dg

d�
�

1Z

0

h(z; �; g)�(z; �)dz (A.2)

Substituting from (17), (A.2) can be rewritten

1

m

dm

d�
= A

1Z

0

b(z)'(z; �; g)dz (A.3)

where

A =

0
@

1Z

0

h(z; �; g)zdz

1
A
0
@

1Z

0

h(z; �; g)�(z; �)dz

1
A

1Z

0

h(z; �; g)zb(z)dz

< 0 (A.4)

and

'(z; �; g) =
h(z; �; g)�(z; �)

1Z

0

h(z; �; g)�(z; �)dz

�
h(z; �; g)z

1Z

0

h(z; �; g)zdz

(A.5)

Since

1Z

0

'(z; �; g)dz = 0; ' changes sign at least once, say at z = ~z: At

this point, by (A.5),

�(~z; �)
1Z

0

h(z; �; g)�(z; �)dz

=
~z

1Z

0

h(z; �; g)zdz

(A.6)
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Di¤erentiating ' w.r.t. z is, at ~z;

'0(~z; �; g) =

@�(~z; �)

@z
1Z

0

h(z; �; g)�(z; �)dz

�
1

1Z

0

h(z; �; g)zdz

=

inserting from (A.6)

=
�(~z; �)

~z

1Z

0

h(z; �; g)�(z; �)dz

�
~z

�(~z; �)

@�(~z; �)

@z
� 1

�
(A.7)

It follows from Assumption 3 that

'0(~z; �; g) � 0: (A.8)

With strict inequality, (A.8) implies that ~z is unique and that

'(~z; �; g) R 0 as z Q ~z (A.9)

By Assumption 2, b0(z) � 0: Hence, by (A.9),

1Z

0

b(z)'(z; �; g)dz � b(~z)

1Z

0

'(z; �; g)dz = 0 (A.10)

In view of (A.3), we conclude that
1

m

dm

d�
� 0:

Since

1Z

0

dh(z; �; g)

d�
dz = 0;

dh

d�
is either 0 for all z or changes sign at least

once, say at ẑ: From (A.1), at ẑ;

1

m

dm

d�
� h(ẑ; �; g)(ẑ

dg

d�
� �(ẑ; �)) = 0 (A.11)

Since
1

m

dm

d�
� 0; it follows that

ẑ
dg

d�
� �(ẑ; �) � 0 (A.12)

Partially di¤erentiating h(z; �; g) w.r.t. z at z = ẑ is, by (A.1),

@

@z

�
dh(ẑ; �; g)

d�

�
= �h(ẑ; �; g)

�
dg

d�
�
@�(ẑ; �; g)

@z

�
(A.13)
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from (A.12) and Assumption 3,

� �
h(ẑ; �; g)�(ẑ; �)

ẑ

�
1�

ẑ

�(ẑ; �)

@�(ẑ; �)

@z

�
� 0 (A.14)

Hence, unless
dh

d�
= 0 for all z, ẑ is unique and

dh(z; �; g)

d�
Q 0 as z Q ẑ (A.15)

Since w(z) non-increases and

1Z

0

dh(z; �; g)

d�
dz = 0; it now follows from

(A.15) that for any R�;

1Z

0

w(z)
dh(z; �; g)

d�
dz � 0 (A.16)

Recapitulating, by Assumption 1,
dR�

d�
< 0 and

dc�

d�
> 0: Going back to

(22), we see that together with (A.16), this establishes that
dS

d�
< 0 k :
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