

# The oil position in the Tunisian economy: Adaptation of computable general equilibrium model

Necibi, Thameur

10 April 2014

Online at https://mpra.ub.uni-muenchen.de/55185/ MPRA Paper No. 55185, posted 12 Apr 2014 11:02 UTC

## The oil position in the Tunisian economy: Adaptation of computable general equilibrium model

Thameur Necibi

Doctor of economic sciences Higher School of Digital Economy, University of Manouba - Tunisia. necibithameur1@yahoo.fr

## Abstract

This article presents several preliminary results of the real prices application on the Tunisian economy through a dynamic computable general equilibrium model.

The objective is to assess the effects of the progressive dismantling policies of oil products subsidy on the economic growth, the sectoral dynamics and, to a lesser extent, on the household incomes. The simulations on the crude oil price and on the subsidies granted to oil products have redrew new structures of the prices and have modified their levels. The analysis of the impacts of this simulation studies the effects of these new prices data on the economic agents and on the economy in general.

*Keywords:* , Computable General Equilibrium Models, Taxation, Subsidies, Revenue, Energy, Government Policy; **JEL classification:** C54, C68, D58, H20, Q48;

## 1. Introduction

The interaction between the energy system and the economy seems highly variable in time and space since, numerous factors interfere such as the production structure, the used technology, the energy guiding price, the regulations in force, the agents' behavior, the climate, the urban planning etc.; indeed, the energy is first considered as a production factor or an intermediate product used in the productive process with a rather complex technological composition. It is similarly considered as the final product to be consumed through the recourse to equipments having different efficiencies according to their agent and their use.

Thereby, within the framework of this analysis the computable equilibrium model seems to be an important element of the closed-loop process of the economic growth, the energy demand, the energy costs and the economic growth. In other words, to exactly prospect the effective economic policy, in the long term, it is necessary to choose a structure which captures all the oil price effects on the economy.

One of the inherent objectives of this chapter is to acquire a good knowledge about the structure of the Tunisian economy, and to pay attention to a new vision at the level of the mechanisms and the fundamental concepts (economic, financial, technical, political, etc.). A general discussion of the methodology shall be therefore carried out.

#### 2. Presentation du secteur des hydrocarbures en Tunisie

In Tunisia, the energy prices are negotiated between the Ministry of Industry and Technology, the Ministry of Finance and the Ministry of Trade. The amount of the subsidies granted by the State pursuant to oil products, natural gas and electrical energy subsidy is annually fixed by the Finance Act, on the basis of the barrel price assumption. The State observes the evolution of the import prices and on this basis it revises these prices in order to insure the financial equilibrium of the public operators. In connection with each adjustment of oil product price, a price structure is established, which clarifies the sale price, the amounts of the subsidies and the various taxes.

#### 2.1. Demand Analysis

The demand of primary energy have progressed during the last 15 years from an average of +3.7 % per year to reach 7.2 millions toe (Mtoe) in 2005. The entirety (99.4 %) of this consumption has been covered by liquid and gas hydrocarbons.

|                          | 1980(ktep) | Distribution in (%) | 2005 (ktep) | Distribution in (%) |
|--------------------------|------------|---------------------|-------------|---------------------|
| Oil products             | 2 577      | 83.9%               | 4 209       | 55.9%               |
| Natural gas              | 404        | 13.1%               | $3\ 278$    | 43.5%               |
| Coal coke                | 89         | 2.9%                |             |                     |
| Hydro-power/wind power   | $3\ 01\%$  | 46                  |             | 0.6%                |
| Total excluding biomasse | $3\ 073$   | 100%                | 7 533       | 100%                |

Table 1: Evolution of the energy consumption structure in Tunisia by energy form in 2005

Source: General Directorate of Energy (GDE)

In volume, oil products represent 55% of the national consumption of commercial primary energy against 69% ten years earlier. This relative reduction is said to a strong growth of natural gas consumption. In 2005, the primary energy consumption was 7,3 Mtoe; decomposed as follows: 55,9% oil products and 43,5% gas (Table 1). Oil products constitute an important part of final energy consumption for all the sectors: in 2004, the part of oil products in final energy consumption, for the various sectors of use, levels 42% for the industry, 57% for the residential, 59% for the tertiary sector, 87% for the agriculture and 99% for the transport.

The diesel represents 47% of the national demand of oil products. The pattern of the consumption by sector of use is distributed as follows: the transport represents almost the half of the domestic consumption of oil products, industry 20,7%, the residential sector 20,7%, agriculture 9,4% and the tertiary sector 9,4%. (Source GDE)

#### 2.2. total Balance of hydrocarbon

During the last two decades, while the demand of primary energy has increased with an average of +4% per year, the national production of hydrocarbons has remained between 5 and 6 Mtoe. The national production of crude oil peaked in 1984 to 5,5 Mtoe. This production has therefore declined to reach 3,5 Mtoe in 2005. This decline has been compensated by the production of Miskar gas field since 1996. After three decades in surplus, the energy balance of Tunisia became deficit since 2001. In 2006, the deficit has been of 960 ktoe, corresponding to a demand coverage rate of 87%. In 2005, the net imports amount of oil and gas was 0.8 Mtoe equal in value to 511 million dinars and to an energy dependency ratio of 11%. The trade balance of the energy sector was positive since the start-up of El Borma field, in 1966, until the end of the eighties. Since 1990, the balance of trade of the energy sector has been deficit and has therefore gradually deteriorated. During the last ten years, the production has been inferior to the national consumption for all the oil products. In 2005, the net imports of oil products have amounted to 2,1 Mt against 1,3 Mt ten years earlier. In 2005, the dependency ratio, the report between the net imports and the national consumption of oil products, has been 52%, against 42% ten years earlier. The diesel represents 59% of the oil products net imports. (Source: GDE)

#### 2.3. Organization of the energy system in Tunisia

#### 2.3.1. The Tunisian Company of Petroleum Activities (ETAP)

The Tunisian Company of Petroleum Activities has been created by the law No.72-22 dated 10 Mars 1972 with the aim of managing the exploration and the production of hydrocarbons. The main activities of ETAP are the exploration, the production, the marketing and finally the oilfield services activities such as the geological, seismic and reservoirs studies. The research and development studies are directly realized by the private investors and at their own risk. For these thirty years of activity, we notice that ETAP was not able to directly realize neither a discovery, nor a development or hydrocarbons field operation. The concessions are exploited either by the private investors or by the joint venture companies created in association with ETAP. Unlike, the other energy or mining activities (electricity or phosphate for example), the national companies were able to complete their missions of national operator. On the international level, the state-owned companies, similar to ETAP, have managed to develop in their country and abroad like in Croatia, Hungary, Malaysia or Turkey.

#### 2.3.2. Tunisian Company for Refining Industries (STIR)

With respect to oil products, the refining activity is insured by the Tunisian Company for Refining Industries (STIR). STIR was created in 1961 within the framework of an agreement between the Tunisian State and the Italian group ENI. Following the acquisition of the foreign participation by the Tunisian State in 1975, STIR became a public enterprise. The objectives assigned to STIR are crude oil refining in order to partially satisfy the needs of the local market in oil products. These products are governed by a taxation system in order to insure the stability of the local prices and to protect the consumer's purchasing power. Since 1999, STIR has been the leader in supplying the internal market in oil products (with the exception of the aviation kerosene). Besides refining, STIR insures the import activity of oil products.

#### 2.3.3. Oil market Operating

The sale prices of crude oil of ETAP and STIR are administered, they are even international prices. The production costs of STIR are higher than CIF prices and the Mediterranean Sea. The administered sale prices of STIR to the distributors are lower than the international prices.

Simply, the downstream of the oil market from operating until the refining is insured by ETAP and STIR. The national production of crude oil is mainly exported by ETAP and by the international operating companies. However, to insure the needs of Bizerte Refinery, ETAP annually imports about 1,1 Mtoe of crude oil.

#### 2.4. Pricing structure

We shall examine here the pricing structures of oil products, their evolution, the taxation and subsidies system as well as the possible distortions stemming from this pricing system (Table 2 and 3). The oil products are subsidized at various stages of the processing and marketing chain:

- the administered sale price of crude oil at ETAP and STIR, is lower than the international prices.
- the cost prices of STIR, in the case of an application of the international prices of crude oil purchase and oil products sale, would have engendered the estimated losses at 252 700 *MDT* en 2005.

• the administered sale prices of STIR oil products to the "investors", are lower than the CIF prices.

|      |                      | 0        | v                |               |
|------|----------------------|----------|------------------|---------------|
| YEAR | PRICE                | BRENT    | TURNOVER         | RESULTS       |
|      | gross purchasing (D) | DATE (D) | AFFAIRES (MD)    | REFINING (MD) |
| 2002 | 23.6                 | 24.95    | 528, 988         | 87, 541       |
| 2003 | 23.6                 | 28.89    | 559, 512         | 156, 750      |
| 2004 | 25.5                 | 38.24    | 471, 222         | 240,843       |
| 2005 | 28.5                 | 54.41    | 724, 488         | 320, 429      |
| 2006 | 28.5                 | 65.14    | 889, 297         | 485, 763      |
| 2007 | 28.5                 | 72.45    | $1\ 076,\ 408$   | 641, 917      |
| 2008 | 28.5                 | 96.99    | $1 \ 348, \ 222$ | 910, 584      |
| 2009 | 43.2                 | 61.48    | $1\ 136,\ 840$   | 401, 382      |

 Table 2: Refining activity indicators

 Table 3: Import activity Indicators

| YEAR | BRENT    | TOTAL            | TURNOVER         | RESULTS     | SUBVENTION    |
|------|----------|------------------|------------------|-------------|---------------|
|      | DATE (D) | PURCHASE (D)     | AFFAIRES (MD)    | IMPORT (MD) | Accorded (MD) |
| 2002 | 24.95    | 754,074          | 561, 803         | -145, 941   | 58, 413       |
| 2003 | 28.89    | 810, 861         | 604, 470         | -215,079    | 58,630        |
| 2004 | 38.24    | $1\ 176,\ 922$   | 847, 124         | -318, 214   | 77,676        |
| 2005 | 54.41    | $1 \ 616, \ 567$ | $1\ 028,\ 742$   | -573, 144   | 252,700       |
| 2006 | 65.14    | 1 947, 473       | $1\ 407,\ 642$   | -530, 908   | 45, 145       |
| 2007 | 72.45    | $2\ 195,\ 045$   | $1 \ 642, \ 870$ | -586, 815   | -55, 102      |
| 2008 | 96.99    | $2\ 696,\ 605$   | 1 839, 629       | -845, 410   | -65, 174      |
| 2009 | 61.48    | $1\ 683,\ 983$   | 1 638, 620       | -37, 269    | -64, 113      |

During this decade, we have noticed that the difference between the refining results and the import results is not always negative. Since 2007, STIR pays profits to the account of ETAP in order to subsidize the deficit of the latter. In 2005, the total amount of oil products subsidies (including the deficit of STIR), supported by the State, is estimated at 421,724 MD. All the oil products are subsidized. In terms of volume; the diesel, the LPG and the fuel are the most subsidized products. The subsidy of the diesel is estimated at 209,107 MD in 2005; almost half the total subsidy granted in 2005 to oil products (Table 4).

| Products                       | subsidy     |
|--------------------------------|-------------|
| Natural gas                    | -6 400      |
| liquified natural gas ( steg ) | -1 323      |
| Gasoline                       | -4 213      |
| Gas + kerosene                 | $-209\ 107$ |
| Heavy fuel                     | -86 576     |
| Butane and propane             | -114 105    |
| Total                          | -421 724    |

Table 4: Subsidy per product

The tax revenues on oil products are distributed between direct and indirect taxes. In 2005 (figure 1), the volume of the collected taxes in respect of oil products marketing is estimated at 428 MTND. Two major taxes are applied; the VAT represents 56,66% of the collected taxes and the rest of the taxation are represented in the form of other taxes. In 2005, the balance sheet (taxation-subsidies) is globally balanced (taking into consideration the deficit of STIR).

Figure 1: of the resource account for oil products



#### 2.5. Les implications de la politique de subvention de l'nergie

Although the authorities had historically justify themselves by adopting the energy subsidy as a part of its political objectives, the subsidies do not seem to be the most effective policy to reach these goals. Particularly, the energy subsidies would entail economic and social costs.

#### 2.5.1. The economic costs

First the efficiency is imperative because the subsidies blur the price signals, by setting the prices at a lower level than that of the consumption opportunity costs and consequently we end by having distorting effects on the investment decisions. The first mechanical impact of subsidy lies in the overconsumption of the subsidized energy, thereby entailing an increase in the imports' demand or a reduction in the quantity of the exports' available energy. A priori, we can say that the subsidies may thereby result in deteriorating the balance of payments and to increasing the country's dependence facing the energy imports.

The effect of the subsidy on energy prices propagates in all the sectors, particularly the major energy-intensive sectors, and affects their production costs and the prices of the other products. The changes of the relative prices are going to influence the competitiveness of the products on the international markets.

The subsidies decrease the capacity and the incitement to invest in the new infrastructures and in the production capacity. Similarly, the subsidies lead to the deterioration of the financial situation of the state-owned energy companies and results in the under-development of the sector.

The distortions of the prices can similarly entail bad investment choice and a bad inefficient allocation of resources. The energy subsidies would inevitably decelerate the development and the marketing of the new technologies and the other sources which could finally become more economic.

#### 2.5.2. The social costs

The energy subsidies have been introduced for social motives to make the energy, which is an essential necessity, within the reach of low-income groups. The energy subsidies are at the same time, directly and indirectly to the benefit of the households. The direct effect is the earning of the disposable income because of the reduction in the price paid by the households for oil products consumption. The indirect effect can be seen in the reduction in the prices paid by the households for the other products and services arising from fuel cost reduction during the production process.

In practice, however, the advantages of fuel subsidies mainly occur to the highincome groups. Since the subsidy by liter does not vary according to the household income, those who consume most benefit from the biggest portion of the subsidy.

#### 3. The Social Accounting Matrix (SAM)

The social accounting matrix (SAM) implements an accounting framework for the data of the whole-economy. Once established for a given year, it supplies a "shooting" for the economic structure. The elements of SAM are interconnected through a MCEG which represent the conceptual framework and contains the technical and the behavioural relations. The SAM is, thereby, a database which coherently matches the micro and macro-economic information. According to Thorbecke (1985), the SAM constitutes an essential tool to diagnose an initial situation and to systematically organize the data through respecting the accounts as well as the classification and the relations between the variables which appear in these accounts. The construction of a SAM is based on the fundamental principle of the balance between the resources and the uses in the considered economic system. It constitutes an analysis tool highlighting the structural characteristics of the offer and the demand at the level of business sectors or the institutions. Finally, the SAM in compliance with the National accounting rules allows finding the main macroeconomic aggregates.

There is no final and unique structure for the SAM, first, because of the diversity of the objectives pursued and assigned to it, second, because of the data availability. The retained agreements are thereby the product of these two elements as well as the reasoned choices. Two types of SAM are therefore identified. The first is the macro SAM (Figure 2) which, as its name indicates, offers an aggregated view of the fund flows in the economy and gives a unique total for each account without any peculiarity about its content. The second, is the micro-computing SAM, it proposes more details about the accounts' decomposition according to the data availability and to the study object. The SAM is characterized by its flexibility. It grants a tremendous flexibility in the disaggregated accounts. Although the present matrix is disaggregated enough at the level of the production activities, it nevertheless remains in the family of macro SAM, because it is not the object of a particular disaggregation. The accounts of our matrix represent the same accounts supplied by the national accounts data.

Typically, a SAM in an open economy contains five types of accounts: 1) activities of accounts (or production accounts), 2) products and services accounts (products accounts), 3) factors accounts (labour and capital), 4) accounts of the internal (households, companies, State) and the external (the rest of the world) institutions and 5) savings and investment accounts for all the institutions.

#### 3.1. Data Sources

The SAM of the year 2005 constitutes the database of the model used for calibrating the GCE model. It's a version adapted to the objective of the SAM built by the Institute of Quantitative Economics. The sources of the used data are derived from the input-output table 'IOT', global economy table 'GET' derived from the National Institute of Statistics (NIS) and the balance of payments stemming from the Central Bank of Tunisia.

The input-output table belongs to the family of the economic tables supplied by the national accounting; indeed, it allows having an overall view about the production activities and its use. In other words, it allows figuring the interdependence existing between the various economic business sectors through indicating the products and services falling within the production process of the other products and services and the final uses of products and the services. The 'IOT' has constituted the main data source for the elaboration of our SAM. The global economic table includes the agents' accounts. It describes the distribution of the factor income, the inter-institutional transfers and the savings between the agents. The data are organized in six accounts: the production account, the operating account, the income account, the use of income account, the capital account and the financial account. The agents of the global economic table are the non-financial companies, the financial institutions, the public administrations, the households and the foreign countries.

The third used data source is the balance of payments. This table shows all the operations which take place during a given period, between a country and a foreign country. The balance of payments is a statistical document developed in the accounting form, listing the flows of products, the services, the income, the capital transfers, and the financial flows which the residents of a country maintain with the rest of the world.

## 3.2. The Micro SAM

The structure of the SAM depends on the initiated study. The Tunisian Social Accounting Matrix for the year 2005 is composed of 62 accounts with 21 production activities, 22 products, 2 production factors, 4 domestic institutions, 6 taxes and subsidies accounts, 2 savings and investment accounts, 3 accounts for the rest of the World, 1 account for the commercial margins and 1 balance of payments account. Compared with the Macro SAM, the disaggregation is realized for the activities accounts, the products account, the State account, the savings-investment account, the account of the rest of the world and the margins account.

#### 3.3. Activities-products Structure

Within the architecture of the presented SAM, the production contains two accounts "activities of production" and "products and services". This distinction helps capturing the fact that an activity can supply more than a product and similarly a product can be generated by more than one activity.

The disaggregation criteria of the activities are diverse. We shall retain here the disaggregation by sector type (primary, secondary, tertiary). These sectors are therefore more or less disaggregated by product or by product type. The first activity account retained in the SAM disaggregated structure is the primary sector activity (agriculture and fisheries).

Next come five other accounts of non-manufacturing industries, two accounts are relative to the extraction activities of the energy and the non-energy products, the account of the activities of oil and gas extraction and refining, the account of electricity and gas production and supply and finally the account of construction and public works. The following seven activities accounts strictly correspond to the most energyconsuming production activities which are: the manufacturing industries, coking and refining and the nuclear industries, the chemical industry, the rubber and the plastics industry, machines and equipments manufacturing, electric and electronic equipments manufacturing, transportation equipment manufacturing.

The following activity accounts are four services accounts including the business activities, the tourism activities (hotels and restaurants), the transport and telecommunications activities which are subdivided into: ground transportation, sea and coastal transportation, air transportation, auxiliary transportation services, post offices telecommunication, and the financial activities; rent and business activities. Each of these activities represents an element of products account.

The last activity account is that of the non-market activities. It includes the public administrations which produce public services.

The activities account receives the sales value of the products online, on the domestic and the external markets, paid by the product accounts and uses. It spends the intermediate consumptions which constitute payments for the products accounts, the added value which constitutes a payment for the factors' accounts and the indirect taxes a positive payment for the account of the State and another negative payment for the operating subsidy.

Regarding the products account, the resources of this account are constituted by the corresponding intermediate demand, the commercial margins, the final demand of the households, the State demand, the foreign demand that is the exports and finally, the demand of the investment stemming from the savingsinvestment account. The uses of the products accounts are constituted by the payment for the activities accounts, by the account payment at the expense of the rest of the world corresponding to the value of the duty free importations, the payment of the commercial margins, the payments of the indirect taxes at the expense of the State. The products accounts can also receive subsidies; in this case, it corresponds to a negative use of the State account.

The payment of the commercial margins is paid at the expense of the commercial service product, which stems itself from the commercial activity. In the case of the Tunisian SAM, only the products pay commercial margins for the commercial account.

#### 3.4. Structure in factors and institutions

The activities produce products and services through combining the production factors<sup>1</sup> and the intermediate products<sup>2</sup>. The factor labour is remunerated

<sup>&</sup>lt;sup>1</sup>Intersection of the column "production activities" and the line "capital" and "labour".

<sup>&</sup>lt;sup>2</sup>Intersection of the column "production activities" and the line "products and services"

through the paid gross salaries whereas the gross operating surplus represents the remuneration for the major factor. The remuneration of the production factors constitutes the added value which shall repay the various agents called institutional units.

Among the institutions, the State and the households accounts make the object of disaggregation with respect to the stylized matrix.

For the State account, it allows at the same time to distinguish the various types of taxation, direct and indirect, applying to the different bases of taxation, and to consider the various subsidies applying either to the activities, or to the products, or to the households.

The State receives all the types of taxes (direct and indirect), in addition to a part of the remuneration for the major factor, the companies' dividends finally the foreign agent income; the "rest of the world" in the form of loans or of donations. Thereby, we shall consider six accounts of taxes and subsidies which appears in line or in column and where the totals of which are paid at the State account (for the taxes) or fed by the latter (for the subsidies). The direct taxes apply to the household and companies incomes. The indirect taxes are mainly the VAT and "other indirect taxes". As for the subsidies account, we shall distinguish the operating subsidies of the received activities in the form of negative taxes and subsidies on the products. The State also receives taxes on the imports in the form of customs duties, then, the State are distributed between social transfers realized towards the households, transfers in the form of subsidies to the companies and transfers to the rest of the world in the form of payment of the contracted debt.

Finally, the representation of the SAM structure, the account "capital accumulation" receives as income the savings of all the agents and its expenses correspond to the investment<sup>4</sup>.

<sup>&</sup>lt;sup>3</sup>intersection between column "State" and the lines corresponding to its agents

<sup>&</sup>lt;sup>4</sup>intersection between the column "capital accumulation" and the line "products and services".

| Macro     | D-Matrice 20 | 05 equil   | ibree      |            |            |           |           |              |            |            |              |           |           |          |         |           |            |
|-----------|--------------|------------|------------|------------|------------|-----------|-----------|--------------|------------|------------|--------------|-----------|-----------|----------|---------|-----------|------------|
|           |              |            |            |            |            |           |           | Institutions |            |            |              | dirtx     | vattx     | prdtx    | imptx   | indtx     |            |
|           |              | capital    | travail    | activités  | produits   |           | compte    | courant      |            | RDM        | accumulation |           |           |          |         |           | Total      |
|           |              |            |            |            |            | SNF       | SF        | ADM.PUB      | MEN        |            |              |           |           |          |         |           |            |
|           | Capital      |            |            | 22 636 673 |            |           |           |              |            |            |              |           |           |          |         |           | 22 636 673 |
|           | Travail      |            |            | 15 049 575 |            |           |           |              |            | 65 698     |              |           |           |          |         |           | 15 115 273 |
| activités | activités    |            |            |            | 72 382 284 |           |           |              |            |            |              |           |           |          |         |           | 72 382 284 |
| produits  | produits     |            |            | 34 470 048 |            |           |           | 7 084 265    | 25 871 276 | 18 813 591 | 8 887 405    |           |           |          |         |           | 95 126 586 |
| 8         | SNF          | 7 244 160  |            |            |            | 0,0       | 688240,6  | 555470,2     | 135583,4   | 133434,8   |              |           |           |          |         |           | 8 756 889  |
| mpte      | SF           | 764 727    |            |            |            | 1650443,7 | 386376,6  | 164113,9     | 896756,7   | 8870,1     |              |           |           |          |         |           | 3 871 288  |
| Cou       | ADM.PUB      | 1 276 908  |            |            |            | 1220392,3 | 95633,1   | 425737,1     | 6540326,2  | 389646,3   |              | 2 960 675 | 2 307 502 | -120 593 | 575 263 | 1 232 606 | 16 904 096 |
| rant      | MEN          | 13 350 878 | 15 115 273 |            |            | 239648,8  | 1679814,5 | 5968283,2    | 319479,7   | 1909248,8  |              |           |           |          |         |           | 38 582 626 |
| RDM       | RDM          |            |            |            | 18 975 511 | 1428974,4 | 301193,2  | 625868,6     | 425090,2   | 0,0        |              |           |           |          |         |           | 21 756 638 |
| t.capital | accumulation |            |            |            |            | 3026942,0 | 670385,0  | 2045279,0    | 2756245,4  | 388554,0   |              |           |           |          |         |           | 8 887 405  |
|           | dirtx        |            |            |            |            | 1 190 488 | 49 645    | 35079        | 1 637 868  | 47 595     |              |           |           |          |         |           | 2 960 675  |
|           | vattx        |            |            |            | 2 307 502  |           |           |              |            |            |              |           |           |          |         |           | 2 307 502  |
|           | prdtx        |            |            | -120 593   |            |           |           |              |            |            |              |           |           |          |         |           | -120 593   |
|           | imptx        |            |            |            | 575 263    |           |           |              |            |            |              |           |           |          |         |           | 575 263    |
|           | indtx        |            |            | 346 581    | 886 025    |           |           |              |            |            |              |           |           |          |         |           | 1 232 606  |
| Total/E   | Total        | 22 636 673 | 15 115 273 | 72 382 284 | 95 126 586 | 8 756 889 | 3 871 288 | 16 904 096   | 38 582 626 | 21 756 638 | 8 887 405    | 2 960 675 | 2 307 502 | -120 593 | 575 263 | 1 232 606 |            |

Figure 2: The Macro Matrix of the year 2005

### 4. The Computable General Equilibrium Model

The implementation of the tools of evaluation and analysis of the energy policy is generally realized in two different abstract frameworks: the partial equilibrium model and the general equilibrium model. The partial equilibrium presents the most specific methods to a sector, and examines particular sectors or products within the economy, without approaching the macroeconomics and the effects of repercussion or feedback stemming from other sectors on the economy. Through exceeding the simplistic framework of the partial equilibrium model, the computable general equilibrium models reveal the interdependence of the various markets and the direct and indirect impact of the exogenous modifications. The most common procedure of general equilibrium modelling consists, as from a supposed SAM in representing the economy in a general equilibrium situation. The general equilibrium model reproduces, the variations which can result from a change in the economic environment<sup>5</sup> and from the adoption of macro-economic politics<sup>6</sup> or micro-economic politics<sup>7</sup>.

#### 4.1. The prices and the taxes

The model contains a prices system which allows it to redraw the evolution of the production cost towards the final sale price. First of all, given that the products can be produced by several activities, the production cost of a given product is

<sup>&</sup>lt;sup>5</sup>Variation of the exchange terms, the world demand change, the drought impact

<sup>&</sup>lt;sup>6</sup>Variation of the nominal exchange rate, budgetary or monetary reforms.

<sup>&</sup>lt;sup>7</sup>Fiscal or tariff reforms

a combination of the prices of the activities producing the product. The activity prices include taxes on the production but also all the imputed taxes during the production process. The production cost is equal to the export price (except the transaction costs). The interaction between the production and the export costs determines the price of the domestic offer. Besides, during the sale process, the products prices increase by the transport and the trade margins which are calculated in fixed percentages of each unit sales. The interaction of the sale price with the import price constitutes the composite price of the domestic demand.

#### 4.2. The production

The general structure of the production process supposes that business sectors use the same production technology. The function of global production is a "fitted" function, which uses the same technology. The combination between the value added and intermediate consumptions is operated by Leontief function, what means that each of the added value and the intermediate consumptions represent a fixed part of the production.

The value added of the various business sectors is represented by Cobb-Douglas (CD) function between the capital and the labour. As for the intermediate consumptions which are in the form of the composite products, they are modelled according to the classic plan of the input-output models (fixed technical coefficients).

In this model, we have retained the hypothesis of the capital stock specificity by the business sector and its full use, what excludes any possibility of intersectoral mobility of this factor. The passage from the production sphere to the market sphere supposes that all the manufactured products are sold on the market.

The producers can manage their production towards the domestic or the foreign market. As for the producers' choice between the domestic market and the export, it is specified by a function said "CET" (Constant Elasticity of Transformation) which is characterized by the constant elasticity of transformation, what supposes an imperfect "transformability" between the destinations. Thereby, the maximisation of the profits according to the relative prices leads the producers to distribute their production between the domestic and export markets.

#### 4.3. The institutions

The model contains four types of institutions: the households, the companies, the State and the rest of the world. First, the resources of the households mainly result from the salaries received from the labour factor and by the capital income detained by the individual companies and the transfers of the other institutions<sup>8</sup>.

<sup>&</sup>lt;sup>8</sup>The social-security benefits and other social transfers as well as the other common transfers

After paying the taxes to the State, these incomes are essentially used in the consumption of the products and services, the transfers to the other institutions and the savings which is a payment at the investment-savings account.

The companies' resources essentially come from the capital income detained by the companies, the transfers of the other domestic institutions and from the rest of the World. Their uses are distributed between the affectation of the primary and the secondary income in the form of transfers to the other domestic institutions, the income taxes paid to the State account and the savings paid to the Investmentsavings account. The State resources are fed by the taxes and the transfers of the domestic as well as the foreign institutions. The resources are used as transfers intended for the other institutions and for the Rest of the World, and consumption expenditure and paid subsidies. This operation releases a saving which finances the gross fixed capital formation and the stock variation.

#### 4.4. The foreign trade

The foreign trade is modelled according to two hypotheses: the "small open economy" hypothesis and Armington hypothesis. The first implies that the import and the export prices are determined according to the world market and, therefore, constitute exogenous data. Armington hypothesis implies that the imports are the imperfect substitutes of the local production. Thereby, the demanded product at the local market is the composite product constituted by the local production and the imports. The distribution of this composite product is governed by a function with constant elasticity of substitution (CES). The elasticity of substitution (CES) and of transformation (CET) functions determines the sensitivity of the ratios volumes to the variations of the products' relative prices, which are distinguished by origin and destination. In the equilibrium, the trade-off between the imports demands and the local products mainly depends on their relative prices.

Symmetrically, the producers can assign their products between the local market and the export through a constant elasticity of transformation function.

#### 4.5. Model Details

#### 4.5.1. The production

The general structure of the production process supposes that the business sectors use the same production technology. The function of global production is a "nested" function, which uses the same technology. The combination between the added value and the intermediate consumptions is operated by the Leontief function, what means that each of the value added and the intermediate consumptions represent a fixed part of the production.

$$XS_j = \frac{VA_j}{v_j} \tag{1}$$

$$CI_j = \frac{\iota_j}{XS_j} \tag{2}$$

 $\operatorname{avec}$  :

- $XS_i$ : the production of the business sector j;
- $VA_j$ : the value added of the business sector j;
- $CI_i$ : the intermediate consumption of the business sector j;
- $v_i$ : the value added coefficient of the business sector j;
- $\iota_j$ : the volume of the necessary intermediate input to the production of a product unit j;

The producers choose the production level which allows them to maximize their profit while taking into consideration the factors to be used in the production as well as the prices' general level. In this model, we have retained the hypothesis of the specificity of the capital stock per business sector and its full use, what excludes any possibility of intersectoral mobility of this factor. The producers choose the number of the working units based on the market salaries. The value added of the various business sectors, is represented by Cobb-Douglas (CD) function between the capital and the labour.

$$VA_j = E = A_j * LD_j^{\alpha_j} * KD_j^{1-\alpha_j}$$
(3)

The price of the basic value added which gives the factors cost per unit, is specified as follows:

$$PVA_j = \frac{\omega_j * LD_j + r_j * KD_j}{VA_j} \tag{4}$$

The labour demand of the business sector (j) is obtained from first-order conditions of the profit maximization problem.

$$PV_j = PVA_j * (1 + txa_j + tsxs_j) \tag{5}$$

The labour demand of the business sector (j) is obtained from first-order conditions of the profit maximization problem.

$$LD_j = \frac{\alpha_j * PV_j * VA_j}{\omega_j} \tag{6}$$

where

•  $VA_j$  represent the value added;

- $LD_i$  the labour demand;
- $KD_j$  the amount of the available capital;
- $\alpha_j$  the elasticity of the value added of the sector production with respect to the labour force;
- $A_j$  the rating scale of the value added of the sector j;
- $\alpha_j$  the salary rate;

The intermediate consumption of each sector j is constituted by the sector demand j in intermediate consumption  $DI_{(i,j)}$  according to a fixed relation (Leontief), what supposes the strict complementarity between the intermediate inputs.

$$DI_{(i,j)} = \epsilon 2_{(i,j)} * CI_j \tag{7}$$

with: :

- $DI_{(i,j)}$ : the business sector demand j in intermediate inputs i.
- $\epsilon_{2(i,j)}$ : fixed ratios of the intermediate inputs *i* per sector *j*.

The production cost incorporating the intermediate consumptions cost is given by :

$$PXS_j = \frac{PVA_j * VA_J + \sum_i PC_i * DI(i, j)}{XS_j}$$
(8)

With

- $PC_i$ : The market price of the composite product 'i' sold on the local market.
- $PXS_i$ : the output price.

#### 4.5.2. Supplies and demands of the products and the services

The passage from the production sphere to the market sphere supposes that all the manufactured products are sold on the market.

One of the model peculiarities is that it is a multi- product model. Thereby, each activity manufactures more than a product and each product can be manufactured by more than a business sector. The total supply of the economy in a given product is Constant Elasticity of Substitution (CES) of the amounts produced by all the business sectors. The specification CES is a generalization of the Cobb Douglas function. It implies (as its name indicates) a constant elasticity of substitution, but not necessarily equal to 1 of the various factors.

$$X_{i} = f(DX_{(1,1)}, DX_{(1,2)}, \dots DX_{(i,j)}) = \left(\sum_{j} \varsigma_{(i,j)} * (DX_{(i,j)})^{\tau}\right)^{\frac{1}{\tau}}$$
(9)

With

- $X_i$ : amount of the product 'i' manufactured by all the production activities;
- $DX_{(i,j)}$ : amount of the product 'i' manufactured by the activity sector j;
- $\varsigma_{(i,j)}$ : coefficient of the CES of the production per sector;
- $\tau$ : elasticity of transformation between the various products;

The sum of the manufactured products by a business sector is equal to the total production of this sector.

$$XS_j = \sum_i DX_i(i,j) \tag{10}$$

The passage of the production activities to finished products is guaranteed through the production cost and the product price of the producer.

$$PX_i * X_i = \sum_j PXS_j * DX_{(i,j)} \tag{11}$$

The model also distinguishes itself by the existence of the transport margins. The price with which the product i enters the market is given by :

$$PXM_I = e = PX_i * (1 + tmc_i) \tag{12}$$

On the other hand, the global demand for the composite product of the market is constituted of the households and the State consumptions, the intermediate consumption and the investment. The demands in terms of the products value for investment purposes are price-sensitive. They are calculated as a fixed proportion  $\mu_i$  of the total investment *FBCFT*.

$$INVVV_i = \frac{\mu_i * FBCFT}{PC_i} \tag{13}$$

The market price of the composite product i is equal to the price of this composite to which we add the taxes and the subsidies on the products. This price is specified as follows:

$$PC_i = PQ_i * (1 + ((tsq_i * (1 + tx_i) * (1 + tv_i)) + (tv_i * (1 + tx_i) + tx_i)))$$
(14)

Concerning the quantity of the consumed product i by the households and which is by nature sensitive to the composite product price  $PC_i$ , its specification ensues from a utility maximization program of Cobb-Douglas type under the constraint of the disposable income YDM.

$$CM_i = \frac{gamma_i * YDM}{PC_i} \tag{15}$$

The total of the intermediate demand of the economy in input i is given by :

$$DIT_i = \sum_j \epsilon 2_{(i,j)} * CI_j \tag{16}$$

#### 4.5.3. labour supply

The modelling of the retained labour market has to take into consideration the existence of unemployment in the economy. The equilibrium on the labour market shall thus spell as follows :

$$\sum_{j} LD_j + UU = LS \tag{17}$$

With LS the total labour supply. *PIndex* the consumer price index.

$$PIndexC = \prod_{i} PC_{i}^{beta_{i}}$$
(18)

With,  $beta_i$  the product part in the household budget. The salaries curve is defined by:

$$Log(WL/PindexC) = alphar + alphau * Log(UU/LS)$$
(19)

with, *alphar* a constant of the salaries curve and *alphau* is the elasticity of the salaries curve in the unemployment rate.

#### 4.5.4. income and savings of the households and the companies

The household income includes the labour remuneration; the return on capital (household entrepreneurs), the government transfers and the dividends on the companies' product titles (either from national or international source).

$$YM = wl * (Ls - uu) + \lambda * (\sum_{j} r_j * KD_j) + DIV + ADIV + TYWM$$
(20)

With:

- $\lambda$ : the capital share which is the product of the households;
- DIV: paid dividends to the households entrepreneurs;
- *ADIV*: autonomous dividends of the households;
- *TYWM*: DEST transfers to the households;
- *LS*: labour offer/labour supply;
- *uu*: number of jobless people;

The disposable income of the households is given by:

$$YDM = YM - TDM - TVME \tag{21}$$

With :

:

TDM: direct taxes receipts on the households' income; TVME: transfers paid by the households to the exterior;

The savings of the households are a fixed proportion of the disposable income

$$EM = psi * YDM \tag{22}$$

The companies income is constituted by the capital return and the transfers received from the other agents :

$$YE = (1 - \lambda - \varrho) * \sum_{J} (r_j * KD_j) + TE + TWE$$
(23)

With :

TE: transfers of the households to the companies;  $\rho$ : part of the capital return received by the government; TWE: foreign transfers to the companies;

The savings of the companies are deducted after the subtraction of the transfers paid to the other agents.

$$EEE = YE - TDE - TVEE - TXWEG - DIV$$
(24)

with:

TDE: *receipts of the direct taxes on the companies' income; TVEE*: the transfers paid by the companies to the exterior; TXWEG: *transfermade by the companies to the government;* 

A part of the disposable income of the households is distributed to the companies in the form of transfers.

$$TE = E = \eta * YDM \tag{25}$$

 $\eta$ , part of the disposable income of the households transferred to the companies.

$$TXWG = E = \zeta * YDM \tag{26}$$

 $\zeta,$  is part of the disposable income of the households transferred to the government.

$$TVME = E = \phi * YDM \tag{27}$$

 $\varphi$ , is part of the disposable income of the households transferred to the exterior.

Finally, an equation which redraws the equality between the investment in value and its savings is added to the model. The considered savings are those of the households, the companies (financial and non-financial), the State and the five commercial partners through the current balances.

$$\sum_{i} invvv(i) + \sum_{i} delst(i)) = EM + EEE + EG + INVBOP$$
(28)

The composite product  $Q_i$  presents the total market supply. The demand of this offer is constituted of consumptions of the households and the State, the intermediate consumptions of the business sectors and the investment which is represented by the *FBCFT* and the stock variation. Therefore, the condition markets equilibrium of products and services becomes:

$$QQQ_i = CM_i + INVVV_i + MRCVO_i + delsto_i + DIT_i + ggo_i$$
<sup>(29)</sup>

4.5.5. Revenus et pargnes de l'tat

$$YG = RCG + TDM + TDE + (\sum_{i} TIM_{i} + TP_{i} + TVA_{i} + subpd_{i}) + (\sum_{j} subpdd_{j} + TPA_{j})$$

$$+ TXWG + TXWEG + BOPG$$
(30)

with:

RCG: the capital income received by the government; TDM: direct taxes revenue on the household income; TDE: direct taxes revenue on the companies' income; TIM: customs duties revenue on the product i; TP: tax on the product i; TVA: VAT on the product i; SUBPD: subsidy on the products i; SUBPDD: subsidy on the product j; TPA: tax on the production activity j; TXWG: transfers of the households to the government; TXWEG: transfer realized by the companies to the government;

$$RCG = \varrho * \sum_{j} (r_j * KD_j) \tag{31}$$

with:

- $tx_i$ : the indirect tax rate on the product i;
- $QQQ_i$ : the composite product *i*;
- $PQ_i$ : the market price of the composite products i;

$$TP(i) = tx(i) * (PQ(i) * QQQ(i))$$
(32)

where,  $tv_i$  is the VAT rate on the product *i*.

$$TVA(I) = tv(i) * (1 + tx(i)) * PQ(i) * QQQ(i)$$
 (33)

 $txm_i$ , customs duties rate on the product *i*.

$$TIM(i) = txm(i) * IMT(i)$$
(34)

 $txa_j$ , indirect tax rate on the sector production activity j.

$$TPA(j) = txa(j) * PVA(j) * va(j)$$
(35)

tym, the direct tax rate on the income of the households.

$$TDM = tym * YM \tag{36}$$

tye, the direct tax rate on the income of the firms or the companies.

$$TDE = tye * YE \tag{37}$$

 $tsq_i$ , subsidy rate on the product *i*.

$$SUBPD(i) = tsq(i) * (tv(i) + 1) * (1 + tx(i)) * (PQ(i) * QQQ(i))$$
(38)

 $tsxs_j$ , subsidy rate for the branch j.

$$SUBPDd(j) = tsxs(j) * PVA(j) * VA(j)$$
<sup>(39)</sup>

The state income is distributed among the public savings, the public expenditure and the transfers abroad.

$$YG = EG + G + TVGE \tag{40}$$

#### 4.5.6. The international trade block

The producers choose on which market they are going to sell their production by basing themselves on the prices  $PE_{(dest,i)}$  which they can obtain for their production. In order to represent this decision, we have used a constant elasticity of transformation (CET) function. First, the producers decide to sell either on the local market  $D_i$  where the price is  $PD_i$ , or to export their production  $EXT_i$  with a price  $PEC_i$ . The problem of profits maximization allows expressing the sales on the local market as a function of the exports' level.

$$D_i = betax_i * X_i * (PQ_i/PD_i)^{taux_i}$$

$$\tag{41}$$

avec:

- $betax_i$ : scale coefficient of the export demand.
- $taux_i$ : the elasticity of the product's commercial transformation.

The export supply depends only on the scale coefficient of the export demand  $gamma_a(dest, i)$ .

$$EX_{(dest,i)} = gamma_{a_{(dest,i)}} * \left(PWm_{(dest,i)}/Pxm_{(i)}\right)^{sigma_{X_{(i)}}}$$
(42)

The trade-off between the domestic and the imported products is realized through a constant substitution elasticity (CES) function, what allows us to express the total import demand as a function of the national demand in composite products.

$$IMT_{(i)} = e = alphaim_{(i)} * QQQ_{(i)} * (PQ_{(i)}/PMC_{(i)})^{sigmaim_{(i)}}$$
(43)

The import demand per origin  $IM_{(dest,i)}$  where the prices are  $PM_{(dest,i)}$  given by<sup>9</sup>:

- *alphad*: the part of repartition of the imported products.
- *sigmad*: Ithe elasticity of transformation of the importation product *i*.

$$IM_{(dest,i)} = E = alphad_{(dest,i)} * IMT_{(i)} * (PMC_{(i)}/PM_{(dest,i)})^{(sigmad_{(i)})}$$
(44)

• alphaim: par. of repartition of the imp product. I (imp. fct CES)

<sup>9</sup> 

<sup>•</sup> sigmaim: elast. of trans. of the import product. I (imp. fct CES)

#### 4.6. The model dynamism

The dynamics of the model are based on the sequential dynamics, thereby; there will be no inter-temporal optimization behaviour.

Compared with the inter-temporal dynamics which are based on proactive dynamic adjustments, the sequential dynamics are based on the passage from an equilibrium state to another. At the level of this work, our starting point was a static computable general equilibrium model based on comparative statics, and then we have tried to analyze the post-decisional implications of the policy of subsidies decrease on oil products consumption through introducing the sequential dynamics on our static computable general equilibrium model through three essential stages: first, assuring the link between the stationary states; second, characterizing the economy expansion in time; third, defining the investment market.

The link between the static states is realized through capital accumulation. However, the economy expansion is assured by introducing the population growth and the technical progress. For the purpose of simplification, we have retained that the population growth, in addition to the two previously mentioned points, the sequential dynamics require nevertheless the distinction between the supply and demand of the investment products. In our static model, we have clarified the supply of these products according to their original sectors, without worrying about their reallocations in the economy. Although, at the level of the dynamic models the reallocation of the investment products cannot be disregarded, because the sector which receives these products increases its capital stock and even its production potential in the future periods.

#### 5. Closure and simulation

#### 5.1. Closure

The model closure consists in equalizing the number of the variables to the number of equations. Accordingly, the model contains 61 equations and consequently so many variables. The choice of the macroeconomic closures exceeds the simple fact of raising the under-determination of the equations system and consists of the adoption of a transmission scheme of the effects of the simulated shocks and the factors engendering them. In response to the simulated shocks, the closure according to the objective granted to the computable general equilibrium model a big flexibility thanks to the possibility of simulating the effects of the range of measures envisaged by the decision-maker and qualifying them according to the privileged mode of the variables' behaviour.

The Tunisian revolution urges us to think about the policies of economic and social development to be undertaken in order to raise the underdevelopment and improve the living standard, to respond to the claims of the revolution in a context where the oil prices do not stop increasing the Tunisian energy bill and consequently the subsidy amount weighs increasingly heavily on the state budget. The choice of the closure is related to the present economic environmental vision, and this choice determines the sequences following any shock on an exogenous variable. The closure adopted in the model will have then important implications as for the simulations results. In this context, the closure adopted in the model supposes that all the realized transfers between the companies and the State with the foreign countries is supposed to be exogenous.

Among the main implications of the retained closure, we shall mention the capacity to analyze the energy policy undertaken in the country. The simulations on the oil prices and the subsidies on oil products consumption allow us to assess the transmission effects towards the market mechanisms, through reflecting the impact on the prices and the macroeconomic variables.

The oil price shock entails adjustments which result in new prices structures and in a modification of their levels. The analysis of this impact has to consider the effects of this new prices situation on the economic agents and on the economy in general. It is therefore essential to have a macroeconomic modelling, where all the relations between the markets and the sectoral interactions are taken into consideration and all the endogenous variables and transmission of the impacts between the various markets (products, labour, and finances) are transcribed in the model relations.

#### 5.2. Simulation of the static model

Starting from the basic static model replicated on the matrix of the year 2005, we have simulated three basic scenarios. The first scenario consists in 12% increase in oil price. The second scenario consists in 0,8% subsidy decrease on oil products consumption. Finally, the third realized scenario is a combination of the two previous simulations.

The purpose of these simulations is to observe the reaction of the Tunisian economy facing oil price increase and subsidy reduction in oil products consumption. In order to facilitate the presentation and the interpretation of the results, we shall only retain the macroeconomic and micro-economic results displayed in appendix C. We are first going to study the simulations' impact on the savings and on the gross fixed capital formation, then the impact on the commercial balance and finally the impact on the growth.

A priori, two major transmission channels come into play further to the proposed scenarios. First, the loss in terms of the consumer and the companies purchasing power entails decrease in demand for final and intermediate consumer products and therefore the global demand per sector [see Table (4; 5; 6 Annexe)]. The shocks transmission in this case is mainly realized through the observed increase by the relative prices (after subsidy reduction or the increase in oil products prices), therefore leading to an increase in the production costs [Table (7; 8 Annexe]. Second, the proportion to be saved of the households and the companies decreases in response to sales price (subsidy reduction or the increase in oil products prices). Furthermore, the State seems beneficiary of the sales price; similarly we have recorded an increase at the level of the State savings. On that basis, the positive evolution of the State savings exceeds the decrease at the level of the savings of the households and the companies; and henceforth we have recorded a positive evolution at the level of the gross fixed capital formation of the economy (Figure 3).



The macroeconomic effects of oil price products increase or the decrease of oil products consumption subsidy or both of them are presented in the Figure 4. At the macroeconomic level, the three scenarios engender a regression at the level of the GDP, an increase at the level of the general price index and an increase at the level of the unemployment figures.



As for the commercial balance (Figure 5), it should be noted that that the three scenarios are more favourable compared with the reference situation and that the scenario number 2 is the most favourable among three supposed scenarios. The profits observed at the level of the commercial balance are mainly due to the increase of crude oil exports (Table 5). Indeed, the increase of oil exports is essentially due to the decrease of the national demand in crude oil which is due in its turn either to the subsidy reduction or to the increase in oil products prices.

The State which implicitly subsidizes crude oil increases its exports in crude oil.



|         | Table 5:       | lotal exports pe | er product     |                |
|---------|----------------|------------------|----------------|----------------|
|         | ref            | sim2             | sim3           | sim1           |
| P-AA+AB | 288,962654     | 287,977554       | 286,840429     | 288,113255     |
| P-111   | $1426,\!81253$ | $1995,\!22436$   | $2782,\!43085$ | 1999,79052     |
| P-CB    | $87,\!5286139$ | $85,\!9144595$   | $84,\!132867$  | $86,\!1293672$ |
| P-manuf | $7031,\!66455$ | $7016,\!49842$   | 7000,5789      | $7017,\!92681$ |
| P-DF    | 300,912666     | $322,\!367628$   | 346,738975     | $322,\!383048$ |
| P-DG    | $1236,\!26047$ | $1232,\!21326$   | 1227,71704     | $1232,\!50686$ |
| P-DH    | 202,646469     | $202,\!239841$   | 201,753793     | $202,\!285383$ |
| P-DK    | $413,\!339587$ | 413,342824       | 413,450036     | $413,\!075876$ |
| P-DL    | 2366, 33955    | $2363,\!41396$   | $2360,\!44459$ | $2364,\!02835$ |
| P-DM    | $365,\!283789$ | $364,\!645203$   | $363,\!940007$ | $364,\!59629$  |
| P-HH    | $2803,\!4729$  | $2774,\!49759$   | $2746,\!43237$ | $2775,\!10846$ |
| P-60    | 339,362488     | 326,781615       | $312,\!837515$ | $328,\!535186$ |
| P-61    | $201,\!852485$ | $198,\!546061$   | 194,762353     | $199,\!040591$ |
| P-62    | $725,\!268826$ | $670,\!643237$   | $613,\!835736$ | $678,\!437412$ |
| P-63    | $163,\!244663$ | $160,\!514605$   | $157,\!433425$ | 160,934878     |
| P-64    | $23,\!579854$  | $23,\!1560518$   | $22,\!6763484$ | $23,\!2303297$ |
| P-JJ    | $144,\!592798$ | $143,\!152996$   | $141,\!620293$ | $143,\!210937$ |
| P-KK    | 687,785369     | $683,\!340511$   | $678,\!402291$ | $683,\!421167$ |
| P-SVNM  | 4,80003765     | 4,75107379       | 4,69656105     | 4,75632149     |
|         |                |                  |                |                |
| ToTal   | 18813,7103     | 19269,2213       | 19940,7244     | 19287,511      |

#### 5.3. Results of the dynamic model

5.3.1. Simulation I: annual Decrease of 10% of the consumer subsidy for oil products

We are going to present a dynamic version of the static model so to make the connection between the short-term and the long-term model. The interest of the dynamic construction is to see the impact of the saving acquired at the level of the gross fixed capital formation and to verify whether the dynamic construction confirms the results already obtained on the actual plan.

At the level of this simulation, we shall study the impact of the progressive dismantling of consumer subsidy for oil products by decreasing the subsidy rate by 10% every year for the period going from 2005 until 2015.

The results have shown that there are no remarkable differences between the values of the variables stemming from the simulation and the variables replicated on the basic model. We can therefore confirm this conclusion through the Figure ?? which shows that the two graphs of unemployment and the GDP do merge.



### 5.3.2. Simulation II: Oil price shocks

The second simulation consists in introducing the effect of price shocks of the oil products. The supposed shock consists in increasing 12% of the oil price for the years 2006 - - > 2015.

We notice that the oil price shocks have delayed the growth and have, consequently, caused a light increase at the level of the number of the unemployed (Figure 6).

However, we observe a light improvement at the deficit level of the commercial equilibrium which goes from -3892.02855 to -3636.2495, which corresponds to a 6,571% decrease compared with the reference situation of 2010 (more details in appendix C).



5.3.3. Simulation III: Combination of simulation I and II and public expenditure increase

This simulation allows using the profits of the savings obtained from the two previous simulations. We shall thus suppose a 7% increase at the level of the Government expenditure every year (Figure 7).

The results show a clear improvement at the level of the GDP and of the unemployment compared with the figure calculated during the simulations I and II and even a very light improvement compared with the reference situation for the period 2005-2011.



## 6. Conclusion

In this research we have tried to present a Static Computable General Equilibrium Model, which innovatively integrates, the producers prices, the ex-factory prices, the composite products prices and finally the final consumer prices. The use of this model allows a better understanding of the impact of oil price variation and contributes on the other hand to deepen our knowledge concerning the utility of the elimination of the subsidies granted to oil products consumption.

The results of the simulations of the static model show that the increase in oil products prices increases the amount of the subsidies supported by the State, what delays the investment. As for the subsidy reduction, it affects the consumers' income and the national demand in the products of intermediate consumption; but the combination of the two simulations shows a positive evolution at the level of the gross fixed capital formation of the economy.

Given its results, the static model has been spread to a dynamic model. The interest of the dynamic construction is to see the impact of the savings acquired at the level of the gross fixed capital formation and to verify whether the dynamic construction confirms the already obtained profits on the real plan.

The dynamic model had for objective to study the impact of the progressive dismantling of the consumer subsidy of oil products by decreasing the subsidy rate with 10% every year and this for the period spreading from 2005 until 2015, and similarly by taking into consideration the effects of oil prices shock and this through introducing an increase by 12% in the oil price.

The results show that there is no remarkable difference between the values of the variables stemming from the two simulations and variables replicated on the basic model. These results urged us to define a third simulation which appears as a combination of the two last simulations and which looks for a possible use of the savings profits obtained from the progressive decrease of 10% of the subsidy. We are thereby going to suppose an increase at the level of Government expenditure by 7% every year.

The results show a clear improvement at the level of the GDP and the unemployment compared with the figure calculated during the simulations I and II and even a very light improvement compared with the reference situation.

In conclusion, the subsidies' progressive decrease, by getting closer to the true prices, allows the State to direct its useless expenditure to a more profitable use for the company by transferring this saved amount to a public investment.

#### References

- ADELMAN, M. A. (2003). The Real Oil Problem. Regulation spring 2004.
- [2] AGBODJI, A. E. (2007). Stratgie sectorielle, Pauvret et Vulnrabilit
   : cas du Togo. PR-MPIA 676.
- [3] ANNABI, N., Cockurn, J., & Decaluw, B. (2003). Formes Fonctionnelles et Paramtrisation dans les MCEG. Centre de recherche en conomie et finance appliques, universit Laval Qubec Canada.
- [4] ATKESON, A., & J. Kehoe, P. (1999). Models of Energy Use: Putty-Putty Versus Putty-Clay. American Economic Review, 89, 1028-1043.
- [5] BARSKY, Robert & Kilian, Lutz. (2004). Oil and the Macroeconomy Since the 1970s. CEPR Discussion Papers, 4496, C.E.P.R. Discussion Papers.
- [6] BHRINGER, C., & Rutherford, T. F. (2008). Combining bottomup and top-down. Energy Economics, Volume 30, Issue 2, March 2008,pp. 574-596.
- BHRINGER, C. (1998). The synthesis of bottom-up and top-down in energy policy modeling. Energy Economics, Volume 20, Issue 3, 1 June 1998, pp. 233-248.

- [8] BROWN, S. P. A., & Ycel, M. K. (2002). Energy prices and aggregate economic activity and interpretative survey. The Quarterly Review of Economic and Finance, 42, pp.193-208.
- [9] CICOWIEZ, M., Alejo, J., Gresia, L. D., Olivieri, S., & Pacheco, A. (2010). Export taxes, word prices, and poverty in Argentina: A dynamic CGE-Microsimulation Analysis. MPIA Working Paper 2010-13.
- [10] DECALUW, B., Martin, M. C., Leduc, N., & Bousselmi, N. (2010). Chocs ptroliers et politiques conomiques nationales : Simulation l'aide d'un modle d'quilibre gnral pour la Tunisie. Revue conomique, Volume 41, n6, 1990. pp. 1051-1070.
- [11] HEDI BCHIR, M et al. (2002). Mirage, Un Modle D'quilibre Gnral Calculable Pour L'valuation Des Politiques Commerciales. conomie internationale 89-90 (2002), p. p 109-153. ISSN 1240-8093.
- [12] HRAULT , N. (2004). Un model d'quilibre gnral calculable (MEGC) pour valuer les effets de l'ouverture au commerce international: le cas de l'Afrique du Sud.Centre d'conomie du Dveloppement (IFREDE-GRES) Universit Montesquieu Bordeaux. IVDT/102/2004.
- [13] JEFFREY BOR, Y., & Huang, Y. (2010). Energy taxation and the double dividend effect in Taiwan's energy conservation policy-an empirical study using a computable general equilibrium model. Energy Policy, Volume 38, Issue 5, May 2010, pp. 2086-2100.
- [14] LU, C., Zhang, Z., & He, J. (2010). A CGE analysis to study the impacts of energy investment on economic growth and carbon dioxide emission: A case of Shaanxi Province in western China. Energy, Volume 35, Issue 11, November 2010, pp.4319-4327.
- [15] MENSBRUGGHE, D. (2005), LINKAGE Technical Reference Document.Development Prospects Group (DECPG)THE WORLD BANK.
- [16] THORBECKE, E. (1985). The social accounting matrix and consistency type planning models. Social Accounting Matrices: A Basis for Planning, ed. G. Pyatt et J. Round. Washington, D.C.: World Bank.

## Annexe

| Tal      | ble 1: Nomenclature des comptes de produits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table :       | 3: Nomenclature des comptes des activits de productions   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------|
| 6        | Nomenclature des comptes de produits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Nomenclature des comptes des activits de productions      |
| P-AA+AE  | 3 Agriculture & pche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AA+AB         | Agriculture & pche                                        |
| P-111    | Ptrole brut gaz naturel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA            | Extraction de produits energetiques                       |
| P-CB     | Extraction de produits non energetiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CB            | Extraction de produits non energetiques                   |
| P-manuf  | produits manufacturs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-MANF        | Industries manufacturires                                 |
| P-DF     | Cokefaction, raffinage, industries nuclaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DF            | Cokefaction, raffinage, industries nuclaires              |
| P-DG     | produits chimiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DG            | Iindustrie chimique                                       |
| HQ-4     | Industrie du caoutchouc et des plastiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HU            | Industrie du caoutchouc et des plastiques                 |
| P-DK     | Fabrication de machines et quipements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DK            | Fabrication de machines et quipements                     |
| P-DL     | Fabrication d'quipements lctriques et lctroniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DL            | Fabrication d'quipements lctriques et lctroniques         |
| P-DM     | Fabrication de matriel de transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DM            | Fabrication de matriel de transport                       |
| P-40     | Les produits d'lctricit, de gaz et de chaleur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EE            | Production et distribution d'Ictricit et de gaz           |
| P-FF     | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FF            | Construction                                              |
|          | Table 2: Nomenclature des comptes de produits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GG            | Commerce; rparations automobile et d'articles domestiques |
| P-66     | Commerce, rparations automobile et d'articles domest -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Nomenclature des comptes des activits de productions      |
| HH-4     | Htels et restaurants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                           |
| P-60     | Transports terrestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HH si         | Htels et restaurants                                      |
| P-61     | Transports maritimes et cotiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00            | Iransports terrestre                                      |
| P-62     | Transport ariens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61            | Transports maritimes et cotiers                           |
| P-63     | services auxiliaires des transports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62            | Transport ariens                                          |
| P-64     | postes & tleommunication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63            | services auxiliaires des transports                       |
| II-d     | Activits financires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64            | postes & tl <ommunication< td=""></ommunication<>         |
| P-KK     | Immobilier locations et services aux entreprises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ſſ            | Activits financires                                       |
| D CUTATA | and the second | <b>A-SVNM</b> | services non marchands                                    |
| MINIAC-1 | SCIVICES HOIL HEALCHARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A-SVNM        | services non marchands                                    |
| 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                           |

| ire                    | evel  | 759         | 779.        | ,132        | .406         | 8583        | 3463        | 4478        | 9722        | 1307        | 919         | 9660        | 1635        | 2298        | 2866        | 3027        | 2274        | 1491        | 1688        | 1847        | 6010        | 3673        | 2447        | 269         | 1551        | oiro        | аше      | lorrol   | 16 0077     | 346.896     | 46.8422     | 46,7663     | 528,453     | 528.191     | 528,243     | 1528        | 999,215     | 993,887                  | 994,942    | 990,002     |             |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
|------------------------|-------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------|------------|-------------|-------------|-------------|-------------|-------------|---------------------|------------------|-------------|------------|-------------|-------------|-------------|----------|----------|----------|---------------|-------------|----------------------------|
| media                  |       | 1513        | 1512        | 1513        | 1512         | 768,8       | 768.        | 768,4       | 767,9       | 261.1       | 261.0       | 261.0       | 261 (       | 591.        | 591.5       | 591.5       | 591.5       | 308.1       | 308 (       | 308 0       | 308 (       | 653.5       | 653.5       | 653         | 653.1       | ibourn      | maints   | 0.0      | El 3        | 19          | E 3         | f2 3        | fl 1        | f2 1.       | fl 1        | 12          | fl 1        | 10                       | fl 1       | 1           |             |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
| n inter                | dim3  | dif1        | dif2        | dif1        | dif2         | difl        | dif2        | dif1        | dif2        | dif1        | dif2        | dif1        | diff        | diff        | dif2        | dif1        | dif2        | dif1        | Gifb        | difi        | Gib         | dif1        | dif2        | dif1        | dif2        | on into     | OII IIIO | wile C   |             | 3 - 6       | di<br>di    | 2 di        | 1 di        | 1 di        | 2<br>di     | 2<br>di     | 1<br>di     | 1 di                     | 2<br>di    | 2<br>di     |             |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
| mmatio                 | dim2  | dif1        | difl        | dif2        | dif2         | difl        | dif1        | dif2        | dif2        | difl        | dif1        | dif2        | dif9.       | difl        | dif1        | dif2        | dif2        | dif1        | difl        | Gib         | Gif         | dift        | dift        | dif2        | dif2        | ommoti      | OIIIIIau | 1 dime   | I dif       | Jip I       | J dif       | J dif       | K dif.      | K dif.      | K dif       | K dif       | I dif       | I dif.                   | I dif      | I dif       |             |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
| Consc                  | dim1  | НН          | HH          | HH          | HH           | 60          | 60          | 60          | 09          | 61          | 61          | 61          | 61          | 62          | 62          | 62          | 62          | 63          | 63          | 63          | 63          | 64          | 64          | 64          | 64          | Cone        | COL      | dim      | T           |             |             | ſ           | M           | KI          | KI          | KI          | A-SVNA      | A-SVNA                   | A-SVNA     | A-SVNA      |             |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
| ermediaire<br>ediaire  |       | level       | 1433, 83    | 1431,668    | 1432,096     | 1430,09     | 420,9989    | 420,9849    | 420,9877    | 420,9746    | 285,0298    | 284,9029    | 284,928     | 284,8102    | 11772,97    | 11760,36    | 11762,86    | 11751, 15   | 978.3216    | 978,2803    | 978,2885    | 978,2502    | 2350,368    | 2349, 59    | 2349,744    | 2349,021    | 341,0409 | 339,7785 | mediaire    |             | level       | 340,0285    | 338,8588    | 966,4541    | 965,44      | 965, 641    | 964,6995    | 1743,906                 | 1742,679   | 1742,922    | 1741,782    | 551,8758    | 551,713     | 001,1400    | 480,166<br>695 1019 | 684 8302         | 684 8013    | 684 6474   | 3867.657    | 3859.944    | 3861.472    | 3854,316 | 1650,738 | 1649,046 | 1649,382      | 1647,81     |                            |
| tion int<br>interme    |       | dim3        | difl        | dif2        | difl         | dif2        | dift        | dif2        | difl        | dif2        | dif1        | dif2        | difl        | dif2        | difl     | dif2     | in inter    |             | dim3        | dif1        | dif2        | dif1        | dif2        | dif1        | dif2        | dif1                     | dif2       | diff        | dif2        | difl        | dit2        | TIID        | 2110                | CH:P             | diff        | dify       | difl        | dif2        | dif1        | dif2     | dif1     | dif2     | dif1          | dif2        |                            |
| sommal                 |       | dim2        | dif1        | difl        | dif2         | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | difl        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | difl     | difl     | mmatic      |             | dim2        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | diff                     | diff       | dif2        | dif2        | Itth        | titb        |             |                     | dif.             | Gib         | dib        | difi        | difl        | dif2        | dif2     | dif1     | dif1     | dif2          | dif2        |                            |
| Table 5: Con<br>Consom |       | dim1        | AA+AB       | AA+AB       | AA+AB        | AA+AB       | CA          | CA          | CA          | CA          | CB          | CB          | CB          | CB          | A-MANF      | A-MANF      | A-MANF      | A-MANF      | DF          | DF          | DF          | DF          | DG          | DG          | DG          | DG          | HC       | HC       | Conso       |             | dim1        | DH          | DH          | DK          | DK          | DK          | DK          | DL                       | DL         | DL          | DL          | MU          | MU          | DM          | D.M.                | 1<br>1<br>1<br>1 | E.F.        | E.F.       | ЪЪ          | 44          | FF          | FF       | GG       | GG       | GG            | GG          |                            |
| mnages                 | level | 1372,531897 | 1379,661504 | 1389,491738 | 1387, 269657 | 442,1239642 | 419,07126   | 419,5890211 | 398,4612279 | 29,40954767 | 29,39677724 | 29,23026525 | 29,37333787 | 290,1558943 | 289,5628352 | 289,6526547 | 288,9716607 | 1358,33804  | 1354.461664 | 1354.873073 | 1351.132119 | 852,1130387 | 846,873918  | 847,6714068 | 841,2938264 | mnages      | þ        | level    | 6,126317918 | 6,111554884 | 6,114101719 | 6,097344825 | 39,40992709 | 39,04089095 | 39,09768631 | 38,6477109  | 129,6606301 | 129,2031340              | 129,348882 | 120,9141209 | 120,2324032 | 101/000/07/ | 790 8735168 | 561 1010933 | 559 6597406         | 559.8336222      | 558.3660694 | 3479.20844 | 3471,499331 | 3471,983609 | 3464.870388 | mnages   |          | level    | 1505,519947   | 1503,096846 | 1503,154894<br>1499,495156 |
| ion des                | dim3  | difl        | dif2        | dif1        | dif2         | dif1        | dif2        | dif1        | dif2        | difl        | dif2        | dif1        | dif2        | difl        | dif2        | ion des     |          | dim3     | difl        | dif2        | dif1        | dif2        | diff        | dif2        | dif1        | dif2        | dif1        | 7110                     | TID        | 211D        |             | dif1        | Gip         | dift        | dif)                | dif1             | dif2        | dif1       | dif2        | dif1        | dif2        | ion des  |          | dim3     | difl          | dif2        | dif2                       |
| sommat                 | dim2  | dif1        | dif1        | dif2        | dif2         | dif1        | dif1        | dif2        | dif2        | dif1        | difl        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | sommat      |          | dim2     | dif1        | dif1        | dif2        | dif2        | difl        | dif1        | dif2        | dif2        | dit1        | TID                      |            | 2110        | TIID        | CHILD       | Gib         | dift        | difi                | dif2             | dif2        | dif1       | dif1        | dif2        | dif2        | sommat   |          | dim2     | difl          | difl        | dif2                       |
| Con                    | dim1  | P-DM        | P-DM        | P-DM        | P-DM         | P-40        | P-40        | P-40        | P-40        | P-FF        | P-FF        | P-FF        | P-FF        | P-GG        | P-GG        | P-GG        | P-GG        | HH-4        | HH-4        | НН-Ч        | HH-4        | P-60        | P-60        | P-60        | P-60        | Con         |          | dim1     | P-61        | P-61        | P-61        | P-61        | P-62        | P-62        | P-62        | P-62        | P-63        | P-03                     | P-03       | P-03        | P-04        | D 64        | D-RA        | b. II       | LL-q                | p-JJ             | P-JJ        | P-KK       | P-KK        | P-KK        | P-KK        | Cons     |          | dim1     | <b>P-SVNM</b> | P-SVNM      | P-SVNM<br>P-SVNM           |
| des mnages<br>nnages   |       | level       | 2158,800487 | 2142,28287  | 2144,196672  | 2122,433089 | 102,4976668 | 77,60315733 | 77,61754255 | 61,69582688 | 20,04764204 | 19,74338902 | 19,78567255 | 19,41634431 | 8113,023986 | 8189,912942 | 8187,720195 | 8299,330515 | 796,6515848 | 621,7526396 | 641,9682546 | 493,3597191 | 1082,827041 | 1088,494555 | 1088,075939 | 1095,466976 | nnages   | l        | level       | 02,2806433  | 602, 492374 | 02,0710142  | 01,3080746  | 232,343219  | 33,8550321  | 31,0433044  | 1851850,65  | 02,0130009<br>61 0014798 | 0000107,10 | 60 4565994  | 477000+'00  |             |             |             |                     |                  |             |            |             |             |             |          |          |          |               |             |                            |
| nation<br>on des 1     |       | dim3        | difl        | dit2        | dif          | dif2        | diff        | dif2        | 111p        | dif2        | difl        | dif2        | dif1        | dif2        | dif1        | dif2        | difl        | dif2        | difl        | dif2        | dif1        | dif2        | dif1        | dif2        | dif1        | dif2        | n des 1  |          | im3         | dif1 6      | dif2        | dif1 6      | dif2 6      | difi        | dif2 2      |             | 1112        |                          |            |             |             |             |             |             |                     |                  |             |            | ade         |             | ref         | sim2     | sim1     | sim3     |               |             |                            |
| onsomi<br>mmatic       |       | dim2        | dif1        | diff        | dif2         | dif2        | diff        | dif1        | dif2        | dif2        | difl        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | mmatic   |          | m2 di       | lift (      | lift (      | El I        | lif2        | ij          | EI S        | 117<br>2 19 | 7111        |                          |            | 211         | 711         |             |             |             |                     |                  |             |            | Lgei        |             | dif1        | dif2     | dif1     | dif2     |               |             |                            |
| Table 4: C<br>Conso    |       | dim1        | P-AA+AB     | P-AA+AB     | P-AA+AB      | P-AA+AB     | F-111       | P-111       | F-III-Y     | P-111       | P-CB        | P-CB        | P-CB        | P-CB        | P-manuf     | P-manuf     | P-manuf     | P-manuf     | P-DF        | P-DF        | P-DF        | P-DF        | P-DG        | P-DG        | P-DG        | P-DG        | Conso    |          | dim1 di     | P-DH        | P-DH c      | P-DH        | P-DH        | P-DK        | P-DK        | P-DK C      | D DI D      |                          | D DI G     |             | 1-11        |             |             |             |                     |                  |             |            |             |             | difl        | difl     | dif2     | dif2     |               |             |                            |

| sectorielle                     | level | 1,000067746 | 1,022401258 | 1,019177862 | 1,048838713 | 1,000114765 | 1006666001   | 12601600,1  | 1,020/02849  | 1,000303503 | 1,040141070               | 1 100419505 | 1 000136887 | 1.004717315 | 1.003954086 | 1,010121396 | 1,000491029 | 1,010983695 | 1,009122862 | 1,023231831 | 0,999992652 | 1,005403757 | 1,005281926 | 1,011200145 | 0,999605395 | 1,002511419   | 1.002504/0/ | 1,005782677 | 12569999321         | 1 005990001                | 1 019593016 | OTCOPOTIO'T   |             |             |             |             |             |             |               |               |               |               |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
|---------------------------------|-------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|---------------------|----------------------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------------------------|-------------|-------------|
| luction s                       | dim3  | dif1        | dif2        | difl        | dif2        | tit         | dit2         | TID         | ZIID         | TIID        | ZIID                      | CHill I     | diff        | dif2        | difi        | dif2        | dif1        | dif2        | difl        | dif2        | difl        | dif2        | difl        | dif2        | difl        | dif2          | TID         | dif2        | TIID                | Hib                        | Gib         | 7110          |             |             |             |             |             |             |               |               |               |               |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| e la prod                       | dim2  | dif2        | dif2        | difl        | diff        | dut2        | 21tb         | TID         | TIID         |             | 7110                      | Hib         | dib         | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | difl        | difl        | dif2        | dif2          | TID         | thb<br>the  | 7110                | 4ift                       | Hib         | TIID          |             |             |             |             |             |             |               |               |               |               |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| Prix de                         | dim1  | 60          | 60          | 09          | 60          | 19          | 01<br>61     | 10          | 10           | 20          | 20                        | 20          | 63          | 63          | 63          | 63          | 64          | 64          | 64          | 64          | ſſ          | ſſ          | ſſ          | ſſ          | KK          | KK            | NN<br>NN    | A GUANT     | A-SVINNI<br>A CUMUN | MINING-V                   | MNV2-A      | TATLE A CLASS |             |             |             |             |             |             |               |               |               |               |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| tion sectorielle<br>sectorielle |       | level       | 0,999970608 | 1,006843775 | 1,005890943 | 1,01486947  | 0,9999910889 | 1,018346316 | 1,017283056  | 1,038774083 | 1,00003572                | 1,03643/969 | 1 083434148 | 0 000803601 | 1.004168189 | 1,00377338  | 1,0086698   | 1,000104253 | 1,111711571 | 1,111652487 | 1,230283869 | 0,999843166 | 1,006419078 | 1,005954395 | 1,013791897 | 1 sectorielle |             | level       | 0,9999805899        | 1,00380659                 | 1,003353631 | 1,008637139   | 128/06866.0 | 1,000400550 | 1,000422599 | 1,002/00039 | 1,002190599 | 0.000159022 | 1 002673169   | 1.002963373   | 1.0066359     | 1,000329376   | 1,126810089 | 1,124490509 | 1,26280818  | 0,99928232 | 1,014050225 | 1,012552488 | 1,031226601 | 1,000221314 | 1,004235016 | 1,003531152 | 1,008849835 | 1,000000000000000000000000000000000000 | 1,005200770 | 1.010228273 |
| produc                          |       | dim3        | dif1        | dif2        | dif1        | dif2        | Ltib         | dif2        | tito         | dif2        | ditt<br>m.r               | 711D        | GHP         | dift        | dif2        | dif1        | dif2        | duction       |             | dim3        | difl                | dif2                       | difl<br>tim | dit2          | TID         | 7110        | Tib         | 2110        | CH:F        | diff        | Gif           | dif1          | dif2          | dif1          | dif2        | difl        | dif2        | dif1       | dif2        | difl        | dif2        | difl        | dif2        | difi        | dit2        | Cd:r                                   | 4if1        | dif2        |
| x de la<br>la prod              |       | dim2        | dif1        | dif1        | dif2        | dif2        | diff         | diff        | dif2         | dit2        | 1110                      | TID         | Gif         | diff        | difl        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | difl        | dif2        | dif2        | e la pro      |             | dim2        | difl                | diff                       | dit2        | dit2          | 1110        |             |             | 1117        | diff        | dib         | dif0          | dif1          | dif1          | dif2          | dif2        | difl        | dif1        | dif2       | dif2        | dif1        | difl        | dif2        | dif2        | difl        | tib<br>tib  | (4:P                                   | 0112        | difl        |
| Table 7: Pri<br>Prix de         |       | dim1        | AA+AB       | AA+AB       | AA+AB       | AA+AB       | CA           | CA          | CA           | CA          | CB<br>CB                  | 38          | 30          | A-MANF      | A-MANF      | A-MANF      | A-MANF      | DF          | DF          | DF          | DF          | DG          | DG          | DG          | DG          | Prix d        |             | dim1        | ΗC                  | DH                         | HO          | HO            | NU          | NU          | DL          | DI          | IC          | DM          | DM            | DM            | DM            | EE            | EE          | EE          | EE          | FF         | FF          | FF          | FF          | GG          | GG          | 66          | 55          | нн                                     | HH          | HH          |
| r secteur                       | level | 779,0890756 | 779,620789  | 779,5897391 | 780,4379283 | 118,5799542 | 110,0234/84  | 110,0400194 | 016 0705911  | 050 7979590 | 950,1545529<br>050.956191 | 055 4063045 | 154.1235911 | 154.1672081 | 154,1680669 | 154,2862153 | 343,6439385 | 346,1930701 | 345,8284509 | 349,1999957 | 1210,739867 | 1212,393179 | 1212, 15406 | 1214,496437 | ır secteur  |               | level       | 838,3129803 | 839,6482269         | 9727264 188<br>841 A987276 | 1019 430010 | 1019 00907    | 1013.072231 | 1013.822252 | 9954 89334  | 2954.527107 | 2955.486793 | 2955,119482 | 86,58822574   | 86,48715365   | 86,53146186   | 86,51909334   |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| bale pa                         | dim3  | dif1        | dif2        | difl        | dif2        | diff        | dir2         |             | 211D         | din         | 1117                      | Gifb        | difi        | dif2        | dif1        | dif2        | obale pa    | 0 .1          | dim3        | lib         | 211D                | Cd:P                       | dift        | Gib           | difi        | dif         | diff        | dif2        | difl        | dif2        | dif1          | dif2          | difl          | dif2          |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| ande glo                        | dim2  | dif1        | dif1        | dif2        | dif2        | diff        |              |             | 211D         | 111D        | diff.                     | Gip         | difi        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | ande gle    | 0.1           | Zmib        | Lib         | TID                 | CH:P                       | diff        | Aifi<br>Aifi  | dif.        | dif2        | Lih         | difl        | dif2        | dif2        | difl          | difl          | dif2          | dif2          |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| Dema                            | dim1  | P-GG        | P-GG        | P-GG        | P-GG        | HH-4        | HH-Y         | HH-1        | HH-1         | D0-1        | D0-1                      | D0-1        | P-61        | P-61        | P-61        | P-61        | P-62        | P-62        | P-62        | P-62        | P-63        | P-63        | P-63        | P-63        | Dem         | :             | 1mib        | P-64        | P-04                | P 64                       | FD- I       | LI-q          | P-II        | P-II        | P-KK        | P-KK        | P-KK        | P-KK        | <b>P-SVNM</b> | <b>WNVS-4</b> | <b>WNVS-4</b> | <b>P-SVNM</b> |             |             |             |            |             |             |             |             |             |             |             |                                        |             |             |
| par secteur<br>secteur          |       | level       | 3742,04603  | 3762,536504 | 3760,83297  | 3791,57003  | 1037,003094  | 1308,379303 | 1210 69469   | 1119,024092 | 701 5604000               | 780 18/9513 | 793 6597865 | 10816.60786 | 10690,4949  | 10698,22425 | 10531,87682 | 1878,558838 | 2401,5767   | 2326,990623 | 3021,587191 | 2850,299001 | 2829,63114  | 2831,874238 | 2807,399735 | r secteur     |             | level       | 528,3734069         | 527,0307891                | 527,6289328 | 527,2234881   | 1776 001701 | 1/20,001/24 | 1740 661074 | 1/40,0019/4 | 1794 040417 | 1720 832302 | 1793 920985   | 551,0005588   | 547.0941819   | 543,4319354   | 543,3256205 | 763,2521187 | 803,5607341 | 802,90092  | 843,8379546 | 129,7638851 | 129,4959541 | 130, 298222 | 129,3626988 |             |             |                                        |             |             |
| globale<br>ale par              |       | dim3        | difl        | dif2        | diff        | Zilb        | TID          | 7110        | TIID<br>TIID |             | CH:P                      | difi        | dif         | dif1        | dif2        | dif1        | dif2        | difl        | dif2        | difl        | dif2        | dif1        | dif2        | difl        | dif2        | bale pa       |             | dim3        | dif1                | dif2                       | Ltib        | dif2          |             | 2110        | 111D        | 2110        | diffo       | dif1        | Gib           | dif1          | dif2          | dif1          | dif2        | dif1        | dif2        | dif1       | dif2        | dif1        | dif2        | dif1        | dif2        |             |             |                                        |             |             |
| emande<br>ide glob              | )     | dim2        | dif1        | difl        | dit2        | dit2        | LIID         | TID         | CIID         | 7110        | 11ID                      | Gif         | dif         | difl        | dif1        | dif2        | dif2        | dif1        | dif1        | dif2        | dif2        | dif1        | difl        | dif2        | dif2        | ande glo      |             | dim2        | difl                | diff                       | dif2        | Zilp          | TID         |             | dit2        | 2110        | dift        | dif)        | dif           | dif1          | dif1          | dif2          | dif2        | dif1        | dif1        | dif2       | dif2        | dif1        | dif1        | dif2        | dif2        |             |             |                                        |             |             |
| Table 6: Do<br>Demar            |       | dim1        | P-AA+AB     | P-AA+AB     | P-AA+AB     | P-AA+AB     | LIII-A       | P-111-7     | LIII-A       |             |                           | P-CB        | P-CB        | P-manuf     | P-manuf     | P-manuf     | P-manuf     | P-DF        | P-DF        | P-DF        | P-DF        | P-DG        | P-DG        | P-DG        | P-DG        | Demi          |             | dim1        | HQ-4                | HO-4                       | HU-4        | HU-4          | P-DK        | NU-4        | P-DK        | NU-1        | D D D       | P-DL        | P-DI.         | P-DM          | P-DM          | P-DM          | P-DM        | P-40        | P-40        | P-40       | P-40        | P-FF        | P-FF        | P-FF        | P-FF        |             |             |                                        |             |             |

## Table 8: Prix des produits depart usinePrix des produits depart usine

#### Prix des produits depart usine

Prix des produits depart usine

|         |      |      |           | dim1 | dim2 | dim3 | level     |
|---------|------|------|-----------|------|------|------|-----------|
| dim1    | dim2 | dim3 | level     | P-DL | dif2 | dif1 | 1,0003904 |
| P-AA+AB | dif1 | dif1 | 0,9999706 | P-DL | dif2 | dif2 | 1,0028686 |
| P-AA+AB | dif1 | dif2 | 1,0068236 | P-DL | dif1 | dif1 | 1,0023474 |
| P-AA+AB | dif2 | dif1 | 1,0058754 | P-DL | dif1 | dif2 | 1,0053934 |
| P-AA+AB | dif2 | dif2 | 1,0148221 | P-DM | dif2 | dif1 | 0,9991543 |
| P-111   | dif1 | dif1 | 0,9999291 | P-DM | dif2 | dif2 | 1,0026569 |
| P-111   | dif1 | dif2 | 1,0228343 | P-DM | dif1 | dif1 | 1,002926  |
| P-111   | dif2 | dif1 | 1,0217215 | P-DM | dif1 | dif2 | 1,0065463 |
| P-111   | dif2 | dif2 | 1,0476328 | P-40 | dif2 | dif1 | 1,0003123 |
| P-CB    | dif1 | dif1 | 1,0000294 | P-40 | dif2 | dif2 | 1,1222941 |
| P-CB    | dif1 | dif2 | 1,0379593 | P-40 | dif1 | dif1 | 1,1200426 |
| P-CB    | dif2 | dif1 | 1,032786  | P-40 | dif1 | dif2 | 1,2529999 |
| P-CB    | dif2 | dif2 | 1,0823843 | P-FF | dif2 | dif1 | 0,9993022 |
| P-manuf | dif1 | dif1 | 0,9999004 | P-FF | dif2 | dif2 | 1,0145706 |
| P-manuf | dif1 | dif2 | 1,0042276 | P-FF | dif1 | dif1 | 1,0130796 |
| P-manuf | dif2 | dif1 | 1,0038188 | P-FF | dif1 | dif2 | 1,032199  |
| P-manuf | dif2 | dif2 | 1,0088001 | P-GG | dif2 | dif1 | 1,0001704 |
| P-DF    | dif1 | dif1 | 1,0001043 | P-GG | dif2 | dif2 | 1,0055562 |
| P-DF    | dif1 | dif2 | 1,1117116 | P-GG | dif1 | dif1 | 1,0048452 |
| P-DF    | dif2 | dif1 | 1,1116525 | P-GG | dif1 | dif2 | 1,0115607 |
| P-DF    | dif2 | dif2 | 1,2302839 | P-HH | dif2 | dif1 | 1,0000687 |
| P-DG    | dif1 | dif1 | 0,9998473 | P-HH | dif2 | dif2 | 1,0060235 |
| P-DG    | dif1 | dif2 | 1,0064261 | P-HH | dif1 | dif1 | 1,005897  |
| P-DG    | dif2 | dif1 | 1,0059467 | P-HH | dif1 | dif2 | 1,0118852 |
| P-DG    | dif2 | dif2 | 1,0138112 |      |      |      |           |
| P-DH    | dif1 | dif1 | 0,9998079 |      |      |      |           |
| P-DH    | dif1 | dif2 | 1,0038324 |      |      |      |           |
| P-DH    | dif2 | dif1 | 1,0033804 |      |      |      |           |
| P-DH    | dif2 | dif2 | 1,0086749 |      |      |      |           |
| P-DK    | dif1 | dif1 | 0,9985587 |      |      |      |           |
| P-DK    | dif1 | dif2 | 0,9998341 |      |      |      |           |
|         |      |      |           |      |      |      |           |

| dim1<br>P-60<br>P-60 | dim2<br>dif2<br>dif2<br>dif1<br>dif1 | dim3<br>dif1<br>dif2<br>dif1 | level<br>1,0000632<br>1,0218859 |
|----------------------|--------------------------------------|------------------------------|---------------------------------|
| P-60<br>P-60         | dif2<br>dif2<br>dif1<br>dif1         | dif1<br>dif2<br>dif1         | 1,0000632<br>1,0218859          |
| P-60                 | dif2<br>dif1<br>dif1                 | dif2                         | 1,0218859                       |
|                      | dif1<br>dif1                         | dif1                         | 50                              |
| P-60                 | dif1                                 | ann                          | 1,0187656                       |
| P-60                 |                                      | dif2                         | 1,0476702                       |
| P-61                 | dif2                                 | dif1                         | 1,0001147                       |
| P-61                 | dif2                                 | dif2                         | 1,0095982                       |
| P-61                 | dif1                                 | dif1                         | 1,008164                        |
| P-61                 | dif1                                 | dif2                         | 1,0207598                       |
| P-62                 | dif2                                 | dif1                         | 1,0003633                       |
| P-62                 | dif2                                 | dif2                         | 1,0461419                       |
| P-62                 | dif1                                 | dif1                         | 1,0392572                       |
| P-62                 | dif1                                 | dif2                         | 1,1004136                       |
| P-63                 | dif2                                 | dif1                         | 1,0001622                       |
| P-63                 | dif2                                 | dif2                         | 1,0098476                       |
| P-63                 | dif1                                 | dif1                         | 1,0083398                       |
| P-63                 | dif1                                 | dif2                         | 1,0210944                       |
| P-64                 | dif2                                 | dif1                         | 1,0004881                       |
| P-64                 | dif2                                 | dif2                         | 1,0109108                       |
| P-64                 | dif1                                 | dif1                         | 1,0090625                       |
| P-64                 | dif1                                 | dif2                         | 1,0230761                       |
| P-JJ                 | dif2                                 | dif1                         | 1,0000245                       |
| P-JJ                 | dif2                                 | dif2                         | 1,0057596                       |
| P-JJ                 | dif1                                 | dif1                         | 1,0055271                       |
| P-JJ                 | dif1                                 | dif2                         | 1,0119653                       |
| P-KK                 | dif2                                 | dif1                         | 0,9996457                       |
| P-KK                 | dif2                                 | dif2                         | 1,0033562                       |
| P-KK                 | dif1                                 | dif1                         | 1,0032885                       |
| P-KK                 | dif1                                 | dif2                         | 1,0075232                       |
| P-SVNM               | dif2                                 | dif1                         | 0,9999955                       |
| P-SVNM               | dif2                                 | dif2                         | 1,0058716                       |
| P-SVNM               | dif1                                 | dif1                         | 1,0052373                       |
| P-SVNM               | dif1                                 | dif2                         | 1,0125266                       |

|         |       | Table 6        | : Balance comm | erciale | Б              | , , <b>.</b>   |
|---------|-------|----------------|----------------|---------|----------------|----------------|
|         |       | Impor          | tations        |         | Expor          | tations        |
|         |       | ref            | sim2           |         | ref            | sim2           |
| P-AA+AB | 2010  | 872,640429     | $895,\!950344$ | P-AA+AB | 289,540528     | $288,\!692817$ |
| P-111   | 2010  | 829,968038     | 1141,92319     | P-111   | $1422,\!15353$ | $1992,\!13148$ |
| P-CB    | 2010  | $319,\!033375$ | $322,\!563503$ | P-CB    | $87,\!379284$  | 85,9711091     |
| P-manuf | 2010  | 7218,74591     | 6965,00779     | P-manuf | 7083,11544     | 7070,49032     |
| P-DF    | 2010  | 1211,38748     | 1433,6267      | P-DF    | 289,110829     | 310,578913     |
| P-DG    | 2010  | 1804,97132     | 1764,83114     | P-DG    | 1252,39395     | 1248,66398     |
| P-DH    | 2010  | 618,774519     | 619,877459     | P-DH    | 204,705585     | 204,342115     |
| P-DK    | 2010  | 2057,10832     | 2053,0011      | P-DK    | 422,509966     | 422,322291     |
| P-DL    | 2010  | 3103,11033     | 3081,17034     | P-DL    | 2368,02764     | 2365,79734     |
| P-DM    | 2010  | 1813,3925      | 1796,94007     | P-DM    | 373,68223      | 372,885649     |
| P-HH    | 2010  | 541,285025     | 539,055201     | P-HH    | 2839,04358     | 2812,13218     |
| P-61    | 2010  | 716,586794     | 715,848128     | P-60    | 339,632963     | 328,583224     |
| P-62    | 2010  | 325,918824     | 325,395219     | P-61    | 200,491435     | 197,686786     |
| P-63    | 2010  | 508,141451     | 506,049233     | P-62    | 724,20039      | 676,524642     |
| P-64    | 2010  | 44,8549474     | 44,6786983     | P-63    | 162,706342     | 160,348793     |
| P-JJ    | 2010  | 261,732514     | 260,729195     | P-64    | 23,1412763     | 22,7996935     |
| P-KK    | 2010  | 559,652144     | 557,289742     | P-JJ    | 143,347541     | 142,001476     |
| P-SVNM  | 2010  | 6,46745285     | 6,45770011     | P-KK    | 691,772856     | 687,447776     |
|         | Total | 22813,7714     | 23030,3948     | P-SVNM  | 4,78745666     | 4,74471871     |
|         |       |                |                |         | 18921,7428     | 19394,1453     |

| 3892,02856 | $3636,\!24945$ |
|------------|----------------|
|            | -6,57187129    |

|         |      | $\operatorname{ref}$ | sim1        | sim2           | sim3       |
|---------|------|----------------------|-------------|----------------|------------|
| P-AA+AB | 2010 | 7793,81407           | 7799,65516  | 7742,69348     | 8302,45945 |
| P-111   | 2010 | $1585,\!5907$        | 1588,04617  | 1507,56874     | 1644,15639 |
| P-CB    | 2010 | 966,600631           | 967,111523  | 962,006912     | 1043,26024 |
| P-manuf | 2010 | 22419,657            | 22418,9176  | 22452,0876     | 24055,4382 |
| P-DF    | 2010 | 3347,86547           | 3349,26881  | 3168,46512     | 3400,41647 |
| P-DG    | 2010 | 4932,71407           | 4935,06972  | 4921,33518     | 5343,41649 |
| P-DH    | 2010 | 1563,7407            | 1567, 10923 | 1549,56393     | 1817,96535 |
| P-DK    | 2010 | 5293,35095           | 5413,41956  | 5234,42519     | 5834,83647 |
| P-DL    | 2010 | 3904,34845           | 3919,51466  | 3884,0717      | 4205,97341 |
| P-DM    | 2010 | 2639,26552           | 2623,60427  | 2643,31619     | 2964,24664 |
| P-40    | 2010 | $1375,\!40856$       | 1375,71722  | 1343,86939     | 1430,51748 |
| P-FF    | 2010 | 10301,6698           | 10576, 1195 | 10132,3794     | 11503,0683 |
| P-GG    | 2010 | 5376,37335           | 5376,22779  | 5371,91633     | 5379,88378 |
| P-HH    | 2010 | 1754,72886           | 1754,99961  | $1746,\!57353$ | 1836,61    |
| P-60    | 2010 | 2725,23445           | 2725,84672  | 2710,56335     | 2843,50266 |
| P-61    | 2010 | 852,001688           | 851,951199  | 851,141412     | 851,19742  |
| P-62    | 2010 | 648,323126           | 648,490471  | 644,845931     | 678,64674  |
| P-63    | 2010 | 1719,82594           | 1720,8365   | 1711,31915     | 1862,91509 |
| P-64    | 2010 | 1922,66451           | 1923,12434  | 1913,49152     | 2034,16136 |
| P-JJ    | 2010 | 2034,99611           | 2035,65928  | 2026,41023     | 2152,35445 |
| P-KK    | 2010 | 8170,06207           | 8179,82715  | 8133,47731     | 8617,47274 |
| P-SVNM  | 2010 | 7120,48803           | 7123,78361  | 7107,56172     | 8117,5187  |

Table 7: Offre nationale en bien i Offre globale en bien i

Table 8: Dyn sim<br/>3 2010 : production et demande interm<br/>diaires en biens i $$\mathbf{X}$$  DIT

|         |      | 1                    | A DI           |                      |            |
|---------|------|----------------------|----------------|----------------------|------------|
|         |      | $\operatorname{ref}$ | sim3           | $\operatorname{ref}$ | sim3       |
| P-AA+AB | 2010 | 6540,89051           | 6560,18271     | 4933,04103           | 4964,03815 |
| P-111   | 2010 | 2967,7997            | 3001,19983     | 1434,25717           | 1917,82285 |
| P-CB    | 2010 | 754,31765            | 766,783813     | 1069,89319           | 1083,21524 |
| P-manuf | 2010 | 21485,9188           | 21516,6331     | 14098,5459           | 13880,2164 |
| P-DF    | 2010 | 1719,21711           | 1810,88844     | 2451,89973           | 3072,18686 |
| P-DG    | 2010 | 4127,01755           | 4134,79396     | 3565,82641           | 3522,18841 |
| P-DH    | 2010 | 567,612863           | 568,375491     | 490,316928           | 492,006991 |
| P-DK    | 2010 | 1703,58295           | 1705,34347     | 1704,02688           | 1757,57105 |
| P-DL    | 2010 | 3263,56871           | 3264,93604     | 2443,16896           | 2431,79622 |
| P-DM    | 2010 | 1093,88797           | $1095,\!97517$ | 740,559671           | 719,559296 |
| P-40    | 2010 | 1563, 15994          | 1657,48268     | 1083,78274           | 1141,32586 |
| P-FF    | 2010 | 7173,78989           | 7227,37311     | 142,934009           | 145,395061 |
| P-GG    | 2010 | 7427,74045           | 7444,22618     | 1242,53541           | 1243,98589 |
| P-HH    | 2010 | 5280,91965           | 5293,83        | 161,871436           | 162,080124 |
| P-60    | 2010 | 3688,2816            | 3723,50712     | 1329,69893           | 1335,50621 |
| P-61    | 2010 | 520,338042           | 522,421386     | 225,812606           | 226,095283 |
| P-62    | 2010 | 1440,35921           | 1468,43133     | 491,023864           | 494,440291 |
| P-63    | 2010 | 1574,68089           | 1581,11349     | 1709,48919           | 1712,01332 |
| P-64    | 2010 | 2225,06775           | 2233,74332     | 1170,97749           | 1173,01057 |
| P-JJ    | 2010 | 2291,01321           | 2297,18562     | 1427,49569           | 1429,16013 |
| P-KK    | 2010 | 9685,24183           | 9705,33301     | 4057,36202           | 4063,21253 |
| P-SVNM  | 2010 | 10485,0664           | 10512,5401     | 128,948984           | 122,894385 |

|        |      | 1                    | 5              | v                    | 11          |
|--------|------|----------------------|----------------|----------------------|-------------|
|        |      | $\operatorname{ref}$ | sim3           | $\operatorname{ref}$ | sim3        |
| AA+AB  | 2010 | 8683,27215           | $8684,\!4375$  | $6775,\!95945$       | 6776,86883  |
| CA     | 2010 | 2305,98379           | 2306,04095     | 1678,34321           | 1678,38481  |
| CB     | 2010 | 733,505656           | 733,546243     | 330,957463           | 330,975776  |
| A-MANF | 2010 | 22511,2817           | 22513,5735     | 6636,46733           | 6637,14297  |
| DF     | 2010 | 1589,33402           | 1589,37445     | 179,913544           | 179,918121  |
| DG     | 2010 | 4043,68259           | 4043,87215     | 719,089868           | 719,123577  |
| DH     | 2010 | 814,301263           | 814,543389     | 427,217209           | 427,344238  |
| DK     | 2010 | 1817,81858           | 1818,00066     | 512,949694           | 513,001074  |
| DL     | 2010 | 3261,35451           | 3261,59756     | 852,364003           | 852,427524  |
| DM     | 2010 | 1065,34314           | 1065,39022     | 281,589766           | 281,602209  |
| EE     | 2010 | 1606,97388           | 1607,05542     | 636,845827           | 636,878139  |
| FF     | 2010 | 8677,24589           | 8678,72408     | 3764,171             | 3764,81223  |
| GG     | 2010 | 7553,99493           | 7554,73804     | 5288,67503           | 5289,1953   |
| HH     | 2010 | 4911,01247           | 4911,31021     | 2773,96033           | 2774,1285   |
| 60     | 2010 | 3472,75507           | 3473,00413     | 2390,08458           | 2390,25599  |
| 61     | 2010 | $521,\!199752$       | 521,217128     | $146,\!485127$       | 146,49001   |
| 62     | 2010 | 1569, 19945          | $1569,\!25041$ | $715,\!299704$       | 715,322934  |
| 63     | 2010 | 1148,138             | 1148,1858      | 703,408141           | 703,437422  |
| 64     | 2010 | 2043,7555            | $2043,\!82955$ | 1100, 1344           | 1100,17426  |
| JJ     | 2010 | 1766,71362           | 1766,78389     | 1250,31684           | 1250, 36657 |
| KK     | 2010 | 8876,77412           | 8877,08487     | 6679,14927           | 6679,38309  |
| A-SVNM | 2010 | 8988,8852            | 8990,86471     | 6579,24621           | 6580,69508  |

Table 9: Dyn sim<br/>3 2010 : production et valeur ajout de la branche J $$\rm XS$$ VA

| Table 10: | Dyn | sim1 | 2010 | : : | production | $\operatorname{et}$ | demande | intermdiaires | en | biens | i |
|-----------|-----|------|------|-----|------------|---------------------|---------|---------------|----|-------|---|
|           |     |      |      |     | Х          |                     |         | DĽ            | Γ  |       |   |

|         |      | 1                    |            |                      |            |
|---------|------|----------------------|------------|----------------------|------------|
|         |      | $\operatorname{ref}$ | sim1       | $\operatorname{ref}$ | sim1       |
| P-AA+AB | 2010 | 6202,91948           | 6202,91948 | 4691,54343           | 4690,54801 |
| P-111   | 2010 | 2704,20916           | 2704,20916 | 1328,64846           | 1330,4321  |
| P-CB    | 2010 | 694,886317           | 694,886317 | 988,371513           | 988,972045 |
| P-manuf | 2010 | 20194,2472           | 20194,2472 | 13302,2189           | 13325,4114 |
| P-DF    | 2010 | 1558,86634           | 1558,86634 | 2321,40673           | 2321,9461  |
| P-DG    | 2010 | 3828,7681            | 3828,7681  | 3448,08838           | 3448,88617 |
| P-DH    | 2010 | 572,340384           | 572,340384 | 533,557409           | 532,348858 |
| P-DK    | 2010 | 1603,50285           | 1603,50285 | 1707,10839           | 1670,06621 |
| P-DL    | 2010 | 3030,55251           | 3030,55251 | 2260,63762           | 2268,47395 |
| P-DM    | 2010 | 1013,10011           | 1013,10011 | 714,275493           | 722,880162 |
| P-40    | 2010 | 1440,16292           | 1440,16292 | 995,594986           | 996,479555 |
| P-FF    | 2010 | 6899,49623           | 6899,49623 | 140,365028           | 139,053284 |
| P-GG    | 2010 | 6947,35568           | 6947,35568 | 1111,67457           | 1112,67848 |
| P-HH    | 2010 | 4887,53743           | 4887,53743 | 150,929585           | 151,003068 |
| P-60    | 2010 | 3419,03652           | 3419,03652 | 1231,0327            | 1231,68833 |
| P-61    | 2010 | 475,194702           | 475,194702 | 206,696723           | 206,825396 |
| P-62    | 2010 | 1317,21227           | 1317,21227 | 451,448558           | 451,763856 |
| P-63    | 2010 | 1442,99795           | 1442,99795 | 1569,97992           | 1571,07758 |
| P-64    | 2010 | 2033,26995           | 2033,26995 | 1081,48814           | 1082,26684 |
| P-JJ    | 2010 | 2096,04921           | 2096,04921 | 1314,9939            | 1315,78282 |
| P-KK    | 2010 | 8876,23388           | 8876,23388 | 3766,89244           | 3767,22494 |
| P-SVNM  | 2010 | 10232,7826           | 10232,7826 | 121,203733           | 121,20224  |

|        |      | 1                    | 5          | VIL                  |            |
|--------|------|----------------------|------------|----------------------|------------|
|        |      | $\operatorname{ref}$ | sim1       | $\operatorname{ref}$ | sim1       |
| AA+AB  | 2010 | 8224,54951           | 8226,61782 | 6417,99692           | 6419,61092 |
| CA     | 2010 | 2101,02214           | 2102,62142 | 1529, 16783          | 1530,33183 |
| CB     | 2010 | 675,589908           | 676,00801  | 304,8259             | 305,014547 |
| A-MANF | 2010 | 21078,4415           | 21086,923  | 6214,05704           | 6216,55742 |
| DF     | 2010 | 1448,40488           | 1449,50299 | 163,960283           | 164,08459  |
| DG     | 2010 | 3713,25139           | 3715,69568 | 660,329141           | 660,76381  |
| DH     | 2010 | 817,219607           | 816,804561 | 428,748296           | 428,530546 |
| DK     | 2010 | 1701,12336           | 1701,82087 | 480,02079            | 480,217611 |
| DL     | 2010 | 3024,36055           | 3025,96186 | 790,424977           | 790,843483 |
| DM     | 2010 | 977,355317           | 978,01092  | 258,332967           | 258,506255 |
| EE     | 2010 | 1477,68093           | 1478,62705 | 585,606862           | 585,981813 |
| FF     | 2010 | 8324,87921           | 8325,57157 | 3611,31507           | 3611,61542 |
| GG     | 2010 | 7064,57646           | 7067,53204 | 4946,02518           | 4948,09443 |
| HH     | 2010 | 4531,75175           | 4534,44455 | 2559,73684           | 2561,25786 |
| 60     | 2010 | 3217,19788           | 3218,94331 | 2214,20022           | 2215,40149 |
| 61     | 2010 | 476,316905           | 476,660493 | 133,870636           | 133,967202 |
| 62     | 2010 | 1433,62935           | 1434,66926 | 653,501791           | 653,97582  |
| 63     | 2010 | $1052,\!35573$       | 1053,0742  | 644,727018           | 645,16719  |
| 64     | 2010 | $1869,\!67575$       | 1870,99923 | 1006,42891           | 1007,14133 |
| JJ     | 2010 | 1618,26408           | 1619,38287 | $1145,\!25796$       | 1146,04974 |
| KK     | 2010 | 8117,15568           | 8122,94785 | 6107,58972           | 6111,94793 |
| A-SVNM | 2010 | 8777,72469           | 8776,41706 | 6424,69123           | 6423,73414 |

Table 11: Dyn sim<br/>1 2010 : production et valeur ajout de la branche J $$\rm XS$$ VA

|        |      | 1                    |            | v                    | 11         |
|--------|------|----------------------|------------|----------------------|------------|
|        |      | $\operatorname{ref}$ | sim2       | $\operatorname{ref}$ | sim2       |
| AA+AB  | 2010 | 8224,54951           | 8191,84294 | 6417,99692           | 6392,47447 |
| CA     | 2010 | 2101,02214           | 2089,9418  | 1529, 16783          | 1521,10333 |
| CB     | 2010 | 675,589908           | 672,271519 | 304,8259             | 303,328644 |
| A-MANF | 2010 | 21078,4415           | 20986,5199 | 6214,05704           | 6186,95796 |
| DF     | 2010 | 1448,40488           | 1440,77749 | 163,960283           | 163,096858 |
| DG     | 2010 | 3713,25139           | 3694,64044 | 660,329141           | 657,019548 |
| DH     | 2010 | 817,219607           | 815,552494 | 428,748296           | 427,873658 |
| DK     | 2010 | 1701,12336           | 1693,67175 | 480,02079            | 477,918103 |
| DL     | 2010 | 3024,36055           | 3010,19324 | 790,424977           | 786,72231  |
| DM     | 2010 | 977,355317           | 972,425626 | 258,332967           | 257,029959 |
| EE     | 2010 | 1477,68093           | 1470,34233 | 585,606862           | 582,698564 |
| FF     | 2010 | 8324,87921           | 8295,34357 | 3611,31507           | 3598,50258 |
| GG     | 2010 | 7064,57646           | 7033,48074 | 4946,02518           | 4924,25456 |
| HH     | 2010 | 4531,75175           | 4509,77681 | 2559,73684           | 2547,32441 |
| 60     | 2010 | 3217,19788           | 3202,0203  | 2214,20022           | 2203,75442 |
| 61     | 2010 | 476,316905           | 473,853177 | 133,870636           | 133,178196 |
| 62     | 2010 | 1433,62935           | 1426,19929 | 653,501791           | 650,114893 |
| 63     | 2010 | $1052,\!35573$       | 1047,01581 | 644,727018           | 641,455509 |
| 64     | 2010 | 1869,67575           | 1860,06901 | 1006,42891           | 1001,25769 |
| JJ     | 2010 | 1618,26408           | 1610,01709 | 1145,25796           | 1139,4215  |
| KK     | 2010 | 8117,15568           | 8075,33044 | 6107,58972           | 6076,11917 |
| A-SVNM | 2010 | 8777,72469           | 8751,77762 | 6424,69123           | 6405,69976 |

Table 12: Dyn sim<br/>2 2010 : productions et valeur ajout de la branche J $$\rm XS$$ VA

Table 13: Dyn sim<br/>2 2010 : production et demande interm<br/>diaires en biens i $$\rm X$$  DIT

|         |      | 1                    | $\Lambda$ DI |                      |            |
|---------|------|----------------------|--------------|----------------------|------------|
|         |      | $\operatorname{ref}$ | sim2         | $\operatorname{ref}$ | sim2       |
| P-AA+AB | 2010 | 6202,91948           | 6196,41414   | 4691,54343           | 4702,12876 |
| P-111   | 2010 | 2704,20916           | 2719,63857   | 1328,64846           | 1757,89271 |
| P-CB    | 2010 | 694,886317           | 702,811003   | 988,371513           | 995,769785 |
| P-manuf | 2010 | 20194,2472           | 20142,1057   | 13302,2189           | 13082,1256 |
| P-DF    | 2010 | 1558,86634           | 1632,39191   | 2321,40673           | 2884,59688 |
| P-DG    | 2010 | 3828,7681            | 3821,0829    | 3448,08838           | 3409,56621 |
| P-DH    | 2010 | 572,340384           | 572,146465   | 533,557409           | 535,699633 |
| P-DK    | 2010 | 1603,50285           | 1597,18622   | 1707,10839           | 1711,85665 |
| P-DL    | 2010 | 3030,55251           | 3019,21247   | 2260,63762           | 2246,97696 |
| P-DM    | 2010 | 1013,10011           | 1010,16206   | 714,275493           | 705,201908 |
| P-40    | 2010 | 1440,16292           | 1518,32519   | 995,594986           | 1042,69929 |
| P-FF    | 2010 | 6899,49623           | 6922,87128   | 140,365028           | 140,80714  |
| P-GG    | 2010 | 6947,35568           | 6933,21887   | 1111,67457           | 1105,53621 |
| P-HH    | 2010 | 4887,53743           | 4877,40856   | 150,929585           | 150,438826 |
| P-60    | 2010 | 3419,03652           | 3435,23287   | 1231,0327            | 1230,19382 |
| P-61    | 2010 | 475,194702           | 474,643675   | 206,696723           | 205,779674 |
| P-62    | 2010 | 1317,21227           | 1336,13131   | 451,448558           | 452,240749 |
| P-63    | 2010 | 1442,99795           | 1441,684     | 1569,97992           | 1564,42273 |
| P-64    | 2010 | 2033,26995           | 2031,45148   | 1081,48814           | 1078,23775 |
| P-JJ    | 2010 | 2096,04921           | 2090,99147   | 1314,9939            | 1309,90642 |
| P-KK    | 2010 | 8876,23388           | 8847,04536   | 3766,89244           | 3752,50937 |
| P-SVNM  | 2010 | 10232,7826           | 10228,6329   | 121,203733           | 120,796497 |