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Abstract

We study the parametric description of the city size distribution of four Euro-

pean countries: France, Germany, Italy and Spain. The parametric models used

are the lognormal, the double Pareto lognormal, the normal-Box-Cox (defined in

this paper) and the threshold double Pareto Singh–Maddala (introduced in a cited

recent paper when studying US city size).

The results are quite regular. The preferred model is always the threshold dou-

ble Pareto Singh–Maddala in the four countries. However, the dPln is not rejected

always for the case of France, and in the case of Italy the dPln is the runner-up dis-

tribution. These results complement those obtained in a cited recent paper which

study the US places’ city size distribution.
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1 Introduction

The study of city size distribution has been, since the contribution of Zipf (1949), of

great importance in the field of Urban Economics. The so-called Zipf distribution, or

the slightly more general form of Pareto distribution, has been extensively studied by

many authors, we recall here, e.g., Black and Henderson (2003), Ioannides and Over-

man (2003), Soo (2005), Anderson and Ge (2005) and Bosker et al. (2008). More

specifically, in recent times have appeared the important contributions of Eeckhout

(2004), Giesen et al. (2010) and Ioannides and Skouras (2013). The first of these

references introduces the need of considering the whole sample of cities when study-

ing their size distribution, and proposes the lognormal distribution (see also Parr and

Suzuki (1973)). The second continues a line of research initiated by Reed (2001, 2002,

2003); Reed and Jorgensen (2004) in which it is introduced the so-called double Pareto

lognormal (dPln) distribution in the study of city size. This distribution has Pareto tails

mixed (by means of a convolution) with a lognormal body and offers a good fit to the

data, see Giesen et al. (2010) and also González-Val et al. (2013c). In turn, Ioannides

and Skouras (2013) propose two distributions which have lognormal body and, above

a certain exact threshold, a Pareto upper tail mixed or not (by means of a linear com-

bination) with the lognormal. These two recently proposed distributions still do not

outperform the dPln for US places in the year 2000, as Giesen and Suedekum (2013)

indicate. In order to reconcile both tendencies, the recent work of Ramos et al. (2014)

studies the US city size distribution with three types of data (incorporated, all places

and CCA clusters), comparing the previously mentioned distributions and newly intro-

duced ones. One of the main results of this last paper is that the parametric description

of the size distribution of US places can be safely taken as a new one, called “threshold

double Pareto Singh-Maddala” (tdPSM), which is a distribution with Pareto behavior

in the lower and upper tails, and Singh-Maddala body. The transition between the tails

and the body takes place at two exact thresholds, to be determined endogenously by the

maximum likelihood (ML) estimation procedure. The new tdPSM greatly outperforms

the lognormal, the dPln, and the distributions of Ioannides and Skouras (2013) in the

case of US places.

In the previous articles of González-Val et al. (2013a,c) it has been used city pop-

ulation data of France, Italy and Spain without size restriction. In turn, Schluter and

Trede (2013) use a dataset of all German municipalities or Gemeinden and propose a

composition of the normal distribution with a Box-Cox transformation of the popula-

tion data, with apparently quite good results. This will lead to a distribution which we

will call normal-Box-Cox (nBC), to be defined below.

Thus it is our aim in this article to compare the lognormal, the dPln, the nBC and

the tdPSM distributions for, generally decennial, samples of city size data of France,

Germany, Italy and Spain without size restriction. The main results, which we advance

here, is that the tdPSM is the preferred distribution almost always, and is a model

clearly not rejected by the statistical tests we use below. Also, we obtain that the dPln

is not rejected always in the case of France 1990-2009 and is very accurate as well in

the parametric description of the size of Italian comuni in the period 1901-2011. We

obtain thus a strong result: the parametric distribution of the city size of these four
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European countries can be taken as the same as that of US places, namely the tdPSM.

In all cases, the Pareto nature of the two tails seems to be an essential feature to be

taken into account.

We will rely heavily on the previous paper of Ramos et al. (2014) so, for the sake

of brevity and in order to avoid excessive repetitions, we will concentrate on the new

results. The rest of the paper is organized as follows. Section 2 describes the databases

used in this paper. Section 3 shows the definitions and main properties of the four

distributions studied. Section 4 shows the detailed results, country by country. Finally,

Section 5 concludes.

2 The databases

In this article we use population data, without size restriction, of four European coun-

tries: France, Germany, Italy and Spain.

For the case of France, as in González-Val et al. (2013a), we consider the lowest

spatial subdivision, the communes, as listed by the Institut national de la statistique et

des études économiques (www.insee.fr). We have data for the years 1990, 1999

and 2009. Note that Giesen and Suedekum (2012) use this kind of data for the year

2008.

For the case of Germany, Italy and Spain, the administrative urban unit of the data

is the municipality (Gemeinden for the case of Germany). For Germany, we take data

from two sources. The first is the data used in Schluter and Trede (2013), which

has been kindly provided to us by Prof. Trede (the original source is the Federal

German Statistical Office). We take the data of the years 1996 and 2006 in order

to comprise a decennial period similarly to the data of the other considered coun-

tries. The second source is, directly, the cited statistical office through its web page

www.Destatis.de. We use the data of the last available year 2011 for compari-

son purposes. For Italy, the data is obtained from the Istituto Nazionale di Statistica

(www.istat.it), with all the Italian municipalities (comuni) for the period 1901-

2011. We have used the Italian census for 1936 instead of 1941 because of the partici-

pation of Italy in the Second World War. The data for Spain is taken from the Instituto

Nacional de Estadı́stica (www.ine.es). They cover all the municipalities (municip-

ios) along the period 1900-2010.

[Table 1 near here]

We offer in Table 1 the descriptive statistics of the used data for France, Germany,

Italy and Spain. The information for Italy and Spain is the same as that in Table 1 of

González-Val et al. (2013c).

3 Description of the distributions used

In this section we will introduce the distributions used along this paper.
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3.1 The lognormal distribution (lgn)

The well-known lognormal (lgn) distribution for the population of cities have been

proposed in the field of Urban Economics by Parr and Suzuki (1973) and afterwards by

Eeckhout (2004) when considering all the cities. The corresponding density is simply

fln(x, µ, σ) =
1

xσ
√
2π

exp

(

− (lnx− µ)2

2σ2

)

(1)

where µ, σ > 0 are respectively the mean and the standard deviation of lnx. This is

the first distribution we will consider in this study.

3.2 The double Pareto lognormal distribution (dPln)

The second distribution in our study will be the double Pareto lognormal distribution

(dPln), introduced by (Reed, 2002, 2003; Reed and Jorgensen, 2004):

fdPln(x, α, β, µ, σ) =
αβ

2x(α+ β)
exp

(

αµ+
α2σ2

2

)

x−α

(

1 + erf

(

lnx− µ− ασ2

√
2σ

))

− αβ

2x(α+ β)
exp

(

−βµ+
β2σ2

2

)

xβ

(

erf

(

lnx− µ+ βσ2

√
2σ

)

− 1

)

(2)

where erf is the error function associated to the normal distribution and α, β, µ, σ > 0
are the four parameters of the distribution. It has the property that it approximates

different power laws in each of its two tails: fdPln(x) ≈ x−α−1 when x → ∞ and

fdPln(x) ≈ xβ−1 when x → 0, hence the name of double Pareto. The body is approx-

imately lognormal, although it is not possible to exactly delineate the switch between

the lognormal and the Pareto behaviors (Giesen et al., 2010). In this last reference it is

shown that the dPln offers a good fit for a number of countries. In this line, see also the

work González-Val et al. (2013c).

3.3 The normal-Box-Cox (nBC)

In the article of Schluter and Trede (2013) it has been proposed the idea of composing

the normal distribution with the well-known Box-Cox transformation for German city

data. We include the distribution so obtained (normal-Box-Cox, nBC) in our study

because it turns out that the nBC provides good results in the case of Germany.

The Box-Cox transformation is given by the well-known expression (Box and Cox,

1964)

gλ(x) =







xλ − 1

λ
if λ ̸= 0

lnx if λ = 0
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The composition with the normal will be g′λ(x)fn(gλ(x), µ, σ), where g′λ(x) is the

derivative of gλ(x) with respect to x and

fn(x, µ, σ) =
1

σ
√
2π

exp

(

− (x− µ)2

2σ2

)

is the normal density function. The case with λ = 0 leads to the lognormal, introduced

in Subsection 3.1 and treated separately. Thus, for the case of λ ̸= 0 we define the

normal-Box-Cox (nBC) as the density

fnBC(x, µ, σ, λ) =
xλ−1

σ
√
2π

exp

(

− 1

2σ2

(

xλ − 1

λ
− µ

)2
)

which has support x ∈ (0,∞). The quantities µ and σ are, respectively, the mean and

standard deviation of
xλ − 1

λ
.

3.4 The threshold double Pareto Singh–Maddala (tdPSM)

We recall here a distribution introduced in Ramos et al. (2014) when studying US

city size, the so-called therein “threshold double Pareto Singh-Maddala” (tdPSM). It

provided the best results, amongst the studied parametric distributions, for US places

and in principle, it is our best candidate in the current study. The characteristics of

this distribution are that the lower and upper tails are Pareto and the body is Singh-

Maddala. The switch between the tails and the body occurs at two exact thresholds:

ϵ > 0 separates the lower tail from the body, and τ > ϵ the body from the upper tail.

The specific description is as follows. We first define the building block distribu-

tions, setting

fSM(x, µ, σ, α) =
α (e−µx)1/σ

xσ(1 + (e−µx)1/σ)1+α
(3)

u(x, ζ) =
1

x1+ζ
(4)

l(x, ρ) = xρ−1 (5)

The fSM is the Singh-Maddala density (Singh and Maddala, 1976), and the correspond-

ing µ, σ > 0 are related to the mean and standard deviation of lnx.1 The function

u(x, ζ) will model the Pareto part of the upper tail of our distribution and ζ > 0 is

the Pareto exponent, and l(x, ρ) corresponds to the Pareto lower tail, being ρ > 1 the

power law exponent. The functions u, l are not normalized at this stage according to

the practice of Ioannides and Skouras (2013).

Imposing continuity at the threshold points and overall normalization to unity, the

1The fSM is directly related to the Burr Type XII distribution (Burr, 1942). See also Kleiber and Kotz

(2003).
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composite resulting density is (see Ramos et al. (2014) for details):

f4(x, ρ, ϵ, µ, σ, α, τ, ζ) =







b4 e4 l(x, ρ) 0 < x < ϵ

b4 fSM(x, µ, σ, α) ϵ ≤ x ≤ τ

b4 a4 u(x, ζ) τ < x

(6)

where

e4 =
fSM(ϵ, µ, σ, α)

l(ϵ, ρ)
(7)

a4 =
fSM(τ, µ, σ, α)

u(τ, ζ)
(8)

b−1
4 = e4

ϵρ

ρ
+ eµα/σ((eµ/σ + ϵ1/σ)−α − (eµ/σ + τ1/σ)−α) +

a4

ζ τ ζ
(9)

This distribution depends on seven parameters (ρ, ϵ, µ, σ, α, τ, ζ) to be estimated.

4 Results

For the sake of brevity, we will present the results country by country, and refer to

Ramos et al. (2014) for a more detailed explanation of the maximum log-likelihood

(ML) estimation, Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests and

AIC, BIC information criteria.

4.1 Results for France

We show in Table 2 the ML estimators of the studied distributions for the 1990, 1999

and 2009 French samples of communes. For the lognormal (lgn) the ML estimators

are exact and equal to the mean and standard deviation of the log-population data. For

the other three distributions (dPln, nBC and tdPSM) we provide the ML estimators and

95% confidence intervals.2 The estimations appear to be rather precise in all cases.

[Table 2 near here]

In Table 3 we show the results of the KS and CM tests for the hypothesized distri-

butions. These two tests are very powerful when the sample size is high or very high

(Razali and Wah, 2011) as in our French samples, and non-rejections only occur if the

deviations (statistics) are really small. We observe that the lgn is strongly rejected in all

cases, and the nBC is rejected always as well, although with lower values of the tests’

statistics. In turn, the dPln is not rejected by both tests 100% of the cases. And the

tdPSM is not rejected always, too. The tests’ statistics are always slightly lower for the

tdPSM than for the dPln. According to these tests, the French communes size distribu-

tion can be taken as the excellent dPln, or even better, as the tdPSM. The excellent fit

of the dPln for the French communes in the year 2008 has been anticipated by Giesen

and Suedekum (2012).

2We have performed the estimations with MATLAB as in González-Val et al. (2013c) and Ramos et al.

(2014).
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[Table 3 near here]

In order to choose one of the hypothesized models according to information criteria,

we show in Table 4 the results of the AIC and BIC, which are specially well suited to

the maximum likelihood estimation we have performed before. Both of AIC and BIC

favour the distribution with greater maximum likelihood, but there is a penalty for the

number of parameters used in the distribution. The distribution with lowest AIC and/or

BIC is preferred.

[Table 4 near here]

For the case of the French samples we observe that the lgn obtains always the

greatest values of AIC and BIC, and that the lowest AIC and BIC occurs for the tdPSM

in all cases. This result, jointly with the outcomes of the KS and CM tests yields that

the French communes size distribution, can be very well described parametrically by

our tdPSM, outperforming the dPln.

4.2 Results for Germany

We carry on now a similar analysis for our 1996, 2006, 2011 German samples of

Gemeinden. First, we show in Table 5 the estimation results. The estimations are

rather precise in this case as well. The obtained estimations of the parameter λ for the

years 1996 and 2006 are consistent with the results of Schluter and Trede (2013).

[Table 5 near here]

In Table 6 we show the results of the KS and CM tests. The lgn, dPln and nBC

are (strongly) rejected in all cases. In contrast, the tdPSM is not rejected always, with

values of the tests’ statistics really small.

[Table 6 near here]

The results of the AIC and BIC information criteria are shown in Table 7. The lgn

is the less preferred distribution always. Note as well that the nBC is preferred always

to the dPln for the German samples. However, it is shown clearly that the preferred

model (out of those studied in this paper) is the tdPSM in all instances and by both

information criteria. Jointly with the results of the KS and CM tests, we conclude that

the German city size distribution of Gemeinden, without size restriction, can be safely

taken as the tdPSM.

[Table 7 near here]

4.3 Results for Italy

We have performed as well the ML estimation of the Italian samples of comuni in

the period 1901-2011. The results are not shown here for the sake of brevity but are

available from the authors upon request. We concentrate on the statistical tests and

information criteria.

In Table 8 we show the results of the KS and CM tests for our four hypothesized

distributions. The lgn is rejected always except in 2011. The dPln is not rejected

always. The nBC is not rejected for the years 1981, 1991, 2001 and 2011. And the
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tdPSM is not rejected always as well. The lowest values of the tests’ statistics for the

dPln and tdPSM alternate over time. Thus, it follows that the dPln and tdPSM are

close competitors for the parametric description of Italian comuni size in the period

1901-2011.

[Table 8 near here]

We show in Table 9 the results of the AIC and BIC for the Italian samples. We

obtain mixed results: according to the lowest AIC, the tdPSM is the preferred model

most of the time (83.33% of the cases). Likewise, according to the lowest BIC, the

dPln is the preferred model also 83.33% of the cases. And for both distributions there

are two cases in which one or the other is clearly selected (1991, 2001 for the dPln and

1951, 1961 for the tdPSM). In the case of discrepancy of the outcomes of the AIC and

BIC information criteria we follow Burnham and Anderson (2002, 2004) in preferring

those of the AIC, based on theoretical and simulation arguments. Thus, for the Italian

comuni without size restriction we obtain two excellent competing parametric models:

the dPln and the tdPSM, with a preference for the second.

[Table 9 near here]

4.4 Results for Spain

Again, we have estimated the four distributions studied in this paper by ML for the

samples of Spanish municipios in the period 1900-2010. The results are not shown for

the sake of brevity but are available from the authors upon request. We concentrate on

the results of the KS, CM tests and AIC, BIC criteria.

We show in Table 10 the results of the KS and CM tests. The lgn and the dPln are

strongly rejected always. The nBC is rejected in almost all cases, with the exception

of the KS test in 1981. In turn, the tdPSM is not rejected always, and with values of

the tests’ statistics quite low. The tdPSM reveals itself as a very good model for the

Spanish city size.

[Table 10 near here]

In Table 11 we show the values of the AIC and BIC information criteria. The nBC

is preferred to the dPln always for the Spanish municipios. And clearly, the preferred

distribution is always the tdPSM for the whole period 1900-2010 of these urban units

without size restriction. In short, the Spanish city size along the period 1900-2010 can

be safely described in a parametric way by the tdPSM.

[Table 11 near here]

4.5 An informal graphical approximation

The use of graphical tools in assessing the fit of parametric distributions to empirical

data has certain shortcomings to be taken into account, see, e.g., González-Val et al.

(2013b). In this reference it has been shown that when representing the differences of

the empirical and estimated ln(1− cdf)’s, where cdf is the relevant cumulative density

function, an amplification effect of the differences of the cdf’s is obtained for the upper

tail. A similar effect occurs for the ln(cdf)’s and the lower tail. The amplification
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effect increases as we approach infinity for the upper tail or zero for the lower tail, and

it is difficult to quantify.

Also, the goodness-of-fit, as tested by the KS and CM tests, is strongly dependent

on the number of observations in the sample. The graphical fit does not take into

account, in an essential way, the number of observations.

We offer for completeness in this subsection some graphs corresponding to the

studied cases. For France, we have taken the three samples and the best distribution

obtained, the tdPSM. For Germany as well we present the graphs of the three samples

used and the best parametric model, also the tdPSM. For Italy, we take the sample of

2001 and the corresponding chosen distribution by the information criteria, namely the

dPln. For Spain, we take the sample of 1981, in which the tdPSM is specially well

suited according to the very low statistics of the KS and CM tests.

For the French samples and the tdPSM the graphical results are also excellent: the

fit in the lower tails is remarkable, and in the upper tails as well, maybe except for the

biggest communes. For the densities, there are small discrepancies near the mode of

the theoretical distributions.

For the German samples and the tdPSM, the lower tails of the 1996 and 2011 sam-

ples show slight discrepancies but for 2006 the lower tail fit is remarkable. For the

upper tails the fit is visually excellent, and in particular for the four most populated

German Gemeinden, namely Berlin, Hamburg, München and Köln, the fit is practi-

cally perfect for the three samples. The densities show very slight discrepancies but in

a framework of overall excellent fit.

In the Italian case of 2001 and the dPln we observe some slight discrepancies in the

lower tail and the six biggest cities in the upper tail deviate slightly from the estimated

parametric model. However, the fit of the densities is visually excellent.

For the Spanish sample of 1981 and the tdPSM we observe an excellent fit in the

lower tail. The upper tail fit is excellent with the possible exception of the biggest cities

and the fit of the densities is remarkable.

In short, the graphical approximation in the selected cases by our formal criteria

yields visually excellent fits in all the cases, with very slight discrepancies, if any, at

the ends of the lower or upper tails, or at the mode of the theoretical densities.

[Figure 1 near here]

[Figure 2 near here]

[Figure 3 near here]

5 Conclusions

In this paper we have used population data corresponding to the lowest spatial subdivi-

sion of four European countries: France, Germany, Italy and Spain in different periods

of the last and this centuries. We have used the data to study the parametric fit of four

density functions: the lognormal (lgn) (Parr and Suzuki, 1973; Eeckhout, 2004), the

double Pareto lognormal (dPln) (Reed, 2001, 2002, 2003; Reed and Jorgensen, 2004),

the normal-Box-Cox (nBC) (Schluter and Trede, 2013) and the threshold double Pareto
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Singh–Maddala (tdPSM) (Ramos et al., 2014).

We have estimated the four density functions by maximum likelihood (ML) for all

the samples and have performed Kolmogorov–Smirnov (KS) and Cramér–Von Mises

(CM) tests. We have studied as well the distributions according to the AIC and BIC

information criteria.

The results are quite regular across different countries and periods. The tdPSM

model is clearly the preferred model for the case of France, Germany and Spain, ac-

cording to the lowest values of AIC and BIC, and the non-rejection of it by both KS

and CM tests in the 100% of the cases. However, for France the dPln, although is not

the preferred model, is not rejected always by the cited tests. For Italy the results are

mixed: both of the dPln and tdPSM are not rejected always 100% of the cases, and

according to the lowest AIC, the tdPSM is preferred in most cases. However, if one

takes the lowest BIC, the dPln is preferred in most cases. Thus, for Italy the dPln and

tdPSM offer quite similar performance, although we prefer the tdPSM according to the

lowest values of AIC in case of discrepancy with the outcome of the BIC. As a side

result, we have obtained as well that the nBC is always a preferred model to the dPln

in the case of German and Spanish samples.

In all cases we see that the tdPSM model is the best studied model or amongst the

best studied models (if one admits a preference for the outcomes of the BIC information

criterium over the AIC), which conforms a quite strong empirical regularity for these

European countries. In Ramos et al. (2014) it is shown that the same model is the one

selected (by the same methodology) for the case of US places in the period 1900-2010,

which is a surprising strong regularity for countries with, in principle quite different,

historical processes of urbanization and different definitions of the urban units under

study. The tdPSM implements Pareto upper and lower tails, and this feature seems to

be essential in obtaining an excellent overall fit in all of the studied countries.

This suggests to study further the underlying processes behind the evolution of city

size, comparing the US and these European countries, in order to obtain, if possible,

further common regularities. We leave this for future research work.
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Table 1: Descriptive statistics of the samples of French, German, Italian and Spanish

urban units used

Urban units Mean of pop. SD of pop. Minimum Maximum

France

1990 36,686 1,610 7,694 1 365,933

1999 36,685 1,677 7,886 1 398,423

2009 36,716 1,791 8,253 1 447,396

Germany

1996 14,559 5,633 40,608 2 3,458,763

2006 12,312 6,686 44,043 7 3,404,037

2011 11,292 7,114 45,415 10 3,326,002

Italy

1901 7,711 4,275 14,425 56 621,213

1911 7,711 4,648 17,393 58 751,211

1921 8,100 4,864 20,032 58 859,629

1931 8,100 5,067 22,560 93 960,660

1936 8,100 5,234 25,274 116 1,150,338

1951 8,100 5,866 31,138 74 1,651,393

1961 8,100 6,250 39,131 90 2,187,682

1971 8,100 6,684 45,582 51 2,781,385

1981 8,100 6,982 45,329 32 2,839,638

1991 8,100 7,010 42,450 31 2,775,250

2001 8,100 7,021 39,325 33 2,546,804

2011 8,094 7,490 41,505 34 2,761,477

Spain

1900 7,800 2,282 10,178 78 539,835

1910 7,806 2,452 11,217 92 599,807

1920 7,812 2,622 13,501 82 750,896

1930 7,875 2,892 17,514 79 1,005,565

1940 7,896 3,181 20,100 11 1,088,647

1950 7,901 3,480 26,033 64 1,618,435

1960 7,910 3,802 33,652 51 2,259,931

1970 7,956 4,241 43,972 10 3,146,071

1981 8,034 4,701 45,995 5 3,188,297

1991 8,077 4,882 45,220 2 3,084,673

2001 8,077 5,039 43,079 7 2,938,723

2010 8,114 7,795 47,530 5 3,273,049
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Table 2: Mean and standard deviation of the log-population of the French samples.

Estimators and 95% confidence intervals of the parameters of the dPln, the nBC and

tdPSM for the French samples

France lgn dPln

µ σ α β µ σ

1990 6.07 1.34 0.97±0.02 2.85±0.31 5.38±0.04 0.80±0.03

1999 6.11 1.35 0.97±0.02 2.98±0.38 5.42±0.04 0.83±0.03

2009 6.21 1.35 1.00±0.02 3.32±0.25 5.52±0.03 0.88±0.02

nBC

µ σ λ

1990 3.95±0.06 0.53±0.02 -0.15±0.01

1999 4.01±0.06 0.54±0.02 -0.14±0.01

2009 4.14±0.07 0.56±0.02 -0.14±0.01

tdPSM

ρ ϵ µ σ α τ ζ

1990 2.16±0.08 67±0 5.37±0.05 0.62±0.02 0.58±0.03 56,259±1,237 1.78±0.25

1999 2.18±0.08 68±0 5.43±0.05 0.64±0.02 0.60±0.04 52,947±1,172 1.77±0.23

2009 2.16±0.08 77±0 5.62±0.05 0.69±0.03 0.68±0.04 57,969±1,311 1.78±0.24

Table 3: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests

for French samples and the used density functions. Non-rejections are marked in bold-

face

lgn dPln

France KS CM KS CM

1990 0 (0.05) 0 (27.87) 0.054 (0.0082) 0.17 (0.27)

1999 0 (0.05) 0 (23.21) 0.10 (0.0075) 0.15 (0.28)

2009 0 (0.04) 0 (18.55) 0.18 (0.0067) 0.16 (0.28)

nBC tdPSM

KS CM KS CM

1990 0 (0.014) 0 (2.00) 0.14 (0.0071) 0.26 (0.206)

1999 0 (0.012) 0.005 (0.998) 0.26 (0.0062) 0.54 (0.109)

2009 0 (0.011) 0.009 (0.815) 0.56 (0.0048) 0.63 (0.091)

Table 4: Maximum log-likelihoods, AIC and BIC for French samples. The lowest

values of AIC and BIC for each sample are marked in boldface

lgn dPln

France log-likelihood AIC BIC log-likelihood AIC BIC

1990 -285,530 571,063 571,080 -284,137 568,281 568,315

1999 -287,456 574,915 574,932 -286,161 572,331 572,365

2009 -291,228 582,460 582,477 -290,114 580,236 580,270

nBC tdPSM

log-likelihood AIC BIC log-likelihood AIC BIC

1990 -284,273 568,552 568,578 -284,098 568,209 568,269

1999 -286,268 572,541 572,567 -286,113 572,240 572,299

2009 -290,183 580,372 580,398 -290,075 580,164 580,224
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Table 5: Mean and standard deviation of the log-population of the German samples.

Estimators and 95% confidence intervals of the parameters of the dPln, the nBC and

tdPSM for the German samples

Germany lgn dPln

µ σ α β µ σ

1996 7.18 1.49 0.92±0.02 4.74±0.01 6.30±0.01 1.05±0.01

2006 7.43 1.50 1.18±0.03 4.11±0.01 6.82±0.01 1.21±0.01

2011 7.51 1.51 1.34±0.05 3.82±0.01 7.03±0.01 1.29±0.01

nBC

µ σ λ

1996 4.78±0.14 0.62±0.04 -0.12±0.01

2006 5.61±0.19 0.84±0.06 -0.08±0.01

2011 6.06±0.22 0.97±0.07 -0.06±0.01

tdPSM

ρ ϵ µ σ α τ ζ

1996 2.16±0.11 199±1 5.78±0.16 0.69±0.12 0.35±0.10 13,872±336 1.26±0.07

2006 1.95±0.14 164±1 6.07±0.13 0.61±0.06 0.26±0.06 13,029±190 1.28±0.06

2011 1.89±0.15 151±1 6.21±0.17 0.67±0.07 0.27±0.07 12,846±298 1.30±0.06

Table 6: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests

for German samples and the used density functions. Non-rejections are marked in

boldface

lgn dPln

Germany KS CM KS CM

1996 0 (0.04) 0 (8.82) 0 (0.02) 0 (3.05)

2006 0 (0.03) 0 (3.00) 0 (0.02) 0 (1.51)

2011 0 (0.03) 0 (1.86) 0 (0.02) 0.004 (1.02)

nBC tdPSM

KS CM KS CM

1996 0 (0.02) 0 (1.82) 0.76 (0.0059) 0.84 (0.056)

2006 0.01 (0.01) 0.01 (0.75) 0.96 (0.0048) 0.95 (0.037)

2011 0.02 (0.015) 0.03 (0.56) 0.87 (0.0059) 0.96 (0.033)

Table 7: Maximum log-likelihoods, AIC and BIC for German samples. The lowest

values of AIC and BIC for each sample are marked in boldface

lgn dPln

Germany log-likelihood AIC BIC log-likelihood AIC BIC

1996 -130,962 261,928 261,944 -130,697 261,402 261,432

2006 -113,895 227,795 227,810 -113,803 227,615 227,645

2011 -105,474 210,952 210,967 -105,426 210,860 210,889

nBC tdPSM

log-likelihood AIC BIC log-likelihood AIC BIC

1996 -130,634 261,275 261,297 -130,506 261,026 261,079

2006 -113,775 227,556 227,578 -113,729 227,471 227,523

2011 -105,411 210,828 210,850 -105,382 210,777 210,828
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Table 8: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM) tests

for Italian samples and the used density functions. Non-rejections are marked in bold-

face

lgn dPln

Italy KS CM KS CM

1901 0 (0.03) 0 (2.42) 0.40 (0.0106) 0.34 (0.167)

1911 0 (0.03) 0 (2.42) 0.26 (0.0119) 0.42 (0.142)

1921 0 (0.03) 0 (2.24) 0.21 (0.0122) 0.34 (0.167)

1931 0 (0.03) 0.02 (1.88) 0.10 (0.0140) 0.29 (0.190)

1936 0 (0.03) 0 (1.66) 0.21 (0.0122) 0.30 (0.184)

1951 0 (0.03) 0 (1.59) 0.11 (0.0140) 0.18 (0.254)

1961 0 (0.03) 0 (2.10) 0.16 (0.0129) 0.20 (0.239)

1971 0 (0.03) 0 (2.05) 0.11 (0.0140) 0.43 (0.138)

1981 0 (0.02) 0 (1.52) 0.52 (0.0094) 0.84 (0.056)

1991 0.002 (0.02) 0.006 (0.94) 0.83 (0.0072) 0.94 (0.039)

2001 0.005 (0.02) 0.008 (0.84) 0.94 (0.0061) 0.99 (0.024)

2011 0.10 (0.014) 0.06 (0.43) 0.98 (0.0055) 0.95 (0.036)

nBC tdPSM

KS CM KS CM

1901 0 (0.02) 0 (0.98) 0.81 (0.0075) 0.91 (0.044)

1911 0 (0.02) 0.01 (0.80) 0.94 (0.0063) 0.95 (0.037)

1921 0.01 (0.02) 0.02 (0.65) 0.87 (0.0069) 0.98 (0.030)

1931 0 (0.02) 0.02 (0.59) 0.23 (0.0120) 0.48 (0.125)

1936 0.01 (0.019) 0.01 (0.70) 0.73 (0.0080) 0.83 (0.058)

1951 0 (0.02) 0.01 (0.88) 0.64 (0.0086) 0.84 (0.057)

1961 0 (0.02) 0.01 (0.88) 0.87 (0.0069) 0.89 (0.048)

1971 0.02 (0.018) 0.03 (0.55) 0.45 (0.0099) 0.96 (0.035)

1981 0.06 (0.015) 0.08 (0.38) 0.69 (0.0082) 0.98 (0.029)

1991 0.17 (0.013) 0.14 (0.29) 0.81 (0.0074) 0.89 (0.047)

2001 0.44 (0.010) 0.27 (0.20) 0.70 (0.0082) 0.98 (0.028)

2011 0.85 (0.007) 0.59 (0.10) 0.99 (0.0052) 0.95 (0.038)
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Table 9: Maximum log-likelihoods, AIC and BIC for Italian samples. The lowest

values of AIC and BIC for each sample are marked in boldface

lgn dPln

Italy log-likelihood AIC BIC log-likelihood AIC BIC

1901 -70,325 140,654 140,668 -70,148.4 140,305 140,333

1911 -70,871.9 141,748 141,762 -70,698.2 141,404 141,432

1921 -74,657.4 149,319 149,333 -74,474.5 148,957 148,985

1931 -74,918.2 149,840 149,854 -74,757.6 149,523 149,551

1936 -75,091.6 150,187 150,201 -74,942.3 149,893 149,921

1951 -75,830.9 151,666 151,680 -75,689.6 151,387 151,415

1961 -75,836.7 151,677 151,691 -75,675.3 151,359 151,387

1971 -75,951.9 151,908 151,922 -75,798 151,604 151,632

1981 -76,390.6 152,785 152,799 -76,284.1 152,576 152,604

1991 -76,653.1 153,310 153,324 -76,583.2 153,174 153,202

2001 -76,865.2 153,734 153,748 -76,818.1 153,644 153,672

2011 -77,390.1 154,784 154,798 -77,359.4 154,727 154,755

nBC tdPSM

log-likelihood AIC BIC log-likelihood AIC BIC

1901 -70,201.5 140,409 140,430 -70,138.8 140,292 140,340

1911 -70,743.5 141,493 141,514 -70,689.1 141,392 141,441

1921 -74,511.5 149,029 149,050 -74,465.6 148,945 148,994

1931 -74,786 149,578 149,599 -74,747.9 149,510 149,559

1936 -74,973.1 149,952 149,973 -74,931.2 149,876 149,925

1951 -75,719.6 151,445 151,466 -75,672.3 151,359 151,408

1961 -75,702.3 151,411 151,432 -75,659.9 151,334 151,383

1971 -75,818 151,642 151,663 -75,791 151,596 151,645

1981 -76,297.1 152,600 152,621 -76,278.6 152,571 152,620

1991 -76,594.1 153,194 153,215 -76,580.5 153,175 153,224

2001 -76,827.6 153,661 153,682 -76,815.4 153,645 153,694

2011 -77,365.7 154,737 154,758 -77,356 154,726 154,775
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Table 10: Results of the Kolmogorov–Smirnov (KS) and Cramér–Von Mises (CM)

tests for Spanish samples and the used density functions. Non-rejections are marked in

boldface

lgn dPln

Spain KS CM KS CM

1900 0 (0.06) 0 (7.13) 0 (0.03) 0 (1.46)

1910 0 (0.05) 0 (6.42) 0 (0.03) 0 (1.72)

1920 0 (0.06) 0 (7.23) 0 (0.03) 0 (1.76)

1930 0 (0.05) 0 (7.27) 0 (0.03) 0 (2.07)

1940 0 (0.05) 0 (6.75) 0 (0.03) 0 (1.94)

1950 0 (0.06) 0 (7.43) 0 (0.03) 0 (2.01)

1960 0 (0.06) 0 (7.15) 0 (0.03) 0 (2.38)

1970 0 (0.05) 0 (5.48) 0 (0.03) 0 (1.37)

1981 0 (0.05) 0 (4.51) 0.001 (0.02) 0.002 (1.14)

1991 0 (0.05) 0 (4.91) 0 (0.02) 0 (1.39)

2001 0 (0.05) 0 (6.21) 0 (0.03) 0 (2.20)

2010 0 (0.05) 0 (5.17) 0 (0.03) 0 (2.76)

nBC tdPSM

KS CM KS CM

1900 0 (0.02) 0.01 (0.85) 0.45 (0.0101) 0.72 (0.076)

1910 0 (0.02) 0 (1.23) 0.92 (0.0065) 0.89 (0.048)

1920 0 (0.02) 0.01 (0.91) 0.83 (0.0073) 0.93 (0.040)

1930 0 (0.02) 0 (1.51) 0.55 (0.0093) 0.84 (0.056)

1940 0 (0.02) 0 (1.20) 0.93 (0.0063) 0.93 (0.041)

1950 0 (0.02) 0 (1.23) 0.90 (0.0067) 0.89 (0.048)

1960 0 (0.02) 0 (1.34) 0.71 (0.0081) 0.96 (0.035)

1970 0 (0.02) 0.01 (0.72) 0.46 (0.0099) 0.87 (0.052)

1981 0.06 (0.015) 0.04 (0.50) 0.95 (0.0060) 0.98 (0.029)

1991 0.02 (0.017) 0.01 (0.82) 0.88 (0.0068) 0.93 (0.040)

2001 0.02 (0.022) 0 (1.29) 0.81 (0.0074) 0.69 (0.080)

2010 0 (0.03) 0 (1.82) 0.51 (0.0095) 0.53 (0.111)
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Table 11: Maximum log-likelihoods, AIC and BIC for Spanish samples. The lowest

values of AIC and BIC for each sample are marked in boldface

lgn dPln

Spain log-likelihood AIC BIC log-likelihood AIC BIC

1900 -65,873.6 131,751 131,765 -65,627.3 131,263 131,290

1910 -66,413.5 132,831 132,845 -66,169.3 132,347 132,374

1920 -66,762.6 133,529 133,543 -66,520.7 133,049 133,077

1930 -67,782.4 135,569 135,583 -67,552.4 135,113 135,141

1940 -68,291.6 136,587 136,601 -68,042.6 136,093 136,121

1950 -68,656.2 137,316 137,330 -68,403.7 136,815 136,843

1960 -68,762 137,528 137,542 -68,514.3 137,037 137,065

1970 -68,529.4 137,063 137,077 -68,341.7 136,691 136,719

1981 -68,568.1 137,140 137,154 -68,424.2 136,856 136,884

1991 -68,592.2 137,188 137,202 -68,453.7 136,915 136,943

2001 -68,833.3 137,671 137,685 -68,687.1 137,382 137,410

2010 -69,911.2 139,826 139,840 -69,795.7 139,599 139,627

nBC tdPSM

log-likelihood AIC BIC log-likelihood AIC BIC

1900 -65,579.8 131,166 131,186 -65,536.8 131,088 131,136

1910 -66,119.1 132,244 132,265 -66,075.3 132,165 132,213

1920 -66,468.5 132,943 132,964 -66,423.2 132,860 132,909

1930 -67,496.8 135,000 135,021 -67,441.7 134,897 134,946

1940 -68,003 136,012 136,033 -67,943 135,900 135,949

1950 -68,350.5 136,707 136,728 -68,296.1 136,606 136,655

1960 -68,458.6 136,923 136,944 -68,396.2 136,806 136,855

1970 -68,304.5 136,615 136,636 -68,273.3 136,561 136,610

1981 -68,398.3 136,803 136,824 -68,377.4 136,769 136,818

1991 -68,416.8 136,840 136,861 -68,386.1 136,786 136,835

2001 -68,629.9 137,266 137,287 -68,580.5 137,175 137,224

2010 -69,729.8 139,466 139,487 -69,659.8 139,334 139,383
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Figure 1: For the French city sizes on 1990, 1999 and 2009. Left-hand column: Empirical and estimated tdPSM ln(cdf) for the lower tail

(empirical in blue, estimated in red). Center column: Empirical (Gaussian adaptive kernel density) and estimated tdPSM density functions

(empirical in blue, estimated in red). Right-hand column: Empirical and estimated tdPSM ln(1− cdf) for the upper tail (empirical in blue,

estimated in red).
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Figure 2: For the German city sizes on 1996, 2006 and 2011. Left-hand column: Empirical and estimated tdPSM ln(cdf) for the lower tail

(empirical in blue, estimated in red). Center column: Empirical (Gaussian adaptive kernel density) and estimated tdPSM density functions

(empirical in blue, estimated in red). Right-hand column: Empirical and estimated tdPSM ln(1− cdf) for the upper tail (empirical in blue,

estimated in red).
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Figure 3: For the Italian and Spanish city sizes on 2001 and 1981, respectively. dPln for Italy 2001 and tdPSM for Spain 1981. Left-

hand column: Empirical and estimated ln(cdf) for the lower tail (empirical in blue, estimated in red). Center column: Empirical (Gaussian

adaptive kernel density) and estimated density functions (empirical in blue, estimated in red). Right-hand column: Empirical and estimated

ln(1− cdf) for the upper tail (empirical in blue, estimated in red).

2
1


