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Abstract

A rather general class of strategic games is described where the coalition improvements are
acyclic and hence strong equilibria exist: The players derive their utilities from the use of certain
“facilities”; all players using a facility extract the same amount of “local utility” therefrom, which
amount depends both on the set of users and on their actions, and is decreasing in the set of users;
the “ultimate” utility of each player is the minimum of the local utilities at all relevant facilities. Two
important subclasses are “games with structured utilities,” basic properties of which were discovered
in 1970s and 1980s, and “bottleneck congestion games,” which attracted researchers’ attention quite
recently. The former games are representative in the sense that every game from the whole class
is isomorphic to one of them. The necessity of the minimum aggregation for the “persistent”
existence of strong equilibria, actually, just Pareto optimal Nash equilibria, is established. MSC2010
Classification: 91A10; JEL Classification: C 72.

Key words: Strong equilibrium; Weakest-link aggregation; Coalition improvement path; Conges-
tion game; Game with structured utilities

1 Introduction

Both motivation for and the structure of this paper closely resemble those of Kukushkin (2007). More-
over, the models considered in either paper, when described in very general terms, sound quite similarly.

The players derive their utilities from the use of certain objects. Rosenthal (1973) called them
“factors”; following Monderer and Shapley (1996) as well as Holzman and Law-Yone (1997), we call
them “facilities” here. The players are free to choose facilities within certain limits. All the players
using a facility extract the same amount of “local utility” therefrom, which amount may depend both
on the set of users and on their actions. The “ultimate” utility of each player is an aggregate of the
local utilities obtained from all relevant facilities.

Four crucial differences should be listed at the start. First, in Kukushkin (2007), following Rosenthal
(1973), each player summed up relevant local utilities (strictly speaking, monotone transformations
were allowed); here, each player takes into account only the worst local utility (again, monotone
transformations may be allowed).
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Second, the main results of Kukushkin (2007) were about the acyclicity of individual improve-
ments and, accordingly, the existence of Nash equilibria. Here, it is about the acyclicity of coalitional
improvements and, accordingly, the existence of strong equilibria.

Thirdly, the games for which the main results of Kukushkin (2007) hold are naturally partitioned
into two classes: “generalized congestion games” and “games with structured utilities.” In the former
class, the players choose which facilities to use and do not choose anything else; in the latter, each
player chooses how to use facilities from a fixed list. Here, both those classes are present too, but we
also allow games combining both types of choice, i.e., “which” and “how.” It should be mentioned that,
both here and in Kukushkin (2007), games with structured utilities form a representative subclass.

Finally, we have to assume here that whenever a new player starts to use a facility, those already
there are not better off (even if are not hurt); the only exception is Proposition 4.5, which, character-
istically, is about individual improvements only. In Kukushkin (2007), there was no need for such an
assumption.

The idea of games with structured utilities and the minimum aggregation originated in Germeier
and Vatel’ (1974) although in a much less general form. Their approach was developed further in a
series of papers, see Kukushkin et al. (1985) and references therein.

In Moulin (1982, Chapter 5), pirates were going to a treasure island; each pirate could choose
between two ships, and the more pirates on board of either ship, the slower it went. The game was a
particular case of Rosenthal’s model, but the existence of a strong equilibrium, as in Germeier–Vatel’s
model, was established. It is remarkable that, since each player could only use a single facility (ship),
we may assume that the minimum aggregation was applied and, therefore, the existence of a strong
equilibrium (and even the acyclicity of coalition improvements) was to be expected.

The fact that the minimum aggregation and negative impacts in congestion games are conducive
to coalition stability was gradually noticed quite recently (Fotakis et al., 2008; Harks et al., 2013).

Theorem 4.1 of this paper unifies and strengthens all those results. As long as each player uses the
minimum aggregation and there are negative impacts at each facility, it does not matter which subsets
of facilities and what methods of using them are available to each player: all coalition improvements
are acyclic (to be more precise, there exists a “strong ω-potential”) and hence strong equilibria exist
and, in a sense, attract all adaptive dynamics.

Theorem 4.6 shows that every game satisfying the assumptions of Theorem 4.1 is isomorphic to
a game with structured utilities and the minimum aggregation. In other words, the main findings of
Kukushkin et al. (1985) remain relevant to every model of this type that has been considered since
then. That paper, however, was silent on some important issues, e.g., algorithmic and computational
aspects.

Perhaps the most interesting results of this paper are Theorems 6.1 and 6.3 which establish the
necessity of the minimum aggregation for the “persistent” existence of Pareto optimal Nash equilibria,
to say nothing of strong equilibria, and hence for the acyclicity of coalition improvements as well. The
first result of this kind was in Kukushkin (1992); however, it was designed for a particular class of
games, so rather peculiar combinations of the minimum and maximum were allowed, which are not
good in a more general case.

The minimum operator is not at all unusual in the theory of production functions. Galbraith
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(1958, Chapter XVIII) explicitly invoked Leontief’s model to justify an attitude to public and private
consumption (“social balance”) that sounds indistinguishable from the minimum aggregation. Our
Theorem 4.1 shows that players who have internalized this attitude do not need any taxes to provide
for an efficient level of public consumption; it is difficult to say whether Galbraith himself expected
such a conclusion.

The “weakest-link” aggregation has recently become rather popular in models of communication
networks, “bottleneck congestion games,” see Harks et al. (2013) and references therein.

Section 2 introduces principal improvement relations associated with a strategic game. Section 3
provides a formal description of our basic model as well as its main structural properties. Throughout
Section 4, the players use the minimum aggregation. The main results there are Theorems 4.1 and 4.6.

In Section 5, we consider the maximum aggregation rule, which has the same implications in games
with positive impacts (Theorem 5.1); moreover, infinite sets of facilities can be treated in this case
(Theorem 5.4). The leximin/leximax aggregation of local utilities is also considered there; it ensures
the acyclicity of individual improvements, but not of coalitional ones.

Section 6 contains the characterization results, Theorems 6.1 and 6.3, which establish the necessity
of the minimum aggregation for the “persistent” existence of Pareto optimal Nash equilibria. In
Section 7, some related questions of secondary importance are discussed.

More complicated proofs, concerning the necessity of the minimum aggregation for the acyclicity of
strong coalition improvements (actually, just for the existence of a Pareto optimal Nash equilibrium)
regardless of all other characteristics of the game, are deferred to the Appendix. The two sections differ
in their context: Section A is about generalized congestion games; Section B, games with structured
utilities.

2 Improvement dynamics in strategic games

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and strategy sets Xi

and utility functions ui on XN =
∏

i∈N Xi for all i ∈ N . We denote N = 2N \ {∅} (the set of potential
coalitions) and XI =

∏

i∈I Xi for each I ∈ N ; instead of XN\{i} and XN\I , we write X−i and X−I ,
respectively. It is sometimes convenient to consider utility functions ui as components of a “joint”
mapping uN : XN → R

N .

With every strategic game, a few improvement relations on XN are associated (I ∈ N , yN , xN ∈
XN ):

yN ◃I xN ⇋

[

y−I = x−I & ∀i ∈ I [ui(yN ) > ui(xN )]
]

; (1a)

yN ◃
Ind xN ⇋ ∃i ∈ N [yN ◃{i} xN ] (1b)

(individual improvement relation);

yN ◃
Coa xN ⇋ ∃I ∈ N [yN ◃I xN ] (1c)

(strong coalition improvement relation).

A maximizer of an improvement relation ◃, i.e., a strategy profile xN ∈ XN such that yN ◃ xN
holds for no yN ∈ XN , is an equilibrium: a Nash equilibrium if ◃ is ◃Ind; a strong equilibrium if ◃ is
◃
Coa.
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An individual improvement path is a (finite or infinite) sequence {xkN}k=0,1,... such that xk+1
N ◃

Ind xkN
whenever xk+1

N is defined; an individual improvement cycle is an individual improvement path such that
xmN = x0N for m > 0. A strategic game has the finite individual improvement property (FIP) if there
exists no infinite individual improvement path; then every individual improvement path, if continued
whenever possible, reaches a Nash equilibrium in a finite number of steps.

Replacing ◃
Ind with ◃

Coa, we obtain the definitions of a coalition improvement path, a coalition
improvement cycle, and the finite coalition improvement property (FCP). The latter implies that every
coalition improvement path reaches a strong equilibrium in a finite number of steps.

For a finite game, the FIP (FCP) is equivalent to the acyclicity of the relation ◃
Ind (◃Coa) and

is equivalent to the existence of a “potential” in the following sense. An order potential of Γ is an
irreflexive and transitive relation ≻ on XN satisfying

∀xN , yN ∈ XN [yN ◃
Ind xN ⇒ yN ≻ xN ]. (2)

A strong order potential of Γ is an irreflexive and transitive relation ≻ on XN satisfying

∀xN , yN ∈ XN [yN ◃
Coa xN ⇒ yN ≻ xN ]. (3)

Generally, the absence of finite cycles does not mean very much, so we employ a more demanding
notion of a potential.

A binary relation ≻ on a metric space XN is ω-transitive if it is transitive and the conditions
xωN = limk→∞ xkN and xk+1

N ≻ xkN for all k = 0, 1, . . . always imply xωN ≻ x0N .

Remark. Gillis (1959) and Smith (1974) considered this condition for orderings.

A strong ω-potential of Γ is an irreflexive and ω-transitive relation ≻ on XN satisfying (3). By
Theorem 1 of Kukushkin (2008), ≻ admits a maximizer on XN if the latter is compact; as follows
immediately from (3), every maximizer of ≻ is a strong equilibrium.

3 Common local utilities

A game with common local utilities may have an arbitrary (finite) set of players N and arbitrary
sets of strategies Xi whereas the utility functions satisfy certain structural requirements. There is
a finite set A of facilities. For every i ∈ N , there is a mapping Bi : Xi → 2A \ {∅}; Bi(xi) is
interpreted as the set of facilities which player i uses under the strategy xi. With every α ∈ A, a list
of functions ϕα(I, ·) : XI → R (I ∈ N ) is associated. For every i ∈ N and xi ∈ Xi, there is a mapping
Uxi

i : RBi(xi) → R, an aggregation rule.

Given a strategy profile xN ∈ XN , we denote N(α, xN ) = {i ∈ N | α ∈ Bi(xi)} for each α ∈ A:
the set of players using α at xN . The “ultimate” utility functions of the players are built of the local
utilities:

ui(xN ) = Uxi

i

(

⟨ϕα(N(α, xN ), xN(α,xN ))⟩α∈Bi(xi)

)

, (4)

for all i ∈ N and xN ∈ XN .
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Remark. Clearly, only the values of ϕα(I, xI) where α ∈ Bi(xi) for all i ∈ I matter for (4); hence
there is no need to define ϕα for pairs (I, xI) not satisfying this condition. “Dually,” if α ∈ A and i ∈ I
are such that α ∈ Bi(xi) for all xi ∈ Xi, then functions ϕα(I, ·) with i /∈ I are superfluous and hence
could be deleted from the description of the game. We disregard such details here.

When considering infinite strategy sets, we impose appropriate topological assumptions. Each Xi

is always a compact metric space and each function Bi is continuous, i.e., constant on each connected
component of Xi. Every function ϕα(I, ·) is, at least, upper semicontinuous. Every function Uxi

i is
increasing and continuous.

We say that player i has a negative impact on facility α if for each I ∈ N such that i /∈ I, every
xi ∈ Xi such that α ∈ B(xi), and every xαI ∈ XI such that α ∈ B(xαj ) for all j ∈ I,

ϕα(I, x
α
I ) ≥ ϕα(I ∪ {i}, ⟨xαI , xi⟩). (5)

We say that player i has a strictly negative impact on facility α if the inequality in (5) is strict. We call
Γ a game with (strictly) negative impacts if the appropriate condition holds for all i ∈ N and α ∈ A.
A definition of (strictly) positive impacts is obtained by reversing the inequality sign in (5).

The class of games with common local utilities includes both classes of games considered in
Kukushkin (2007): “generalized congestion games” and “games with structured utilities.” In a gener-
alized congestion game, Xi ⊆ 2A \ ∅, Bi(xi) = xi (i.e., each player chooses just a set of facilities), and
ϕα only depends on #I (so we use the notation ϕα(k) rather then ϕα(I, xI) in this case). Rosenthal’s
(1973) congestion games proper are distinguished by additive aggregation of local utilities.

If, conversely, each Bi is a constant on the whole Xi, the game is a game with structured utilities as
defined in Kukushkin (2007); in such games, each Υi = Bi(xi) is treated as a parameter of the model.
We use the notation N(α) = {i ∈ N | α ∈ Υi} for such games; the local utility functions then are just
ϕα : XN(α) → R.

Henceforth, “a game” always means “a game with common local utilities.”

4 Games with the minimum aggregation

Throughout this section, we assume that each player uses the minimum (“weakest-link”) aggregation:

ui(xN ) = min
α∈Bi(xi)

ϕα(N(α, xN ), xN(α,xN )) (6)

for all i ∈ N and xN ∈ XN . In economic terms, (6) means that all local utilities are absolute
complements.

An important role in the study of such games is played by the leximin ordering on a (finite) Cartesian
power of R. Let us recall the standard definition.

Given a finite set M , #M = m, and vM ∈ R
M , we denote π(vM ) = ⟨π1(vM ), . . . , πm(vM )⟩ the

vector of the same values vh for h ∈ M in the increasing order: π1(vM ) ≤ · · · ≤ πm(vM ), and there is
a one-to-one mapping σ : {1, . . . ,m} → M such that πh(vM ) = vσ(h) for all h. Now we can define the
ordering itself:

v′M >Lmin vM ⇋ ∃h
[

πh(v
′
M ) > πh(vM ) & ∀h′ < h [πh′(v′M ) = πh′(vM )]

]

. (7)
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Obviously, >Lmin is irreflexive and transitive. Two vectors vM , v
′
M ∈ R

M are incomparable if and only
if π(vM ) = π(v′M ); therefore, incomparability is an equivalence relation.

For further references, we also define the leximax ordering. The only difference is that we start
with the greatest components when comparing two vectors.

v′M >Lmax vM ⇋ ∃h
[

πh(v
′
M ) > πh(vM ) & ∀h′ > h [πh′(v′M ) = πh′(vM )]

]

. (8)

Theorem 4.1. Let Γ be a game with negative impacts where each player uses the minimum aggregation,
i.e., conditions (5) and (6) hold everywhere. Let each Xi be a compact metric space, each Bi be
continuous, and all functions ϕα(I, ·) be upper semicontinuous. Then Γ admits a strong ω-potential,
and hence possesses a strong equilibrium.

Proof. Considering utility functions ui as components of a mapping uN : XN → R
N , we define ≻ on

XN by
yN ≻ xN ⇋ uN (yN ) >Lmin uN (xN ),

where >Lmin is the leximin ordering on R
N defined by (7). Obviously, ≻ is irreflexive and transitive.

Lemma 4.1.1. ≻ is ω-transitive on XN .

Proof. For every xN ∈ XN , we denote ϑ(xN ) = ⟨ϑ1(xN ), . . . , ϑn(xN )⟩ the vector of values ui(xN ) for
i ∈ N in the increasing order; in the above notation, ϑh(xN ) = πh(uN (xN )). Since each function ui is
upper semicontinuous in xN , so is each ϑh.

Now let xk+1
N ≻ xkN for all k = 0, 1, . . . and xkN → xωN ; we have to show xωN ≻ x0N . For each

k ∈ N, we denote h(k) the h from (7) for uN (xk+1
N ) >Lmin uN (xkN ), i.e., ϑh′(xk+1

N ) = ϑh′(xkN ) for

h′ < h(k) and ϑh(k)(x
k+1
N ) > ϑh(k)(x

k
N ). Since N is finite, we may, replacing ⟨xkN ⟩k with a subsequence

if needed, assume that h(k) = h does not depend on k. Now we have ϑh′(xωN ) ≥ ϑh′(x0N ) for h′ < h
and ϑh(x

ω
N ) > ϑh(x

0
N ) by the upper semicontinuity; therefore, uN (xωN ) >Lmin uN (x0N ).

Lemma 4.1.2. Given yN , xN ∈ XN , we denote N+ = {i ∈ N | ui(yN ) > ui(xN )} and N− = {i ∈ N |
ui(yN ) < ui(xN )}. Let mini∈N−

ui(yN ) > mini∈N+
ui(xN ), assuming min ∅ = +∞. Then yN ≻ xN .

A straightforward proof is omitted.

Lemma 4.1.3. ≻ satisfies (3).

Proof. Supposing yN ◃I xN , we have to show yN ≻ xN . If yN Pareto dominates xN , then we are home
immediately. Let

uj(yN ) < uj(xN ); (9)

then j /∈ I, so yj = xj . By (6), there is α ∈ Bj(yj) = Bj(xj) such that uj(yN ) =
ϕα(N(α, yN ), yN(α,yN )). Suppose I∩N(α, yN ) = ∅; thenN(α, yN ) ⊆ N(α, xN ) and xN(α,yN ) = yN(α,yN );
hence ϕα(N(α, xN ), xN(α,xN )) ≤ ϕα(N(α, yN ), yN(α,yN )) by (5); hence uj(xN ) ≤ uj(yN ), contradicting
(9). Therefore, there must be i ∈ I ∩N(α, yN ) and hence uj(yN ) = ϕα(N(α, yN ), yN(α,yN )) ≥ ui(yN ) >
ui(xN ). Since j satisfying (9) was arbitrary, Lemma 4.1.2 is applicable, implying yN ≻ xN .

Now Theorem 4.1 immediately follows from Lemmas 4.1.1 and 4.1.3.
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Without the negative impacts assumption, the existence of a strong equilibrium in generalized
congestion games with the minimum aggregation cannot be ensured although a Nash equilibrium
always exists. Without anonymity, there may be no equilibrium at all.

Example 4.2. Let us consider a two person generalized congestion game with the minimum aggregation
(6): N = {1, 2}; A = {a, b, c}; X1 = {A, {a}}, X2 = {A, {b}}; ϕa(1) = ϕb(1) = 1, ϕa(2) = ϕb(2) = 3,
ϕc(1) = 0 ϕc(2) = 2 (i.e., every facility exhibits positive impacts). The matrix of the game looks as
follows:

abc b
abc (2, 2) (0, 3)
a (3, 0) (1, 1).

We have a prisoner’s dilemma.

Example 4.3. Let us consider a two person generalized congestion game: N = {1, 2}, A = {a, b},
X1 = X2 = {{a}, {b}}, ϕa(1) = 0, ϕa(2) = 2, ϕb(1) = 3, ϕb(2) = 1 (i.e., a exhibits positive impacts; b,
negative). The matrix of the game looks as follows:

a b
a (2, 2) (0, 3)
b (3, 0) (1, 1).

We have a prisoner’s dilemma again.

Example 4.4. Let us consider a two person game where each player chooses a single facility, but there
is no anonymity: N = {1, 2}, A = {a, b}, X1 = X2 = {{a}, {b}}, ϕa({2}) = 0, ϕa({1}) = 2, ϕa(N) = 4,
ϕb(N) = 1, ϕb({2}) = 3, ϕb({1}) = 5 (i.e., both facilities exhibit positive impacts). The matrix of the
game looks as follows:

a b
a (4, 4) (2, 3)
b (5, 0) (1, 1).

There is no Nash equilibrium.

Proposition 4.5. Every generalized congestion game where each player uses the minimum aggrega-
tion (6) admits an order potential (2), and hence has the FIP and possesses a Nash equilibrium.

Proof. We start with an observation that the leximin ordering >Lmin is symmetric and separable. The
first property is obvious; the second only needs a formal definition to become so:

⟨v1, . . . , vm, vm+1, . . . , vm′⟩ >Lmin ⟨v′1, . . . , v
′
m, vm+1, . . . , vm′⟩ ⇐⇒ ⟨v1, . . . , vm⟩ >Lmin ⟨v′1, . . . , v

′
m⟩.

As the next step, we make the leximin ordering >Lmin applicable to corteges of different lengths by
adding +∞’s to the shorter one. To be more precise, whenever m′ > m and the least m co-ordinates
of ⟨v′1, . . . , vm′⟩ coincide with respective (after re-arrangement) co-ordinates of ⟨v1, . . . , vm⟩, we declare
that ⟨v1, . . . , vm⟩ >Lmin ⟨v′1, . . . , vm′⟩. The extended ordering remains symmetric and separable.
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With every xN ∈ XN , we associate an unordered cortege:

κ(xN ) =
⟨

ϕα(k)
⟩

α∈A: n(α,xN )>0, k=1,...,n(α,xN )
.

Now we define ≻ on XN by yN ≻ xN ⇋ κ(yN ) >Lmin κ(xN ). To complete the proof, we have to check
(2).

Let yN ◃{i} xN , i.e., ui(yN ) > ui(xN ) and y−i = x−i. A is partitioned into four disjoint subsets:
A0 = xi ∩ yi, A+ = yi \ xi, A− = xi \ yi, A∗ = A \ (xi ∪ yi); thus, xi = A0 ∪A− and yi = A0 ∪A+. We
define

κ−i =
⟨

⟨ϕα(k)⟩α∈A0 : n(α,xN )>1; k=1,...,n(α,xN )−1=n(α,yN )−1,

⟨ϕα(k)⟩α∈A+ : n(α,xN )>0; k=1,...,n(α,xN )=n(α,yN )−1, ⟨ϕα(k)⟩α∈A− : n(α,yN )>0; k=1,...,n(α,yN )=n(α,xN )−1,

⟨ϕα(k)⟩α∈A∗ : n(α,xN )>0; k=1,...,n(α,xN )=n(α,yN )

⟩

;

κi(xN ) =
⟨

ϕα(n(α, xN ))
⟩

α∈A0∪A−

[

=
⟨

ϕα(n(α, xN ))
⟩

α∈xi

]

;

κi(yN ) =
⟨

ϕα(n(α, yN ))
⟩

α∈A0∪A+

[

=
⟨

ϕα(n(α, yN ))
⟩

α∈yi

]

.

Since ui(yN ) > ui(xN ), we have κi(yN ) >Lmin κi(xN ). Since κ(xN ) = ⟨κ−i,κi(xN )⟩ and κ(yN ) =
⟨κ−i,κi(yN )⟩, we have κ(yN ) >Lmin κ(xN ) by separability.

Remark. Essentially, the potential defined in the proof of Proposition 4.5 is the same as in Rosenthal
(1973).

Among games with the minimum aggregation and negative impacts, games with structured utilities
form a representative subclass. We call two strategic games Γ∗ and Γ indistinguishable (from one
another) if the sets N and Xi are the same in both, and u∗i (xN ) = ui(xN ) for every xN ∈ XN and
i ∈ N .

Theorem 4.6. For every game Γ with the minimum aggregation and negative impacts, there exists
a game Γ∗ with structured utilities and also with the minimum aggregation, which is indistinguishable
from Γ.

Proof. We define A∗ = A×N , Υ∗
i = {(α, I) ∈ A∗ | i ∈ I}, so N((α, I)) = I, and

ϕ∗
(α,I)(xI) =

{

ϕα(I, xI), if ∀i ∈ I [α ∈ Bi(xi)],

+∞, else.

Then we consider Γ∗ with the same setsN andXi, and utility functions u∗i (xN ) = min(α,I)∈Υ∗

i
ϕ∗
(α,I)(xI).

Remark. The +∞ in the definition of ϕ∗ need not be understood literally: anything large enough
would do.
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Let us show that ui(xN ) = u∗i (xN ) for every i ∈ N and xN ∈ XN . Let ui(xN ) =
ϕα(N(α, xN ), xN(α,xN )) with i ∈ N(α, xN ) = M . We have (α,M) ∈ Υ∗

i and ϕ∗
(α,M)(xM ) =

ϕα(M,xM ) = ui(xN ); therefore, u∗i (xN ) ≤ ui(xN ).

Now let (α, I) ∈ Υ∗
i and ϕ∗

(α,I)(xI) < +∞; then i ∈ I ⊆ N(α, xN ). If I ⊂ N(α, xN ), then

ϕ∗
(α,I)(xI) = ϕα(I, xI) ≥ ϕα(N(α, xN ), xN(α,xN )) by (5). If I = N(α, xN ), then ϕ∗

(α,I)(xI) =

ϕα(N(α, xN ), xN(α,xN )). In either case, ϕ∗
(α,I)(xI) ≥ ui(xN ) by (6). Since (α, I) ∈ Υ∗

i was arbitrary,

u∗i (xN ) ≥ ui(xN ).

5 Related aggregation rules

The maximum (“best-shot”) aggregation is defined “dually” to (6):

ui(xN ) = max
α∈Bi(xi)

ϕα(N(α, xN ), xN(α,xN )) (10)

for all i ∈ N and xN ∈ XN .

From the viewpoint of economics applications, there is a big difference between (6) and (10): the
former satisfies the “decreasing marginal utility” condition, while the latter does not.

Theorem 5.1. Let Γ be a game with positive impacts where each player uses the maximum aggregation
(10). Let each Xi be compact, and all functions Bi be continuous, and all functions ϕα(I, ·) be upper
semicontinuous. Then Γ admits a strong ω-potential and hence possesses a strong equilibrium.

Proof. Similarly to Theorem 4.1, we define a strong ω-potential by the leximax ordering (8) rather
than leximin (7): yN ≻ xN ⇋ uN (yN ) >Lmax uN (xN ). Then condition (3) is proven just dually.

Proposition 5.2. Every generalized congestion game where each player uses the maximum aggregation
(10) admits an order potential (2), and hence has the FIP and possesses a Nash equilibrium.

Theorem 5.3. For every game Γ with the maximum aggregation and positive impacts, there exists a
game Γ∗ with structured utilities and also with the maximum aggregation, which is indistinguishable
from Γ.

Both proofs, dual to those of Proposition 4.5 and Theorem 4.6, are omitted.

A technical advantage of the maximum over minimum emerges if we consider games with infinite
sets of facilities.

Theorem 5.4. Let Γ be a strategic game where A is a metric space, every Bi(xi) is compact, each
mapping Bi : Xi → 2A \ {∅} is continuous in the Hausdorff metric on its target, and each ϕ(·)(I, ·) (for
I ∈ N ) is upper semicontinuous on A ×XI . Let each Xi be a compact metric space, each player use
the maximum aggregation (10), and all impacts be positive. Then Γ admits a strong ω-potential and
hence possesses a strong equilibrium.

Proof. The same argument as in Theorem 4.1, or Theorem 5.1, is insufficient for an infinite A: it is
not at all obvious that the maximum in (10) is attained for all i ∈ N and xN ∈ XN , to say nothing
about the upper semicontinuity of ui.
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Lemma 5.4.1. Let i ∈ N , xkN → xN and αk ∈ Bi(x
k
i ) for all k = 0, 1, . . . Then there is α ∈ Bi(xi)

such that
ϕα(N(α, xN ), xN(α,xN )) ≥ limk→∞ ϕαk(N(αk, xkN ), xk

N(αk,xk

N
)
). (11)

Proof. First, replacing ⟨αk⟩k with a subsequence if needed, we may assume that the upper limit in
the right-hand side of (11) is just the limit. Since N is finite, we may (again replacing ⟨αk⟩k with a
subsequence if needed) assume that N(αk, xkN ) = I is the same for all k. The condition xkN → xN
implies Bi(x

k
i ) → Bi(xi) in the Hausdorff metric. Let εk → 0 (e.g., εk = 1/k); for each k = 0, 1, . . . ,

there is βk ∈ Bi(xi) and h(k) for which the distance between βk and αh(k) is less than εk. Since Bi(xi)
is compact, we may assume βk → α ∈ Bi(xi) and hence αh(k) → α; therefore, we may assume αk → α
too.

Let j ∈ N \ N(α, xN ), i.e., α /∈ Bj(xj); then the continuity of Bj immediately implies that
αk /∈ Bj(x

k
j ) for all k large enough, i.e., j /∈ N(αk, xkN ). Thus, I ⊆ N(α, xN ), and hence

ϕα(N(α, xN ), xN(α,xN )) ≥ ϕα(I, xI) ≥ limk→∞ ϕαk(I, xkI ), the first inequality following from the posi-
tive impacts assumption, the second from the upper semicontinuity assumption. Taking into account
the first step of the proof and the definition of I, we have (11).

To prove that the maximum in (10) is attained for any i ∈ N and xN ∈ XN , we define xkN = xN
for all k and pick a maximizing sequence for ψ(α) = ϕα(N(α, xN ), xN(α,xN )) as ⟨α

k⟩k; then the α from
Lemma 5.4.1 obviously maximizes ψ(α).

Given i ∈ N and xkN → xN , we pick αk ∈ Bi(x
k
i ) such that ui(x

k
N ) = ϕαk(N(αk, xkN ), xk

N(αk,xk

N
)
);

then Lemma 5.4.1 means that ui is upper semicontinuous at xN . Therefore, each function ϑh defined
as in the proof of Lemma 4.1.1 is upper semicontinuous too, and the ω-transitivity of >Lmax follows in
the same way. The condition (3) is proven exactly as in Theorem 5.1, or rather, dually to Theorem 4.1.
Theorem 5.4 is proven.

The maximum aggregation may seem exotic. It should be kept in mind, though, that Theorems 5.1
and 5.4 are quite meaningful, e.g., for congestion games with singleton strategies, where they show the
acyclicity of strong coalition improvements and hence the existence of strong equilibria, under positive
impacts. The same fact for games with negative impacts was noticed in Holzman and Law-Yone (1997).
Actually, the local utilities in both cases may depend on the list of users rather than on their number
only.

For games with negative impacts and the minimum aggregation, the dual of Lemma 5.4.1 is valid,
but it implies the lower semicontinuity of ui, which property is useless for a utility function.

Example 5.5. Let us consider a generalized congestion game with negative impacts: N = {1, 2},
A = [0, 1] = X1 = X2, ϕα(1) = α + 1, ϕα(2) = α for all α ∈ [0, 1]. Suppose (x1, x2) to be a Nash
equilibrium. If 1 /∈ {x1, x2}, then player 1 can switch to y1 = 1 increasing his utility level. Let, say,
x1 = 1; then player 2 does not have a best response (the supremum is limα→1 ϕα(1) = 2, but it is not
attained). Thus, the game possesses no Nash equilibrium.

Generalizing our basic notions, we may assume that the preferences of the players may be de-
scribed by orderings without numeric representations. Then we may consider games where the players
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use the leximin (or leximax) ordering to aggregate local utilities. We denote Mi = maxxi∈Xi
#xi

and define Li as R̄
Mi with the leximin ordering (7) Now we define ui : XN → Li by ui(xN ) =

⟨

⟨ϕα(n(α, xN ))⟩α∈xi
, ⟨+∞, . . . ,+∞⟩

⟩

, the number of +∞’s equaling Mi −#xi.

Proposition 5.6. Every generalized congestion game where each player uses the leximin aggregation
(7) admits an order potential (2), and hence has the FIP and possesses a Nash equilibrium.

The proof is essentially the same as in Proposition 4.5.

Leximin aggregation and minimum aggregation may seem very similar, but there is no analogue of
Theorem 4.1 for the former case.

Example 5.7. Let us consider a generalized congestion game with negative impacts: N = {1, 2},
A = {a, b, c, d, e, f, g}; X1 =

{

{a, b, c}, {d, e, f}
}

; X2 =
{

{a, f, g}, {b, c, d}
}

; ϕa(2) = ϕb(2) = ϕd(2) =
ϕe(1) = ϕg(1) = 0; ϕc(2) = 1; ϕa(1) = ϕd(1) = ϕf (2) = 2; ϕb(1) = ϕc(1) = ϕf (1) = 3. Assuming that
both players use the leximin aggregation, we obtain the 2× 2 matrix of the game:

afg bcd
abc (⟨0, 3, 3⟩, ⟨0, 0, 3⟩) (⟨0, 1, 2⟩, ⟨0, 1, 2⟩)
def (⟨0, 2, 2⟩, ⟨0, 2, 2⟩) (⟨0, 0, 3⟩, ⟨0, 3, 3⟩).

We have a prisoner’s dilemma: the northeastern corner is a unique Nash equilibrium, which is Pareto
dominated by the southwestern corner.

Exact analogs of Proposition 5.6 and Example 5.7 for the leximax aggregation are easy to formulate.

6 Characterization results

A mapping U : RΣ(U) → R, where Σ(U) is a finite set, is an admissible aggregation function if it is
continuous and increasing in the sense of

[

∀s ∈ Σ(U)[v′s > vs]
]

⇒ U(v′Σ(U)) > U(vΣ(U)). (12)

The continuity of U and (12) imply

[

∀s ∈ Σ(U)[v′s ≥ vs]
]

⇒ U(v′Σ(U)) ≥ U(vΣ(U)). (13)

Remark. Exactly as in Kukushkin (2007), all results of this section remain valid if each U is assumed
to be defined on a Cartesian power of an open interval in R and the attention is restricted to games
where all values of local utilities belong to that interval. When the local utilities are, say, integer-valued,
nothing is known about the necessity parts of the theorems; most likely, they are wrong.

Let U be a set of admissible aggregation functions. We say that a game with common local utilities
Γ is consistent with the set U if for every i ∈ N and xi ∈ Xi, there are U ∈ U and a bijection
µxi

i : Σ(U) → B(xi) such that

Uxi

i

(

⟨vα⟩α∈Bi(xi)

)

= U
(

⟨vµxi

i
(s)⟩s∈Σ(Uxi )

)

.
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Theorem 6.1. Let U be a set of admissible aggregation functions such that #Σ(U) = 1 for, at most,
one U ∈ U. Then the following conditions are equivalent.

1. Every generalized congestion game with negative impacts which is consistent with U has the FCP
and hence possesses a strong equilibrium.

2. Every generalized congestion game with strictly negative impacts which is consistent with U pos-
sesses a weakly Pareto optimal Nash equilibrium.

3. For every U ∈ U, there is a continuous and strictly increasing mapping λU : R → R such that:

∀U ∈ U ∀vΣ(U) ∈ R
Σ(U)

[

U(vΣ(U)) = λU (min{vs}s∈Σ(U))
]

; (14a)

∀U ′, U ∈ U
[

λU
′

= λU or λU
′

(R) ∩ λU (R) = ∅
]

. (14b)

The implication [1 ⇒ 2] is trivial. The proofs of [2 ⇒ 3] and [3 ⇒ 1] are deferred to Sections A.1
and A.2, respectively.

The equivalence between Statements 1 and 2 of Theorem 6.1 does not hold without the uniqueness
of U ∈ U with #Σ(U) = 1. For instance, if #Σ(U) = 1 for all U ∈ U, then no restriction on λU is
needed to ensure the existence of even a strong equilibrium (Konishi et al., 1997), but there may be
no FIP (Milchtaich, 1996).

Proposition 6.2. Let U be a set of admissible aggregation functions such that every generalized con-
gestion game with negative impacts which is consistent with U possesses a weakly Pareto optimal Nash
equilibrium. Then there is a continuous and strictly increasing mapping λU : R → R, for every U ∈ U,
such that:

∀U ∈ U ∀vΣ(U) ∈ R
Σ(U)

[

U(vΣ(U)) = λU (min{vs}s∈Σ(U))
]

; (15a)

∀U ′, U ∈ U
[

λU
′

= λU or λU
′

(R) ∩ λU (R) = ∅ or #Σ(U) = #Σ(U ′) = 1
]

. (15b)

The proof, very similar to that of the implication [2 ⇒ 3] in Theorem 6.1, is deferred to Section A.3.

Theorem 6.3. For every set U of admissible aggregation functions, the following conditions are equiv-
alent.

1. Every game with structured utilities which is consistent with U and where the strategy sets are
compact and utility functions are upper semicontinuous admits a strong ω-potential and hence
possesses a strong equilibrium.

2. Every finite game with structured utilities which is consistent with U possesses a weakly Pareto
optimal Nash equilibrium.

3. For every U ∈ U, there is a continuous and strictly increasing mapping λU : R → R such that
either

∀U ∈ U ∀vΣ(U) ∈ R
Σ(U)

[

U(vΣ(U)) = λU (min{vs}s∈Σ(U))
]

, (16a)

or
∀U ∈ U ∀vΣ(U) ∈ R

Σ(U)
[

U(vΣ(U)) = λU (max{vs}s∈Σ(U))
]

; (16b)
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besides,
∀U ′, U ∈ U

[

λU
′

= λU or #Σ(U) ̸= #Σ(U ′) or λU
′

(R) ∩ λU (R) = ∅
]

. (17)

The implication [1 ⇒ 2] is trivial. The proofs of [2 ⇒ 3] and [3 ⇒ 1] are deferred to Sections B.1
and B.2, respectively.

7 Concluding remarks

7.1. Everything in this paper is about games with ordinal preferences. Improvement relations (1) are
invariant to strictly increasing transformations of utility functions ui. Moreover, Theorems 4.1 and 4.6,
as well as Theorems 5.1–5.4, would remain valid if we assumed that every ϕα(I, ·) maps XI to an
arbitrary chain rather than R, cf. Proposition 5.6. On the other hand, the chain must be the same for
all I and α; thus, the preferences are “co-ordinal” here.

7.2. Our assumption that all users receive the same intermediate utility from a facility should not be
viewed as a simplifying technical condition. Making it, we concentrate on relationships between “fellow
travellers,” which can be considered as basic as, e.g., those between competitors for a scarce resource.
At the moment, there is no evidence to suggest that similar results could hold in a broader context.

There is some literature on group formation games where each utility function only depends on
the strategy chosen by the player and on the number of players who have chosen the same strategy,
but different players may have different functions. Typically, there is just the existence of equilibria in
such models, without acyclicity of improvements (Milchtaich, 1996; Konishi et al., 1997), so there is
no ground to expect a close connection with this paper.

Conditions for the existence of strong equilibrium in congestion games with negative impacts were
studied by Holzman and Law-Yone (1997). Their findings also seem unrelated to ours since only a very
weak version of the acyclicity of coalition improvements was established.

7.3. We could define the weak coalition improvement relation similarly to (1):

yN ◃
wCo
I xN ⇋

[

y−I = x−I & ∀i ∈ I [ui(yN ) ≥ ui(xN )] & ∃i ∈ I [ui(yN ) > ui(xN )]
]

;

yN ◃
wCo xN ⇋ ∃I ∈ N [yN ◃

wCo
I xN ].

A maximizer of ◃wCo can be called a “very” strong equilibrium. The notion may seem too strong, but
there is nothing unusual in the existence of such equilibria in the games considered here (Kukushkin
et al., 1985).

7.4. There is an obvious asymmetry in the implications of the existence of a strong (ω-)potential (3)
as presented in Section 2: In a finite game, strong equilibria exist and all myopic adaptive dynamics
converge to an equilibrium in a finite number of steps. In an infinite game, only the existence of a
strong equilibrium was asserted. Actually, something can be said about adaptive dynamics in compact
games too.

The simplest picture emerges if we consider improvement paths parameterized with countable or-
dinals. Then the existence of a strong ω-potential in a compact game implies that every coalition im-
provement path, if continued whenever possible, reaches a strong equilibrium at some stage (Kukushkin,
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2010, Theorem 3.21). In other words, the only difference between finite and infinite games is that finite
paths should be replaced with transfinite ones in the latter case.

For those who believe whatever happens after the first limit to be irrelevant, the situation is much
more complicated and some questions remain open. A clear-cut theorem about the possibility to
approximate an equilibrium with a finite improvement path in a continuous enough game with a
potential is presented in Kukushkin (2011). Strictly speaking, it is about Nash equilibrium, but the
same argument can be applied to coalition improvements and strong equilibria, cf. Kukushkin (2010,
Theorem 4.3).

7.5. The leximin and leximax orderings are often met in the social choice theory, see, e.g., Moulin
(1988). Economists naturally dislike the latter, but usually find it difficult to get rid of in their
axiomatic characterizations (d’Aspremont and Gevers, 1977; Deschamps and Gevers, 1978).

7.6. Just as in the case of Kukushkin (2007), some forms of the main results of this paper can be
found in Kukushkin (2004). The greatest advances over that paper are in Theorems 6.1 and 6.3 here: a
much broader notion of a family of aggregation rules is employed. Under this notion, the special role of
“aggregation rules” for the case of a single local utility in generalized congestion games was discerned.
It should be stressed that the possibility to reverse the implication in Proposition 6.2 remains unclear.

7.7. In Kukushkin (2007), a similarity was noted between the necessity proofs there and the famous
Debreu–Gorman Theorem (Debreu, 1960; Gorman, 1968) on additive representation of separable or-
derings. There seems to be no general theorem on abstract preference orderings that could display
parallel similarities with Theorems 6.1 and 6.3 here.
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Appendix: Proofs

A Generalized congestion games

A.1 Proof of [2 ⇒ 3] in Theorem 6.1

As a first step, we show that every function U ∈ U is symmetric.

Lemma A.1.1. Let U ∈ U, s′, s′′ ∈ Σ(U), v−, v+ ∈ R, and v′Σ(U), v
′′
Σ(U) ∈ R

Σ(U) be such that v+ > v−,

v′′s′′ = v′s′ = v+, v′′s′ = v′s′′ = v−, and v′′s = v′s for all s ∈ Σ(U) \ {s′, s′′}. Then U(v′′Σ(U)) = U(v′Σ(U)).

Proof. Supposing the contrary, we may, without restricting generality, assume u+ = U(v′′Σ(U)) >

U(v′Σ(U)) = u−. Now let us consider a generalized congestion game with strictly negative impacts which

is consistent with U: N = {1, 2}; the facilities are A = {a, b, c, d} ∪ E, where E = {es}s∈Σ(U)\{s′,s′′};
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X1 =
{

{a, c} ∪ E, {b, d} ∪ E
}

; X2 =
{

{d, a} ∪ E, {c, b} ∪ E
}

; ϕt(1) = v+ and ϕt(2) = v− for each
t ∈ {a, b, c, d}, while ϕes(2) = vs for all s ∈ Σ(U) \ {s′, s′′}; Uxi

i is U for both i ∈ N and all xi ∈ Xi;
µx1

1 (a) = µx1

1 (b) = µx2

2 (c) = µx2

2 (d) = s′′ and µx2

2 (a) = µx2

2 (b) = µx1

1 (c) = µx1

1 (d) = s′ whenever appro-
priate, whereas µxi

i (es) = s for both i ∈ N and all s ∈ Σ(U) \ {s′, s′′}. The 2 × 2 matrix of the game
looks as follows:

daE cbE
acE (u−, u+) (u+, u−)
bdE (u+, u−) (u−, u+).

There is no Nash equilibrium in the game.

Remark. Neither continuity, nor monotonicity of U were needed in the proof.

Lemma A.1.1 shows that the mappings µxi

i do not matter and hence may be ignored in the following.
Moreover, we may assume that Σ(U) = {1, . . . ,m} (with m depending on U , naturally). As a next
step, we show that the impossibility of a prisoner’s dilemma implies that each indifference curve in
each two-dimensional section must exhibit a similarity with either minimum or maximum.

Lemma A.1.2. Let U ∈ U, v1 > v2, and

U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm); (18)

then U(v1, v̄2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v1, v̄2, . . . , vm) = u′ < u = U(v1, v2, . . . , vm) for some v̄2 < v2. Taking into account (18) and the
continuity of U , we may, increasing v̄2 if needed, assume U(v2, v2, v3, . . . , vm) < u′. By the continuity
of U , there is δ > 0 such that v2 + δ < v1 and U(v2 + δ, v2 + δ, v3 + δ, . . . , vm + δ) = u′′ < u′; we denote
U(v1 + δ, v2 + δ, v3 + δ, . . . , vm + δ) = u+ > u. Thus,

u′′ < u′ < u < u+. (19)

Now let us consider a generalized congestion game with strictly negative impacts which is consistent
with U: N = {1, 2}; the facilities are A = {a, b, c, d}∪E∪F , where E = {es}3≤s≤m and F = {fs}3≤s≤m;
X1 =

{

{a, c}∪E, {b, d}∪F
}

; X2 =
{

{a, d}∪E, {b, c}∪F
}

; ϕa(1) = v1+ δ, ϕa(2) = v̄2, ϕb(1) = v2+ δ,
ϕb(2) = v2, ϕc(1) = ϕd(1) = v1, ϕc(2) = ϕd(2) = v2 + δ, ϕes(1) = ϕfs(1) = vs + δ and ϕes(2) =
ϕfs(2) = vs (s = 3, . . . ,m); Uxi

i = U for both i ∈ N and all xi ∈ Xi. The 2 × 2 matrix of the game
looks as follows:

adE bcF
acE (u′, u′) (u+, u′′)
bdF (u′′, u+) (u, u).

Taking into account (19), we see that the northwestern corner is a unique Nash equilibrium, which is
strongly Pareto dominated by the southeastern corner.

Lemma A.1.3. Let U ∈ U, v1 > v2, and

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm); (20)

then U(v̄1, v2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.
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Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose

U(v̄1, v2, . . . , vm) = u+ > u = U(v1, v2, . . . , vm) (21)

for some v̄1 > v1. By the continuity of U , (20) and (21) imply the existence of v′1 ∈]v2, v1[ such that
u < U(v′1, v1, v3, . . . , vm) < u+. By the same continuity, we may pick δ > 0 such that v′1 + δ < v1,
U(v2+δ, v1+δ, v3+δ, . . . , vm+δ) = u′ < U(v′1, v1, v3, . . . , vm) and U(v′1+δ, v1+δ, v3+δ, . . . , vm+δ) =
u′′ < u+; by monotonicity,

u < u′ < u′′ < u+. (22)

Now let us consider a generalized congestion game with strictly negative impacts which is consistent
with U: N = {1, 2}; the facilities are A = {a, b, c, d}∪E∪F , where E = {es}3≤s≤m and F = {fs}3≤s≤m;
X1 =

{

{a, c} ∪ E, {b, d} ∪ F
}

; X2 =
{

{a, d} ∪ E, {b, c} ∪ F
}

; ϕa(1) = v̄1, ϕa(2) = v2 + δ, ϕb(1) = v1,
ϕb(2) = v′1 + δ, ϕc(1) = ϕd(1) = v1 + δ, ϕc(2) = ϕd(2) = v2, ϕes(1) = ϕfs(1) = vs + δ and ϕes(2) =
ϕfs(2) = vs (s = 3, . . . ,m); Uxi

i = U for both i ∈ N and all xi ∈ Xi. The 2 × 2 matrix of the game
looks as follows:

adE bcF
acE (u′, u′) (u+, u)
bdF (u, u+) (u′′, u′′).

Taking into account (22), we see that the northwestern corner is a unique Nash equilibrium, which is
strongly Pareto dominated by the southeastern corner.

As a next step, we establish a restriction on mutual location of “minimum-like” angles (23) and
“maximum-like” angles (24).

Lemma A.1.4. Let U,U ′ ∈ U, v1 > v2,

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm), (23)

v′1 > v′2, and
U ′(v′1, v

′
2, v

′
3, . . . , v

′
m′) > U ′(v′2, v

′
2, v

′
3, . . . , v

′
m′). (24)

Then v1 > v′2.

Proof. Supposing the contrary, v′2 ≥ v1, we denote u
−
1 = U(v′1, v2, v3, . . . , vm), u+1 = U(v1, v1, v3, . . . , vm),

u−2 = U ′(v1, v1, v
′
3, . . . , v

′
m′), and u

+
2 = U ′(v′1, v2, v

′
3, . . . , v

′
m′). We have u+1 > u−1 by Lemma A.1.3 since

v′1 > v′2 ≥ v1, and u
+
2 > u−2 by Lemma A.1.2 since v′2 ≥ v1 > v2.

Now we consider a generalized congestion game with strictly negative impacts which is consistent
with U: N = {1, 2}; the facilities are A = {a, b, c, d} ∪ E ∪ F , where E = {es}s∈{3,...,m} and F =
{fs}s∈{3,...,m′}; X1 =

{

{a, b} ∪ E, {c, d} ∪ E
}

; X2 =
{

{a, c} ∪ F, {b, d} ∪ F
}

; ϕa(2) = ϕd(2) = v2,
ϕa(1) = ϕd(1) = ϕb(2) = ϕc(2) = v1, ϕb(1) = ϕc(1) = v′1, ϕes(1) = vs for each s ∈ {3, . . . ,m}, and
ϕfs(1) = v′s for each s ∈ {3, . . . ,m′}; Ux1

1 is U for each x1 ∈ X1 and Ux2

2 is U ′ for each x2 ∈ X2. The
2× 2 matrix of the game looks as follows:

acF bdF
abE (u−1 , u

+
2 ) (u+1 , u

−
2 )

cdE (u+1 , u
−
2 ) (u−1 , u

+
2 ).

There is no Nash equilibrium in the game.
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Given U ∈ U, we denote:

V min
U = {v1 ∈ R | ∃v2, . . . , vm ∈ R [v1 > v2 & U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm)]};

V max
U = {v2 ∈ R | ∃v1, v3, . . . , vm ∈ R [v1 > v2 & U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm)]};

vmin
U = inf V min

U ; vmax
U = supV max

U .

(If V min
U = ∅, then we assume vmin

U = +∞; if V max
U = ∅, then vmax

U = −∞.) By Lemma A.1.4,
vmin
U ≥ vmax

U . For v ∈ R, we define
λU (v) = U(v, v, . . . , v).

Clearly, λU is continuous and strictly increasing.

Lemma A.1.5. For every U ∈ U and v1, v2, v3, . . . , vm ∈ R, there hold

U(v1, v2, v3, . . . , vm) = λU (min
m

vm) (25)

whenever minm vm ≥ vmax
U , and

U(v1, v2, v3, . . . , vm) = λU (max
m

vm) (26)

whenever maxm vm ≤ vmin
U .

Proof. Let minm vm > vmax
U . Without restricting generality, we may assume v1 ≥ v2 ≥ · · · ≥ vm. By the

definition of vmax
U and symmetry of U , we have U(v1, v2, . . . , vm−1, vm) = U(v1, v2, . . . , vm−2, vm, vm) =

· · · = U(v1, vm, . . . , vm, vm) = U(vm, . . . , vm) = λU (min{v1, v2, . . . , vm}).

If minm vm = vmax
U , we obtain the same equality by continuity. If maxm vm ≤ vmin

U , we argue
dually.

Lemma A.1.6. For every U ∈ U, either vmin
U = vmax

U = +∞ or vmin
U = vmax

U = −∞.

Proof. Supposing that vmax
U < v′ < v′′ < vmin

U , we would have U(v′, v′′, . . . , v′′) = λU (v′) by (25) and
U(v′, v′′, . . . , v′′) = λU (v′′) by (26), which is impossible since λU is strictly increasing.

Supposing that v′ < vmax
U = vmin

U < v′′, we would have U(vmax
U , v′′, . . . , v′′) = λU (vmax

U ) by (25) and
U(v′, . . . , v′, vmax

U ) = λU (vmax
U ) by (26), which contradicts monotonicity (12).

Lemma A.1.7. Either U(v1, v2, v3, . . . , vm) = λU (minm vm) for every U ∈ U and all v1, v2, v3, . . . , vm ∈
R, or U(v1, v2, v3, . . . , vm) = λU (maxm vm) for every U ∈ U and all v1, v2, v3, . . . , vm ∈ R.

Immediately follows from Lemmas A.1.5, A.1.6, and A.1.4.

Lemma A.1.8. For every U ∈ U and all v1, v2, v3, . . . , vm ∈ R, there holds U(v1, v2, v3, . . . , vm) =
λU (minm vm).
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Proof. In light of Lemma A.1.7, it is enough to show that the maximum aggregation is not “good” in
the case of negative impacts. If U contains functions of m ≥ 3 arguments, the dual to Example 4.2 will
do. Otherwise, we need an example more.

Let us consider a generalized congestion game with strictly negative impacts and the maximum ag-
gregation: N = {1, 2, 3}; the facilities are A = {a, b, c, d, e}; X1 =

{

{a, e}, {b, d}
}

; X2 =
{

{a, c}, {d, e}
}

;
X3 =

{

{a, b}, {c, e}
}

; ϕa(3) = ϕe(3) = 0, ϕc(2) = ϕe(2) = 1, ϕa(2) = ϕd(2) = ϕe(1) = 2, ϕb(2) = 3,
ϕc(1) = 4, ϕd(1) = 5, ϕa(1) = 6, and ϕb(1) = 7; every Uxi

i is the same U defined by (26). Denoting
uk = λU (k) for each k ∈ {1, 2, . . . , 7}, we obtain the following 2 × 2 × 2 matrix of the game (player 1
chooses rows, player 2 columns, and player 3 matrices):

ab ce
ac de ac de

ae
bd

[

(u2, u4, u7) (u2, u5, u7)
(u5, u4, u3) (u3, u2, u6)

] [

(u2, u2, u1) (u6, u5, u4)
(u7, u6, u2) (u7, u2, u4)

]

.

The individual improvement relation is acyclic (as it should be according to Proposition 4.5) and the
southwestern corner of the left matrix is a unique Nash equilibrium. However, this equilibrium is
strongly Pareto dominated by the northeastern corner of the right matrix.

Thus, (14a) is proven. Let us turn to (14b).

Lemma A.1.9. Let U,U ′ ∈ U and λU ̸= λU
′

. Then λU (R) ∩ λU
′

(R) = ∅.

Proof. Let us suppose the contrary, λU (R)∩λU
′

(R) ̸= ∅. Since both λU and λU
′

are homeomorphisms,
λU (R) ∩ λU

′

(R) is open and {v ∈ R | λU
′

(v) = λU (v)} is closed in R, there must be v′ ̸= v such that
λU

′

(v′) = λU (v). Let #Σ(U ′) > 1.

1. Supposing first that v > v′, we denote u1 = λU
′

(v′). Then we pick v ∈]v′, v[, denote u0 = λU (v)
and u3 = λU

′

(v) (so u0 < λU (v) = u1 = λU
′

(v′) < u3), and pick v̄ > v so that u2 = λU (v̄) < u3;
u2 > u1 is satisfied automatically.

Let us consider a generalized congestion game with strictly negative impacts, which is consistent
with U: N = {1, 2}; the facilities are A = {a, b, c}∪D∪E, where D = {ds}2≤s≤m and E = {es}3≤s≤m′ ;
X1 =

{

{a}∪D, {b, c}∪E
}

; X2 =
{

{a, b}∪E, {c}∪D
}

; ϕa(2) = ϕb(1) = ϕc(2) = v, ϕa(1) = ϕc(1) = v̄,
ϕb(2) = v′, ϕds(2) = ϕe

s′
(2) = v̄ and ϕds(1) = ϕe

s′
(1) > v̄ for all appropriate s and s′; Uxi

i is U if xi
contains D and U ′ otherwise. The 2× 2 matrix of the game looks as follows:

abE cD
aD (u0, u3) (u2, u2)
bcE (u1, u1) (u3, u0).

We have a prisoner’s dilemma: strategies with the “U ′ aggregation” are dominant, but the northeastern
corner strongly Pareto dominates the southwestern one.

2. Supposing v′ > v, we denote u0 = λU
′

(v) and u4 = λU (v) > u0; then we pick v ∈]v, v′[ and
v+ > v̄ > v′, and denote u3 = λU

′

(v) < u4 < λU
′

(v̄) = u6 < λU
′

(v+) = u7. Then we pick v′′ ∈]v, v[
so that u5 = λU (v′′) < u6; u5 > u4 is satisfied automatically. Finally, we pick v′′′ ∈]v, v′′[, and denote
u1 = λU

′

(v′′′) and u2 = λU
′

(v′′); we have u0 < u1 < · · · < u7.
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Let us consider a generalized congestion game with strictly negative impacts, which is consistent
with U: N = {1, 2, 3}; the facilities are A = {a, b, c, d} ∪ E ∪ F , where E = {es}2≤s≤m and F =
{fs}2≤s≤m′ ; X1 =

{

{a} ∪ E, {d} ∪ F
}

; X2 =
{

{a, b} ∪ F \ {f2}, {c} ∪ F
}

; X3 =
{

{d} ∪ F, {b} ∪ F
}

;
ϕa(2) = v, ϕa(1) = ϕb(2) = v′′, ϕb(1) = v+, ϕc(1) = v′′′, ϕd(2) = v, ϕd(1) = ϕe

s′
(1) = ϕfs(3) = v̄,

ϕfs(2) = v+ and ϕfs(1) > v+ for all appropriate s and s′; Uxi

i is U if xi contains E and U ′ otherwise.
The 2× 2× 2 matrix of the game looks as follows (again, player 1 chooses rows, player 2 columns, and
player 3 matrices):

dF bF
abF cF abF cF

aE
dF

[

(u4, u0, u6) (u5, u1, u6)
(u3, u2, u3) (u3, u1, u3)

] [

(u4, u0, u2) (u5, u1, u7)
(u6, u2, u2) (u6, u1, u7)

]

.

There is no Nash equilibrium in the game.

A.2 Proof of [3 ⇒ 1] in Theorem 6.1

Let U be a set of admissible aggregation functions satisfying both conditions (14) from Theorem 6.1
and such that #Σ(U) = 1 for, at most, one U ∈ U. The condition (14b) obviously implies that U is
partitioned into a (finite or infinite) number of subsets Wα (α ∈ A) such that λU = λU

′

whenever U
and U ′ belong to the same Wα, and λU (R) ∩ λU

′

(R) = ∅ whenever they do not. The latter condition,
in turn, means that the set A is linearly ordered in the sense that α > α′ ⇐⇒

[

λU (u) > λU
′

(u′)

whenever U ∈Wα, U ′ ∈Wα′

, and u, u′ ∈ R
]

.

Let Γ be a generalized congestion game with negative impacts which is consistent with U. For
each player i ∈ N , the order on A generates an ordering on Xi: xi ≽ yi ⇐⇒

[

Uxi

i ∈ Wα & Uyi
i ∈

Wα′

& α ≥ α′
]

. Obviously, ui(xi, z−i) > ui(yi, z
′
−i) for all z−i, z

′
−i ∈ X−i whenever xi ≻ yi. Assuming

the possibility of a coalition improvement cycle in Γ, we immediately see that all strategies of each
player involved in the cycle must be equivalent in that ordering. Denoting Γ∗ the game with the same
players, facilities, and strategies, but with the minimum aggregation (6), we see that the same cycle is
a coalition improvement cycle in Γ∗ as well; however, this contradicts Theorem 4.1.

A.3 Proof of Proposition 6.2

The condition here is the same as Statement 2 of Theorem 6.1. Therefore, we can argue exactly as
in Section A.1 until we reach Lemma A.1.9, where the uniqueness of U ∈ U for which #Σ(U) = 1
was relied upon indeed. However, if #Σ(U ′) = #Σ(U) = 1, then (15b), unlike (14b), does not require
anything of such U ′ and U , so the lemma is not needed.

B Structured utilities

B.1 Proof of [2 ⇒ 3] in Theorem 6.3

There is a considerable similarity with the proof of Theorem 6.1. Again, we start with the symmetry
of every function U ∈ U.
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Lemma B.1.1. Let U ∈ U, s′, s′′ ∈ Σ(U), v−, v+ ∈ R, and v′Σ(U), v
′′
Σ(U) ∈ R

Σ(U) be such that v+ > v−,

v′′s′′ = v′s′ = v+, v′′s′ = v′s′′ = v−, and v′′s = v′s for all s ∈ Σ(U) \ {s′, s′′}. Then U(v′′Σ(U)) = U(v′Σ(U)).

Proof. Supposing the contrary, we may, without restricting generality, assume u+ = U(v′′Σ(U)) >

U(v′Σ(U)) = u−. Now let us consider a finite game with structured utilities which is consistent with

U: N = {1, 2}; the facilities are A = {a, b} ∪ C, where C = {cs}s∈Σ(U)\{s′,s′′}; Υ1 = Υ2 = A;
X1 = X2 = {1, 2}; ϕa(x1, x2) = v− if x1 = x2 and ϕa(x1, x2) = v+ otherwise; ϕb(x1, x2) = v− if
x1 ̸= x2 and ϕa(x1, x2) = v+ otherwise; ϕcs(x1, x2) = vs for all s ∈ Σ(U) \ {s′, s′′} and (x1, x2) ∈ XN ;
Uxi

i is U for both i ∈ N and all xi ∈ Xi; µ
x1

1 (a) = µx2

2 (b) = s′′ and µx1

1 (b) = µx2

2 (a) = s′ for all xi ∈ Xi,
whereas µxi

i (cs) = s for both i ∈ N and all xi ∈ Xi and s ∈ Σ(U) \ {s′, s′′}. The 2 × 2 matrix of the
game (as usual, player 1 chooses rows, numbered from top to bottom, while player 2 chooses columns,
numbered from left to right) looks as follows:

(u−, u+) (u+, u−)
(u+, u−) (u−, u+).

There is no Nash equilibrium in the game.

Remark. Exactly as in the proof of Theorem 6.1, neither continuity, nor monotonicity of U were
needed.

Lemma B.1.1 shows that the mappings µxi

i do not matter and hence may be ignored in the following.
Moreover, we may assume that Σ(U) = {1, . . . ,m} (with m dependent on U , naturally). As a next
step, we show that the impossibility of a prisoner’s dilemma implies that each indifference curve in
each two-dimensional section must exhibit a similarity with either minimum or maximum.

Lemma B.1.2. Let U ∈ U, v1 > v2, and

U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm);

then U(v1, v̄2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v1, v̄2, . . . , vm) = u′ < u = U(v1, v2, . . . , vm) for some v̄2 < v2. As in Lemma A.1.2, we may
assume that u− = U(v2, v2, v3, . . . , vm) < u′. By the continuity of U , there is v̄1 ∈]v2, v1[ such that
u′ < U(v̄1, v2, v3, . . . , vm) = u′′ < u. Thus,

u− < u′ < u′′ < u. (27)

Now let us consider a finite game with structured utilities which is consistent with U: N = {1, 2}; the
facilities are A = {a1, a2, b}∪C, where C = {cs}s∈{3,...,m}; Υi = {ai, b}∪C for both i; X1 = X2 = {1, 2};
Uxi

i is U for both i ∈ N and all xi ∈ Xi; ϕai(1) = v2, ϕai(2) = v1; ϕb(1, 1) = v̄1, ϕb(1, 2) = ϕb(2, 1) = v2,
ϕb(2, 2) = v̄2; ϕcs(x1, x2) = vs (s = 3, . . . ,m). The 2× 2 matrix of the game looks as follows:

(u′′, u′′) (u−, u)
(u, u−) (u′, u′).

Taking into account (27), we see that the southeastern corner (x1 = x2 = 2) is a unique Nash equilib-
rium, which is strongly Pareto dominated by the northwestern corner (x1 = x2 = 1).
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Lemma B.1.3. Let U ∈ U, v1 > v2, and

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm); (28)

then U(v̄1, v2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v̄1, v2, . . . , vm) = u′′ > u = U(v1, v2, . . . , vm) for some v̄1 > v1; we may assume, without restricting
generality, that u′′ < u+ = U(v1, v1, v3, . . . , vm).

By the continuity of U , (28) implies the existence of v′1 ∈]v2, v1[ such that u < u′ =
U(v′1, v1, v3, . . . , vm) < u′′. Thus,

u < u′ < u′′ < u+. (29)

Now let us consider a finite game with structured utilities which is consistent with U: N = {1, 2}; the
facilities are A = {a1, a2, b}∪C, where C = {cs}s∈{3,...,m}; Υi = {ai, b}∪C for both i; X1 = X2 = {1, 2};
Uxi

i is U for both i ∈ N and all xi ∈ Xi; ϕai(1) = v2, ϕai(2) = v1; ϕb(1, 1) = v̄1, ϕb(1, 2) = ϕb(2, 1) = v1,
ϕb(2, 2) = v′1; ϕcs(x1, x2) = vs (s = 3, . . . ,m). The 2× 2 matrix of the game looks as follows:

(u′′, u′′) (u, u+)
(u+, u) (u′, u′).

Taking into account (29), we see that the southeastern corner (x1 = x2 = 2) is a unique Nash equilib-
rium, which is strongly Pareto dominated by the northwestern corner (x1 = x2 = 1).

Lemma B.1.4. Let U,U ′ ∈ U, v1 > v2,

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm), (30)

v′1 > v′2, and
U ′(v′1, v

′
2, v

′
3, . . . , v

′
m′) > U ′(v′2, v

′
2, v

′
3, . . . , v

′
m′). (31)

Then v1 > v′2.

Proof. Supposing the contrary, v′2 ≥ v1, we denote u
−
1 = U(v′1, v2, v3, . . . , vm), u+1 = U(v1, v1, v3, . . . , vm),

u−2 = U ′(v1, v1, v
′
3, . . . , v

′
m′), and u

+
2 = U ′(v′1, v2, v

′
3, . . . , v

′
m′). We have u+1 > u−1 by Lemma B.1.3 since

v′1 > v′2 ≥ v1, and u
+
2 > u−2 by Lemma B.1.2 since v′2 ≥ v1 > v2.

Now we consider a finite game with structured utilities which is consistent with U: N = {1, 2}; the
facilities are A = {a, b} ∪ C ∪ D, where C = {cs}s∈{3,...,m} and D = {ds}s∈{3,...,m′}; Υ1 = {a, b} ∪ C,
Υ2 = {a, b} ∪ D; X1 = X2 = {1, 2}; Ux1

1 is U for both x1 ∈ X1 and Ux2

2 is U ′ for both x2 ∈ X2;
ϕa(x1, x2) = v1 if x1 = x2, ϕa(x1, x2) = v′1 otherwise; ϕb(x1, x2) = v1 if x1 = x2, ϕb(x1, x2) = v2
otherwise; ϕcs(x1) = vs for both x1 ∈ X1 and all s = 3, . . . ,m; ϕds(x2) = vs for both x2 ∈ X2 and all
s = 3, . . . ,m′. The 2× 2 matrix of the game looks as follows:

(u−1 , u
+
2 ) (u+1 , u

−
2 )

(u+1 , u
−
2 ) (u−1 , u

+
2 ).

There is no Nash equilibrium in the game.
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Lemma B.1.5. Either U(v1, v2, v3, . . . , vm) = λU (minm vm) for every U ∈ U and all v1, v2, v3, . . . , vm ∈
R, or U(v1, v2, v3, . . . , vm) = λU (maxm vm) for every U ∈ U and all v1, v2, v3, . . . , vm ∈ R.

The statement follows from Lemma B.1.4 in the same way as Lemma A.1.7 followed from
Lemma A.1.4.

Finally, let us turn to (17).

Lemma B.1.6. Let U,U ′ ∈ U, #Σ(U) = #Σ(U ′), and λU ̸= λU
′

. Then λU (R) ∩ λU
′

(R) = ∅.

Proof. Supposing the contrary, we, exactly as in the proof of Lemma A.1.9, obtain the existence of
v′ > v such that λU

′

(v′) = λU (v). We denote u+ = λU (v) and u− = λU
′

(v); obviously, u− < u+. Then
we pick v′′ < v such that λU (v′′) = u ∈]u−, u+[, and pick v0 < v′ such that λU (v0) = u0 ∈]u, u+[.
Thus, u− < u < u0 < u+.

Now we consider a finite game with structured utilities which is consistent with U: N = {1, 2}; the
facilities are A = {as}s∈{1,...,m}, where m = #Σ(U) = #Σ(U ′); Υi = A for both i; X1 = X2 = {1, 2};
U1
i is U and U2

i is U ′ for both i; for each s ∈ {1, . . . ,m}, ϕas(1, 1) = v′′, ϕas(2, 1) = ϕas(1, 2) = v, and
ϕas(2, 2) = v0. Since ϕas(xN ) does not depend on s, the 2× 2 matrix of the game is the same whether
(16a) or (16b) holds:

(u, u) (u+, u−)
(u−, u+) (u0, u0).

We have a prisoner’s dilemma: strategies with the “U aggregation” (xi = 1) are dominant, but the
southeastern corner strongly Pareto dominates the northwestern one.

Remark. Unlike Lemma A.1.9, there is nothing special about the case of #Σ(U) = 1 here.

B.2 Proof of [3 ⇒ 1] in Theorem 6.3

Let U be a set of admissible aggregation functions satisfying Condition 3 from Theorem 6.3. Denoting
U
m = {U ∈ U | #Σ(U) = m} for every m ∈ N, we may argue in the same way as in Section A.2

and obtain the partitioning of each (nonempty) Um into subsets Wα (α ∈ A(m)) such that λU = λU
′

whenever U and U ′ belong to the same Wα and the set A(m) is linearly ordered in the sense that
α > α′ ⇐⇒

[

λU (u) > λU
′

(u′) whenever U ∈Wα, U ′ ∈Wα′

, and u, u′ ∈ R
]

.

Let Γ be a game with structured utilities which is consistent with U and where the strategy sets are
compact and utility functions upper semicontinuous. We have to prove that Γ admits an ω-potential.

For each i ∈ N , we have #Σ(Uxi

i ) = #Υi for all xi ∈ Xi. Therefore, the order on A(#Υi) generates
an ordering on Xi (exactly as in Section A.2): yi ≽i xi ⇐⇒

[

Uyi
i ∈ Wα & Uxi

i ∈ Wα′

& α ≥ α′
]

.
Obviously, ui(yi, z−i) > ui(xi, z

′
−i) for all z−i, z

′
−i ∈ X−i whenever yi ≻i xi. It follows immediately that

yi ≽i xi whenever yN ◃I xN and i ∈ I.

Now we define a preorder on XN by

yN ≽N xN ⇋ ∀i ∈ N [yi ≽i xi],

and denote ≻N and ∼N its asymmetric and symmetric components. The upper semicontinuity of ui
implies that each ≽i is ω-transitive nad hence ≽N is ω-transitive as well.
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Apart from “genuine” utilities ui, we introduce, for each i ∈ N , “neutral” utility functions u0i by
(6), i.e., “without λ’s.”

Let (16a) hold. We denote >Lmin the leximin ordering on XN defined by utility functions u0i as in
the proof of Theorem 4.1. Now we define our potential as a lexicography:

yN ≻≻ xN ⇐⇒
[

yN ≻N xN or [yN ∼N xN & yN >Lmin xN ]
]

. (32)

Obviously, ≻≻ is irreflexive and transitive. To show its ω-transitivity, we assume that xkN → xωN and
xk+1
N ≻≻ xkN for all k ∈ N. Then, by definition, xk+1

N ≽N xkN for all k, and hence xωN ≽N x0N since that
relation is ω-transitive. If xωN ≻N x0N , we are home by the first component in (32). Otherwise, we have
xk+1
N ∼N xkN for all k, and hence are home by the second component in (32) since >Lmin is ω-transitive.

Finally, let yN ◃
Coa xN ; we have to show that yN ≻≻ xN . First, yN ≽N xN . If yN ≻N xN ,

then we are home immediately. Otherwise, the same λ’s are applied to each u0i in both cases; hence
yN >Lmin xN exactly as in the proof of Theorem 4.1.

If (16b) holds, we argue dually, replacing >Lmin with >Lmax.
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