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Abstract

This note presents an algorithm for deriving first order conditions applicable
to the most common optimisation problems encountered in dynamic stochas-
tic models automatically. Given a symbolic library or a computer algebra
system one can efficiently derive first order conditions which can then be
used for solving models numerically (steady state, linearisation).
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1 Introduction

Toolboxes aimed at solving dynamic stochastic general equilibrium models (e.g. Dynare [1]) require users
to derive first order conditions for agents’ optimisation problems manually. This is most probably caused
by the lack of an algorithm for deriving them automatically, given objective function and constraints. This
note presents such algorithm which is applicable to most common optimisation problems encountered in dy-
namic stochastic models.

Given a symbolic library or a computer algebra system satisfying some functional requirements, one can
efficiently derive the first order conditions which can then be used for solving the model numerically (steady
state, linearisation).

The approach presented here is fairly general and can be extended in order to handle more complicated
optimisation problems.

∗The views expressed herein are solely of the authors and do not necessarily reflect those of the Chancellery of the Prime

Minister of the Republic of Poland.
†E-mail: gklima@users.sourceforge.net.
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2 The problem

This is the standard setup presented in economic textbooks. A detailed exposition can be for example found
in [3] or [2].

Time is discrete, infinite, and it begins at t = 0. In each period t = 1, 2, . . . a realisation of the stochastic
event ξt is observed. A history of events up to time t is denoted by st. More formally, let (Ω,F ,P) be
a discrete probabilistic space with the filtration {∅,Ω} = F0 ⊂ F1 ⊂ · · · Ft ⊂ Ft+1 · · · ⊂ Ω. Each event
at date t (ξt) and every history up to time t (st) is Ft-measurable. Let π(st) denote the probability of
history st up to time t. The conditional probability π(st+1|st) is the probability of the event ξt+1 such that
st+1 = st ∩ ξt+1.

In what follows it is assumed that variable with the time index t is Ft-measurable.

In the period t = 0 an agent determines vectors of control variables x(st) =
(
x1(st), . . . , x

N (st)
)
at all possible

events st as a solution to her optimisation problem. The objective function U0 (lifetime utility) is recursively
given by the following equation:

Ut(st) =F
(
xt−1(st−1), xt(st), zt−1(st−1), zt(st),EtH

1(xt−1, xt, Ut+1, zt−1, zt, zt+1), . . . ,EtH
J(. . . )

)
, (1)

with constraints satisfying:

Gi
(
xt−1(st−1), xt(st), zt−1(st−1), zt(st),EtH

1(xt−1, xt, Ut+1, zt−1, zt, zt+1), . . . ,EtH
J(. . . )

)
= 0,

x−1 given. (2)

where xt(st) are decision variables and zt(st) are exogenous variables and i = 1, . . . , I indexes constraints.

We shall denote the expression EtH
j(xt−1, xt, Ut+1, zt−1, zt, zt+1) compactly as EtH

j
t+1 with j = 1, . . . , J .

We have:

EtH
j
t+1 =

∑

st+1⊂st

π(st+1|st)H
j (xt−1(st−1), xt(st), Ut+1(st+1), zt−1(st−1), zt(st), zt+1(st+1)) .

Let us now modify the problem by substituting qjt (st) for EtH
j
t+1 and adding constraints of the form qjt (st) =

EtH
j
t+1.

We shall also use Ft(st) andGi
t(st) to denote expressions F

(
xt−1(st−1), xt(st), zt−1(st−1), zt(st), q

1
t (st), . . . , q

j
t (st)

)

and Gi
(
xt−1(st−1), xt(st), zt−1(st−1), zt(st), q

1
t (st), . . . , q

j
t (st)

)
respectively.

Then the agent’s problem may be written as:

max
(xt)∞t=0

,(Ut)∞t=0

U0

s.t. : (3)

Ut(st) = Ft(st),

Gi
t(st) = 0,

qjt (st) = EtH
j
t+1,

x−1 given.
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3 The First Order Conditions

The Lagrangian for the problem (3) may be written as follows:

L = U0 +

∞∑

t=0

∑

st

π(st)λt(st) [Ft(st)− Ut(st)]

+
∞∑

t=0

∑

st

π(st)λt(st)
I∑

i=1

µi
t(st)G

i
t(st)

+
∞∑

t=0

∑

st

π(st)λt(st)

J∑

j=1

ηjt (st)(EtH
j
t+1 − qjt (st)).

The first order condition for maximizing the Lagrangian with respect to Ut(st) is:

0 = −π(st)λt(st) + π(st−1)λt−1(st−1)π(st|st−1)

J∑

j=1

ηjt−1(st−1)H
j
t,3(st),

where 3 in Hj
t,3(st) stands for a partial derivative of Hj

t (st) with respect to its third argument, i.e. Ut(st)
(we shall adopt such notation throughout this note).

Using the property π(st−1)π(st|st−1) = π(st), aggregating the equation with respect to (st) and dividing it
by π(st) yields:

λt(st) = λt−1(st−1)
J∑

j=1

ηjt−1(st−1)H
j
t,3(st),

which implies:

λt+1(st+1) = λt(st)

J∑

j=1

ηjt (st)H
j
t+1,3(st+1).

In general, Lagrange multipliers on time aggregators, i.e. equation (1), are non-stationary. For instance,
in case of exponential discounting, one will have λt+1 = βλt. Dividing the equation by λt(st) we obtain:

λt+1(st+1)

λt(st)
=

J∑

j=1

ηjt (st)H
j
t+1,3(st+1).

Now let us set λt(st) = 1. This is equivalent to reinterpreting λt+1t(st+1) as
λt+1(st+1)

λt(st)
in all equations. We

have:

λt+1(st+1) =

J∑

j=1

ηjt (st)H
j
t+1,3(st+1). (4)

The first order condition for maximizing the Lagrangian L with respect to xt(st) gives:

0 = π(st)λt(st)Ft,2(st) +
∑

st+1⊂st

π(st+1)λt+1(st+1)Ft+1,1(st+1)

+ π(st)λt(st)

I∑

i=1

µi
t(st)G

i
t,2(st) +

∑

st+1⊂st

π(st+1)λt+1(st+1)

I∑

i=1

µi
t+1(st+1)G

i
t+1,1(st+1)

+ π(st)λt(st)

J∑

j=1

ηjt (st)H
j
t+1,2(st+1) +

∑

st+1⊂st

π(st+1)λt+1(st+1)

J∑

j=1

ηjt+1(st+1)H
j
t+2,1(st+2).
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Simplification yields:

0 = π(st)λt(st)


Ft,2(st) +

I∑

i=1

µi
t(st)G

i
t,2(st) +

J∑

j=1

ηjt (st)H
j
t+1,2(st+1)




+
∑

st+1⊂st

π(st+1)λt+1(st+1)


Ft+1,1(st+1) +

I∑

i=1

µi
t+1(st+1)G

i
t+1,1(st+1) +

J∑

j=1

ηjt+1(st+1)H
j
t+2,1(st+2)


 .

Setting λt(st) = 1 as before, dividing the equation by π(st), and making use of the property π(st+1) =
π(st+1|st)π(st) we obtain:

0 = Ft,2(st) +

I∑

i=1

µi
t(st)G

i
t,2(st) +

J∑

j=1

ηjt (st)H
j
t+1,2(st+1)

+
∑

st+1⊂st

π(st+1|st)λt+1(st+1)


Ft+1,1(st+1) +

I∑

i=1

µi
t+1(st+1)G

i
t+1,1(st+1) +

J∑

j=1

ηjt+1(st+1)H
j
t+2,1(st+2)


 .

After rearrangement we arrive at stochastic Euler equations:

0 =Ft,2(st) +

I∑

i=1

µi
t(st)G

i
t,2(st) +

J∑

j=1

ηjt (st)H
j
t+1,2(st+1) (5)

+ Et


λt+1


Ft+1,1 +

I∑

i=1

µi
t+1(st+1)G

i
t+1,1 +

J∑

j=1

ηjt+1(st+1)H
j
t+2,1(st+2)




 .

Finally, differentiating the Lagrangean L with respect to qjt (st) gives:

0 = π(st)λt(st)Ft,4+j(st) + π(st)λt(st)

I∑

i=1

µi
t(st)G

i
t,4+j(st)− π(st)λt(st)η

j
t (st).

Setting λt(st) = 1 and dividing the equation by π(st) yields:

0 = Ft,4+j(st) +

I∑

i=1

µi
t(st)G

i
t,4+j(st)− ηjt (st). (6)

There are N + 1 + J first order conditions: one w.r.t. to Ut (4), N w.r.t. xn
t (5) and J w.r.t. qjt (6). There

are also I conditions Gi
t = 0, the equation F

(
xt−1, xt, zt−1, zt, q

1
t , . . . , q

j
t

)
= Ut and J equations defining

qjt . The overall number of equations (N + I + 2J + 2) equals the number of variables: N decision variables
xn
t , the variable Ut, J variables qjt , the Lagrange multiplier λt, I Lagrange multipliers µi

t and J Lagrange
multipliers ηjt (which gives N + I + 2J + 2 variables).

4 An example

The purpose of this section is to illustrate the FOC derivation procedure presented above with an example
of a typical optimisation problem encountered in numerous RBC models. Assume a representative firm in
a competitive setting maximises an objective (discounted profits) at time 0 (Π0), given definition of profits
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earned each period (πt), the technology available (Cobb-Douglas production function), and the low of motion
for capital (Kt). The firm owns capital and employs labour Lt at wage Wt. It uses production factors to
produce Yt, which it sells at price Pt. All prices are treated as given. The firm discounts its next-period profits
with the growth rate of the Lagrange multiplier (λc

t) in household’s (firm’s owner) problem corresponding to
the budget constraint, i.e. λc

t is a shadow price of consumption. Therefore, the expected discounted profit is:

E0

[
∞∑

t=0

βtλc
t

λc
0

πt

]
.

The firm’s optimisation problem can be written as follows:

max
Kt,L

d
t ,Yt,It,πt

Πt = πt + Et

[
β
λc
t+1

λc
t

Πt+1

]
(7)

s.t. :

πt = PtYt − LtWt − It, (λπ
t )

Yt = Kt−1
α
(
Lte

Zt
)1−α

, (λY
t )

Kt = It +Kt−1 (1− δ) , (λk
t )

where Zt is an exogenous variable determining labour productivity and α, β, and δ are respectively: capital
share, discount factor, and depreciation rate. λπ

t , λ
Y
t , λ

k
t are Lagrange multipliers for the constraints.

In order to derive the FOCs for this maximisation problem using equations (4), (5), and (6), it is helpful to
define the symbols used in the previous section for the problem (7):

xt ≡ [Kt, Lt, Yt, It, πt],

zt ≡ [Zt],

Ut ≡ Πt, λt ≡ λΠ
t

q1t = EtH
1
t+1 ≡ Et

[
β
λc
t+1

λc
t

Πt+1

]
, (η1t )

Ft ≡ x5
t + q1t ,

G1
t ≡ Ptx

3
t − x2

tWt − x4
t − x5

t , (µ1
t ≡ λπ

t )

G2
t ≡ x1

t−1
α
(
x2
t e

z1
t

)1−α

− x3
t , (µ2

t ≡ λY
t )

G3
t ≡ x4

t + x1
t−1 (1− δ)− x1

t . (µ3
t ≡ λk

t )

Substituting these definitions in equations (4)-(6) one obtains the following set of first order conditions:

• from equation (4):
− λΠ

t + η1t−1βλ
c
t−1

−1λc
t = 0,

• from equation (5):

− λk
t + Et

[
λΠ
t+1

(
αλY

t+1Kt
−1+α

(
Ld
t+1e

Zt+1
)1−α

+ λk
t+1 (1− δ)

)]
= 0,

−Wtλ
π
t + λY

t e
Zt (1− α)Kt−1

α
(
Ld
t e

Zt
)−α

= 0,

Ptλ
π
t − λY

t = 0,

− λπ
t + λk

t = 0,

1− λπ
t = 0,
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• from equation (6):
1− η1t = 0.

Substituting for Lagrange multipliers one gets familiar results:

− 1 + Et

[
βλc

t
−1λc

t+1

(
1− δ + αPt+1Kt

−1+α
(
Ld
t+1e

Zt+1
)1−α

)]
= 0,

−Wt + Pte
Zt (1− α)Kt−1

α
(
Ld
t e

Zt
)−α

= 0.

5 Algorithm

The equations derived in section 3 can be collected to yield an automatic method for deriving the first order
conditions manually. This method is presented as Algorithm 1.

♯ FOC w.r.t. U
1: for j ← 1, . . . , J do

2: Zj ← ηjt
∂H

j

t+1

∂Ut+1

3: end for

4: Z ←
∑

j Z
j

5: C0 ← Z − λt+1

♯ FOCs w.r.t. x
6: for n← 1, . . . , N do

7: for i← 1, . . . , I do

8: Li
n ← µi

t
∂Gi

t

∂xn
t

9: P i
n ← µi

t+1
∂Gi

t+1

∂xn
t

10: end for

11: for j ← 1, . . . , J do

12: M j
n ← ηjt

∂H
j

t+1

∂xn
t

13: Qj
n ← ηjt+1

∂H
j

t+2

∂xn
t

14: end for

15: Ln ←
∑

i L
i
n

16: Mn ←
∑

j M
j
n

17: Pn ←
∑

i P
i
n

18: Qn ←
∑

j Q
j
n

19: Rn ←
∂Ft+1

∂xn
t

+ Pn +Qn

20: Cn ← ∂Ft

∂xn
t
+ Ln +Mn + Et[λt+1Rn]

21: end for

♯ FOCs w.r.t. q
22: for j ← 1, . . . , J do

23: for i← 1, . . . , I do

24: Si
j ← µi

t
∂Gi

t

∂q
j
t

25: end for

26: Sj ←
∑

i S
i
j

27: CN+j ← ∂Ft

∂q
j
t

+ Sj − ηjt
28: end for

Algorithm 1: Derivation of First Order Conditions for (3)
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Note, that the last set of first order conditions can always be solved for ηt and used to eliminate it from all
remaining equations.

In order to implement the above algorithm, one needs a symbolic library or a computer algebra system with
the following functionality:

• variables and time-indexed variables,

• basic arithmetical operations (+, −, /, )̂ and elementary functions,

• lag and conditional expected value operators,

• substitution and differentiation operations.

6 Special case — the deterministic model

In the case of deterministic model the objective function U0 (lifetime utility) is recursively given by the fol-
lowing equation:

Ut = F (xt−1, xt, zt−1, zt, zt+1, Ut+1) , (8)

with constraints satisfying:
Gi (xt−1, xt, zt−1, zt, zt+1, Ut+1) , (9)

where xt are decision variables and zt are exogenous variables and i = 1, . . . , I indexes constraints.

As earlier, we shall also use Ft and Gi
t to denote the expressions F (xt−1, xt, zt−1, zt, zt+1, Ut+1)

and Gi (xt−1, xt, zt−1, zt, zt+1, Ut+1), respectively.

Then the agent’s problem may be written as:

max
(xt)∞t=0

,(Ut)∞t=0

U0

s.t. : (10)

Ut = Ft,

Gi
t = 0,

x−1 given.

The Lagrangian for problem (10) may be written as follows:

L = U0 +

∞∑

t=0

λt (Ft − Ut) +

∞∑

t=0

λt

I∑

i=1

µi
tG

i
t.

The first order condition for maximizing the Lagrangian with respect to Ut(st) is:

0 = −λt + λt−1Ft−1,6 + λt−1

I∑

i=1

µi
t−1G

i
t−1,6.

Rearranging and aggregating the formula yields:

λt = λt−1

(
Ft−1,6 +

I∑

i=1

µi
t−1G

i
t−1,6

)
,
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which implies:

λt+1 = λt

(
Ft,6 +

I∑

i=1

µi
tG

i
t,6

)
.

Dividing the equation by λt we obtain:

λt+1

λt

= Ft,6 +

I∑

i=1

µi
tG

i
t,6.

Now let us set λt = 1. This is equivalent to reinterpreting λt+1 as λt+1

λt
in all equations. We have:

λt+1 = Ft,6 +

I∑

i=1

µi
tG

i
t,6. (11)

The first order condition for maximizing the Lagrangian L with respect to xt gives:

0 = λtFt,2 + λt+1Ft+1,1 + λt

I∑

i=1

µi
tG

i
t,2 + λt+1

I∑

i=1

µi
t+1G

i
t+1,1.

After setting λt = 1 as before and rearrangement we arrive at:

0 = Ft,2 +
I∑

i=1

µi
tG

i
t,2 + λt+1

(
Ft+1,1 +

I∑

i=1

µi
t+1G

i
t+1,1

)
. (12)

Equations (11) and (12) can be collected to yield an automatic method for deriving first order conditions
of a deterministic model. This method is presented as Algorithm 2.

♯ FOC w.r.t. U
1: A← ∂Ft

∂Ut+1

2: for i← 1, . . . , I do

3: Bi ← µi
t

∂Gi
t

∂Ut+1

4: end for

5: B ←
∑

i B
i

6: C0 ← A+B − λt+1

♯ FOCs w.r.t. x
7: for n← 1, . . . , N do

8: Kn ←
∂Ft

∂xn
t

9: Mn ←
∂Ft+1

∂xn
t

10: for i← 1, . . . , I do

11: Li
n ← µi

t
∂Gi

t

∂xn
t

12: P i
n ← µi

t+1
∂Gi

t+1

∂xn
t

13: end for

14: Ln ←
∑

i L
i
n

15: Pn ←
∑

i P
i
n

16: Cn ← Kn + Ln + λt+1 (Mn + Pn)
17: end for

Algorithm 2: Derivation of First Order Conditions — deterministic model
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7 Summary

We have derived the first order conditions for a general dynamic stochastic optimisation problem with ob-
jective function given by a recursive forward-looking equation. We have also constructed an algorithm for
deriving first order conditions on a computer automatically. This algorithm has already been implemented
in the DSGE solution framework called gEcon1 which is being developed at the Chancellery of the Prime
Minister of the Republic of Poland.

It is hoped that the algorithm presented here will reduce the burden and risk associated with pen & paper
derivations of first order conditions in DSGE models and allow researchers in the field to focus on economic
aspects of the models.
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