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Abstract

Using Bayesian maximum likelihood and data for Portugal, I estimate a New Keynesian DSGE model
allowing for the presence of non-Ricardian households and test the stability of the model’s prediction
when the fraction of liquidity-constrained households changes. In particular, I assess the impacts on:
(i) the model parameters posterior distributions; (ii) the impulse responses to six types of structural
shocks; and (iii) the sources of fluctuations in output, inflation and the nominal interest rate. The first
interesting result is the estimated share of non-Ricardian households in the Portuguese economy, which
is found to be relatively high (58%). Even under a simplistic model economy, this result seems plausible
and in line with Campbell and Mankiw (1989) for the US (50% of households estimated to be liquidity-
constrained) but slightly higher than for other European countries and the euro area (between 25% and
37%). I also show that different—even if relatively close—shares of non-Ricardian households provide
very distinct estimates of several parameters, and uneven results and interpretations. Impulse responses
to consumption preference and productivity shocks are more amplified for lower shares of liquidity-
constrained households; whereas for greater proportions, the model predicts more noticeable responses
to price markup and government spending shocks. Fluctuations in output growth are mainly driven by
productivity shocks for a lower share of rule-of-thumb consumers and by price markup shocks in the
opposite scenario. Furthermore, the presence of a high proportion of non-Ricardian households and a
high degree of price stickiness makes the Taylor-type interest rate rule solution locally indeterminate as
in Gali et al. (2007).

Jel classification: C11, E12, E37, E52, E62.

Keywords: DSGE, New Keynesian model, non-Ricardian households, Bayesian inference, Por-
tugal.

*Research Fellow at the Inter-American Development Bank (IDB). E-mail address: rmarto@iadb.org. This paper
is based on the dissertation submitted as a fulfilment of the Master in Economics at the University College London,
UK. I would like to thank Toru Kitagawa for his support, and comments. I am also grateful to Vincent Sterk, Riccardo
Constantini, and Hector Conroy for their valuable inputs. Useful insights from the lectures of Paul Levine and Bo
Yang given at the NIPE’s 9th summer school are duly acknowledged. The views expressed in this paper are mine
and should not be interpreted as reflecting the views of the IDB. Any errors or shortcomings are my responsibility.



1 Introduction

Since Mankiw’s (2000) appeal for the inclusion of rule-of-thumb consumers in macroeconomic mod-
els, several papers have attempted to do so. Most have calibrated their proportion, others have
estimated it but very few have attempted to analyze the impacts of different specifications on the
overall model predictions. Gali et al. (2004) assess the impact of different calibrated shares of rule-
of-thumb consumers on the interest rate rule equilibrium properties and Gali et al. (2007) extends
this analysis by studying equilibrium dynamics when the level of price stickiness varies. The latter
also provides a partial analysis of the impact of different shares of rule-of-thumb consumers. This
paper builds on these findings.

The paper presents and estimates a standard New Keynesian (NK) dynamic stochastic general
equilibrium (DSGE) model of the Portuguese economy allowing for two types of households like in
Gali et al. (2007): Ricardian (or optimizing) households and non-Ricardian (or liquidity-constrained
or rule-of-thumb) households. The former maximize their expected lifetime utility over consumption
and leisure and they have complete access to capital markets in order to smooth consumption over
time. The latter are constrained to choose a combination of consumption and leisure maximizing
their per period utility subject to their disposable income per period. The model adds several
frictions and shocks to Gali et al. (2007), namely: a consumption habit to Ricardian households
and price indexation to the intermediate goods firms not allowed to reoptimize prices in a Calvo

1Tt also adds five other shocks: an investment efficiency shock and

(1983) price setting scheme.
a consumption preference shock on Ricardian households; a labor-augmenting productivity shock
on intermediate goods firms technology and a price markup shock on their costs; and, a monetary
policy shock in the Taylor-type interest rate rule.

The choice of a NK model is relevant because it adds nominal rigidities, imperfections and
other frictions to the standard Real Business Cycle (RBC) model with the aim of reproducing
some important stylized facts these fail to consider: monetary policy is given a pertinent role in
influencing short-run real variables with the introduction of price stickiness in the form of staggered
prices a la Calvo (1983) or a la Taylor (1980) and economic stabilization policies are made relevant
to counteract cyclical fluctuations generated by imperfections and frictions. These standard flexible-
price models are unable to explain the sluggish adjustment of prices and to capture the large and
persistent response of output, as well as the increase in labor productivity after a monetary policy
shock. Yun (1996) and Christiano et al. (2005) introduced indexation that has successfully captured
inflation persistence and the delayed peak response of inflation to a monetary policy shock. In
addition, the response of private consumption to a government spending shock is estimated to be

negative in the standard RBC model, although several papers using Vector Autogressions (VAR)

! Consumption habits were added, as in Abel (1990), to capture the persistence in output and consumption present
in the data. Other features include wage stickiness as in Erceg et al. (2000) and investment costs as in Bernanke et
al. (1999) or Smets and Wouters (2003).



have pointed to a positive (Perotti, 2004) or at best insignificant (Mountford and Uhlig, 2004)
response of private consumption—the bulk of papers tends to favor the Keynesian hypothesis that
in normal times consumption responds positively to a rise in government spending.?

The inclusion of rule-of-thumb consumers is meant to capture the impact of fiscal policy shocks
on private consumption by introducing heterogeneity in consumers. This is motivated by the failure
of the permanent income hypothesis, showing that private consumption depends heavily on current
income.® Gali et al. (2007) extended the standard sticky-price model with deficit financing by
incorporating optimizing and rule-of-thumb consumers. They show that their calibrated model
can account for the government spending shock impact on private consumption. As opposed to
Gali et al., Coenen and Straub (2005) estimate the fraction of non-Ricardian households in the
Smets and Wouters model and consider a more complete fiscal policy framework. They point
to a relatively small share of liquidity-constrained households in the euro area and to a slight
response of consumption to a government spending shock with a distortion of Ricardian households
intertemporal consumption decision—their willingness to smooth consumption over time decreased.*

Lastly, this paper intends to add to the existing literature a comprehensive assessment of the
effect of non-Ricardian households in a DSGE model. It sheds light on the impact of different
fractions of non-Ricardian households on the computation of posterior distributions of parameters,
impulse response functions, variance and historical decompositions. Hence, this paper clarifies the
importance of choosing appropriately the share of rule-of-thumb consumers by showing that different
specifications may significantly alter overall results and conclusions. Furthermore, it should be
regarded as an attempt to define the share of non-Ricardian households in the Portuguese economy.
To the best of my knowledge, this is the first study that estimates it.?

The remainder of the paper is organized as follows: section 2 describes the model economy;
section 3 presents the calibrated parameters and priors defined for the Portuguese economy; and
for alternative specifications of non-Ricardian households section 4 analyzes posterior estimates, the
responses of output growth, inflation, and short-term nominal interest rate to structural shocks, as

well as their sources of fluctuations. Section 5 concludes the paper.

2Note, however, that Perotti (1999) provides evidence of a negative response to government spending in periods
of large fiscal consolidations.

3Gali et al. (2004) find that an interest rate rule that satisfies the Taylor principle (i.e. the short-term nominal
interest rate must respond more than proportionally to a change in inflation) for a given proportion of rule-of-thumb
consumers is not sufficient to ensure the unique equilibrium of the interest rate rule.

“Forni et al. (2009) add non-Ricardian households to Christiano et al. (2005) and conclude that fiscal policy has
a mild effect on private consumption.

® Almeida et al. (2010) present a dynamic general equilibrium model with calibrated non-Ricardian consumers (at
40%) to assess the effects of increasing competition in the labor market and in the non-tradable goods sector.



2 The model economy

Based on Gali et al. (2007), this New Keynesian model incorporates two different types of house-
holds: Ricardian and non-Ricardian. The model economy also features three other types of agents:
final goods (or retail) firms and intermediate goods (or wholesale) firms; and a monetary authority,
represented by the central bank, which is independent of the fiscal authority, the government.

In order to derive a system of non-linear stochastic difference equations defining the DSGE
model, agents preferences, the economy’s technological constraints, and the exogenous shocks af-
fecting the economy need to be specified. Agents decision rules are derived from the first-order
conditions of their (dynamic) optimization problem. Assuming that markets clear and aggregating

over agents, the model is then written in a log-linearized form.6

2.1 Households

The economy is populated by a continuum of infinitely-lived households, which may be of two
types: a proportion (1 — A) is a Ricardian household, which maximizes its expected lifetime utility
over consumption and leisure and which has complete access to capital markets in order to smooth
consumption over time; on the other hand, a fraction A is a non-Ricardian household constrained
to consume its disposable income each period. However, I allow the non-Ricardian consumers to
optimally choose a combination of consumption and leisure per period.

Both types of households are assumed to consume non-differentiated consumption goods and to
supply non-differentiated labor to firms. Total consumption is given by Cy = (1 — ) C1+ + ACa+
and total labor supplied defined as Ny = (1 — X) N1 + ANy, where C1; and N4 are aggregate
consumption and labor supply of Ricardian households, and Cy; and Na; aggregate consumption

and labor supply of liquidity-constrained consumers, respectively.

2.1.1 Ricardian households
Preferences

A representative Ricardian household, indexed by i € [0,1 — A), maximizes its expected lifetime
o]

utility over consumption and leisure as E; > B°U (C1,145 (7) , N1t4s (7). In particular, at time ¢ it

S=
derives utility from consuming goods C ; net of an external consumption habit H;, and from leisure
Li; defined as L1y =1 — Ny

oo exr Ug (Cry (i) — Ht)(l—g) (1- Ny, (i) 1—0e L,
Et25t p( ) ( ! — 1 ) | .
t=0 -

5Derivations and log-linearized equations are provided in the Appendix.



where 8 € (0,1) is the household’s rate of time preference, o. is the inverse of the intertemporal
elasticity of substitution and p is a preference parameter over consumption and leisure. The external
consumption habit is defined as a proportion of lagged aggregate Ricardian households consumption
H; = xC14—1, with x measuring the degree of habit persistence. v is a consumption preference

shock defined by the AR(1) process v = pquil | + £, where £f ~ N (0,03).

Budget constraint

Ricardian households face the following intertemporal real budget constraint:

Cl,t (Z) + ILt (Z)

AN
=z
+
=
=
|
=
_|_
S

(2)

where on the left-hand side we have the household’s expenditures and on the right-hand side the
household’s disposable resources. I ; denotes the investment made by the household in period ¢ in
real terms , W; is the nominal wage from a perfectly competitive labor market, P; the price index
and R; the real interest rate on capital. 77 ; denotes lump-sum taxes and D;; are dividends from
monopolistic firms owned by Ricardian households, both expressed in real terms.

The accumulation of capital by the Ricardian household evolves according to:

Kipp1 (i) = (1—0)Ki(i)+exp (vf) [1 -8 <II”(Z)>] I (i), (3)
1,t—1 (Z)

where K ;41 is the capital stock owned by Ricardian households at the beginning of period t+1 (or
end-of-period t capital stock), equivalent to the capital stock net of a time-invariant depreciation
rate 6 € [0,1] at the beginning of period ¢ and the investment made during this period net of a
non-negative adjustment cost. Following Smets and Wouters (2007), the adjustment cost function
satisfies S (1) = S’ (1) = 0 and S’,S” > 0, and has the convenient property that investment costs
disappear in the long-run. Its functional form is given by S (X;) = ¢x (X¢ — 1)2, where ¢x is an
adjustment cost parameter. Moreover, investment is subject to an efficiency shock v}, which follows

an AR(1) process v = p;vi_; + €}, where £} ~ N (0,07).

Optimality conditions

Solving the household’s maximization problem leads to the following first-order conditions:

(7) the consumption Euler equation (i.e. the intertemporal consumption /savings decision)

Ucy, (1) Qi (i) = BE: [Ucy .y (1) (Ripr + Quera (1) (1= 0))] 5 (4)

(73) the labor supply equation (i.e. the intratemporal consumption/leisure decision)
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and, (i7¢) the Ricardian household’s investment decision

Qv i) exp (1) [1 s <ht<1>)> _ S,( 1, (i) > 14 () ] T

Iy (3 L1 (i) ) T (i)
) ‘ AN 2
oo () ()] - o

Uc,, (i) and Un, , (i) are the Ricardian household’s marginal utilities of consumption and labor in

period t, respectively

Ucy, (i) = eap (vf) (1= 0) (Cre () = xCre-) 07797 (1= Ny ()20 (@)

and

Un, (1) = —eap (u) 0 (Cay (i) = xCru) 9077 (1= Ny (i) 07 ®)

Q1. (i) is the Tobin’s Q, defined as the ratio of the Lagrange multipliers over the capital accumu-

lation equation and over the budget constraint,

N 1 (4)
Q1 (i) = i) (9)

2.1.2 Liquidity-constrained households
Preferences

Non-Ricardian households, indexed by h € [1 — A, 1], do not face an external consumption habit,
which sustains the fact that liquidity-constrained households do not bother to “catch up with the
Joneses”, nor a consumption preference shock, in the sense that they are not exposed to fashion

trends. Unlike Ricardian consumers, their preferences are separable in consumption and leisure:

_ Cog (W)™ Nog ()¢
1—¢ 14

where ¢ is the inverse of the intertemporal elasticity of substitution and ¢ the inverse of the Frisch

U (Cy (), Noy (h))

, (10)

elasticity.



Budget constraint

A non-Ricardian household only receives wage income, which it spends on consumption goods:
P,Cy4 (h) < WyNay (h). (11)

Optimality conditions

The liquidity-constrained household’s optimal decision rules are characterized by the labor supply

equation, which must satisfy:

Wi

® s _ 't
Nag (h)? o () = 5

(12)

and by the binding (real) budget constraint, Co; (h) = %Ng,t (h).

2.2 Firms

There are two types of firms in this economy: final goods firms and intermediate goods firms.
Acting in a perfectly competitive market, retail firms buy differentiated intermediate goods Y; (j)
from monopolistically competitive wholesale firms, which they combine to supply the economy with

a single final good Y;.

2.2.1 Final goods sector: Retail firms
Dizat-Stiglitz aggregate demand and prices
Final goods firms use differentiated intermediate goods as input to produce Y; according to:

_<
1 -1

V= | v Ta) (13)
0
where ( is the elasticity of substitution between intermediate goods. Retail firms choose Y; (j)
at price P, (j) to minimize their total cost of production fol P, (j)Y: (7) dj subject to the constant
returns technology function (13). The first-order condition yields a set of aggregate demands for
each differentiated good j as a function of their relative price P; (j) in terms of the aggregate price
index P;:

Vi (j) = (Pt (j))_CYt, (14)

where Y; and P, are the Dixit-Stiglitz aggregates. From the zero-profit condition, the aggregate

price index can be written in terms of the price of differentiated goods as:



1 =
P - / PG Cd | (15)
0

2.2.2 Intermediate goods sector: Wholesale firms
Production technology

There is a continuum of monopolistically competitive firms, indexed by j € (0,1), each producing
a single differentiated good using labor and capital as inputs. Wholesale firms technology is rep-
resented by a standard Cobb-Douglas production function with a labor-augmenting productivity
shock:

Yi (4) = maz { feap (of) Ny ()" K0 (), 0} (16)

where Y; (j) denotes the differentiated output of the wholesale firm, NV; (j) the hours of labor de-
manded and K (j) the demand for capital. of is a labour-augmenting productivity shock, com-

mon to all intermediate goods producers, following an AR(1) process vy = pyvf | + ef, with
€8 ~ N (0,02).

Factor demands

Wholesale firms solve a two-stage problem. In the first stage, they solve their cost minimisation
problem by optimally choosing the quantity of labor and capital they need (from perfectly compet-

itive factor markets). The first-order conditions yield the relative factor demand:

K (j) 1 —aWi/p,
Nt (]) « Rt

(17)

and the real marginal cost

WA (1w
MCy = exp(v?) *a~* (1 —a)~ 1" <Pt> R (18)
t
Note that the marginal cost does not depend on firm j and therefore firms are effectively subject to

the same technology shock.

Pricing decision

In the second stage, firms choose the price P; (j) that maximises their expected sum of discounted
profits in a Calvo-style (1983) staggered price setting with indexation. They are allowed to reop-
timise prices with probability (1 — &) every period. In this case, P (j) denotes the optimal price

all firms would set if they were allowed to adjust it. Note that (1 — &) also represents the fraction



of firms able to reset their prices and ﬁ the average duration for which prices are left unchanged.
With probability £ a firm does not receive the permission to adjust its price but it is allowed to

partially index it to lagged inflation according to

Py (j) =1 Pi—1(5) (19)

where v € [0, 1] is the degree of price indexation to lagged inflation.
Firms allowed to reset prices in period t maximise the discounted sum of expected nominal

profits subject to the Dixit-Stiglitz production technology (13):

mag Etzg Diprs (HHHT . — P sMCiysexp (vHs)) Yirs (5) 5
where Dy = ,BSMTT is the stochastic discount factor (which assumes the same valuation as
Ricardian households, where A1, is the Lagrange multiplier on their budget constraint) over the
interval [t,t + s|, MC} and P, are the real marginal cost and the aggregate price index in period ¢,
respectively. v! is a price mark-up shock, common to all intermediate goods producers, described
by v = ppvi_y + 7, with &/ ~ N (0,07).

The optimal price-setting first-order condition for a firm j choosing the optimal price P (j) in

period t is then given by:

[e'e] 1_4 0/ -
EthsDt,tJrs <H T — 1) (Rtpi])) _
s=0

II
=1 t+T

—¢
<H Lo 1) MCyisexp (vfy,) | Yies =0, (20)

Ht+7'

where the optimal price is found by weighting marginal profits by sales in different periods. If prices
were fully flexible (£ = 0), the price charged by firm j would be a mark-up over real marginal costs
PP (j) = —PtMCte:cp (v), where ( is the price elasticity of demand. On the other hand, if £ =1,

the firm would charge constant prices. Finally, the evolution of the price index is determined by:
1- 1-¢ pl1- 1-¢
PO =¢(,) R+ (-9 (R) T (21)

New Keynesian Phillips curve

Combining the optimal pricing decision of the firm with the law of motion for aggregate prices, we
obtain the log-linearised New Keynesian Phillips curve which introduces forward-looking expecta-

tions. Hence, current inflation is related to current real marginal costs and the price mark-up shock,



lagged inflation and the expected future inflation rate:

T =y, (mee +07) + @ Eempn + wymeet, (22)

_1-90-p9)  _ 8 _
where g, = ! £(I)+Bv) Ly = o and =

Note that introducing indexation leads inflation to be persistent. Rewriting the equation in first

differences and iterating it forwards, we find that the variation in the current inflation rate is solely

determined by current and future expected marginal costs and price mark-up shocks:

(1-¢ (155
§

T — Y1 = (mee +op) + B By — yme)

which can be rewritten as:

oo
T = V=1 =y, (1 4+ 57) EtZﬁs (meegs + vp)
s=0

As before, if prices were flexible, { — 0, then p, — oo and variations in the real marginal cost
would have a one-for-one impact on the first difference of the inflation rate. Moreover, if £ — 1, then
W,, — 0 and the Phillips curve would become horizontal since the first difference of the inflation

rate would tend to zero.
2.3 Fiscal policy
Government expenditures are financed through lump-sum taxes on Ricardian consumers and the
budget is assumed to balance every period. Hence, in nominal terms we have:
Pth = (1 — )\) PtTl,t- (23)

Furthermore, government spending in log-deviations from the steady-state evolves exogenously ac-

cording to:

gt = pggi—1 + €, (24)

with ef ~ N (0,07).

2.4 Monetary policy

In this closed-economy setup, I assume monetary policy to be controlled by the national central
bank which sets the nominal interest rate according to a Taylor-type rule. The linearised version

reads:



Rn,t . Rn,tfl H Y
log < R ) —prlog< R, > +(1—pr) <9 log<H> + 0ylog (3@)) + €5,

g = pring—1 + (1= pr) (Oxme + 0y7") + €f, (25)

or

where r,, + denotes the nominal interest rate and yJ*” the output gap’. R, and II are the steady-state
values of the nominal interest rate and inflation, respectively, and Y; represents the output long-term

trend. €} is an exogenous and non-systematic monetary policy shock defined as e} ~ N (O, 0?).

2.5 Shocks

The model incorporates six exogenous stochastic disturbances®, independent and identically dis-
tributed among them, namely: on the Ricardian household’s consumption behavior, ¢, and invest-
ment decision, €; on the intermediate goods firms production technology, ¢, and pricing strategy,
el; on the government’s expenditure pattern, £/; and on the monetary authority Taylor-type rule,

‘s
o

2.6 Market clearing

Goods market clearing requires the aggregate output to be equal to aggregate demand, i.e. to the
sum of Ricardian and non-Ricardian households private consumption, investment and of government

expenditure:

Y, = C + I + Gy, (26)

where I; = fo AT 1.t (1) di. The labor market is in equilibrium when the labour demanded by inter-
mediate goods firms is satisfied by the labour supplied by Ricardian and non-Ricardian households

at the market wage rate:

1—X 1 1
Nus(i)di+ [ Noy(h)dh = / Ny () dj = N,. (27)
0 1—X 0

Ty9% was first computed as the log-deviation from the flexible-price output as in Smets and Wouters (2003).

However, for the initial calibration the solution was locally indeterminate as suggested in Gali et al. (2004), who
report that an interest rate rule satisfying the Taylor principle is not sufficient to ensure the existence of a unique
equilibrium.

8Note that to avoid stochastic singularity when evaluating the likelihood function, Dynare requires at least as
many shocks or measurement errors as observable variables such that the covariance matrix of endogenous variables
is non-singular.

10



The market clearing condition for capital is satisfied when Ricardian consumers supply of capital

equals the demand for capital by wholesale firms at the market rental rate:

1-X 1
0 0
Furthermore, note that in a symmetric equilibrium all intermediate goods producers set the same
price. Therefore, the aggregate price index is equal to the intermediate goods price, P, = P; (j),

and the aggregate output equals the intermediate goods firms output, Y; = Y; (j), for all j.

3 Estimating the model for Portugal: data, calibration, and priors

The linear rational expectations solution of the model is estimated using Bayesian maximum like-
lihood.? From calibration to the Generalised Method of Moments, Classical to Bayesian maximum
likelihood, several methods have been employed to estimmate DSGE models. Introduced in the esti-
mation of DSGE models by DeJong, Ingram and Whiteman (2000), Schorfheide (2000) and Otrok
(2001), Bayesian estimation has been widely used in the recent literature given its advantages in esti-
mating rational expectation models. It allows the use of prior information to identify key structural
parameters, to compare nested models, and can avoid the posterior distribution to peak in strange
regions of the parameter space from, for example, a misspecified model (known as the “dilemma of
absurd parameter estimates”). Bayesian estimation and model comparison are still consistent when
the model is misspecified (Fernandez-Villaverde and Rubio-Ramirez (2004)).

Data

The model is estimated using quarterly data covering the period 1995Q1 through 2012Q1 for real
GDP, GDP deflator and the short-term nominal interest rate. Portuguese data was taken from the
OECD in June 2012. Note that in the model state space, output is measured in deviations from
a constant steady-state. Hence, as in Smets and Wouters (2007), I took the log first difference of
real GDP and of the GDP price deflator times 100. The nominal interest rate is taken as it is, in

percentage terms and expressed in quarters.'® All series are seasonally adjusted.

9Bayesian methods are used to estimate the model’s parameters by combining prior information and assumptions
about parameters with information extracted from data—the likelihood function. One obtains the posterior kernel—a
function proportional to the posterior density function. Monte Carlo Markov Chain simulation methods and sampling
algorithms like Metropolis-Hastings or Gibbs (the former is the most used in the literature) provide the numerical
background to compute posterior probability density distributions (Geweke, 1999). DeJong and Dave (2007), Canova
(2007) and An and Schorfheide (2007) provide a comprehensive analysis on Bayesian macroeconometric methods used
in the estimation of these models. Appendix B presents a summary explanation of the method followed throughout
the paper.

107t corresponds to the three month interbank rate for Portugal prior from joining the euro and thereafter to the
European Interbank Offered Rate

11



Measurement equations for the observable variables and their model’s counterparts are given
by:

- B Y,_ -
Real GDP growth, log (%) —log (YEJ) + trend growth
Inflation; = log (%) + constantpy ,
| Nominal Interest rate; | log (%) + constantp,

where the trend growth is given by log (17}) — log (Yt_l). For inflation and the interest rate, mea-
surement errors are given by constanty and constantg, , respectively. Y;, IT and R,, were defined

above.

Calibration

Four parameters are fixed ex-ante and throughout the estimation procedure: the Ricardian house-
holds discount factor 8 and preference parameter over consumption and leisure p; the rate of capital
depreciation ¢ and the steady-state government spending-to-output ratio, g, = % The discount
factor is set to 0.99, which corresponds to a steady-state real gross interest rate of 4% per annum.

From the equilibrium labor supply equation of Ricardian households in steady-state,

1-N
0=

R LA 29

and imposing the steady-state aggregate level of hours worked, N, to correspond to 10 hours spent
at work per day (i.e. 0.42), o can be calibrated to 0.833. ¢, = %, the aggregate consumption-to-
output ratio, is found by solving ¢, = 1 — i, — g, from the aggregate resource constraint.!! As in
Almeida (2009), g, is set to 0.14 and steady-state investment-to-output ratio, i, is found by using
the labour income share in total output, «, the rate of capital depreciation and the steady-state
real interest rate:

iy = (1;‘)5. (30)
0 is 0.025 per quarter, which corresponds to a 10% annual depreciation rate, and « represents
70.5% of total output to ensure an investment-output ratio close to observed data (i, = 0.21). The

quarterly constant and non-cyclical term of the interest rate is set to zero such that the model

"The steady-state consumption and hours worked are assumed to be the same among both types of households
so that, for a steady-state share of liquidity-constrained households of one half, they are equal to their aggregate
counterparts.

12



variable is well mapped by the data.

Table 1: Calibrated parameters and implied steady-state values

PARAMETERS  VALUE

Calibrated parameters

B 0.99
0 0.833
0 0.025
Gy 0.14
Implied steady-state

Ngss 0.42
cy 0.65
iy 0.21

0.035
A 0.50

Priors

The standard errors of the innovations are assumed to follow inverse gamma distributions with mean
0.1 and standard deviation 2, except for the government spending for which the mean is 0.5 and
standard deviation 2.75. These relatively loose and harmonised priors account for the fact that the
data is often very informative about the standard deviation of shocks. The persistence parameters
of shock processes are assumed to follow a beta distribution with mean 0.6 and standard deviation
0.2. The quarterly trend growth is assumed to be normally distributed around 0.25 with standard
deviation 0.1. The quarterly steady-state inflation non-cyclical component is gamma distributed
with prior mean 0.625 and standard deviation 0.1.

Concerning the utility functions, Ricardian and non-Ricardian households intertemporal elas-
ticities of substitution are normally distributed with mean 1.5 and 1.25, and standard deviations
0.375 and 0.35, respectively. The inverse of the Frisch elasticity of non-Ricardian households follows
a normal distribution centered on 2 with standard deviation 0.75. Ricardian households habit per-
sistence parameter follows a beta distribution with prior mean 0.7 and standard deviation 0.1. The
investment adjustment cost parameter is normally distributed with mean 2 and standard deviation
1.5.

The Calvo probability of price setting and indexation parameters are assumed to follow beta
distributions centered around 0.75 and 0.5 respectively, suggesting prices are updated four times per
year. Standard deviations are 0.1 for the former and 0.15 for the latter. The labour income share
in total output follows a beta distribution, as well, with mean 0.7 and standard deviation 0.05.

Regarding the Taylor rule describing the monetary policy, the persistence parameter is beta
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distributed with mean 0.75 and standard deviation 0.1 and the long-run coefficient on inflation and
output gap are normally distributed. As noted in Gali et al. (2004), to ensure local determinacy,
the nominal interest rate response to a change in inflation must be significantly above unity. Hence,
I consider the monetary authority to be tough nosed: the inflation response parameter is assumed
to have prior mean 4.5 and the coefficient on output gap 0.825. Standard deviations are 0.75 and
0.25, respectively.

Regarding the fraction of non-Ricardian households, six specifications were tested:

o Specification a: In a first stage, A is estimated from a prior beta distribution with mean 0.5
and standard deviation 0.1 as in Coenen and Straub (2005). After initial estimations, the
model proved to be indeterminate for values of A greater than 0.64 as reported in section
4.1 below. Therefore, a truncated version of the beta distribution with an upper bound was

considered for the remainder of the paper;

o Specification b.1: X is fixed at 0, so that the model does not incorporate rule-of-thumb con-

sumers;
e Specification b.2: X is fixed at 0.25, so that 25% of consumers are non-Ricardian;

o Specification b.3: X is fixed at 0.5, so that the model incorporates half of both types of

COMSUIMETS;
e Specification b.4: X is fixed at 0.75, so that 75% of households are non-Ricardian;

e Specification b.5: X is fixed at 1, so that the model economy is represented by liquity-

constrained households.
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Table 2: Prior distributions

PARAMETERS DisTRIB. MEAN  STD. DEV.
Households
A Beta 0.50 0.10
oc Normal 1.50 0.375
X Beta 0.70 0.10
Normal 1.25 0.35
© Normal 2.00 0.75
ox Normal 2.00 1.50
Firms
«a Beta 0.70 0.05
£ Beta 0.75 0.10
~y Beta 0.50 0.15
Taylor rule
pPr Beta 0.75 0.10
(7. Normal 4.50 0.25
y Normal 0.825 0.05
Shocks
Pds Pa, Pis> Pps Pg Beta 0.60 0.20
0d4,0a4,04,0p,0r Inv. Gamma 0.10 2.00
og Inv. Gamma 0.50 2.75
Measurement errors

trend growth Normal 0.25 0.10
constantyy Gamma 0.625 0.10

4 Results

4.1 Indeterminacy under A =0.75 and A =1

Gali et al. (2004) report that the introduction of rule-of-thumb consumers can alter the model’s
equilibrium dynamics even when the interest rate rule satisfies the Taylor principle. Furthermore,
Gali et al. (2007) argue that indeterminacy may be the result of a combination of a large weight of
non-Ricardian households and a high degree of price stickiness.

The baseline price stickiness parameter £ is calibrated to 0.75 like in Gali et al. (2007) and
ceteris paribus under the different specifications tested, Blanchard-Kahn (1980) conditions are not
satisfied when A\ = 0.75 and A = 1. And therefore no stable solution is found for the interest rate
and the model’s equilibrium is indeterminate. The indeterminacy region in this model starts when
the baseline proportion of liquidity-constrained households A > 0.64, a lower value than Gali et al.
(2007) reported for their model.
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4.2 Non-Ricardian households driving posterior distributions

The parameters posterior distributions are presented in Tables 4 to 7, where the mode, mean,
standard deviations, and the corresponding 5 and 95 percentiles of the posterior distributions are
included. The value of the marginal likelihood is reported for both the Laplace approximation
around the posterior mode and the Modified Harmonic Mean Estimator. Figures 7 to 10 show the
prior and posterior distributions depicted in gray and black, respectively, and the posterior mode
in green.

Table 3 below summarizes the means of the posterior distributions for the alternative spec-
ifications of A\. The first interesting result is regarding the estimated fraction of non-Ricardian
households (specification a). The posterior mean of X is 57.8%. This result is considerably higher
than what Coenen and Straub (2005) and Forni et al. (2009) found for the euro area (25-37%
and 34-37%, respectively) but in line with the 50% Campbell and Mankiw (1989) report for the
pre-1990 in the United States. Also, when the non-truncated beta distribution is used as a prior,
A assumes a slightly greater value (close to 0.6). The posterior appears to be highly driven by the
prior distribution.

Regarding the parameters influencing households optimal decision rules, the posterior distribu-
tion of the inverse of the intertemporal elasticity of substitution of Ricardian households is very
much influenced by the share of rule-of-thumb consumers. For the specifications of A estimated and
A calibrated to 0.5, the obtained estimates are relatively similar to Smets and Wouters (2003) for the
euro area. However, when A is set at 0 or 0.25, values for o, are much lower than what is found in the
literature and, surprisingly, much lower than one. In the case of liquidity-constrained consumers,
the inverse of the intertemporal elasticity of substitution and of the Frisch elasticity seem to be more
influenced by the prior. However, note that the posterior mean when X is estimated slightly differs
from the case of A calibrated to 0.5. Considering the habit persistence of Ricardian households, the
different specifications do not seem to influence the estimated values of x. Although these values
are lower than the one reported by Almeida (2009) for Portugal, they match the findings of Smets
and Wouters (2003) well. The investment adjustment cost parameter is estimated to be around 4.5
for specifications a and b.3 and around 3.3 for X calibrated to 0 and 0.25. These values are higher
than the assumed prior but are still considerably lower than the values reported, for example, in
Adolfson et al. (2007) for the euro area.
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Table 3: Estimates under the alternative specifications of A

PARAMETERS Prior PoOsSTERIOR MEAN
DisTRIB. MEAN A ESTIMATED A=0 AX=025 AX=05
Households
A Beta 0.50 0.578 - - -
oc Normal 1.50 1.223 0.350 0.172 1.568
X Beta 0.70 0.612 0.596 0.574 0.596
S Normal 1.25 1.405 - 1.296 1.235
© Normal 2.00 1.870 - 1.994 1.999
bx Normal 2.00 4.585 3.510 3.128 4.482
Firms
o Beta 0.70 0.684 0.691 0.694 0.629
Beta 0.75 0.235 0.735 0.530 0.190
o' Beta 0.50 0.336 0.181 0.234 0.365
Taylor rule
pr Beta 0.75 0.830 0.950 0.922 0.861
Or Normal 4.50 4.598 4.012 3.993 4.448
0y Normal 0.825 0.334 0.244 0.055 0.354
Shocks
Pd Beta 0.60 0.948 0.843 0.873 0.955
Pa Beta 0.60 0.695 0.741 0.971 0.688
Pi Beta 0.60 0.606 0.603 0.597 0.601
Pp Beta 0.60 0.781 0.598 0.606 0.758
Py Beta 0.60 0.699 0.597 0.595 0.694
o4 Inv. Gam. 0.10 1.259 3.346 1.952 1.494
Oa Inv. Gam. 0.10 0.055 8.070 3.598 0.056
i Inv. Gam. 0.10 0.090 0.081 0.081 0.084
op Inv. Gam. 0.10 4.378 0.119 0.081 4.515
og Inv. Gam. 0.50 0.277 0.445 0.461 0.276
or Inv. Gam. 0.10 0.367 0.137 0.167 0.291
Measurement errors
trend growth Normal 0.25 0.357 0.270 0.186 0.358
constantyy Gamma 0.625 0.691 0.705 0.717 0.691

Concerning the parameters on firms optimal behavior, the estimates of the Calvo price stickiness
parameter differ greatly depending on the value of A. In the model without liquidity-constrained
households, the average duration of price contracts is approximately one year and relatively close to
other studies. On the other hand, when the fraction of non-Ricardian households is calibrated to 0.5
or estimated, prices become less sticky and are reoptimised every quarter on average. This may be
at odds with the reality of the Portuguese economy where prices do not point to such a high degree

of flexibility. The estimated degree of indexation follows the main results of Adolfson et al. (2007),
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suggesting that prices are weakly related to past inflation and that the Phillips curve is mostly
forward-looking. However, these values appear relatively low for the case where \ is calibrated to 0
or to 0.25.

The estimates of the interest rate smoothing parameter from the central bank’s Taylor rule
are close to Smets and Wouters (2003) when no or 25% of liquidity-constrained households are
assumed: posterior means are 0.95 and 0.922, respectively. When a higher fraction of rule-of-thumb
consumers is considered, the estimates of p, are lower but closer to Smets and Wouters (2007) for
the US economy. The inflation response parameter appears to be more influenced by the though-
nosed prior when these two specifications are considered. However, for A calibrated to 0 or to
0.25, the estimates still point to a value around 4. On the other hand, the estimates of the output
response parameter are very distinct from the assumed priors for any of the specifications tested.
The posterior mean when A is 0.25 appears to be closer to values reported in the literature even for
such a high prior mean. For the other specifications, 8, is still considerably high, assuming a value
of 0.24 for the model with only Ricardian households and values around 0.34 for the other cases.

Turning to the persistence of structural shocks, the estimates of the Ricardian households con-
sumption preference shock are slightly distinct from the assumed priors. For the cases where A
is calibrated to 0.5 or X is estimated, the shock is extremely persistent which could indicate the
presence of a unit root. For the model considering no rule-of-thumb consumers, the posterior mean
0.843 follows the result of Smets and Wouters (2003), while for A calibrated to 0.25 the estimate
is closer to Adolfson et al. (2007). The productivity shock appears to be highly persistent for
the specification b.2. Instead, in the other cases, the persistence parameter is estimated to lie be-
tween 0.69 and 0.74. Regarding the autoregressive parameter of the investment efficiency shock,
the estimates are greatly influenced by the prior under any of the specifications considered and are
relatively lower than what other papers reported. The same conclusion can be drawn in the cases
of the price markup and government spending shocks when A is calibrated to 0 or to 0.25, for which
the posterior mean fluctuates around 0.6. A seems to influence their persistence when the fraction
of rule-of-thumb consumers is estimated or calibrated to 0.5.

The volatility of shocks is also strongly influenced by the level of A\. The consumption preference
and technology shocks are the most volatile when the fraction of liquidity-constrained households
is set to zero, whereas in the case of the price markup shock the process is highly volatile when
A is estimated or calibrated to 0.5. The estimates of the standard deviations of the investment,
government spending and monetary policy shocks seem not to be significantly different under the

alternative specifications of A.

Sensitivity to priors

Tables 8 and 9 present the estimates of the mode by changing prior distributions of several param-

eters for the alternative specifications of A. In a first attempt, the parameters prior distributions
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were readjusted relative to the benchmark model (10% increase in means and standard deviations).
Overall, the estimated modes have changed for most parameters but not substantially. Some ex-
ceptions are worth mentioning: when A is estimated or calibrated to 0.5, the estimated modes of
the investment adjustment cost parameter are well below their counterparts from the benchmark
model; under specifications a and b.1, the estimates of the inverse of the intertemporal elasticity of
substitution of Ricardian households have increased with the change of priors. A higher value of
the output response parameter from the Taylor rule is reported for A calibrated to 0.25. Further-
more, for all specifications, persistence and standard deviations estimates are quite distinct from
the posterior modes computed under the benchmark model.

In case 2, the prior mean of the investment adjustment cost parameter is set to 0.1. As a result,
its posterior mode is zero for any of the four different specifications of A. Furthermore, the Calvo
price stickiness decreases when A\ is calibrated to 0 or to 0.25, being compensated by an increase
in the price indexation. Under these specifications, the Taylor rule output response also increases.
In case 3, the Calvo price stickiness prior mean is set to 0.1. For the different specifications of A,
the Calvo pricing probability is nearly 0 and the price indexation estimates fluctuates above 0.5.
Surprisingly, the estimates of the investment adjustment cost parameter are 0 for A calibrated to
0 or 0.25 but fluctuates around 2, the prior mean, when A is estimated or calibrated to 0.5. The
obtained estimates of the standard deviations of shocks are slightly lower than the results found
in the benchmark model. Although these results indicate some sensibility to priors for certain

parameters, the qualitative results are quite satisfactory.

4.3 Impulse response to shocks differs depending on \

Further light is shed on the effect of the alternative specifications of the share of non-Ricardian
households by analyzing dynamic responses of output growth, inflation and the nominal interest

rate to a one standard deviation shock.

The effect of a consumption preference shock

Figure 1 presents the IRFs to a Ricardian households consumption preference shock. As revealed
in the upper left panel, output responses are more pronounced in the case where A calibrated to 0
or to 0.25. In any of the alternatives, output growth returns to the steady-state value after seven
quarters. The upper right panel presents a very similar positive response of inflation. In the lower
left panel, the bell-shaped response of the interest rate disappears in the case where A is estimated

or calibrated to 0.5. Also, the shock is persistent under all specifications.

19



Figure 1: Orthogonalised IRFs to a consumption preference shock
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The effect of a productivity shock

Figure 2 depicts the IRFs to a labour-augmenting productivity shock. In the case where X is
estimated or calibrated to 0.5, output growth, inflation and interest rate responses are negligible.
Under the other specifications, the positive response of output growth to the shock is extremely
high. Inflation and the interest rate respond negatively to the shock but when X is calibrated to 0
the readjustment to steady-state is more sluggish. Moreover, the model predicts that the nominal

interest rate does not readjust to steady-state until at least 20 quarters after the shock.
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Figure 2: Orthogonalised IRFs to a productivity shock
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The effect of an tnvestment efficiency shock

Figure 3 presents the IRFs to a Ricardian households investment efficiency shock. The effect of
the shock on output growth and inflation are very similar under the different specifications of A.
However, the interest rate response when A is estimated or calibrated to 0.5 is more pronounced

than in the other cases. Note that the magnitude of the shock is extremely high for all variables.

Figure 3: Orthogonalised IRFs to an investment efficiency shock
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The effect of a price markup shock

The model predicts a very insignificant response of output growth, inflation and the interest rate
when A is calibrated to 0 or 0.25, as shown in Figure 4. Under the other specifications, a steep
decrease of output growth is predicted after a price markup shock, returning to steady-state after

ten quarters. The impact multipliers in inflation and the interest rate are considerably small.

Figure 4: Orthogonalised IRFs to a price markup shock
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The effect of a government spending shock

The government spending shock has a very slight impact on output growth, inflation and the
interest rate in magnitude, as shown in Figure 5. A more pronounced response of inflation and the
interest rate can be perceived when ) is estimated or calibrated to 0.5 but for both cases the impact

multiplier is below 0.04.
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Figure 5: Orthogonalised IRFs to a government spending shock
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The effect of a monetary policy shock

The output growth and inflation responses are very similar for different levels of \. However, in
the lower left panel of Figure 6, the model predicts opposite scenarios: when A is calibrated to 0
or 0.25, the nominal interest rate responds positively to the shock; however, when \ is estimated
or calibrated to 0.5, the effect of the shock is nearly insignificant but curiously there is still a small
decrease upon the impact of the shock. This may indicate that the presence of liquidity-constrained
consumers has an indirect influence on financial markets by making them bear the costs of the

increase in the central bank’s interest rate.
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Figure 6: Orthogonalised IRFs to a monetary policy shock
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4.4 Main sources of fluctuations in endogenous variables conditional on A

Variance decomposition

Tables 10 to 13 report the contribution of each structural shock to fluctuations in output growth,
inflation and the nominal interest rate at different horizons: 1-4 quarters, defined as the short run; 10
quarters, the medium run; and 20 quarters, the long run. The forecast-error variance decomposition
is computed at the posterior mode and conditional on period’s ¢ information.

From the short to the long run, fluctuations in output drastically differ among the different
specifications. When A is calibrated to 0 or 0.25, the productivity shock accounts for more than
97% of the movements, whereas when ) is estimated or calibrated to 0.5 most fluctuations are
driven by the price markup shock (on average 98%). Under specifications a and b.3, developments
in inflation are primarily driven by the monetary policy shock, accounting for more than 80% when
A is estimated and around 75% when A is calibrated to 0.5. The consumption preference shock
gains some importance over the quarters accounting for 14% in specification a and 20% in b.3. It is
also one of the main drivers of variations in the inflation rate when X is calibrated to 0 and to 0.25:
35 and 37% in the short run, respectively. The productivity shock explains great part of inflation
movements under these specifications: from 41 in the first quarter to 46% in the long run; and from
23 to 24%, respectively. Also, the contributions of monetary policy shocks are 25 and 40% under
specifications 0.1 and b.2.

The consumption preference shock seems to be the most relevant in explaining movements in
the interest rate across the four different specifications. It accounts for more than 90% when A is
estimated or calibrated to 0.5. For X calibrated to 0.25, it accounts for 42% in the short run and
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almost 73 in quarter 20. When X is calibrated to 0, the consumption preference shock accounts
for 35% in quarter 1 and 42 in the long run, which together with the productivity shock account
for more than 96% of the interest rate fluctuations in the long run. Furthermore, in the short
run, the monetary policy shock accounts for 30% of the variations, either under specifications
b.1 or b.2. Surprisingly, in any of the specifications, the investment-specific technology and the
government spending shocks seem to be irrelevant in explaining output growth, inflation and interest

rate developments.

Historical decomposition

Figures 11 to 22 show the historical contribution of each shock to output growth, inflation and the
nominal interest rate over the sample period. While under specifications a and b.3 cyclical peaks
and troughs of output growth are mainly driven by price markup shocks, historical fluctuations
when )\ is assumed to be 0 or 0.25 are driven by productivity shocks. The main sources of shifts in
inflation over 1996 to 2011 are considered to be monetary policy and consumption preference shocks
when A\ is estimated or calibrated to 0.5. When A is calibrated to 0 or 0.25, productivity shocks
are another important source of inflation fluctuations. The variations in the interest rate are to a
large extent explained by consumption preference shocks when A is estimated or calibrated to 0.5.
Price markup shocks played a relevant role, as well, from the early 2003s to 2008. Considering the
model without rule-of-thumb consumers, productivity and consumption preference shocks account
for most of the variations. Productivity shocks lose their importance in explaining interest rate

fluctuations when M is calibrated to 0.25.

5 Conclusion

In this paper, I have shown that the choice of the share of non-Ricardian households in a New
Keynesian DSGE model, be it estimated or calibrated, is far from trivial. Different specifications
lead to very different results. First and foremost, the proportion of rule-of-thumb consumers is
estimated to be quite high (58%), which is in line with Campbell and Mankiw (1989) for the pre-1990
in the US. This value may seem plausible for the Portuguese economy, where a significant part of the
population is unable to save and therefore has no means to smooth consumption over time. Secondly,
posterior distributions of structural parameters differ among the four alternative specifications of
the share of liquidity-constrained households. In particular, for the following parameters: (i) the
inverse of the intertemporal elasticity of substitution of Ricardian households; (ii) the investment
adjustment cost parameter; (iii) the degree of price stickiness and the price indexation parameter;
(iv) the output response coefficient from the central bank Taylor-type rule; and (v) the persistence
and volatility of shocks are quite distinct under the alternative specifications of A. In addition,

when the fraction of liquidity-constrained households is calibrated to values greater than 64%, the
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solution of the system of difference equations describing the log-linearised model’s equilibria is not
unique. This result supports the findings of Gali et al. (2004) and Gali et al. (2007), which report
that even if the Taylor principle is satisfied a combination of a high degree of price stickiness with
a large weight of non-Ricardian households may render the interest rate rule locally indeterminate.

Ergo, responses to shocks also depend on the fraction of rule-of-thumb consumers. The model
with no or 25% of liquidity-constrained households predicts a greater variation of output growth
and a more persistent response of the short-term nominal interest rate to a Ricardian households
consumption preference shock. Responses to a productivity shock are almost nonexistent for high
weights of non-Ricardian consumers, whereas an investment efficiency shock under these specifica-
tions causes a greater impact multiplier in the nominal interest rate response. The effect of a price
markup shock on output growth and inflation is greater for higher values of A.

Fluctuations in output growth, inflation and the nominal interest rate may be driven by different
structural shocks depending on the fraction of rule-of-thumb consumers. For lower shares (0 or
25%), fluctuations in output growth are mainly driven by productivity shocks, while fluctuations
in inflation and the nominal interest rate are driven by consumption preference, productivity and
monetary policy shocks. For higher values of A\, fluctuations in output growth are essentially driven
by price markup shocks, while monetary policy shocks account for most of the variations in inflation,
and consumption preference shocks drive short-term nominal interest rate movements.

Of course, some caveats must be mentioned. Primarily, the fiscal policy set up is rather simple,
which translates into a relatively weak role for government intervention. Moreover, the closed-
economy model should be made open in order to better describe data dynamics and to account
for external shocks propagation. Finally, it will be interesting to explore the model performance
using the DSGE-VAR approach suggested by Del Negro and Schorfheide (2004) and Del Negro et
al. (2007) and to perform quantitative policy prediction in this Bayesian framework and assess the
model’s forecast performance. One could also extend the model to assume agents with cognitive
limitations, who update their expectations like econometricians do by using a statistical forecasting
rule (Evans and Honkapohja, 2001). As suggested by Milani (2007), it could be an alternative to

rigidities and frictions assumed in the standard DSGE model.
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Additional figures

Table 5: Forecast error variance decomposition when A = 0.5

CONTRIBUTION OF EACH SHOCK (IN PERCENT)

PARAMETERS
£d €a €; €p gg Er

Forecast horizon: 1 quarter
OUTPUT GROWTH 0.00 0.01 0.00 99.65 0.04 0.30
INFLATION 19.90 0.51 0.00 1.95 0.48 77.16
INTEREST RATE 93.96 2.30 0.00 0.53 2.48 0.73
Forecast horizon: 4 quarters
OUTPUT GROWTH 0.31 0.01 0.00 98.93 0.06 0.69
INFLATION 19.84 0.57 0.00 3.01 0.57 76.00
INTEREST RATE 80.61 1.19 0.01 16.61 1.19 0.29
Forecast horizon: 10 quarters
OUTPUT GROWTH 0.33 0.01 0.00 98.93 0.06 0.67
INFLATION 19.77 0.57 0.00 4.21 0.57 74.88
INTEREST RATE 80.45 0.91 0.01 17.42 0.99 0.22
Forecast horizon: 20 quarters
OUTPUT GROWTH 0.33 0.01 0.00 98.93 0.06 0.67
INFLATION 20.52  0.56  0.00 4.20 0.56 74.16
INTEREST RATE 82.54 0.81 0.01 15.57 0.88 0.19
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Figure 7: Prior and posterior distributions when A is estimated
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Figure 8: Prior and posterior distributions when A =0
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Figure 9: Prior and posterior distributions when A = 0.25
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Figure 10: Prior

and posterior distributions when A = 0.5
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Figure 11: Historical decomposition of Output growth when X\ is estimated
(63 quarters - 1996-2012)
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Figure 12: Historical decomposition of Output growth when A =0
(63 quarters - 1996-2012)
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Figure 13: Historical decomposition of Output growth when A = 0.25
(63 quarters - 1996-2012)
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Figure 14: Historical decomposition of Output growth when A = 0.5
(63 quarters - 1996-2012)

Figure 15: Historical decomposition of Inflation when A is estimated
(63 quarters - 1996-2012)
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Figure 16: Historical decomposition of Inflation when A =0
(63 quarters - 1996-2012)
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Figure 17: Historical decomposition of Inflation when A = 0.25
(63 quarters - 1996-2012)
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Figure 18: Historical decomposition of Inflation when A = 0.5
(63 quarters - 1996-2012)
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Figure 19: Historical decomposition of Nominal interest rate when A is estimated
(63 quarters - 1996-2012)
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Figure 20: Historical decomposition of Nominal interest rate when A =0
(63 quarters - 1996-2012)

Initial values

eps.|

eps_P

eps R

eps G

eps_A

eps_C1

EEEL AN

Figure 21: Historical decomposition of Nominal interest rate when A = 0.25
(63 quarters - 1996-2012)
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Figure 22: Historical decomposition of Nominal interest rate when A = 0.5
(63 quarters - 1996-2012)

Initial values

eps_|

eps_P

eps_R

eps_G

eps_A

eps_C1

HEEE [ a.

70

36



Additional tables

Table 6: Posterior distributions when A\ is estimated

PARAMETERS Posterion
MopE MEAN  STD. DEV. 5% 95% G-R Star.
Households
A 0.5773  0.5777 0.0317 0.5269  0.6339 1.0017
oc 1.2646  1.2230 0.1669 0.9372  1.5088 1.0021
X 0.6092 0.6116 0.1067 0.4361  0.7972 0.9989
1.4065  1.4049 0.3415 0.8416  1.9521 1.0003
® 1.8987  1.8701 0.7790 0.5986  3.2747 0.9739
ox 4.5064  4.5852 1.1109 2.7822  6.4228 0.9998
Firms
o 0.6925  0.6844 0.0525 0.5993  0.7705 1.0000
0.2261  0.2347 0.0525 0.1489  0.3159 0.9996
5 0.2911  0.3363 0.1434 0.1155  0.5504 0.9996
Taylor rule
pr 0.8506  0.8296 0.0457 0.7475  0.9142 1.0018
Or 4.4282  4.5978 0.7587 3.3889  5.8188 1.0008
0y 0.3331  0.3344 0.1040 0.1601  0.5094 1.0000
Shocks
Pd 0.9555  0.9481 0.0210 0.9148  0.9834 1.0017
Pa 0.7537  0.6946 0.2080 0.4299  0.9692 1.0013
pi 0.6670  0.6055 0.2719 0.2983  0.9335 1.0005
Pp 0.7839  0.7805 0.0504 0.7015  0.8642 1.0008
Py 0.7553  0.6985 0.2035 0.4384  0.9676 0.9970
o4 1.1937  1.2589 0.3240 0.7315  1.7762 0.9950
Oa 0.0422  0.0548 0.0149 0.0249  0.0864 0.9997
o; 0.0461  0.0899 0.0188 0.0234  0.1637 0.9198
op 4.0580  4.3780 0.5793 3.2053  5.5413 0.9414
og 0.2150  0.2773 0.0770 0.1257  0.4327 0.9990
or 0.3052  0.3674 0.0867 0.1940 0.5413 1.0023
Measurement errors
trend growth ~ 0.3558  0.3566 0.0347 0.2987  0.4176 1.0041
constantyy 0.6946  0.6911 0.0684 0.5771  0.8053 1.0008

Marginal log-likelihood (Laplace Approximation): -151.5838
Marginal log-likelihood (Modified Harmonic Mean): -150.6735

Multivariate convergence statistic (Brooks-Gelman): 1.0015
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Table 7: Posterior distributions when A =0

PARAMETERS PosTERIOR

MopE MEeaN  STD. DEV. 5% 95% G-R STarT.

Households
Oc 0.3635  0.3500 0.3090 -0.1087 0.8078 1.0264
X 0.4717  0.5959 0.0858 0.4212 0.7716 1.1554
) - - - - - -
bx 3.0972  3.5102 1.2129 1.4646 5.5266 1.0322
Firms

e 0.7036  0.6909 0.0510 0.6106 0.7763 1.0039

0.5961  0.7349 0.0974 0.5170 0.8982 1.3785
¥ 0.1626  0.1809 0.0836 0.0468 0.3190 1.0212

Taylor rule
pr 0.9377  0.9481 0.0160 0.9161 0.9781 1.1561
Or 4.1984 4.0121 0.8148 2.6635 5.4642 0.9972
Oy 0.0861  0.2440 0.0655 -0.0544  0.6000 1.2927
Shocks
Pd 0.8747  0.8426 0.0493 0.7502 0.9417 1.0575
Pa 0.9823  0.7411 0.0190 0.4205 0.9990 1.56335
Pi 0.6668  0.6033 0.2722 0.2892 0.9293 1.0022
Pp 0.6670  0.5984 0.2722 0.2766 0.9281 0.9995
Pg 0.6665  0.5972 0.2725 0.2902 0.9443 1.0030
o4 1.9093  3.3461 0.5140 1.4158 5.0859 1.2515
Oa 3.4121  8.0704 0.6489 2.4862 14.3346 1.3971
o 0.0461 0.0812 0.0188 0.0253 0.1441 1.0010
op 0.0461 0.1193 0.0188 0.0239 0.2359 0.9371
og 0.2331  0.4453 0.0950 0.1147 0.8753 0.9589
or 0.1509  0.1370 0.0210 0.1008 0.1759 1.1535
Measurement errors

trend growth ~ 0.1230  0.2703 0.0785 0.0894 0.4037 1.1140
constantry 0.7650  0.7052 0.0869 0.5544 0.8548 0.9996

Marginal log-likelihood (Laplace Approximation): -153.4427
Marginal log-likelihood (Modified Harmonic Mean): -147.3869

Multivariate convergence statistic (Brooks-Gelman): 1.0936
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Table 8: Posterior distributions when A\ = 0.25

PARAMETERS POSTERIOR
MopE  MEeaN  STD. DEV. 5% 95% G-R STarT.
Households
Oc 0.3419 0.1719 0.2187 -0.2116  0.5597 1.0082
X 0.5924  0.5737 0.1093 0.4101  0.7493 1.0011
1.2930  1.2963 0.3451 0.7178  1.8656 0.9989
© 1.9830 1.9942 0.7547 0.7635 3.2643 1.0008
bx 2.7201 3.1280 1.2389 1.1551 4.9320 1.0025
Firms
e 0.6989  0.6943 0.0508 0.6133  0.7748 0.9992
0.5216 0.5299 0.0943 0.3633 0.6978 1.0055
¥ 0.1935  0.2338 0.0975 0.0668  0.3907 0.9998
Taylor rule
pr 0.9231  0.9221 0.0239 0.8883  0.9593 0.8959
Or 3.4704 3.9925 0.9793 2.4976 5.6068 0.9921
Oy -0.0090  0.0547 0.0113 -0.0475  0.1468 1.0128
Shocks
Pd 0.8896 0.8732 0.0431 0.8051 0.9461 1.0018
Pa 0.9880  0.9709 0.0090 0.9429  0.9986 1.0187
i 0.6668 0.5972 0.2723 0.2855 0.9350 1.0014
Pp 0.6675  0.6055 0.2719 0.3011  0.9419 1.0008
Pg 0.6675 0.5951 0.2721 0.2807 0.9299 1.0001
o4 1.6797  1.9516 0.4340 1.0914  2.8879 1.0011
Oa 3.4836 3.5984 0.6768 2.4659 4.7019 0.9966
oq 0.0461  0.0812 0.0188 0.0245  0.1470 0.9991
op 0.0461 0.0810 0.0188 0.0234 0.1458 0.9664
og 0.2324 0.4612 0.0942 0.1156 0.8410 0.9139
or 0.1592  0.1669 0.0228 0.1247  0.2071 1.0018
Measurement errors
trend growth 0.2798  0.1862 0.1019 0.0164  0.3639 1.0154
constantry 0.6439 0.7166 0.0910 0.5589 0.8736 1.0062

Marginal log-likelihood (Laplace Approximation): -154.6187
Marginal log-likelihood (Modified Harmonic Mean): -151.9284

Multivariate convergence statistic (Brooks-Gelman): 1.0021
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Table 9: Posterior distributions when A = 0.5

PARAMETERS POSTERIOR
MopeE MEgAN  STD. DEV. 5% 95% G-R Star.
Households
oc 1.5771  1.5681 0.1562 1.3199 1.8158 1.0005
X 0.6105  0.5963 0.1244 0.4050  0.7966 1.0005
1.2109  1.2352 0.3396 0.6982  1.8090 0.9999
© 2.0125  1.9987 0.7468 0.7727  3.2020 0.9997
bx 4.3345 4.4822 1.1125 2.6867 6.3175 1.0009
Firms
@ 0.6292  0.6290 0.0504 0.5457  0.7111 1.0012
0.1846  0.1904 0.0476 0.1138  0.2660 1.0004
¥ 0.3247  0.3653 0.1536 0.1355  0.5931 1.0004
Taylor rule
pr 0.8791  0.8611 0.0323 0.7990  0.9241 1.0000
Or 4.3642  4.4484 0.7654 3.2236  5.6856 1.0003
0y 0.3603  0.3535 0.1065 0.1730  0.5259 0.9998
Shocks
Pd 0.9597  0.9545 0.0190 0.9220 0.9911 0.9972
Pa 0.7417  0.6881 0.2191 0.4169  0.9679 1.0000
pPi 0.6672  0.6007 0.2720 0.2946  0.9384 1.0003
Pp 0.7635  0.7583 0.0497 0.6787  0.8392 1.0000
Pg 0.7513  0.6935 0.2093 0.4285 0.9724 1.0011
o4 1.3424  1.4938 0.3659 0.7695  2.2874 0.9688
Oq 0.0426  0.0564 0.0153 0.0242  0.0889 1.0002
g3 0.0461 0.0842 0.0188 0.0240  0.1490 0.9444
op 42911  4.5147 0.5639 3.4520  5.5219 0.9997
og 0.2136  0.2760 0.0755 0.1215  0.4358 1.0011
or 0.2478  0.2913 0.0556 0.1731  0.4089 1.0010
Measurement errors
trend growth ~ 0.3533  0.3576 0.0358 0.2913  0.4193 0.9997
constantyy 0.6930 0.6908 0.0715 0.5684  0.8055 0.9989

Marginal log-likelihood (Laplace Approximation): -150.3291
Marginal log-likelihood (Modified Harmonic Mean): -149.6591

Multivariate convergence statistic (Brooks-Gelman): 1.0005
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Table 10: Sensitivity analysis under the alternative specifications of A (Case 1)

PosTERIOR MODE

PARAMETERS BENCHMARK MODEL Case 1

A ESTIMATED A=0 A=025 A=0.5 )\ ESTIMATED A=0 A=025 X=05
Households
oc 1.2646 0.3635 0.3419 1.5771 1.6738 0.6840 0.3736 1.6807
X 0.6092 0.4717 0.5924 0.6105 0.7255 0.4947 0.5912 0.7779
IS 1.4065 - 1.2930 1.2109 1.3590 - 1.4108 1.5076
® 1.8987 - 1.9830 2.0125 2.2019 - 2.1799 2.0988
ox 4.5064 3.0972 2.7201 4.3345 2.2037 3.2380 3.2887 2.2452
Firms
e 0.6925 0.7036 0.6989 0.6292 0.8419 0.7778 0.7780 0.7043
0.2261 0.5961 0.5216 0.1846 0.1103 0.5350 0.4811 0.3762
5 0.2911 0.1626 0.1935 0.3247 0.4728 0.1806 0.1967 0.2161
Taylor rule
pr 0.8506 0.9377 0.9231 0.8791 0.9036 0.9450 0.9390 0.9237
Or 4.4282 4.1984 3.4704 4.3642 4.9626 4.4354 4.4148 4.0454
Oy 0.3331 0.0861 -0.0090 0.3603 0.8298 -0.0030  -0.0026 0.0032
Shocks
Pd 0.9555 0.8747 0.8896 0.9597 0.6492 0.9187 0.9193 0.8809
Pa 0.7537 0.9823 0.9880 0.7417 1.0000 0.9966 0.9968 0.8563
pi 0.6670 0.6668 0.6668 0.6672 0.6725 0.8559 0.8559 0.8561
Pp 0.7839 0.6670 0.6675 0.7635 0.6803 0.8559 0.8559 0.9905
Py 0.7553 0.6665 0.6675 0.7513 0.5107 0.8563 0.8568 0.8570
o4 1.1937 1.9093 1.6797 1.3424 0.2745 2.1291 1.9594 1.2817
Oa 0.0422 3.4121 3.4836 0.0426 0.5210 3.3101 3.2051 0.0508
o 0.0461 0.0461 0.0461 0.0461 0.1519 0.0507 0.0507 0.0507
op 4.0580 0.0461 0.0461 4.2911 0.3748 0.0507 0.0507 3.4796
og 0.2150 0.2331 0.2324 0.2136 0.9227 0.2561 0.2559 0.2558
oy 0.3052 0.1509 0.1592 0.2478 0.3119 0.1518 0.1607 0.1750
Measurement errors

trend growth 0.3558 0.1230 0.2798 0.3533 0.3829 0.3030 0.3001 0.3396
constantyy 0.6946 0.7650 0.6439 0.6930 0.7080 0.7005 0.7006 0.7394
Marg. likelihood -724.46 -151.53  -151.54  -149.27

Case 1: priors means and standard deviations increased by 10%.
Note that for this exercise the MH sampling algorithm was not used. Hence, estimates refer only to the maximisation of the

posterior kernel.
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Table 11: Sensitivity analysis under the alternative specifications of A (Cases 2 and 3)

PosTERIOR MODE

PARAMETERS CASE 2 Caske 3

A ESTIMATED A=0 A=025 A=0.5 )\ ESTIMATED A=0 A=025 A=0.5
Households
oc 1.56363 0.8477 0.5270 1.6998 1.4943 0.4677 0.5229 1.6688
X 0.7116 0.7327 0.7055 0.7357 0.6853 0.7116 0.6531 0.6389
IS 1.2364 - 1.2926 1.4466 1.2725 - 1.0297 1.0025
® 2.0007 - 1.9805 1.8564 2.0023 - 2.0102 2.0159
bx -0.0008 0.0995 0.0601 0.0015 1.9969 0.0040 0.0082 2.0110
Firms
@ 0.6932 0.7534 0.7489 0.7040 0.8797 0.7533 0.7491 0.8760
0.4147 0.3537 0.3084 0.3166 0.1198 0.0000 0.0000 0.0000
~y 0.2720 0.2941 0.3376 0.3787 0.5003 0.5410 0.5801 0.4873
Taylor rule
pr 0.8122 0.9233 0.9093 0.8048 0.9019 0.8395 0.8451 0.7285
Ox 4.5689 4.3976 4.5182 4.5719 4.5000 4.7386 5.4126 4.5516
0y 0.2408 0.5215 0.4658 0.1774 0.7712 0.3371 0.4170 0.4730
Shocks
Pd 0.6069 0.6686 0.6694 0.6668 0.6000 0.6763 0.6936 0.6094
Pa 0.8866 0.9596 0.9584 0.9403 0.7345 0.9551 0.9674 0.8895
pi 0.8978 0.9011 0.8994 0.9121 0.7057 0.8776 0.9252 0.6262
Pp 0.5727 0.6680 0.6685 0.6667 0.7768 0.7823 0.6093 0.9220
Py 0.8818 0.6693 0.6700 0.6669 0.6288 0.6844 0.6421 0.5460
o4 1.1937 0.0460 0.0459 0.0461 0.2573 0.0507 0.0457 0.5115
Oa 0.0422 0.6178 0.6765 1.4557 0.9767 0.7167 0.7604 0.0427
oi 0.0461 3.3273 2.6127 0.8501 0.3819 0.8977 1.4044 0.1590
op 4.0580 0.0461 0.0461 0.0461 0.7745 0.0477 0.0454 0.8703
og 0.2150 0.2319 0.2319 0.2328 0.8723 1.2326 0.2334 1.1460
or 0.3052 0.1768 0.2031 0.4051 0.5368 0.3529 0.3831 0.4637
Measurement errors

trend growth 0.3549 0.3582 0.3485 0.2742 0.4486 0.3154 0.3188 0.4232
constantry 0.8492 0.7273 0.7387 0.7858 0.6448 0.7957 0.7927 0.7100
Marg. likelihood -144.93 -137.34  -138.81 -137.13 -558.82 -131.24  -129.17 -423.72

Case 2: the prior mean of the investment adjustment cost parameter is set to 0.1.
Case 3: the prior mean of the Calvo price stickiness parameter is set to 0.1.

Note that for this exercise the MH sampling algorithm was not used. Hence, estimates refer only to the maximisation of the

posterior kernel.
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Table 12: Forecast error variance decomposition when A is estimated

CONTRIBUTION OF EACH SHOCK (IN PERCENT)

PARAMETERS
€d €a €; €p €g Er

Forecast horizon: 1 quarter
OUTPUT GROWTH 0.00 0.01 0.00 99.60 0.04 0.34
INFLATION 13.87 0.40 0.00 1.42 0.31 84.00
INTEREST RATE 92.29 2.52 0.00 1.75 2.35 1.09
Forecast horizon: 4 quarters
OUTPUT GROWTH 0.26 0.02 0.00 98.83 0.06 0.84
INFLATION 13.57 0.43 0.00 3.83 0.36 81.81
INTEREST RATE 90.42 1.54 0.00 6.13 1.42 0.50
Forecast horizon: 10 quarters
OUTPUT GROWTH 0.27 0.02 0.00 98.84 0.05 0.81
INFLATION 13.63 0.42 0.00 4.90 0.36 80.70
INTEREST RATE 90.41 1.18 0.01 6.93 1.09 0.38
Forecast horizon: 20 quarters
OUTPUT GROWTH 0.27 0.02 0.00 98.84 0.05 0.81
INFLATION 14.18 0.42 0.00 4.93 0.35 80.11
INTEREST RATE 91.22 1.07 0.01 6.38 0.98 0.34

Table 13: Forecast error variance decomposition when A = 0

CONTRIBUTION OF EACH SHOCK (IN PERCENT)

PARAMETERS
€d €a €; €p gg Er

Forecast horizon: 1 quarter
OUTPUT GROWTH 0.46 98.37 0.00 0.00 0.03 1.13
INFLATION 34.58 41.44 0.00 0.02 0.00 23.96
INTEREST RATE 34.84 35.36 0.00 0.02 0.00 29.78
Forecast horizon: 4 quarters
OUTPUT GROWTH 1.67 97.24 0.00 0.00 0.04 1.05
INFLATION 33.83 39.67 0.00 0.02 0.00 26.48
INTEREST RATE 50.85 41.85 0.00 0.01 0.00 7.28
Forecast horizon: 10 quarters
OUTPUT GROWTH 1.79 97.11  0.00 0.00 0.04 1.06
INFLATION 33.19 41.31  0.00 0.02 0.00 25.48
INTEREST RATE 49.42  46.09 0.00 0.01 0.00 4.48
Forecast horizon: 20 quarters
OUTPUT GROWTH 1.83 97.07 0.00 0.00 0.04 1.06
INFLATION 30.33  46.40 0.00 0.02 0.00 23.26
INTEREST RATE 42.19 54.24 0.00 0.01 0.00 3.56
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Table 14: Forecast error variance decomposition when A = 0.25

CONTRIBUTION OF EACH SHOCK (IN PERCENT)

PARAMETERS
€d €a €4 £p €g Er

Forecast horizon: 1 quarter
OUTPUT GROWTH 0.09 98.89 0.00 0.00 0.04 0.97
INFLATION 37.12 22,56 0.00 0.03 0.01 40.28
INTEREST RATE 42.71  26.72  0.00 0.03 0.01 30.53
Forecast horizon: 4 quarters
OUTPUT GROWTH 1.23 97.73 0.00 0.00 0.04 0.99
INFLATION 35.47 22.09 0.00 0.03 0.01 42.40
INTEREST RATE 70.99 19.26 0.00 0.03 0.01 9.71
Forecast horizon: 10 quarters
OUTPUT GROWTH 1.27 97.69 0.00 0.00 0.04 0.99
INFLATION 35.09 23.89 0.00 0.03 0.01 40.98
INTEREST RATE 76.27 16.51 0.00 0.02 0.01 7.19
Forecast horizon: 20 quarters
OvutpuT GrOWTH  1.31  97.66 0.00 0.00 0.04 0.99
INFLATION 35.00 24.14 0.00 0.03 0.01 40.83
INTEREST RATE 72.95 20.55 0.00 0.02 0.01 6.47

References

Abel; A. (1990), “Asset Prices under Habit Formation and Catching Up with the Joneses”, American
Economic Review, 80(2), pp. 38-42.

Adao, B. (2009), “The Monetary Transmission Mechanism for a Small Open Economy in a
Monetary Union”, Bank of Portugal, Working Paper Series N. 3.

Adjemian, S., Bastani, H., Julliard, M., Mihoubi, F., Perendia, G., Ratto, M. and S. Villemot
(2011), “Dynare: Reference Manual, Version 4”7, Dynare Working Papers 1, CEPREMAP.

Adolfson, M., Laseén, S., Lindé, J. and M. Villani (2007), “Bayesian Estimation of an Open
Economy DSGE Model with Incomplete Pass-through”, Journal of International Economics, 72(2),
pp- 481-511.

Almeida, V. (2009), “Bayesian Estimation of a DSGE Model for the Portuguese Economy”, Bank
of Portugal, Working Paper Series N. 14.

Almeida, V., Castro, G. and R. Félix (2010), “Improving Competition in the Non-tradable Goods
and Labour Markets: The Portuguese Case”, Portuguese Economic Journal, 9(3), pp. 163-193.

An, S. and F. Schorfheide (2007), “Bayesian Analysis of DSGE Models”, Econometric Reviews,
26(2-4), pp. 113-172.

Blanchard, O. and C. Kahn (1980), “The Solution of Linear Difference Models under Rational
Expectations”, Econometrica, 48(5), pp. 1305-1311.

44



Bernanke, B., Gertler, M. and S. Gilchrist (1999), “The Financial Accelerator in Quantitative
Business Cycles”, in M. Woodford and J. B. Taylor (eds.), Handbook of Macroeconomics, 1C, Ams-
terdam.

Brooks, P. and A. Gelman (1998), “General Methods for Monitoring Convergence of Iterative
Simulations”, Journal of Computational and Graphical Statistics, 7(3), pp. 434-455.

Calvo, G. (1983), “Staggered Prices in a Utility-Maximizing Framework”, Journal of Monetary
Economics, 12(3), pp. 383-398.

Campbell, J. and G. Mankiw (1989), “Consumption, Income and Interest Rates: Reinterpreting
the Time Series Evidence”, in O. Blanchard and S. Fisher (eds.), NBER Macroeconomics Annual
1989, Cambridge MA: MIT Press, pp. 185-216.

Canova, F. (2007), Methods for Applied Macroeconomic Research, Princeton Univesity Press.

Christiano, L., Eichenbaum, M. and C. Evans (2005), “Nominal Rigidities and the Dynamic
Effects of a Shock to Monetary Policy”, Journal of Political Economy, 113(1), pp. 1-45.

Coenen, G. and R. Straub (2005), “Does Government Spending Crowd in Private Consumption:
Theory and Empirical Evidence for the Euro Area”, International Finance, 8(3), pp. 435-470.

Dejong, D. and C. Dave (2007), Structural Macroeconometrics, Princeton University Press.

DeJong, D., Ingram, B. and C. Whiteman (2000), “A Bayesian Approach to Dynamic Macroe-
conomics”, Journal of Econometrics, 98(2), pp. 203-223.

Del Negro, M. and F. Schorfheide (2004), “Priors from General Equilibrium Models for VARs”,
International Economic Review, 45(2), pp. 643-673.

Del Negro, M., Schorfheide, F., Smets, F. and R. Wouters (2007), “On the Fit of New Keynesian
Models”; Journal of Business and Economic Statistics, 25(2), pp. 123-143.

Dixit, A. and J. Stiglitz (1977), “Monopolistic Competition and Optimal Product Diversity”,
American Economic Review, 67(3), pp. 297-308.

Erceg, C., Henderson, D. and A. Levin (2000), “Optimal Monetary Policy with Staggered Wage
and Price Contracts”, Journal of Monetary Economics, 46(2), pp. 281-313.

Evans, G. and S. Honkapohja (2001), Learning and Expectations in Macroeconomics, Princeton
University Press.

Fernandez-Villaverde, J. and J. Rubio-Ramirez (2004), “Comparing Dynamic Equilibrium Mod-
els to Data: a Bayesian Approach”, Journal of Econometrics, 123(1), pp. 153-187.

Fernandez-Villaverde, J., Rubio-Ramirez, J. and T. Sargent (2005), “A, B, C’s (and D’s) for
Understanding VARs”, Federal Reserve Bank of Atlanta, Working Paper 9.

Forni, L., Monteforte, L. and L. Sessa (2009), “The Estimated General Equilibrium Effects of
Fiscal Policy: the Case of the Euro Area”, Journal of Public Economics, 93(3-4), pp. 559-585.

Gali, J., Lopez-Salido, J. and J. Vallés (2004), “Rule-of-thumb Consumers and the Design of
Interest Rate Rules”, Journal of Money, Credit, and Banking, 36(4), pp. 739-763.

Gali, J., Lopez-Salido, J. and J. Vallés (2007), “Understanding the Effects of Government Spend-

45



ing on Consumption”, Journal of the European Economic Association, 5(1), pp. 227-270.

Gelman, A. and D. Rubin (1992), “Inference from Iterative Simulation Using Multiple Se-
quences”, Statistical Science, 7(4), pp. 457-511.

Geweke, J. (1999), “Using Simulation Methods for Bayesian Econometric Models: Inference,
Development and Communication” (discussion and rejoinder), Econometric Reviews, 18(1), pp. 1-
126.

Griffoli, T. (2011), “An Introduction to the Solution and Estimation of DSGE Models”, www.dynare.org.

Mankiw, G. (2000), “The Savers-Spenders Theory of Fiscal Policy”, American Economic Review,
90(2), pp. 120-125.

Milani, F. (2007), “Expectations, Learning and Macroeconomic Persistence”, Journal of Mone-
tary Economics, 54(7), pp. 2065-2082.

Mountford, A. and H. Uhlig (2004), “What are the Effects of Fiscal Policy Shocks?”, Journal of
Applied Econometrics, 24(6), pp. 960-992.

Otrok, C. (2001), “On Measuring the Welfare Costs of Business Cycles”, Journal of Monetary
Economics, 45(1), pp. 61-92.

Pereira, A. and P. Rodrigues (2002), “On the Impact of a Tax Reform Package in Portugal”,
Portuguese Economic Journal, 1(3), pp. 205-236.

Perotti, R. (1999), “Fiscal Policy in Good Times and Bad”, Quarterly Journal of Economics,
114(4), pp. 1399-1436.

Perotti, R. (2004), “Estimating the Effects of Fiscal Policy in OECD Countries”, IGIER Working
Paper N. 276.

Rabanal, P. and J. Rubio-Ramirez (2005), “Comparing New Keynesian Models of the Business
Cycle: A Bayesian Approach”, Journal of Monetary Economics, 52(6), pp. 1151-1166.

Schorfheide, F. (2000), “Loss Function-based Evaluation of DSGE Model”, Journal of Applied
Econometrics, 15(6), pp. 645-670.

Smets, F. and R. Wouters (2003), “An Estimated DSGE Model of the Euro Area”, Journal of
the European Economic Association, 1(5), pp. 1123-1175.

Smets, F. and R. Wouters (2007), “Shocks and Frictions in US Business Cycles: A Bayesian
DSGE Approach”, American Economic Review, 97(3), pp. 586-606.

Sousa, T. (2011), “International Macroeconomic Interdependence and Imports of Oil in a Small
Open Economy”, Portuguese Economic Journal, 10(1), pp. 35-60.

Taylor, J. (1980), “Aggregate Dynamics and Staggered Contracts”, Journal of Political Economy,
88(1), pp. 1-23.

Woodford, M. (2011), “What’s Wrong with Economic Models? A Response to John Kay”, in
Institute for New Economic Thinking.

Yun, T. (1996), “Nominal Price Rigidity, Money Supply Endogeneity and Business Cycle”, Jour-
nal of Monetary Economics, 37(2), pp. 345-370.

46



Appendix

A Log-linearized equations

Using a first-order Taylor expansion of the form F' (X, Y;) ~ F (X, Y)+Fx (X; — X)+Fy (Y1 = Y),
the model’s equations are log-linearised around the steady-state. This has a useful interpretation,
variables are expressed as deviations from their long-run trend or their steady-state value if they do
not have a trend (X and Y above). Denoting x; = logX; — log X, we have:

Ricardian households optimality conditions

Consumption Euler equation:

Uer, + @1t = B [tey iy + B (Rrepr + (1= 0) ques)] (A1)
where e, = vf + (1= 0) (1 = 00) = 1) g5y (ene = xerem) = o (1= 00) g
Labour supply equation:
Unyy — Ueyy — Wt — Pty (AQ)

where u,, , = v + (1 —0) (1 — o) ﬁ (1t —xc1t-1) — [0 (1 —o¢) — 1] ﬂ—}vlnl’t.
Investment decision equation:

, . . Qe + v}
11,t (1 + ﬁ) =114-1+ ﬁEtll,t—f—l + W (A-3)
Capital accumulation equation:
k17t+1 = (1 — (5) /ﬁ}t +6 (il,t + Uz) . (A4)
Non-Ricardian households optimality conditions
Consumption equation:
C2t = W¢—DPr+nay (A.5)
Labour supply equation:
pna s + (et = w — py. (A.6)

47



Intermediate goods firms first-order conditions

Aggregate output function:

yr=a (v +ne) + (1 — ) ke (A7)
Capital-labour ratio:
k‘t — Nt = Wt — T¢. (AS)
Real marginal cost:
mey = Wy — Py + g — Yy (A.9)

Pricing decision:

Je —he = (1= BE) (mey + 7)) + BEE [ — Y7y + Jea1 — huga] -

The law of motion for prices

New Keynesian Phillips curve:

(1-¢)(1—p¢) p gl
= mey + v, ) + E + ——m_1.
TS T Uy T g e e
The real Government balanced budget constraint
gt = Tit- (A.10)
The Central Bank Taylor-type rule
Tnt = pring—1 + (1 — pr) (O + 0yy7") + €] (A.11)
The Fisher equation
Tt = Tnt — Tt (A.12)
The goods market clearing condition
C 1. G
Yo = ¢ + v + y I (A.13)
c=(1—-XN)cit+ Aeag. (A.14)
ng = (1 — )\) Nt + )\??,2715. (A.15)
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ke = kg (A.16)
iy =14 (A.17)

B Estimation method

Likelihood function

The model is mapped to the data using a measurement equation of the form ydat“ = Czy+Duy, where
yate denotes the vector of observable time series, C' is a matrix mapping the model’s endogenous
variables, x;, to the observed data. D is a matrix of coeflicients and the vector of measurement
errors u; follows a white noise process uy ~ N (0,%,,) and E (usu,) = 0 for t # 7. The log-likelihood

data

function of yf*** conditional on the vector of parameters § € © is then given by:

L <ydata’9) ——ln 27 — *ZZTL |E data ¢|¢— 1| - 7Z€t|t 1E;d1ata tlt— 1et\t 1 (B]')

where X data 4,1 18 a predictor of the variance-covariance matrix of the one-step-ahead forecast

erTors, €1 = yf“m yﬁ‘tnal a vector of the one-step-ahead forecast errors from using parameters 6

data

to predict sample variables y****, and the number of observable variables is n. The log-likelihood is

evaluated using the Kalman Filter.

Prior distributions

The specification of a prior density p (6) is central to the Bayesian estimation process. It represents
the beliefs of the researcher on model parameters and an additional source of information in the com-
putation of the posterior which can be independent from the data. Priors can be non-informative,
or invariant to parametrisation, when we want to minimise the prior’s influence on the posterior.
Classical Maximum likelihood estimators can be viewed as Bayesian estimators with uniform priors.
Or on the other hand, priors can be informative and be a close representation of the data (predictive
density of the data). The choice of appropriate priors lies normally between these two extrema.

In spite of each parameter’s singularities: the beta distribution was used for fractions or prob-
abilities; inverse gamma distribution for shocks’ standard deviations, bounded to be positive; and
the normal distribution for non-bounded parameters and when more informative priors seem nec-
essary. Following Smets and Wouters (2003, 2007), the gamma distribution, with support [0, 00), is
used for the measurement error of the observable variable defining inflation. The definition of prior
means and standard deviations is mainly based on empirical evidence from other papers and on

their implications for macroeconomic dynamics. For the remaining cases, weakly informative priors
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with relatively large supports were considered.

Posterior computation

The posterior distribution of the model’s parameters, p (Glyd“m), is obtained by Bayes theorem:

o (o) = L0 20 )
Jo L (ydete|0) p (0) do

where L (ydat“\ﬁ) is the likelihood function of the sample 9% € Y and p () the prior density of

the parameter vector 6. [ L (y?|6) p (6) d6f denotes the marginal sample density. Note that the

marginal density of the data is a constant term. Therefore, the posterior density proportionally

corresponds to the sample density multiplied by the prior density, or simply the posterior kernel:

p (Oly™e) o L (y210) p (6) = K (0ly™) (B.3)

In logs, we have the log-posterior kernel expressed as:

logK (9|yd“ta) =L (ydata|0) + logp (0), (B.4)

where £ (ydamw) is the log-likelihood function defined above. The mode of the posterior distri-
bution, as well as the Hessian at this point, are estimated using Sim’s algorithm csminwel, which

maximises (B.4) with respect to 6 2.

Markov Chain Monte Carlo (MCMC) Metropolis-Hastings (MH) algorithm

A closed-form analytical solution is normally very difficult to reach, making the use of numerical
methods necessary. Markov Chain Monte Carlo (MCMC) simulation methods are used to obtain
the posterior distribution by sampling from a given target probability distribution. Specifying a
transition kernel for the Markov chain and starting from some initial values and iterating a large
number of times, we find the target distribution. It corresponds to the limiting distribution of
the Markov chain, which (should) converges in distribution to the stationary distribution of the
posterior.

The Metropolis-Hastings algorithm is the sampling method used to generate draws from the
posterior distribution. The algorithm samples from the region of the target distribution with highest
probability but visits, as well, the entire parameter space as much as possible. It starts from
an arbitrary candidate density to generate the next value of the Markov chain, then applies an
acceptance/rejection rule to decide whether this draw can be accepted as a draw of the posterior
distribution. As discussed by An and Schorfheide (2007), the posterior mode and the Hessian

12For more details, see www.princeton.edu/sims/.
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evaluated at the posterior mode are used as starting values to generate draws from the posterior
distribution and, in particular, to define the mean and variance of 6.
The simulation strategy of the MCMC-MH algorithm is the following:

1. Consider an arbitrary candidate (or jumping) distribution S (0*|60;—1) ~ N (6;-1,cSy) where
0;_1 is the last accepted draw, ¢ is a scale factor used to obtain an efficient algorithm and

Qy=H (Hm\ydam)_l is the inverse of the Hessian evaluated at the posterior mode 6,,;
2. Draw 6* from the candidate distribution;

3. Compute the acceptance rate r defined as the ratio of posterior kernels evaluated at the new

draw and at the last accepted draw, respectively:

K (9*|ydata) A
I (9i_1|ydata)’ )

T =mnin

4. For each draw ¢, accept the new proposal 6* with probability r and maintain the last accepted
draw 0;_1 otherwise:
p o* with probability r
i = ;
0;_1 otherwise

5. Update the mean of the distribution with the new draw 6;;

6. Iterate on steps 2-5 a large number of times and build a histogram of retained draws. This

will eventually be the posterior distribution of 6.

This acceptance rule allows to not reject too frequently the candidate draw, avoiding draws to be
centered around a local maximum, and allows each move to travel a reasonable distance in the
parameter space, eventually towards the global maximum. The acceptance rate, which is commonly
set to lie between 20-30%, depends on the scale factor ¢ of the candidate distribution’s variance.
The greater is ¢ the lower will be the acceptance rate which may cause Markov chains to concentrate
too much on the tails of the posterior distribution. And the inverse is also true, the lower is ¢ the

greater will be the acceptance rate and chains will likely get stuck around a local maximum.

Markov Chain diagnostics

The Gelman-Rubin (1992) and Brooks-Gelman (1998) statistics, for the univariate and multivariate
cases, are used to assess the convergence of Markov chains. These test whether parallel chains
converge to the same posterior distribution by comparing within-chain and between-chain variances.
Large differences between variances may mean that chains have not converged yet and therefore a

longer chain must be run, or that the posterior distribution has multiple modes and chains have
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converged to different modes. Different initial values for parallel chains ensure that they explore
different parts of the distribution and so do not get stuck in local maxima before converging to the
stationary distribution.

Using the estimated variance of the posterior distribution, defined as a weighted average of

between-chain B and within-chain W variances of m chains of length n,

n—1 m—+1

Var (0) = W+ B, (B.5)
n nm
we can compute the potential scale reduction factor R as:
- ar (0
R = W , for the univariate case; or
(B.6)

= \/n ! + mt 1)\1 , for the multivariate case;
n nm
where \; is the largest eigenvalue of the symmetric and positive definite matrix W—'B. If R is
large, longer simulations should be run to improve convergence because between-chain variance is
substantially greater than within-chain variance. When R is close to one, it indicates that each
chain m has stabilised and converged to its stationary distribution since the estimated variance of

the posterior distribution is close to the within-chain variance.

Model comparisons

An and Schorfheide (2007) provide a comprehensive survey on approaches to assess model’s per-
formance. Following Smets and Wouters (2003, 2007) and Rabanal and Rubio-Ramirez (2005), 1
assess the in-sample fit of the model by comparing different specifications based on their marginal
likelihood. From marginal likelihoods of two competing models m; and m;, we can compute the

ratio of posterior model probabilities or the posterior odds ratio:

p (maly®@) L (y*|m;) p (my) p(my)
POi’j = data) data = BFivj ’ (B7)
p (mylydete) L (ye[m;) p (m;) p(m;)
where the prior odds ratio is given by 5 ((:;ig, the relative probability of model m; being true with
J

L(ydata |m1)
L ydata ‘mJ

model m; with respect to m; independently of the parameters. The Laplace approximation or the

respect to m; a priori, and BF;; = is the Bayes factor, the relative data density of
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Modified Harmonic Mean Estimator'? is used to compute the marginal likelihood. Note that:
I (yd“m|mi) _ / I (ydataw’mi) p(6]m;) db, (B.8)
©

where p (0|m;) the prior density for model m;. Rearranging (B.7) and considering the prior odds

ratio to be one, we can compute the posterior model probabilities as:

P (mi!ydat“) = BF;;p (mjlyd“m) :
Using model 1 to be the denominator of the posterior model probabilities, we can rewrite the Bayes

factor as BF;; = exp [L (yd“t“]mi) - L (yd“t“|m1)] for ¢ being each of the four models from the

alternative specifications of A tested. Hence, we have:

% fori=1
b (mi|ydata) ={ &5 (B.9)
BF; 1p (ma|y®®)  otherwise.

Note that this methodology has limitations because it depends on the a priori beliefs the researcher
has on each competing model and it is only valid to assess nested models. Thus, the outperforming
model can still badly capture data dynamics and still be potentially misspecified.'4

Impulse response functions (IRFs)

Impulse response functions are the expected response of endogenous variables to a one-time struc-
tural shock of one standard deviation in period j. Following Fernédndez-Villaverde et al. (2005), the
model can be summarised by the following state space system:

(7) the transition equation from the minimum state variable solution,

Tyr1 = Exy + Fuy; (B.10)

and, (i7) the measurement equation mapping the state variables to their observable counterparts,

yr = Cxy + Duy; (B.11)

where z; is the vector of unobserved model’s state variables, y; the vector of the observed variables

3See for example Geweke (1999).

1T evaluate the absolute performance of the model, Del Negro and Schorfheide (2004) and Del Negro et al. (2007)
introduce the DSGE-VAR benchmark. They use the VAR implied by the estimated DSGE model and the respective
set of cross-coeflicient restrictions to construct a prior distribution for the VAR parameters. The marginal likelihood
of the hyperparameter defining the prior tightness provides an overall assessment of the VAR approximation of the
DSGE model. The DSGE model misspecification can be assessed by comparing the IRFs of the DSGE model and
the DSGE-VAR benchmark.
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and u; the vector of economic shocks and measurement errors. C and D were defined above, and
E and F are matrices of coefficients. For the case D is full-rank so that D~! exists and as long as

the eigenvalues of (E - F D_IC') are inside the unit-circle, zyy1 can be rewritten as:

o
r1=>» [E-FD'C)’FD 'y, (B.12)
§=0
Rearranging, we obtain an infinite order VAR representation of y;:

o .
y=CY [E-FD'C)’ FD 'y_j 1 + Duy.
j=0

Hence, impulse response functions from shocks u; to observables y; can be written as a moving

average (MA) representation given by:
e .
ye=d(L)u = diLluy, (B.13)
=0

D for j =0

where d; = .
CE/='F for j > 0.

Variance and historical decomposition

Using the MA representation above, the vector of observables in period t + h can be decomposed
into the historical time series due to innovations in periods ¢ + 1 to ¢ + h (the h-step ahead forecast

error) and into the base forecast of ;1 given the information available at time ¢:

h—1 [e's)
Ytth = Zdjut-‘rh—j + Zdjut-i-h—j' (B.14)
=0 =0

Or expressing in terms of the forecast error at horizon ¢ + h:

Ct+nlt = Yt+h — Ytthlt-

The cumulative contribution of any innovation is determined by the difference between the actual
time series and the base forecast since period t. On the other hand, the forecast error variance
decomposition (FEVD) allows to assess the importance of each shock as a source of variation to
each endogenous variable at different horizons. The fraction of the forecast error variance at horizon

h attributable to u; of the i-th element of ey, is:

54



P
0 Z dij,k
k=0

Va’l“ijﬁ = 5 (B15)

n h—1 )
Z |:072n Z dim,k:|
m=1 k=0

7

h—1
where >’ [a% > dfm k} is the sum of variances of the i-th elements of e;,, for each economic
m=1 k=0

shock m.

Estimation options

Due to computational challenges, posterior estimates are based on 100,000 draws from five parallel
Markov chains (without major repercussions for chains convergence). I increased the fraction of
draws to be discarded from 20 to 40%. The scale used for the jumping distribution in the MH
algorithm is set to 0.35, implying acceptance rates around 20 to 30%. A 40% initial burn-in period

is considered such that any dependence on chains’ starting values is removed.
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