The Time-Varying Risk and Return Trade Off in Indian Stock Markets

Roshni Mohanty and Srinivasan P

Research Scholar, Utkal University, Bhubaneswar, Odisha, India.,
Assistant Professor, Xavier Institute of Management &
Entrepreneurship, Bangalore, Karnataka, India

1. May 2014

Online at http://mpra.ub.uni-muenchen.de/55660/
MPRA Paper No. 55660, posted 5. May 2014 14:09 UTC
THE TIME-VARYING RISK AND RETURN TRADE OFF IN INDIAN STOCK MARKETS

ROSHNI MOHANTY¹
Research Scholar
Utkal University, Bhubaneswar, Odisha, India
Email: roshni.mohanty9@gmail.com

SRINIVASAN P²
Assistant Professor
Xavier Institute of Management & Entrepreneurship, Bangalore, Karnataka, India
Email: srinivasaneco@gmail.com

ABSTRACT
This paper investigates the relationship between stock market returns and volatility in the Indian stock markets using AR(1)-EGARCH(p, q)-in-Mean model. The study considers daily closing prices of two major indexes of Indian stock exchanges, viz., S&P CNX NIFTY and the BSE-SENSEX of National Stock Exchange (NSE) and Bombay Stock Exchange (BSE), respectively for the period from July 1, 1997 to December 31, 2013. The empirical results show positive but insignificant relationship between stock returns and conditional variance in the case of NSE Nifty and BSE SENSEX stock markets. Besides, the analysis reveals that volatility is persistent and there exists leverage effect supporting the work of Nelson (1991) in the Indian stock markets. The present study suggests that the capital market regulators, investors and market participants should employ the asymmetric GARCH-type model that sufficiently captures the stylized characteristics of the return, such as time varying volatility, high persistence and asymmetric volatility responses, in determining the hedging strategy and portfolio management and estimating and forecasting volatility for risk management decision making at Indian Stock Exchange.

Keywords: Stock Market Returns, Weak-From Efficiency, India, AR-EGARCH-M model

JEL classification codes: G12, C15, C22

¹Research Scholar, Department of MBA, Utkal University, Bhubaneswar, Odisha, India. Email: roshni.mohanty9@gmail.com
²Corresponding author. Assistant Professor, Xavier Institute of Management & Entrepreneurship, Bangalore, Karnataka, India. Email: srinivasaneco@gmail.com
1. INTRODUCTION

With understanding the risk-return trade-off is fundamental to equilibrium asset pricing and has been an important topic in financial research. Many theoretical asset pricing models (e.g., Sharpe, 1964; Lintner, 1965; Mossin, 1966; Merton, 1973, 1980) postulates the return of an asset to its own return variance. However, whether such a relationship is positive or negative has been controversial. Many traditional asset-pricing models (e.g., Sharpe, 1964; Merton, 1980) postulate a positive relationship between a stock portfolio’s expected return and the conditional variance as a proxy for risk. On the other hand, theoretical works by Black (1976), Cox and Ross (1976), Bekaert and Wu (2000), Whitelaw (2000) and Wu (2001) consistently asserts that stock market volatility should be negatively correlated with stock returns.

However, there was a weak empirical evidence for the positive risk-return relationship reflected in the studies by Fama and French (1992), He and Ng (1994) Miles and Timmermann (1996) and Davis (1994). Glosten, Jagannathan, and

Given the conflicting results cited above, it is primarily an empirical question whether the conditional first and second moments of equity returns are positively related. Besides, the several emerging markets like India are not weak-form efficient and subject to have asymmetric properties in risk-return characteristics. Hence, the usage of asymmetric econometric models in examining risk-return trade-off could provide more precise results, as Exponential GARCH-in-Mean (EGARCH-M) accommodates an asymmetric relationship between stock price returns and volatility changes under the assumption that both the magnitude and sign of volatility was important in determining the risk-return correlation. Thus, the negative and positive sign of the conditional variance allowed the stock
price returns to respond asymmetrically (bad and good news) to rises and falls in stock prices.

The purpose of this paper is to investigate the relationship between stock market returns and volatility in the Indian stock markets by employing AR(1)-EGARCH(p, q)-in-Mean model. The rest of the paper is organised as follows: Section 2 discusses the methodology of the study. Section 2 presents empirical findings. Concluding remarks are given in Section 4.

2. METHODOLOGY

The study considers daily closing prices of two major indexes of Indian stock exchanges, viz., S&P CNX NIFTY and the BSE-SENSEX of National Stock Exchange (NSE) and Bombay Stock Exchange (BSE), respectively for the period from July 1, 1997 to December 31, 2013. The necessary information regarding the daily closing values of the NSE S&P CNX NIFTY and BSE SENSEX indexes is collected from the NSE (www.nseindia.com) and BSE (www.bseindia.com) website, respectively. In the present study, the stock market returns are defined as continuously compounded or log returns (hereafter returns) at time \(t \), \(R_t \), calculated as follows:

\[
R_t = \log \left(\frac{P_t}{P_{t-1}} \right) = \log P_t - \log P_{t-1}
\]

(1)

where \(P_t \) and \(P_{t-1} \) are the daily closing values of the NSE S&P CNX Nifty and the BSE SENSEX indexes at days \(t \) and \(t-1 \), respectively.

As a preliminary investigation, the descriptive statistics has been used to examine the distribution properties of stock index return series. Besides, the stationarity conditions of the stock market indices are tested by means of Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests. Both the tests are used to detect the presence of stationarity in the time series data. If the variables in the regression model are not stationary, then it can be shown that the standard assumptions for asymptotic analysis will not be valid. In other words, the usual “t ratios” do not follow a t-distribution and they are inappropriate to undertake hypothesis tests about the regression parameters. Hence, the presence of unit root in a time series is investigated with the help of ADF and PP tests in the study. Moreover, we used the EGARCH-M model of Nelson (1991) to examine the risk-return relation. This model sufficiently captures the asymmetric response of
volatility to news and allows the conditional volatility to have asymmetric relation with past data.\(^3\) Statistically, this effect occurs when an unexpected drop in stock price due to bad news increases volatility more than an unexpected increase in price due to good news of similar magnitude. The EGARCH-M model expresses the conditional variance of a given variable as a non-linear function of its own past values of standardized innovations that can react asymmetrically to good and bad news. The AR(1)-EGARCH(p, q)-in-Mean model can be specified as follows:

\[
R_t = \beta_0 + \beta_1 R_{t-1} + \xi \sigma^2_t + \varepsilon_t
\]

(2)

\[
\ln(\sigma^2_t) = \alpha_0 + \alpha_1 \ln(\sigma^2_{t-1}) + \delta_1 \frac{\varepsilon_{t-1}}{\sigma_{t-1}} + \gamma_1 \frac{\varepsilon_{t-1}}{\sigma_{t-1}}
\]

(3)

where, \(R_t\) is the stock market returns of the S&P CNX Nifty and BSE SENSEX Indices at time 't'. \(R_{t-1}\) is a proxy for the mean of \(R_t\) conditional on past information. \(\beta_0\) is comparable to the risk-free rate in the Capital Asset Pricing Model. \(\xi \sigma^2_t\) is the market risk premium for expected volatility. This is the most relevant parameter for this study, because the sign and significance of the parameter \(\xi\) directly shed light on the nature of the relationship between stock market returns and its volatility. The expected volatility is approximated by \(\sigma^2_t\), the conditional variance of \(R_t\) such that:

\[
\sigma^2_t = \text{var} \left(\frac{R_t}{\psi_{t-1}} \right)
\]

(4)

where \(\psi_{t-1}\) is the information set up to time, t-1 and, \(\text{var}()\) is the variance operator.

In terms of conditional variance equation (3), \(\ln(\sigma^2_t)\) is the one-period ahead volatility forecast. This implies that the leverage effect is exponential rather than quadratic and forecast of conditional variance are guaranteed to be non-negative. \(\sigma^2_{t-1}\) denotes the estimation of the variance of the previous time period that stands for the linkage between current and past volatility. In other words, it measures the degree of volatility persistence of conditional variance in the

\(^3\) Two explanations for asymmetric responses have been put forward. The traditional explanation for this phenomenon was the so-called 'leverage effect' whereby a fall in price results in greater financial leverage, leading to an increase in risk premiums (Black, 1976 and Christie, 1982). Moreover, Black (1976) acknowledged that financial leverage alone was not a sufficient explanation to account for the actual size of the observed asymmetries, and an alternative explanation based on market dynamics and the role of noise traders have been expounded (Kyle, 1985 and Sentana and Wadhwani, 1992).
previous period. $\frac{\varepsilon_{t-1}}{\sigma_{t-1}}$: represents information concerning the volatility of the previous time period. It signifies the magnitude impact (size effect) coming from the unexpected shocks. $\frac{\varepsilon_{t-1}}{\sigma_{t-1}}$: indicates information concerning the asymmetry effects. Unlike the GARCH model, the EGARCH model allows for leverage effect. If γ_1 is negative, leverage effect exists. That is an unexpected drop in price (bad news) increases predictable volatility more than an unexpected increase in price (good news) of similar magnitude (Black, 1976; Christie, 1982). If δ_1 is positive, then the conditional volatility tends to rise (fall) when the absolute value of the standardized residuals is larger (smaller). α’s, β’s, ξ, δ and γ_1 are the constant parameters to be estimated. ε_t represents the innovations distributed as a Generalised error distribution (GED), a special case of which is the normal distribution (Nelson, 1991).

3. RESULTS AND DISCUSSION

To evaluate the distributional properties of stock market return series of NSE Nifty and BSE SENSEX, descriptive statistics are reported in Table 1. For the NSE Nifty and BSE SENSEX, the mean returns are found to be positive, implying a bullish trend over the sample period. The standard deviation of both market returns recorded the least, that ranges from 0.043 and 0.046 percent and it found to be relatively higher in the case of BSE SENSEX. Besides, the skewness values of both market return series are negative, indicating that the asymmetric tail extends more towards negative values than positive ones. This reflects that both the market return series are non-symmetric. The kurtosis values of market return series was much higher than three, indicating that the return distribution is fatterailed or leptokurtic. The market return series of NSE Nifty and BSE SENSEX are non-normal according to the Jarque-Bera test, which rejects normality at one per cent level.

Table 1. Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>S&P CNX Nifty</th>
<th>SENSEX (BSE-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.00043</td>
<td>0.00046</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.01726</td>
<td>0.01756</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.22848</td>
<td>-0.10584</td>
</tr>
</tbody>
</table>
Further, the study employed Quantile-Quantile (QQ) plots to assess whether the data in a single series follow a specified theoretical distribution; e.g. whether the data are normally distributed (Chambers, et al., 1983; Cleveland, 1994). If the two distributions are the same, the QQ plot should lie on a straight line. If the QQ-plot does not lie on a straight line, the two distributions differ along some dimension. The pattern of deviation from linearity provides an indication of the nature of the mismatch. Figures 1 and 2 clearly validate that the distribution of the stock market returns series show a strong departure from normality.

![Figure 1. Quantile-Quantile (QQ) Plot of S&P CNX NIFTY Return Series](image)

<table>
<thead>
<tr>
<th>Kurtosis</th>
<th>9.27793</th>
<th>8.16175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarque-Bera</td>
<td>5634.4*</td>
<td>3628.5*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Source: Author’s own computation.

Note: Figures in the parenthesis () indicates p-value. *- denote the significance at one level.
As evident from Table 2, the Ljung-Box test statistics $Q(12)$ and $Q^2(12)$ for the return and squared returns series of NSE Nifty and BSE SENSEX confirms the presence of autocorrelation. We can also observe that the both stock market return shows evidence of ARCH effects judging from the significant ARCH-LM test statistics, proposed by Engle (1982).

Table 2. Results of Portmanteau Ljung-Box Test Statistics and Langrange Multiplier Test

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S&P CNX Nifty Return</th>
<th>BSE-30 SENSEX Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Q[12]</td>
<td>30.024* (0.003)</td>
<td>35.760* (0.000)</td>
</tr>
<tr>
<td>LB2-Q[12]</td>
<td>643.25* (0.000)</td>
<td>721.96* (0.000)</td>
</tr>
<tr>
<td>ARCH-LM[12]</td>
<td>28.405* (0.000)</td>
<td>28.578* (0.000)</td>
</tr>
</tbody>
</table>

Source: Author’s own computation.
Note: Figures in the parenthesis () indicates p-value. *- denote the
significance at one level. \(Q[12] \) and \(Q_2[12] \) represents Portmanteau Ljung-Box (1978) Q-statistics for the return and squared return series respectively. They test for existence of autocorrelation in return and squared return series for 12 lags respectively. Ljung-Box Q test statistic tests the null hypothesis of absence of autocorrelation. ARCH-LM[12] is a Lagrange multiplier test for ARCH effects up to order 12 in the residuals (Engle, 1982).

Moreover, Figure 3 and 4 represents the graphs of residual series of S&P CNX Nifty and BSE SENSEX return for the study period, respectively. The graphs confirm the presence of volatility clustering, implying that volatility changes over time and it tends to cluster with periods with low volatility and periods with high volatility.
The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were employed to test the stationarity of both market return series and the results are presented in Table 3. Both unit root tests strongly reject the hypothesis of non-stationarity in the case of two market return series. However, despite the unit root test results that the market return series should be considered stationary, returns display a degree of time dependence. By and large, the return series of NSE Nifty and BSE SENSEX seem to be best described by an unconditional leptokurtic distribution and volatility clustering, and possesses significant ARCH effects. Thus, the EGARCH-M model is capable with generalised error distribution (GED) is deemed fit for modeling the conditional variance. Further, the EGARCH-M model is capable of capturing, at least partially, the leptokurtosis of a non-conditional return distribution of an economic element as well as the valuable information about the dependence in the squared values of return (Engle and Ng, 1993).
Table 3. Unit Root Test Results of S&P CNX Nifty & BSE-30 SENSEX Returns

<table>
<thead>
<tr>
<th>Variables</th>
<th>Augmented Dickey-Fuller Test</th>
<th>Phillips-Perron Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept & trend</td>
<td>Without Intercept & trend</td>
</tr>
<tr>
<td>NIFTY</td>
<td>-25.448*</td>
<td>-25.462*</td>
</tr>
<tr>
<td>SENSEX</td>
<td>-27.931*</td>
<td>-27.949*</td>
</tr>
</tbody>
</table>

Source: Author’s own computation.
Note: * – indicates significance at one per cent level. Optimal lag length is determined by the Schwarz Information Criterion (SC) and Newey-West Criterion for the Augmented Dickey-Fuller (ADF) Test and Phillips-Perron (PP) Test respectively.

Table 4 reports the results of AR(1)-EGARCH(1, 1)-in-Mean estimates for NSE Nifty and BSE SENSEX stock markets. In the mean equation (2), the coefficient ξ turns out to be positive but statistically insignificant, implying investors are not rewarded for the risk they had taken on the Indian stock exchanges. This result is consistent with the findings of French et al. (1987), Baillie and De Gennaro (1990), Chan et al. (1992) and Leon (2007). In terms of the conditional variance equation (3), the persistence parameter α_1 was 0.9458 and 0.9563 for the NSE and BSE stock markets, respectively. This suggests that the degree of persistence is high and very close to one. In other words, once volatility increases, it is likely to remain high and takes longer time to dissipate. The positive and statistically significant coefficient α_1 in the case of both stock markets confirms that the ARCH effects are very pronounced implying the presence of volatility clustering. Conditional volatility tends to rise (fall) when the absolute value of the standardized residuals is larger (smaller) (Leon, 2007).

Table 4. Results of Estimated AR(1)-EGARCH(1,1)-Mean Model

<table>
<thead>
<tr>
<th>S&P CNX Nifty Return</th>
<th>β_0</th>
<th>β_1</th>
<th>ξ</th>
<th>α_0</th>
<th>α_1</th>
<th>δ_1</th>
<th>γ_1</th>
<th>Q[12]</th>
<th>ARCH-LM[12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0006</td>
<td>0.0988</td>
<td>0.1183</td>
<td>-0.6655</td>
<td>0.9458</td>
<td>0.2739</td>
<td>-0.1148</td>
<td>6.4934</td>
<td>0.5261</td>
<td></td>
</tr>
<tr>
<td>(1.863)***</td>
<td>(5.524)*</td>
<td>(0.082)</td>
<td>(-13.03)*</td>
<td>(176.70)*</td>
<td>(17.07)*</td>
<td>(-11.47)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11
SENSEX (BSE-30) Return

<table>
<thead>
<tr>
<th></th>
<th>0.0007</th>
<th>0.0994</th>
<th>-0.7996</th>
<th>-0.5539</th>
<th>0.9563</th>
<th>0.2461</th>
<th>-0.1056</th>
<th>9.0710</th>
<th>0.7198</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.193)**</td>
<td>(5.261)*</td>
<td>(-0.554)</td>
<td>(-12.55)*</td>
<td>(209.80)*</td>
<td>(16.49)*</td>
<td>(-11.25)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Author’s own computation.

Note: Figures in parenthesis are z-statistics, *, ** and *** denotes the significance at one, five and ten percent level, respectively. Q(12) and Q²(12) represents the Ljung-Box Q-statistics for the model squared standardized residuals using 12 lags. ARCH-LM[12] is a Lagrange multiplier test for ARCH effects up to order 12 in the residuals (Engle, 1982).

Besides, the asymmetric coefficient γ_1 in the case of both Indian stock markets was found to be negative and statistically significant at one percent level, implying the presence of asymmetric effects. This suggest that there is a larger impact on volatility due to the noise traders in the Indian stock markets during market downward movement than market upward movement under the same magnitude of innovation, i.e. the volatility of negative innovations is larger than that of positive innovations.

In addition, Table 4 shows the results of the diagnostic checks on the estimated AR(1)-EGARCH(1, 1)-in-Mean estimates for NSE Nifty and BSE SENSEX stock markets. The Ljung-Box $Q^2(12)$ statistics of the squared standardized residuals are found to be insignificant, confirming the absence of ARCH in the variance equations. The ARCH-LM test statistics further showed that the standardized residuals did not exhibit additional ARCH effect. This shows that the variance equations are well specified in the case of both estimates. In other words, the AR(1)-EGARCH (1,1)-M process generally provides a good approximation of the data generating process for stock returns under consideration.

4. CONCLUSION

This paper investigates the relationship between stock market returns and volatility in the Indian stock markets by employing AR(1)-EGARCH(p, q)-in-Mean model. The study reveals positive but insignificant relationship between stock return and risk for NSE Nifty and BSE SENSEX stock markets. This is in accordance with the findings of Choudhry (1996), Chiang and Doong (2001), Shin (2005) and Karmakar (2007) for the emerging stock markets. Besides, the study result shows that volatility is persistent and there exists leverage effect supporting the work of Nelson (1991) in the Indian stock markets. The present study suggests that the capital market regulators, investors and market participants should employ the asymmetric GARCH-type model that sufficiently captures the stylized
characteristics of the return, such as time varying volatility, high persistence and asymmetric volatility responses, in determining the hedging strategy and portfolio management and estimating and forecasting volatility for risk management decision making at Indian Stock Exchange.

The Exponential Generalized Autoregressive Conditional Heteroskedasticity model employed in our study sufficiently captures only the short-run dependency of the conditional variances. It is generally accepted that financial time series of practical interest exhibit strong dependence, i.e., long memory. The advantage of modelling long memory better suit the needs of medium-to-long term prediction which is crucial in derivative pricing models. Hence, there exists scope to extend our study by examining long memory properties in the conditional variance using nonlinear long memory models.

REFERENCES

