A binomial tree to price European options

Athos Brogi

February 2010

Online at http://mpra.ub.uni-muenchen.de/55681/
MPRA Paper No. 55681, posted 5. May 2014 05:09 UTC
A Binomial Tree to Price European Options

Athos Brogi
UniCredit SpA, Piazza Gae Aulenti, 20121 Milano, e-mail: athos.brogi@unicredit.eu

Keywords: Arbitrage, Kurtosis, Martingale, Option, Risk-neutral, Skewness, Volatility

1. Introduction

This short paper presents a time-changing volatility binomial tree suitable for the pricing of European options.

2. Binomial Tree

Time-points t_i, $i = 0,1,\ldots,n$, are equidistant, and time-periods $\Delta t = t_i - t_{i-1}$, $i = 1,\ldots,n$, and time horizon $T = n\Delta t$, which is fixed length of time of expiration of option in years. t_0 is current time-point. We also have an extra historical time-point, t_{-1}, which precedes t_0, and such that $t_0 - t_{-1} = \Delta t$.

The underlying security price can either rise or fall from one-point to the next, $i = 1,\ldots,n$:

$$S_i = S_{i-1} u_i \quad \text{with probability } q_i,$$
$$S_i = S_{i-1} d_i \quad \text{with probability } 1 - q_i,$$

(1)

where u_i stands for up, d_i stands for down, and u_i, d_i are variable. q_i is the risk-neutral probability of underlying security price at t_{i-1}, S_{i-1}, rising to $S_{i-1} u_i$ at t_i.

Further down we derive a formula for q_i.

The definition of continuously compounded return of underlying security from t_{i-1} to t_i:

$$R_i = \log S_i - \log S_{i-1}, \quad i = 0,1,\ldots,n.$$

(2)

We call current return $R_i = \log S_i - \log S_{i-1}$, where S_{i-1} is a known historical price, so current return is known too. Rearranging (1), and taking logarithms, and using (2) we define, $i = 1,\ldots,n$,

$$\log S_i / S_{i-1} | \sigma_i = \log u_i = R_i^+ \quad \text{with probability } q_i,$$
$$\log S_i / S_{i-1} | \sigma_i = \log d_i = R_i^- \quad \text{with probability } 1 - q_i,$$

(3)

where
\[R_i^+ = \mu \Delta t + \sigma_i \sqrt{\Delta t} , \]
(4)

\[R_i^- = \mu \Delta t - \sigma_i \sqrt{\Delta t} , \]
(5)

with \(\mu \Delta t < \sigma_i \sqrt{\Delta t} \) for large \(n \), or equivalently small \(\Delta t \). \(\sigma_i \sqrt{\Delta t} \) is part of a volatility process, \(\{ \sigma_i \sqrt{\Delta t} \}_{i=0}^n \), which we need to model, where \(\sigma_i \) is known current annual volatility.

3. Martingale Condition

Under no arbitrage, the discounted price process of the underlying security, \(\{ \tilde{S}_t \}_{t=0}^n \), must be a martingale. We now derive a formula for risk-neutral probability \(q_i \) in (1), so that \(\{ \tilde{S}_t \}_{t=0}^n \) is a martingale.

Let us introduce a sample of independent Bernoulli random variables, which are independent of \(\{ \tilde{S}_t \}_{t=0}^n \):

\[Z_i = +1 \text{ with probability } q_i \text{ or } \]
\[Z_i = -1 \text{ with probability } 1 - q_i , \]

where \(q_i \) is the risk-neutral probability in (1). Then (4) and (5) can be written as one equation:

\[R_i = \mu \Delta t + \sigma_i \sqrt{\Delta t} Z_i , \quad i = 1, \ldots, n . \]

The martingale condition is

\[
E(\tilde{S}_t \mid \tilde{S}_{t-1}, \tilde{S}_{t-2}, \ldots) = \tilde{S}_{t-1}, \quad i = 1, \ldots, n ,
\]

\[
E(e^{-ir\Delta t} \tilde{S}_{t+i} e^{R_i} \mid \tilde{S}_{t+i-1}, \tilde{S}_{t+i-2}, \ldots) = e^{-(i-1)r\Delta t} \tilde{S}_{t+i-1}
\]

\[
E(e^{\mu\Delta t + \sigma_i \sqrt{\Delta t}} Z_i \mid \tilde{S}_{t+i}, \tilde{S}_{t+i-1}, \ldots) = e^{r\Delta t},
\]

where \(r \) is the risk-free rate of interest, which is constant during time horizon \(T \), and

\[e^{\mu\Delta t + \sigma_i \sqrt{\Delta t}} | \sigma_i \]
(\(\sigma_i \) with probability \(q_i \) or

\[e^{\mu\Delta t - \sigma_i \sqrt{\Delta t}} | \sigma_i \]
(\(\sigma_i \) with probability \(1 - q_i \),

so that...
\[
q_i e^{\mu \Delta t + \sigma_i \sqrt{\Delta t}} + (1 - q_i) e^{\mu \Delta t - \sigma_i \sqrt{\Delta t}} = e^{r \Delta t}.
\]

Hence,
\[
q_i = \frac{e^{r \Delta t} - e^{\mu \Delta t - \sigma_i \sqrt{\Delta t}}}{e^{\mu \Delta t + \sigma_i \sqrt{\Delta t}} - e^{\mu \Delta t - \sigma_i \sqrt{\Delta t}}},
\]

In risk-neutral pricing we set \(\mu = r \), so that
\[
q_i = \frac{1 - e^{-\sigma_i \Delta t}}{e^{\sigma_i \Delta t} - e^{-\sigma_i \Delta t}}, \quad i = 1, \ldots, n. \tag{6}
\]

For large \(n \), or equivalently small \(\Delta t \), substituting the exponentials in (6) by their series expansions ignoring terms of order \((\Delta t)^{3/2}\) or higher, we get
\[
q_i = \frac{1}{2} - \frac{1}{4} \sigma_i \sqrt{\Delta t}, \quad i = 1, \ldots, n. \tag{7}
\]

So, the risk-neutral probability of \(S_{t+1} \) rising is less than for \(S_{t+1} \) falling. This is true for any \(n \), or equivalently any \(\Delta t \).

\[
E(R_i \mid \sigma_i) = \mu \Delta t + (2q_i - 1)\sigma_i \sqrt{\Delta t} \quad \tag{8}
\]
\[
\text{var}(R_i \mid \sigma_i) = 4q_i(1 - q_i)\sigma_i^2 \Delta t. \quad \tag{9}
\]

Notice that if \(q_i = 1/2 \) (which it is not), then
\[
E(R_i \mid \sigma_i) = \mu \Delta t
\]
\[
\text{var}(R_i \mid \sigma_i) = \sigma_i^2 \Delta t.
\]

Setting \(q_i \) as in (6) is an artificial device which forces \(\{S_i, i=0\} \) to be a martingale.

4. Modeling Volatility

As regards the modeling of \(\sigma_i \sqrt{\Delta t} \), Black (1976) already noticed a negative correlation between returns and volatility, i.e. when returns are high, volatility is low, and when returns are low, volatility is high. Such negative correlation can be captured by the following equation:
\[
\sigma_i \sqrt{\Delta t} = \sigma_{t+1} \sqrt{\Delta t} - \alpha(R_{t+1} - \mu \Delta t), \quad i = 1, \ldots, n, \tag{10}
\]
where $0 < \alpha < 1$. It is clear that according to (10) volatility of returns, $\sigma_t \sqrt{\Delta t}$, can never be negative, because, recalling (4) and (5), if $R_{t-i} = R_{t-i}^+$, then

$$\sigma_t \sqrt{\Delta t} = \sigma_{t-1} \sqrt{\Delta t} - \alpha \left(\sigma_{t-i} \sqrt{\Delta t} \right), \quad i = 1, \ldots, n,$$

$0 < \alpha < 1$. Alternatively, if $R_{t-i} = R_{t-i}^-$, then

$$\sigma_t \sqrt{\Delta t} = \sigma_{t-1} \sqrt{\Delta t} + \alpha \left(\sigma_{t-i} \sqrt{\Delta t} \right), \quad i = 1, \ldots, n,$$

$0 < \alpha < 1$.

$$E(\sigma_t \sqrt{\Delta t} \mid \sigma_{t-1}) = \sigma_{t-1} \sqrt{\Delta t} - \alpha \left(E(R_{t-i} \mid \sigma_{t-i}) - \mu \Delta t \right),$$

$$= \sigma_{t-1} \sqrt{\Delta t} - \alpha \left(2q_{i-1} - 1 \right) \sigma_{t-i} \sqrt{\Delta t} \tag{11}$$

where, as in (6),

$$q_0 = \frac{1 - e^{-\sigma_0 \sqrt{\Delta t}}}{e^{\sigma_0 \sqrt{\Delta t}} - e^{-\sigma_0 \sqrt{\Delta t}}} \tag{12}$$

which is known.

From (10) we see that

$$\sigma_t \sqrt{\Delta t} = \sigma_0 \sqrt{\Delta t} - \alpha \sum_{j=0}^{i-1} \left(R_j - \mu \Delta t \right), \quad i = 1, \ldots, n.$$

Hence,

$$E(\sigma_t \sqrt{\Delta t} \mid \sigma_{t-1}, \sigma_{t-2}, \ldots) = \sigma_0 \sqrt{\Delta t} - \alpha \sum_{j=0}^{i-1} \left(2q_j - 1 \right) \sigma_j \sqrt{\Delta t}.$$

At t_n, dropping $\sqrt{\Delta t}$,

$$E(\sigma_t \mid \sigma_{t-1}, \sigma_{t-2}, \ldots) = \sigma_0 - \alpha \sum_{j=0}^{n-1} \left(2q_j - 1 \right) \sigma_j,$$

and, using (7) for q_j,

$$\lim_{n \to \infty} E(\sigma_t \mid \sigma_{t-1}, \sigma_{t-2}, \ldots) = \sigma_0 - \alpha \lim_{n \to \infty} \sum_{j=0}^{n-1} \left(-\frac{1}{2} \sigma_j \sqrt{\Delta t} \right) \sigma_j = \infty.$$
because each term in the sum is of order \(\sqrt{\Delta t} \) (order \(1/\sqrt{n} \)), but extra terms are added to the sum at rate \(n \). So, the expected value of \(\sigma_t \) has no finite limit.

\[
\text{var}(\sigma_t \sqrt{\Delta t} | \sigma_{t-1}) = \alpha^2 \text{var}(R_{t-1} | \sigma_{t-1}) = 4 \alpha^2 q_{t-1} (1 - q_{t-1}) \sigma_{t-1}^2 \Delta t. \tag{13}
\]

Looking at (13), we note that the greater the \(\alpha \), the greater the variance of volatility of returns, and the greater the variance of volatility of returns, the greater the kurtosis of the distribution of returns.

5. Option Pricing Algorithm

The above tree can be implemented easily to price European call or put options. In fact, thousands of paths along the tree are simulated, and for each path the payoff of our European option equals the arithmetic mean of the thousands of discounted payoffs.

In detail, first, the (fixed) length of time \(T \) between now, \(t_0 \), and when the European option expires, \(t_n \), needs to be determined. Second, \(n \) is chosen and fixed, so that \(T \) is split into \(n \) smaller time periods \(\Delta t = T/n = t_i - t_{i-1}, \ i = 1, \ldots, n \). For example, \(\Delta t \) could be one day.

Now, step-by-step, starting at \(t_0 \), given \(\alpha \):

1. Calculate previously defined current return, \(R_{t_0} = \log S_{t_0} - \log S_{t_{-1}} \).

2. With \(R_{t_0} \) obtain \(\sigma_{t_0} \sqrt{\Delta t} \) from (10), where \(\sigma_{t_0} \) is quoted or estimated annual volatility of returns.

3. Calculate \(q_i \) from (6).

4. In order to determine whether \(S_{t_0} \) rises or falls, draw a uniformly distributed random number in \([0,1]\). If drawn number is in \([0,q_1]\), then \(S_{t_0} \) rises, and so input \(\sigma_{t_0} \sqrt{\Delta t} \) in (4) to obtain \(R_{t_0}^+ \). If drawn number is in \([q_1,1]\), then \(S_{t_0} \) falls, and so input \(\sigma_{t_0} \sqrt{\Delta t} \) in (5) to obtain \(R_{t_0}^- \).

5. With either \(R_{t_0}^+ = \log u_{t_0} \) or \(R_{t_0}^- = \log d_{t_0} \), calculate either \(S_{t_1} = S_{t_0} u_{t_0} \) or \(S_{t_1} = S_{t_0} d_{t_0} \).

6. With \(S_{t_1} \) return to 1. shifting forward one time-point, thus calculating \(R_{t_1} \), and repeat 1. to 5. shifting forward one time-point at each repetition until \(S_{t_n} \) is calculated.

7. With \(S_{t_n} \) calculate European call option payoff, \(X^c \), or put payoff, \(X^p \),

\[
X^c = \max(S_{t_n} - k, 0) \tag{14}
\]
\[
X^p = \max(k - S_{t_n}, 0) \tag{15}
\]

where \(k \) is the strike.

8. Repeat 1. to 7. thousands of times, thus simulating thousands of paths along the tree, and attaining thousands of payoffs.
9. Calculate price of European call, \(\pi(X^c) \), or put, \(\pi(X^p) \),

\[
\pi(X^c) = e^{-rT} \left(\frac{1}{m} \sum_{i=1}^{m} X^c_i \right) \tag{16}
\]
\[
\pi(X^p) = e^{-rT} \left(\frac{1}{m} \sum_{i=1}^{m} X^p_i \right), \tag{17}
\]

where \(m \) is the number of paths simulated, and payoffs calculated. \(r \) is the risk-free rate of interest, which is constant during \(T \).

10. As a measure of the accuracy of estimate (16) or (17), calculate its standard error, given by \(s/\sqrt{m} \), where \(s \) is the sample standard deviation of the \(m \) discounted payoffs obtained.

6. Advantages of the Model and Simulation

- Easy to implement.
- Apart from \(\mu \) and \(\sigma_0 \), volatility process has only one parameter, \(\alpha \).
- Relatively easy to calibrate. \(\alpha \) parameter can be calibrated by trial and error, given a sensible estimate of \(\sigma_0 \).
- Numerically stable. It can model the implied volatility (implied \(\sigma_0 \)) surface, where three option expiry dates with three months between them are considered, without the need to change the value of \(\alpha \) parameter.
- The following page shows a histogram of the distribution of prices simulated along the tree, where \(\alpha = 0.055 \), \(S_0 = 100 \), \(S_{t_i} = 98 \), \(\sigma_0 = 30\% \), \(T = 0.5 \), \(n = 150 \), \(\mu = r = 5\% \).

Statistics have been calculated from simulated prices: sample mean = 101.4603, sample standard deviation = 14.7216, sample skewness = -1.0927, sample kurtosis = 5.4779.
References