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Extended Abstract 
 

Aczél and Luce (2007) emphasized a fundamental question:  
whether the Prelec weighting function  W(p)  equals  1  at  p=1  (or 
whether  W(1)=1).   

 
This paper has obtained three main groups of results: 
 
1)  The values  WCertain  and  W(1)  are additionally defined or 

specified.  The Aczél-Luce question whether  W(1)=1  is modified to 
the question whether  W(1)=WCertain  and the question is emphasized 
whether the probability weighting function  W(p)  is continuous.   

If  W(p)  reveals a discontinuity at  p=1,  then this is a 
topological feature.  This can qualitatively change (at least) the 
mathematical aspects of the utility and prospect theories. 

This is supported by a number of the evidences of the 
qualitative difference between subjects’ treatments of the 
probabilities of probable and certain outcomes.   

 
2)  Purely mathematical theorems prove (under several 

conditions) if the dispersion of data (the noise) is non-zero, then the 
non-zero discontinuity take place at the probability  p=1.   

 
3)  In the prevailing random-lottery incentive system of the 

experiments of the utility and prospect theories, the choices of 
certain outcomes are stimulated by uncertain lotteries.   

Because of this evident “certain-uncertain” inconsistency, the 
deductions from the random-lottery incentive experiments, those 
include the certain outcomes, cannot be unquestionably correct.   

The experiment of Starmer and Sugden (1991) evidently 
supports this consideration.   
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Introduction 

 
A man is the main subject of economics.  Decisions of a man are the 

fundamental operations of economics.  Utility theory, as a branch of the economic 
theory, is specially devoted to the research of decisions of a man.  

Bernoulli (1738) had given rise to researches of problems of the utility theory. 
Von Neumann and Morgenstern (1947) had provided promises of feasibility of 
correct and, naturally, rational fundamentals of the economic theory. But these 
promises were broken by the Nobel laureate Allais (1953). Other later works of 
various authors had shown that real man’s decisions are undoubtedly inconsistent 
with rational models and, moreover, with the probability theory.  

Nobel laureate Kahneman and Thaler (2006) pointed out that the problems of 
the utility and prospect theories, including Allais (Allais, 1953) and Ellsberg 
(Ellsberg, 1961) paradoxes, have still not been adequately overcome.   

This paper discusses a new possible way to solve these problems and an 
inconsistency of a prevailing incentive system of experiments.  The paper is an 
initial design of future articles.  It develops early reports (see, e.g., Harin, 2009a-
2010b), articles Harin (2012a, 2012b) and the recent report Harin (2014).   

The short main chapters of the paper present the idea of the inconsistency of 
the system of experiments.  The longer Appendices show the evidence of the new 
way of solution of the problems.   
 
 

1.  The Aczél-Luce question whether  W(1)=1   
1.1.  The problems.  A probability weighting function 

 
An essential part of the abovementioned problems of the utility and prospect 

theories consists in the problems, those are connected with a probability weighting 
(see, e.g., Tversky and Wakker, 1995).  The probability weighting means that 
subjects treat the probability  p  by a function  W(p)  which is not equal to  p  (or  
W(p)≠p).  The function is defined both for probable and certain outcomes.   

Prelec weighting function (Prelec, 1998) is one of the most popular 
probability weighting functions.  
 

1.2.  The question 
 

One possible way to solve the above problems is to consider the vicinities of 
the boundaries of the probability scale, e.g. at  p~1  (see Aczél and Luce, 2007).   

Aczél and Luce (2007) emphasized a fundamental question:  whether  W(1)=1  
(whether the Prelec weighting function (see Prelec, 1998)  W(1)  is equal to  1  at  
p=1).  In this paper, we refer to this question as the Aczél-Luce question (or Luce 
question).   
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1.3.  Additional definitions 

 
There are a number of the evidences of the qualitative difference between 

subjects’ treatment of the probabilities of probable and certain outcomes (see, e.g., 
Kahneman and Tversky, 1979, McCord and de Neufville, 1986, Halevy, 2008).   

So, in the general case, we should distinguish between values of the 
probability weighting function of the certain outcome and of the limit of the 
probability weighting function of the uncertain outcome when the probability of the 
uncertain outcome tends to  1.   

Let us additionally define or specify a value  WCertain  of the probability 
weighting function  W(p)  for the certain outcome.  We may assume  WCertain  to be 
equal to  1  or normalize other values of  W(p)  by  WCertain.   

Let us here additionally specify a value  W(1)  as the limit of the probability 
weighting function  W(p)  for the probable outcome when  p  tends to  1   

)(lim)1(
1

pWW
p→

≡  .  

If  W(1)=WCertain,  then  W(p)  is continuous.  In the general case, this has not 
been proven.  So (if we define also  WImpossible  for the impossible case),   
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(see also Aczél and Luce, 2007) and  W(p)  can be continuous or discontinuous. 
 

1.4.  A modification of the question 
 

Let us reformulate, modify the Aczél-Luce question whether  W(1)=1  into the 
question whether  W(1)=WCertain  or  whether  W(p)  is continuous.   

To answer to the question and to prove or disprove the continuity of  W(p)  we 
should determine and measure the difference   

?)1( =−WWCertain    
Note, that this does not put a question whether  WCertain  is equal to  1.   
The answer  W(1)≠WCertain  to the modified Aczél-Luce question means that 

the function has a discontinuity near  p=1.  This is not a quantitative but a 
qualitative, moreover, a topological feature.  So, the answer to the question can 
qualitatively change the situation in the utility and prospect theories, at least in their 
mathematical aspects.   
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2.  Purely mathematical restrictions 
2.1.  A synthesis of the two ways 

 
The second possible way to solve the problems of utility and prospect theories 

has been widely discussed, e.g., in Schoemaker and Hershey (1992), Hey and Orme 
(1994), Chay et al (2005), Butler and Loomes (2007).  The essence of this way 
consists in a proper attention to noise, imprecision, and other reasons that might 
cause dispersion, scattering, spread of the data. 

A purely mathematical research (see, e.g., Harin, 2010a, 2012b) combines, 
synthesizes the two above-mentioned ways.  That is, it considers the dispersion of 
data near the boundaries (or the influence of the dispersion of the data near the 
boundaries) of the probability scale.   
 

2.2.  Existence theorems.  The proof of  W(1)<WCertain   
 

Purely mathematical theorems (see, e.g., Harin, 2012b and the Appendix A3) 
proves a probability weighting function  W(p)  cannot reach  WCertain,  at a non-zero 
dispersion of data, for  W(p)≤p  at  p>1/2  and for  WCertain=1.  The theorem is based 
on a sequence of lemmas and theorems (more detailed see the Appendix A3):   

For a finite non-negative function on an interval  [0, 1], the analog of the 
dispersion is proved to tend to  0,  when the mean  M  of the function tends to a 
boundary of the interval.  Hence, if the analog of the dispersion is not less than a 
non-zero value, then the non-zero restrictions exist on  M.  Namely,  M  cannot be 
closer to a boundary of the interval, e.g., to  1,  than by another non-zero value.  
This signifies, that, at a non-zero analog of the dispersion,  M  cannot reach  1.   

As far as the probability estimation corresponds to such a function and a non-
zero dispersion of data takes place, then the non-zero restrictions exist on the 
probability estimation.  This signifies, that at a non-zero dispersion of data, the 
probability estimation cannot reach  1.   

As far as the probability is the limit of the probability estimation and a non-
zero minimal dispersion of data takes place, then the non-zero restrictions exist on 
the probability.  Namely, the probability cannot be closer, than by the non-zero 
value, to a boundary of the probability scale.  This signifies, that, at a non-zero 
dispersion of the data, the probability  p  cannot reach  1,  or  p<1.   

From this conclusion, it follows that, for  WCertain=1  and for  W(p)≤p  at  
p>1/2,  if a non-zero dispersion of data takes place,  then  W(p)<WCertain  for any 
reachable  p.  (more detailed proofs, e.g. the perception by the subjects A3.7, and 
clear graphical evidence of them see below in the Appendices). 

As a matter of fact, the non-zero minimal dispersion of data can be caused, 
e.g., by non-zero noises those are practically unavoidable in economics.   
 

2.3.  Experiments:  the evidences and the question  
 

The existence theorem is supported by the experiments in various fields (see, 
e.g., Harin 2009a-2014).  The risk aversion, the risk premium, the underweighting 
of high and the overweighting of low probabilities etc. support the theorem.   

Nevertheless, at present, the experiments at  p~1  seem to not support the 
theorem.  So, the Aczél-Luce question is also the question about the theorem.   
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3.  An analysis of a detail of the experiments 

 
Let us analyze a fine detail of the experiments.  Let us consider some typical 

descriptions of the experiments.  We can see in the literature:   
Loewenstein and Thaler (1989), page 188:  “The students … were told that the 

experimenter would select and implement one of their choices at random.” 
Tversky and Thaler (1990), page 206:  “The subjects are told that one of these 

pairs will be selected at random at the end of the session, and that they will play one 
of these bets.” 

Kahneman et al (1991), page 195:  “One of the four market trials would 
subsequently be selected at random and only the trades made on this trial would be 
executed”.  Page 197:  “One of the accepted offers (including the original 
endowment) was selected at random at the end of the experiment to determine the 
subject's payment.” 

Harbaugh et al (2001), page 1543:  “… each observation consists of one 
choice from each of the 11 different budget sets.” 

Vossler et al (2012), page 158:  “Participants are instructed that one of the 12 
choice sets will be randomly chosen at the end of the experiment, each with equal 
probability.” 

Cappelen et al (2013), page 1402:  “At the beginning of the experiment, 
stakeholders were told that the computer would randomly choose one of the 
situations and one of the choices in this situation to determine their final outcome.” 

Such a procedure can be seen not only in the field of the utility theory but also 
in other fields of the economics, see, e.g., Larkin and Leider (2012), page 193:  
“Subjects made fifteen choices between a lottery and a fixed payment. … Subjects 
were paid for one randomly selected decision”. 
 

We see that subjects are stimulated and paid by the choice of one from a 
number of situations.  This is a well-known feature of the experiments in the field of 
the utility and prospect theories.  But let us consider this feature more closely.  We 
can see a fine detail in the literature (the highlighting and underlining is mine):   

Andreoni and Sprenger (2012), page 3365:  “One choice for each subject was 
selected for payment by drawing a numbered card at random. Subjects were told to 
treat each decision as if it were to determine their payments.”  and  page 3366:  
“Section I provided a testable hypothesis for behavior across certain and uncertain 
intertemporal settings.” 

Von Gaudecker  et al (2011), page 669:  “Additionally, for one in every ten 
participants in these two treatments, one lottery was randomly selected and played 
out, and the payoff of that lottery was paid out.”  and  page 667:  “the probabilities 
of the high payoff in each option vary from 25 percent to 100 percent”. 

Harrison et al (2005), page 898:  “We undertook a new series of experiments 
that build closely on the basic design features of HL,”  (“HL” means here Holt and 
Laury, 2002)  “but allow an identification of the extent to which the apparent scale 
effects on risk aversion are actually order effects.”  and  “TABLE 1. …  
Prob.  Payoff  Prob.   Payoff   Prob.   Payoff   Prob.   Payoff 
1       $2   0 $1.60    1  $3.85   0  $0.10”  
(“Prob.” means here probability(ies)) 
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Holt and Laury (2002), page 1646:  “… subjects began by indicating a 
preference, Option A or Option B, for each of the ten paired lottery choices in Table 
1, with the understanding that one of these choices would be selected at random ex 
post and played to determine the earnings for the option selected.”  and  “Even the 
most risk-averse person should switch over by decision 10 in the bottom row, since 
Option B yields a sure payoff of $3.85 in that case”  and  page 1645: TABLE 1 
“Option A:  10/10 of $2.00,  0/10 of $1.60.  Option B:  10/10 of $3.85, 0/10 of 
$0.10”*  

Starmer and Sugden (1991), page 974:  “… subjects in groups B and C knew 
that they were taking part in a random-lottery experiment in which questions 21 and 
22 had equal chances of being for real.”  and  “One problem, which we shall call P', 
required a choice between two lotteries R' (for "riskier") and S' (for "safer"). R' gave 
a 0.2 chance of winning ₤10.00 and a 0.75 chance of winning ₤7.00 (with the 
residual 0.05 chance of winning nothing); S' gave ₤7.00 for sure.” 

We see that the random incentive procedure is used not only in the probable 
but in the certain situations also.  Let us consider this detail more closely.  
 

3.1.  An inconsistency between the certain outcomes  
and uncertain incentives  

 
First, let us note that the stimulation by the payment for the choice of one 

from a number of situations may be named as an uncertain stimulation.  We may 
name it also as a stimulation by uncertain incentives.   

Further, suppose, that the subjects choose an uncertain choice, that is the 
choice, which probability is strictly less than  1  (and strictly more than  0).  In this 
case, the choice and the incentive are of the same type.  

Suppose, that the subjects choose the certain choice, that is the choice, which 
probability is strictly equal to  1  (or strictly equal to  0).  In this case, the choice and 
the incentive are of the essentially different types.  Moreover, this uncertain 
incentive can call the certain outcome into question.   

So, there is an evident inconsistency between the certain type of the choice 
and the uncertain type of the incentive.   

So, the correctness of the use of uncertain incentives for certain outcomes 
cannot be unquestionable.  We may name this problem as a “certain-uncertain” 
inconsistency.   
 

3.2.  The role of the incentives 
 

Incentives are widely discussed in economics (see, e.g., Starmer and Sugden, 
1991, Holt and Laury, 2002, Gneezy et al 2006, Bordalo et al 2012, Larkin and 
Leider, 2012).  Do incentives influence the choice of the subjects in the utility and 
prospect theories?   

The correct answer to this question needs a special research.   
However, we may be sure, that if incentives would not have any influence on 

the choice of the subjects, then there would be no reason to use such incentives.   
So, we may not exclude that an incentive can influence a choice of a subject, 

at least partially.   
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3.3.  The random-lottery incentive system 

 
The above discussed random incentive procedure is usually called as the 

random-lottery incentive system (or the random lottery incentive system).  The 
random-lottery incentive system is the well-known mechanism in experiments in 
the utility and prospect theories and, more widely, in experimental economics.   

Starmer and Sugden (1991), page 971:  “One common experimental design is 
to ask subjects to perform a number of tasks, each of which requires a choice among 
lotteries with monetary payoffs. At the end of the experiment, one of these tasks is 
selected by a random device, and the subject plays out the lottery that he or she 
chose in that task. This is the random lottery procedure.  

This incentive system has several attractive features. It allows the 
experimenter to collect a considerable amount of data from each subject, thus 
economizing on the costs of recruiting subjects and allowing tests that compare a 
subject's responses to two or more tasks. At the same time, it avoids the problem of 
reference-point and wealth effects that would be created if subjects were paid 
according to their performances on each of a number of tasks. (A subject's response 
to one task might be affected by the amount he or she had won on a previous task.)” 

Andreoni and Sprenger (2012), page 3365:  “… random-lottery mechanism, 
which is widely used in experimental economics …” 

Starmer (2000), page  371:  “although most experiments involve real —
usually monetary—incentives, the most common reward mechanism is the random 
lottery incentive system. In experiments with this design, subjects are rewarded 
according to their response to one task which is randomly selected at the end of the 
experiment.” 

Wakker (2007):  “… the random-lottery incentive system has become the 
almost exclusively used incentive system for individual choice, and numerous 
studies have used and tested it. It is used by people well recognized in experimental 
economics … Remember that the random-lottery incentive system is the only real 
incentive system for individual choice known today that can avoid the income 
effect. Without it, real incentives for individual choice are no longer well possible.” 
 

Here, and in other works (see, e.g., Vossler and Rondeau, 2012, von 
Gaudecker et al, 2011) we find the elaborated researches of correctness but no 
mention of the “certain-uncertain” inconsistency. 

So, we may conclude:  
1)  The random-lottery incentive system is widespread in the utility and 

prospect theories.  Moreover there are no widespread mentions about differences 
between the results of the random-lottery incentive system and other systems.   

2)  The essence of the random-lottery incentive system corresponds to the 
random, uncertain name of the system.   

3)  The question of considering an isolated situation as a grand meta-lottery 
over many choice situations has been already brought up.  Nevertheless, the specific 
“certain-uncertain” inconsistency of the random-lottery incentive system has not 
still been considered.   
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4.  The “certain-uncertain” inconsistency 

of the random-lottery incentive system 
4.1.  Final considerations and future tasks 

 
So, we see that the random-lottery incentive system is the prevailing 

experimental procedure in the utility and prospect theories.  The tests of the Aczél-
Luce question are often connected with this system.   

The present tests of the modified Aczél-Luce question (those, maybe, are not 
carefully considered) can lead to the opinion that, at  p~1,  the probable outcomes 
are qualitatively the same as the certain ones.  Particularly, it can lead to the opinion 
that the probability weighting function  W(p)  tends to  WCertain,  when the 
probability tends to  1.  But there are a number of the evidences of the qualitative 
difference between the probable and certain outcomes (see, e.g., Kahneman and 
Tversky, 1979, McCord and de Neufville, 1986, Halevy, 2008).  The existence 
theorem supports this qualitative difference and the answer  W(1)<WCertain  to the 
modified Aczél-Luce question.   

The random-lottery incentive system is concerned with the “certain-uncertain” 
inconsistency.  This inconsistency means that the certain choice is stimulated by the 
uncertain incentive.  Because of this evident “certain-uncertain” inconsistency, the 
deductions from the random-lottery incentive experiments, those include the certain 
outcomes, cannot be unquestionably correct.   

So, these deductions need an additional proof, or an amendment, or a new 
approach.  At present, the random-lottery incentive system seems to cannot 
determine the qualitative difference between certain and probable outcomes at  p~1.  
An additional explanation of the “certain-uncertain” inconsistency needs an 
additional full-length article or articles.  
 

At that, it may be supposed that such a useful and prevailing tool as the 
random-lottery incentive system and the overwhelming majority of the data, which 
is already obtained by means of it, may and should be continued to use.  The 
following may be supposed:   

In the narrow middle of the probability scale (where the probability weighting 
function intercepts the line  W(p)=p)  and in the obvious cases, the data and 
deductions may be used “as it is”.   

In the wide middle of the probability scale, the deductions may be the same or 
slightly corrected.  This may be true when the probability  p  is located sufficiently 
far from  p=1-rRestriction,  where the restriction  rRestriction  is obtained from the 
theorem of existence of restrictions on the probability for the case of the random 
lottery (see Appendix A3).   

When the probability tends to the restriction  p1-rRestriction,  the data should 
be used with non-linear corrections and the deductions should be recalculated by 
non-linear functions.   

At the probabilities those are in the forbidden zone  p>1-rRestriction,  a new 
approach may be needed to make the deductions correct.   
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4.2.  An experimental support  

of the considerations of this paper 
 

We can see in Starmer and Sugden (1991) the following:  
Page 974:   
“For groups A and D, this page began with an underlined text stating that 

question 22 would be played for real. For groups B and C, the corresponding text 
stated that one of the two questions would be played for real and that which 
question was to played out would be decided at the end of the experiment in the 
following way. The subject would roll a six-sided die. If the number on the die was 
1, 2, or 3, then question 21 would be played; if the number was 4, 5, or 6, question 
22 would be played.” 

“One problem, which we shall call P', required a choice between two lotteries 
R' (for "riskier") and S' (for "safer"). R' gave a 0.2 chance of winning ₤10.00 and a 
0.75 chance of winning ₤7.00 (with the residual 0.05 chance of winning nothing); S' 
gave ₤7.00 for sure.” 

So, in the R'-S' problem, R' gives  ₤10.00*0.2+₤7.00*0.75=₤7.25.  S' gives  
₤7.00*1=₤7.00.  Here  R'=₤7.25>S'=₤7.00.   

Here are the results of Starmer and Sugden (1991) of interest for this paper 
(the highlighting is mine): 

Page 976,  
TABLE 2-RESULTS: 

  Problem P' 

Group Incentive R' S' 
    

B Random lottery 19 21 
C Random lottery 22 18 
D P'real 13 27 

 
We see the results for P'real incentive differ essentially from those for 

Random lottery incentive.   
So, the experiment of Starmer and Sugden (1991) evidently supports the 

considerations of this paper.  This holds both for the sign of the bias (which follows 
from the theorem) of the preferences of the subjects to the certain outcome and for 
the sign of the bias of the influence of the “certain-uncertain” inconsistency of the 
random-lottery incentive system.  We see that the random lottery incentives can 
essentially modify subjects’ choices in comparison with the real incentives, when 
these choices include the certain outcomes and the probability  (0.95=0.2+0.75)  of 
the probable choices is near the boundary of the probability scale.   

As to the interfaces between no corrections, slight corrections and essential 
corrections, we evidently see that here, at the probabilities of  0.95,  the corrections 
should be quite essential.   

A number of special additional independent researches should be done to 
consider, discuss and establish these corrections and revisions and interfaces 
between these corrections and revisions.   
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Conclusions 

 
Aczél and Luce (2007) emphasized a fundamental question:  whether  W(1)=1  

(whether the Prelec (probability) weighting function equals  1  at  p=1).   
The paper develops this work.  There are a number of the evidences of the 

qualitative difference between subjects’ treatment of the probabilities of probable 
and certain outcomes (see, e.g., Kahneman and Tversky, 1979, McCord and de 
Neufville, 1986, Halevy, 2008) and, in the general case, we should distinguish 
between the values of the probability weighting function of certain and uncertain 
outcomes.  Two values of the probability weighting function  W(p)  are specified:  
WCertain  for the certain outcome and  W(1),  as the limit of the probability weighting 
function  W(p),  for the probable outcome when  p  tends to  1   

)(lim)1(
1

pWW
p→

≡  .  

The Aczél-Luce question whether  W(1)=1  is modified to the question 
whether  W(1)=WCertain.  The answer  W(1)≠WCertain  means a discontinuity of  W(p)  
at  p=1.  This is a topological feature.  So, the answer can qualitatively change the 
utility and prospect theories, at least in their mathematical aspects. 

Purely mathematical theorems prove  p<1,  at a non-zero dispersion of data.  
The perception of the probability by the subjects and, so, the probability weighting 
function  W(p)  can be biased by the restriction  rRestriction  (see A.3.7).   

For  W(p)≤p  at  p>1/2  and  WCertain=1,  an assumption may be proposed   
0)1( Re >≥− strictionCertain rWW  .  

If the dispersion of data (the noise) is non-zero, then  rRestriction  is non-zero also.   
The Appendices  A.1.1-A.3.8  of the paper clearly show the truth and evidence 

of the theorem.  The data support the theorem in wide diapasons, but at  p~1  the 
experiments may be treated as they do not.   

However, in the prevailing random-lottery incentive system of these 
experiments, the choices of certain outcomes are stimulated by uncertain lotteries.   

Because of this evident “certain-uncertain” inconsistency, the deductions from 
the random-lottery incentive experiments, those include the certain outcomes, 
cannot be unquestionably correct.   

Starmer and Sugden (1991) experiment evidently supports this conclusion.   
 

It may be supposed that such a useful tool as the random-lottery incentive 
system and the majority of its data may and should be continued to use:   

In the middle of the probability scale, the deductions may be the same or 
slightly corrected.   

When the probability tends to the restriction  p1-rRestriction,  the deductions 
should be recalculated by non-linear functions.  Due to Starmer and Sugden (1991), 
at the probabilities about 0.95, the corrections should be quite essential.   

At the probabilities in the forbidden zone  p>1-rRestriction,  a new approach may 
be needed to make the deductions correct and to measure WCertain-W(1).   
 

The further consideration of the idea of the “certain-uncertain” inconsistency 
may be developed only after its independent confirmations will take place.   
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A1.  An illustrative example of restrictions on the mean 

 
Let us consider briefly an illustrative example of restrictions on the mean (see, 

e.g., Harin, 2012a).   
 

A1.1.  Two points 
 

Let us suppose given an interval  [A, B]  (see Figure 1).  Let us suppose that 
two points are determined on this interval:   a left point  xLeft  and a right point     
xRight : xLeft<xRight.  The coordinates of the middle, mean point may be calculated as  
M=(xLeft+xRight)/2.   

 
Figure 1. An interval  [A, B].  Left  xLeft,  right  xRight   

and middle,  mean  M  points on it 
 

Let us suppose that  xRight-xLeft≥2σ=2Constσ>0.  So, of course,  xRight≥xLeft+2σ  
and  xLeft≤xRight-2σ.   For the sake of simplicity,  Figures 1-3 represent the case of the 
equality  xRight-xLeft=2σ  and also, of course,   xRight=xLeft+2σ,    xLeft=xRight-2σ  and  
M-xLeft=xRight-M=σ=Constσ>0.   

So,  M=xLeft+σ>xLeft  and  M=xRight-σ<xRight.   
Suppose further that  xLeft≥A  and  xRight≤B.   
One can easily see that two types of zones for  M  can exist in the interval:   
1)  The mean point  M  can be located only in the zone which will be referred 

to as “allowed” (see Figure 2).   
2)  The mean point  M  cannot be located in the zones which will be referred 

to as “forbidden” (see Figure 3).   
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A1.2.  Allowed zone 

 
Due to the conditions of the example, the left point  xLeft  may not be located 

further left than the left border of the interval  xLeft≥A  and the right point  xRight  may 
not be located further right than the right border of the interval  xRight≤B.   

For  M,  we have  M=xLeft+σ≥A+σ>A  and  M=xRight-σ≤B-σ<B  (see Figure 2).   

 
Figure 2.  The allowed zone for  M 

 
The width of the allowed zone for  M  is equal to   

σσσ 2)()( −−=+−− ABAB .   
It is less than the width  (B-A)  of the total interval  [A, B]  by 2σ.  Also, the allowed 
zone is a proper subset of the total interval.   

If the distance  2σ  between the left  xLeft  and right  xRight  points is non-zero, 
then the difference between the width of the allowed zone and the width of the 
interval is non-zero also.  If the distance is greater than 2σ, then the difference is 
greater than 2σ  also.   
 

So, the mean point  M  can be located only in the allowed zone of the interval.   
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A1.3.  Restrictions, forbidden zones 

 
Let us define the term “restriction” for the purposes of this paper:   
Definition.  A restriction (more exactly, a restriction on the mean) signifies 

the impossibility for the mean to be located closer to a border of the interval than 
some fixed distance.  In other words, a restriction implies here a forbidden zone for 
the mean near a border of the interval.   

The value of a restriction or the width of a forbidden zone signifies the 
minimal possible distance between the mean and a border of the interval.  For 
brevity, the term “the value of a restriction” may be shortened to “restriction”. 

 
If  A≤xLeft,  xRight≤B  and  xRight-xLeft=2σ,  then restrictions, forbidden zones 

with the width of one sigma  σ  exist between the mean point and the borders of the 
interval (see Figure 3).  So there are two forbidden zones, located near the borders 
of the interval.  The mean point M cannot be located in these forbidden zones.   

 
Figure 3.  The forbidden zones, restrictions on  M 

 
The restrictions, the forbidden zones are shown by two dotted lines and by 

painting in the bottom part of Figure 3.   
As we can easily see, restrictions on the mean or forbidden zones exist 

between the allowed zone of the mean  M  and the borders  A  and  B  of the interval  
[A; B]. The value of the restriction, or, equivalently, the width of the forbidden 
zone, is equal to  σ.   

 
So, the restrictions of the value  σ  on the mean point  M  exist near the 

borders of the interval 
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A2.  An illustrative example of restrictions on the probability 

 
Let us consider briefly an illustrative example of restrictions on the probability 

(see, e.g., Harin, 2012a).   
 

A.2.1.  A classical round target 
 

Consider a classical example:  an aiming firing at a target.  Suppose a classical 
round target (Figure 4) of the diameter  2L.  

 
Figure 4.  A target for firing 

 
Suppose Mr. Somebody performs an aiming firing by batches of pellets, small 

shots at a target.   
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A2.2.  Two types of dispersion 

 
For the obviousness suppose (Figure 5) the dispersion of pellets hits is 

uniformly distributed in a zone of the diameter  2σ  (See an example of the normal 
distribution below in A.2.6.). 

 
Figure 5. Dispersion of hits is uniformly distributed  

in a zone of the diameter 2σ 
Notes about this figure:  
Note 1: This is only a simplified example (See an example of the normal 
distribution below in A.2.6.).  
Note 2: The case 1) represents the case of small diameter 2σSmall of the zone of 
dispersion of pellets hits.  
The case 2) represents the case of large diameter 2σLarge of the zone of dispersion of 
pellets hits.  

Suppose the point of aiming may be varied between the center of the target 
and a point which is outside the target. 
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A2.3.  Small dispersion 

 
The case, when the diameter 2σSmall of the zone of dispersion of hits is 

considerably less than the diameter 2L of the target, is drawn on the figure 6. 

 
Figure 6. Firing for the small dispersion of hits 

Note: The diameter 2σSmall of the zone of dispersion of hits is considerably less than 
the diameter 2L of a target. 
 

At the condition of the small dispersion of hits, the maximum possible 
probability of hit in the target can be equal to 1 (can reach the boundary of the 
probability scale). 

When the point of aiming is varied between the center of the target and a point 
which is outside the target, the probability of hit in the target is varied from 1 to 0. 
There are no restrictions in the probability scale. 
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A2.4.  Large dispersion 

 
 

The case, when the diameter 2σLarge of the zone of dispersion of hits is 
considerably more than the diameter 2L of the target, is drawn on the figure 7. 

 
Figure 7. Firing for the large dispersion of hits 

 
Note: The diameter 2σLarge of the zone of dispersion of hits is considerably more 
than the diameter 2L of the target. 
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A2.5.  Restriction on the probability 

 
At the condition of the large dispersion of hits (exactly speaking at the 

condition the diameter 2σLarge of the zone of dispersion of hits is more than the 
diameter 2L of a target), the maximum possible probability of hit in the target can 
not be equal to 1. 
 

So, the situation for the probability for this case is drawn on the figure 8. 

 
Figure 8. Restriction on the probability: Allowed zone and forbidden zone 

Note: See the example of two restrictions for two boundaries below in A.2.6.   
 

The value PAllowedMax of the maximal allowed probability of the allowed zone 
[0, PAllowedMax] may be estimated as the ratio of the mean number of the hits in the 
target to the total number of the hits. In this particular case, when the distribution of 
hits is supposed to be uniform, this ratio equals to the ratio of the area of hits 
scattering to the area of the target 

eLeLeHitsLetTAllowedMax LLSSP arg
22

arg
22

argarg /// σπσπ ===  .  

If 

eLL argσ<  ,  

then 
1<AllowedMaxP  .  

 
In this particular case, the probabilities of hit in the target, that are larger than 

PAllowedMax, are impossible. The allowed probabilities of hit in the target belong to 
the allowed zone [0, PAllowedMax]. 

The value of the restriction RRestriction may be estimated as the difference 
between unit and the maximal allowed probability PAllowedMax of hit in the target 

01Re >−= AllowedMaxstriction PR  ,  
and, if L<σLarge, then RRestriction is a positive nonzero quantity. At the conditions of 
the figure 7, it is evident the probability PAllowedMax can not be more, then 0.5-0.7 
(50%-70%) and the restriction RRestriction is as more as 0.3-0.5 (30%-50%). 
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A2.6.  An example of the normal distribution and   

of two restrictions for two boundaries 
 

Let us consider concisely an example of the normal distribution and of two 
restrictions for two boundaries.   
 

Conditions 
 

Let us consider firing at a target in the one-dimensional approach. Let the 
dimension of the target be equal to 2L>0  and the scatter of hits, when aim is 
precise, obeys the normal law with the dispersion  σ2.  Then (see, e.g., Abramowitz 
and Stegun, 1972) the maximal probability  Pin_Max  of hitting the target and the 
minimal probability  Pout_min=1-Pin_Max  of missing it equal: 
 

Results 
 

For  σ=0:   
Pin_Max=1  and  Pout_min=0.   
That is, there are no ruptures in the probability scale for hits and misses, that is  

rexpect=1-Pin_Max=Pout_min=0.   
 

For  L=3σ:   
0≤Pin≤Pin_Max=0,997<1  and  0<0,003=Pout_min≤Pout≤1.   
For this case, the ruptures  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,003>0.   
 

For  L=2σ:   
0≤Pin≤Pin_Max=0,95<1  and  0<0,05=Pout_min≤Pout≤1.   
For this case, the ruptures  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,05>0.   
 

For  L=σ:   
0≤Pin≤Pin_Max=0,68<1  and  0<0,32=Pout_min≤Pout≤1.   
For this case, the ruptures  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,32>0.   
 

Conclusion 
 

For zero  σ=0  there are no ruptures  (rexpect=0).   
For non-zero  σ>0:  The non-zero rupture  rexpect>0  appears between the zone 

of possible values of the probability of hitting  0≤Pin≤Pin_Max=1-rexpect<1  and  1.  
The same non-zero rupture  rexpect>0  appears between the zone of possible values 
of the probability of missing  0<rexpect=Pout_min≤Pout≤1  and  0.   
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A3.  The existence theorems of restrictions 

 
Let us consider briefly (see, e.g., Harin, 2012b) existence theorems, from 

restrictions on the mean to restrictions on the probability, the bias of subjects’ 
perception of the probability and the case of the random-lottery incentive system.   
 

A3.1.  Preliminary notes 
 

Let us suppose given a finite interval,  X=[A, B] : 0<ConstAB≤(B-A)<∞,  a set 
of points  {xk} : k=1, 2, … K : 2≤K≤∞,  and a finite non-negative function  fK(xk) :  
at  xk<A  and  xk>B  the statement  fK(xk)≡0  is true; at  A≤xk≤B  the statement  
0≤fK(xk)< ∞  is true, and   

K

K

k

kK Wxf =∑
=1

)(  ,  

where  WK  (the total weight of  fK(xk))  is  a constant and   
∞<< KW0  .  

Without loss of generality, the function  fK(xk)  may be normalized so that  WK=1.   
 

Definition A3.1.  Let us define an analog of the moment of  n-th  order of the 
function  fK(xk)  relative to a point  x0:   
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From now on, for brevity, we refer to this analog of the moment of  n-th  order as 
simply the moment of  n-th  order.   
 

Let us suppose the mean  M≡E(X)  of the function  fK(xk)  exists   

Mxfxxfx
W

XE
K

k
kKk

K

k
kKk

K

≡=≡ ∑∑
== 11

)()(
1

)(  .  

Let us suppose at least one central moment  E(X-M)n : 2≤n<∞,  of the function  
fK(xk)  exists  
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One may prove (see, e.g., Harin, 2013), that a function, which attains the 

maximal possible central moment, is concentrated at the borders of the interval.  At 
that, the moduli of the central moments of such a function are not greater than the 
estimate 
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A3.2.  General lemma for the mean 

 
Lemma A3.2.  If, for the function  fK(xk)  defined in Section A3.1,  M≡E(X)  

tends to  A  or to  B,  then, for  n : 2≤n<∞,  E(X-M)n  tends to  zero.   
Proof.  For  MA,  the estimate gives  
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This rough estimate is already sufficient for the purpose of this paper.  But a more 
precise estimate (see, e.g., Harin, 2013) may be obtained:   

0)()(|)(| 1  →−−≤− →
−

AM

nn AMABMXE  .  

For  MB,  the estimate is similar and gives   
0)()(|)(| 1  →−−≤− →

−
BM

nn MBABMXE  .  

So, if  (B-A)  and  n  are finite and  MA  or  MB,  then  E(X-M)n0.   
 

A3.3.  General theorem for the mean 
 

Let us define two terms for the purposes of this paper:   
Definition A3.3.1.  A restriction on the mean  rMean  (or, simply, a 

restriction) signifies the impossibility for the mean to be located closer to a border 
of the interval than some fixed distance.  In other words, a restriction implies here a 
forbidden zone for the mean near a border of the interval.   

The value of a restriction or the width of a forbidden zone signifies the 
minimal possible distance between the mean and a border of the interval.  For 
brevity, the term “the value of a restriction” may be shortened to “restriction”. 

Definition A3.3.2.  Let us define “restriction on dispersion of the  n-th  
order”  rn

Dispersion.n≡r
n

Disp.n : rDisp.n>0  (where dispersion is taken in the broad sense, 
as scattering, spread, variation, etc.) to be the minimal absolute value of the analog 
of the  n-th  order central moment  E(X-M)n  :  |E(X-M)n|≥rn

Disp.n>0.   
For  n=2  the restriction on the dispersion of second order is the minimal 

possible dispersion (in the particular sense)  r2
Disp.2=σ2

Min.   
 

Theorem A3.3.  If,  for the finite non-negative discrete function  fK(xk)  
defined in Section A3.1,  with the mean  M≡E(X)  and the analog of an  n-th  
(2≤n<∞)  order central moment  E(X-M)n  of the function, a non-zero restriction on 
dispersion of the  n-th  order  rn

Disp.n=ConstDisp.n>0 : |E(X-M)n|≥rn
Disp.n,  exists, then 

the non-zero restriction  rMean>0  on the mean  E(X)  exists and  
A<(A+rMean)≤M≡E(X)≤(B-rMean)<B.   
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Proof.  From the conditions of the theorem and from the lemma A3.2 for  

MA,  we have   
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For  MB,  the proof is similar and gives   
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So, as long as  (B-A)  and  n  are finite  and  rn
Disp.n=ConstDisp.n>0,  then  

rMean=ConstM>0  and  A<(A+rMean)≤M≤(B-rMean)<B.   
 

Note 
 

This estimate is an ultra-reliable one.  It is, in a sense, as ultra-reliable as the 
Chebyshev inequality.  Preliminary calculations (see, e.g., Harin, 2009) which were 
performed for real cases, such as the normal, uniform and exponential distributions 
with the minimal values  σ2

Min  of the analog of the dispersion (in the particular 
sense), gave the restrictions  rMean  on the mean of the function, which are not worse 
than   

3
Min

Meanr
σ

≥  .  

 
A3.4.  Lemma for the probability estimation  

 
Lemma A3.4.  If  fK(xk)  is defined as in section A3.1, and either E[X]→0 or 

E[X]→1, then, for 1<n<∞, 

0|)(| →− nMXE  .  
Proof.  As long as the conditions of this lemma satisfy the conditions of the 

lemma A3.2, then the statement of this lemma is as true as the statement of the 
lemma A3.2.  
 

A3.5.  Theorem for probability estimation 
 

Theorem A3.5.  If  {xk}  and a probability estimation, frequency FK,  are 
defined as in section A3.1 and  M≡E[X]≡FK,  there are  n : 1<n<∞,  and rDisp.n>0 : 
E[(X-M)n]≥rn

Disp.n>0, then, for the probability estimation, frequency FK≡M≡E[X], a 
restriction rmean exists for which  0<rMean≤FK≤(1-rMean)<1. 

Proof.  As long as the conditions of this theorem satisfy the conditions of the 
theorem A3.3, then the statement of this theorem is as true as the statement of the 
theorem A3.3.  
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A3.6.  Theorem for probability  

 
Theorem A3.6.  If, for the probability scale [0; 1], a probability P and the 

probability estimation, frequency FK, for a series of tests of number K : K>>1, are 
determined and, when the number K of tests tends to infinity, the frequency FK 
tends at that to the probability P, that is 

K
K

FP
∞→

= lim  ,  

non-zero restrictions  rmean : 0<rMean≤FK≤(1-rMean)<1  exist between the zone of the 
possible values of the frequency and every boundary of the probability scale, then 
the same non-zero restrictions  rMean : 0<rMean≤P≤(1-rMean)<1  exist between the 
zone of the possible values of the probability P and every boundary of the 
probability scale. 

Proof.  Consider the left boundary 0 of the probability scale [0; 1]. The 
frequency FK is not less than rMean: 

meanK rF ≥  .  
Hence, we obtain for P: 

meanmean
K

K
K

rrFP =≥=
∞→∞→

limlim  .  

So,  P≥rMean.  Note that this is true for both monotonous and dominated 
convergence. The reason is the fixation of the minimal value of all the  FK  by the 
conditions of the theorem. For the right boundary 1 of the probability scale the 
proof is similar to that above. 
 

A3.7.  The bias of the perception of the probability 
 

Let us make a note about the bias (more detailed see Harin, 2012b).   
In almost any real case, a finite non-zero degree of uncertainty is inherent in 

real measurements of probability. The total magnitude of this uncertainty can be 
both negligible and high, relative to a useful signal, but it does not tend to zero. 

Subjects are experienced and intuitively feel the restrictions.  
In the ideal case, the probability is the same as it is claimed by the 

experimenters. In the real case (and from the point of view of the experienced 
subjects), the probability near every boundary is restricted and cannot be closer to 
the boundary than the restriction enables.  So, near a boundary it is biased (in 
comparison with the ideal case) from a boundary to the middle of the probability 
scale.  

Note that the bias may be supposed to exist not only in the zones of the 
restrictions but also beyond them and to vanish at the middle of the scale. 
 

So, the restrictions near the boundaries can bias subjects’ perception of the 
probability from the boundaries to the middle of the probability scale. The bias is 
directed to the middle and is maximal just near every boundary.   

So, subjects’ perception of probability can be biased from the boundaries to 
the middle of the probability scale due to the data dispersion (noise) restrictions.  
The probability weighting function  W(p)  should represent this bias.   
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A3.8.  An additional statement  

for the case of the random-lottery incentive system 
 

Let us additionally define  rRestriction≡rMean  and  p≡P.   
At that,  rRestriction≥rRandom-Lottery,  where  rRandom-Lottery  is the restriction caused 

specifically by the random-lottery incentive system.   
Statement A3.8.  If the probability  p  satisfies the conditions of the theorem 

for probability A3.6, the probability weighting function  W(p)  is defined for the 
certain and probable outcomes,  W(p)≤p  at  p>1/2  and  WCertain=1,  then  

0)1( Re >≥− strictionCertain rWW  .  
Proof.  Owing to the theorem for probability A3.6. and the additional 

definitions of this statement,   

strictionrp Re1−≤  .  
Owing to  W(p)≤p  at  p>1/2   

strictionrppW Re1)( −≤≤  .  
Owing to  WCertain=1   

strictionCertainstriction rWrpW ReRe1)( −=−≤  .  
So,   

strictionCertain rpWW Re)( ≤−  .  
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