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Abstract

This paper considers the location-scale quantile autoregression in which the lo-
cation and scale parameters are subject to regime shifts. The regime changes are
determined by the outcome of a latent, discrete-state Markov process. The new
method provides direct inference and estimate for different parts of a nonstationary
time series distribution. Bayesian inference for switching regimes within a quantile,
via a three-parameter asymmetric-Laplace distribution, is adapted and designed
for parameter estimation. The simulation study shows reasonable accuracy and
precision in model estimation. From a distribution point of view, rather than from
a mean point of view, the potential of this new approach is illustrated in the empir-
ical applications to reveal the countercyclical risk pattern of stock markets and the
asymmetric persistence of real GDP growth rates and real trade-weighted exchange

rates.
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1 Introduction

Koenker and Xiao (2006) study quantile autoregression models in which the autoregressive
coefficients may take distinct values over different quantiles of the innovation process. Their
models can capture systematic influences of conditioning variables on the location, scale
and shape of the conditional distribution. Let {U;} be a sequence of i.i.d. standard uniform

random variables. Consider the mth-order autoregressive process

Y =00 (Up) + 01 (Up) yie1 + oo + 00 (Ut) Yt—m, (1.1)

where y; is the time series observation at time ¢, and 0’s are unknown functions [0, 1] — R
to be estimated. Provided that the right side of (1.1) is monotone increasing in Uy, it flows

that the 7th conditional quantile function of 3; can be obtained as

Ry, (T’yt—l) =00(T) +01(T)ye—1 + .. + O (7)Yt (1.2)

where ¥, ; = (i1, .-, ¥i—m) - The transition from (1.1) to (1.2) is an immediate conse-
quence of equivariance to monotone transformations.! In (1.2), the quantile autoregressive
coefficients may be 7-dependent and thus can vary over the quantiles. The conditioning
variables not only shift the location of the distribution of y; , but also may alter the scale
and shape of the conditional distribution. Koenker and Xiao (2006) also show that quantile
autoregressive models exhibit a form of asymmetric persistence and temporarily explosive
behavior.

However, the linear quantile autoregressive models cannot accommodate many stylized
facts such as structural breaks and nonlinearities in macroeconomic and financial time series.
The aim of this article is to extend the quantile autoregression of Koenker and Xiao (2006)
by modeling nonstationary quantile dynamics. Particularly, I consider the location-scale
quantile autoregression in which the location and scale parameters are subject to regime

shifts within a quantile. Switching quantile regimes is determined by the outcome of an

!See the theorem of equivariance to monotone transformations in Koenker (2005), page 39.



unobserved state indicator variable that follows a Markov process with unknown transition
probabilities. The proposed Markov-Switching Quantile Autoregression (MSQAR) nests
the quantile autoregression of Koenker and Xiao (2006) as a special case when conditional
distributions are stationary.

MSQAR is a convenient approach built on the vast literature of Markov-switching time
series models.? Nonetheless, simply combining quantile autoregressive models with Markov-
switching techniques is econometrically infeasible. The challenge is that the objective func-
tion of quantile autoregression is a non-likelihood based function generally estimated by
nonlinear least square. The non-likelihood based function does not allow make inference on
the latent state variable for switching regimes. To solve this problem, I assume that quan-
tile error terms follow a three-parameter asymmetric-Laplace distribution (Yu and Zhang
(2005)). This paper shows that maximizing this distribution is mathematically equivalent
to minimizing quantile objective functions. Importantly, it also satisfies the restrictive con-
ditions of quantile regression. With this distribution, the inference for switching quantile
regimes can be made through the standard Hamilton filter approach (Hamilton (1994)).

This paper adopts Bayesian approach for model estimation. As discussed in Yu and
Moyeed (2001), the use of an asymmetric Laplace distribution for error terms provides a
natural way to deal with some serious computational challenges through Bayesian quantile
regression. Also see Chernozhukov and Hong (2003). In the terminology of Chib and
Greenberg (1995), this paper adopts a “block-at-a-time” Metropolis-Hastings sampling to
reduce computational cost. This algorithm groups highly correlated parameters as one
block to be simultaneously updated at each Metropolis-Hasting step conditional on the
remaining blocks, see e.g., Tierney (1994), Ausin and Lopes (2010), Geweke and Tanizaki
(2001), among others. To further speed up convergence and to achieve desirable mixing
properties in MCMC chains, I employ the adaptive scheme of Gerlach et al. (2011) and

Chen et al. (2012), which combines a random walk and an independent kernel Metropolis-

2See e.g., Sims and Zha, 2006, Gray (1996), Cheung and Erlandsson (2005), Hamilton and Susmel (1994),
Kim et al. (2008), among many others. Guidolin (2012) provides a recent review for the applications of
Markov-switching models in empirical finance.



Hastings algorithm, each based on a mixture of multivariate normal distributions.

This paper examines the new approach in a simulation study to show its accuracy and
precision in model estimation. The empirical application to S&P 500 returns illustrates
the usefulness of this new approach in risk management, i.e., for stress-testing financial
institutions from the perspective of central banks. In this paper, asymmetric dynamics
have also been found for quarterly real GDP growth rates but not for quarterly real trade-
weighted U.S. dollars. In addition, the asymmetric dynamics appear to be differernt across
economic regimes. Notably, modeling the regime persistence in lower tails of real GDP
growth rates improves the predictabilities of swtiching economic states and turning points.

The rest of this paper is structured as follows. Section 2 introduces the connection of
asymmetric-Laplace distributions to the solution of quantile regressions. Section 3 defines
Markov-Switching quantile autoregression. Section 4 describes the Bayesian methods in
this paper for model estimation. Section 5 presents model simulations and results. Section
6 reports the results of empirical applications to stock markets, real GDP growth rates and

real trade-weighted exchange rates. Section 7 concludes this paper.

2 Asymmetric Laplace Distribution Connection

The QAR(m) model of (1.2) can be reformulated in a more conventional regression form

as

ye = bo(T) + Z Ou(T)yr—1 + &(7) (2.1)

where £,(7) is quantile error terms which follow an asymmetric-Laplace (AL) distribution,

denoted by AL(0,¢,7), with the density function as

S S

fe,(850,6,7) = Mexp {—8 (r—Ie< O))} (2.2)

where /(-) is an indicator function. 7 determines the skewness of the distribution, ¢ > 0 is

a scale parameter. AL(0,¢,7) with the location parameter being zero provides that the 7th



quantile of the distribution is zero as Pr (¢; < 0) = 7, which satisfies the quantile regression
condition ffoo fe(s)ds = 7. The asymmetric-Laplace distribution with the density function
of (2.2) has the mean and variance, F(g;) = (1 —27)/[(1—7)7] and Var(e;) = ¢*(1 — 27+
27%)/[(1 — 7)?7?], respectively. See Yu and Zhang (2005) for details. With the assumption

of i.i.d. &;(7), the sample likelihood function is given by

LO,7) = [r(1—7)/s]" (23)
erp {_ Z Yt — Qytg(7_|yt—l) [T =1 (y < Qy (7]y,-1))] }

In the literature the error density is often left unspecified, see e.g., Koenker and Bassett
(1978), Koenker (2005), and Koenker and Xiao (2006), etc. Quantile autoregression is the

solution to the following minimization problem

0() = arg min E (p. (4 — Qy, (7l +:6))) (2.4

where 6 (1) = (6y(7),...,0m (7)) is the parameter space to be estimated. The quantile
criterion (check or loss) function p.(-) is defined as p,(¢) = ¢ (7 — I(¢ < 0)) in Koenker and

Bassett (1978). Solving the sample analog gives the estimator of 6

T
é<7-) = arg m@m ZPT (yt - Qyt (T|yt—1; 0)) (25)
t=1

Recently, Yu and Moyeed (2001), Yu and Zhang (2005) and Gerlach et al. (2011), among
others, have illustrated the link between the quantile estimation problem and asymmetric-
Laplace distribution. Since the quantile loss function is contained in the exponent of the
asymmetric-Laplace likelihood, maximizing the sample likelihood of (2.3) is mathematically
equivalent to minimizing the quantile loss function of (2.5). It is important to emphasize
that, in practice, the parameter 7 is chosen by researchers as quantile levels of interest
during parameter estimation and only a single quantile of the distribution of ¥, is estimated.

More importantly, the asymmetric Laplace distribution transforms the non-likelihood based



quantile regression of (2.5) to a likelihood based approach, so that the inference for the

probability of switching regimes is possibly made through Hamilton filter.

3 Markov-Switching Quantile Autoregression

For the 7th conditional quantile of y;, let {s;} be an ergodic homogeneous Markov chain
on a finite set S = {1,..., k}, with a transition matrix P defined by the following transition
probabilities

{pij = Pr(s: = jlsi1 = 1)}

and the unconditional probabilities

{mj="Pr(ss=7)}

for 7,7 € S and assume s; follow a first-order Markov chain. The transition probabilities
satisfy > cgpij =1 and >, gm; = 1. The stochastic process for s, is strictly stationary if
pij is less than unity and does not take on the value of 0 simultaneously.

Using transition probabilities above, this paper defines Markov-Switching quantile au-

toregressive models (MSQAR) as

Y = Qyt<7—|yt—1;08t>+gt(7—)

- 051’,70(7-) + Z Hst,l(7—>yt—l + &t (T) (31)
=1

Suppose that y; can be observed directly but can only make an inference about the value

of s; based on the observations as of date ¢. This inference gives the filtering probability as

§iap = Pr(se=jlys ©)

= ZP’/‘ (st = 17,811 =i|y; ©)

€S

where > i o &ye = 1 and © = (P, 6,,(7)) is a vector of the parameters with s, € S. The



formulation of filtering probabilities is obtained by Bayes theorem as

Zies pijgi,tfl\tflnj,t

= 3.2
St [ (elye-1,7;0©) (3.2)
where 7;, is conditional likelihood as
Nie = [ Wlse =4,y1-1,7;0) (3.3)
T(1—1 — Qy, (T]yt-1;0,
= 0Ty { =@ lei® i, < 0 (v 00)]
and
(yt|}’t 1,7 @ Zzngfzt 1)t—1705,t
JES €S
Thus, the relationship between the filtering and prediction probabilities is given by
Eiarale = Pr(se41 = Jly; ©) = Zpijfi,ﬂt (3.4)

€S

The inference, similar to Hamilton’s filter (Hamilton, 1994), is performed iteratively
for t = 1,...,T with the initial values, ;o for j € S. The sample likelihood for the 7th

conditional quantile of y; is then given by

L(®) =] fwlyi1.7:0) (3.5)

The connection to the solution of quantile regression can also be viewed as follows.

Based on quantile loss functions, ® is solved for the following minimization problem

min E (Z pr (Y = Qy, (7|5t = j, ¥1-1;0)) I (51 = J’)) (3.6)

j€eS

where v, = {ys, Y11, -, Y1, Yo }. Apply the law of iterated expectation to rewritten (3.6) as

min Y B [pr (g = Qy (7|s0r = j, ¥1-13©)) Pr (se = jlys; ©)] (3.7)

jeSs



Provided that 7 is chosen by researchers of interest, maximizing the likelihood of (3.5) is
mathematically equivalent to the minimization of (3.6), since the likelihood function can
be alternatively rewritten as L(®) = []_, Yies L Wilst = 4, y1-1,7:©) Pr (s, = jly; ©)
with Pr(s, = jlys; ©) = > .cqPijéit—1)0—1. However, Pr (s, = jly;; ©) cannot be filtered
by using the nonlinear least square estimation of (3.7); therefore, the likelihood function of
the asymmetric Laplace distribution is used to infer transition probabilities.

To estimate smoothing transition probabilities Pr (s, = i|yr; @), this paper follows the

approach of Kim (1994). Apply the Bayes theorem and the Markov property to yield

_ piPr(si = jlyy; ©)

P — — 4 O) = 3.8
r (St Z|st+1 I Y1; ) Pr (St+1 _ Z|y1§7 @) ( )
It is therefore the case that
) ) ) pjz'P?“ (St = jb’t? ("))
Pr (s, = = ilyr;©) =P = ilyr; © 3.9
T (St s St+1 Z|yTa ) r (St+1 Z|yTa ) PT (3t+1 _ Z‘Yt, @) ( )
The smoothed inference for date t is the sum of (3.9) over i € S
Siaqr = Pr(si=jlyr; ©)
, i Pr(sy = jly:; ©
= S Pr (s = ilyr; @) LT (5 = 719 O) (3.10)

Pr (s =ily:; ©)

ies
The smoothed transition probabilities are thus obtained by iterating on (3.10) backward for
t=T-1,T-2,..,1. This iteration is started with &; 7|7 for j € S which is estimated from
(3.2) for t = T. This algorithm is valid only when s; follows a first-order Markov chain.

From the conditional density (3.3), it is straightforward to forecast the one-step-ahead

7th quantile of y,4, at time ¢ conditional on knowing s;1; ;,

m—1
Quepy (Tlsir1 = 4,31:05) = 0;0(7) + > O5011(7) i (3.11)
=0



Further, from (3.4), the forecast of @, (7|y:; 6;) is obtained as

k
Qyt+1 (T|Yt§ 0j) - Z Qyt+1 (T‘SH—I =7,¥t 9j) Pr <5t+1 = j’Yﬁ 6) (3'12)
j=1

which is to multiply the appropriate forecast of the quantile in the jth regime given
by (3.11) with the probability that the process will be in that regime given by (3.4),
and to sum those products for every regime together. Note that h-step-ahead forecasts
for h > 2 require different approaches since it involves forecasts of y, 1,1 in (3.11) for
Qyon (T|St4n—1,r = J, Yt+n—1;0;), as shown in Cai (2010).

In MSQAR model estimation, similar to other Markov-Switching time series models, one
must use some identification restrictions to avoid the label switching issue. See Bauwens et
al. (2010) and Hamilton et al. (2007) for a discussion. In this paper, regimes are labeled by
the restrictions on quantile intercepts, for example, 6, o(7) > ... > 0 o(7). In addition, in
empirical applications, the transition probabilities are allowed but not imposed dependent
on 7. The intuition is that even though economic states are common across quantiles
implying the same unconditional probabilities, no theories show that regime persistence
should be the same across quantiles. To obtain some insights on this empirical question,

regime persistence is allowed to be driven by data across quantiles.

4 Bayesian Inference

MSQAR models are non-linear and involve indicator functions, which introduce kinks and
discontinuities into the sample likelihood function in (3.5). In addition, less observations
fall in more extreme quantiles, which leads to the potential small sample issue. These issues
make classical methods such as MLE very difficult for model estimation. In this paper, I
instead prefer to use Bayesian MCMC methods to learn about the model parameters.
Given the sample realizations, y, fort = 1,..., T, the posterior distribution of ® takes the

usual form: p(®ly;) x L(y;|®)x (©), where L(y;|®) is the sample likelihood function and



7(®) is the prior distribution. Yu and Moyeed (2001) and Cai and Stander (2008) prove that
the posterior distribution is proper under the improper prior for general quantile regression
models. In this paper, the prior distribution is taken as uniform over =, the admissible
parameter space of O, i.e., satisfying the label switching restrictions. The prior for the
scale parameter is m(s) oc ¢! also used in Gerlach et al. (2011).

Just like Vrontos et al. (2002) and Ausin and Lopes (2010), I also find that MCMC mix-
ing can be improved and the computational cost reduced by using simultaneous updating
of the highly correlated parameter groups at each Metropolis-Hastings (MH) step. In the
terminology of Chib and Greenberg (1995), this approach is therefore based on a “block-at-
a-time” MH sampler which is carried out by cycling repeatedly through draws of each pa-
rameter block conditional on the remaining parameter blocks. Let @ = (P, 0(7), ..., 04(7))
represent the blocks of the population parameters. P = (p;;) contains all transition proba-
bility parameters and 6, ; includes all parameters in the jth regime for j =1, ..., k. Hence,
the parameters in ® are grouped in k + 1 blocks and the parameters of each block are
simultaneously updated conditional on the remaining blocks.

This paper implements the MH sampler according to the adaptive scheme of Gerlach et
al. (2011) and Chen et al. (2012) which combines the random walk MH (RW-MH) and the
independent kernel MH (IK-MH) algorithms, each based on a mixture of multivariate nor-
mal distributions. The random walk part of this scheme is designed to allow occasional large
jumps, perhaps away from local modes, thereby improving the chances that the Markov
chain will explore the posterior distribution space. Hence, this adaptive scheme allows for
further speeding convergence and achieving desirable mixing properties in MCMC chains.

To illustrate this adaptive algorithm in the block-at-a-time MH sampler, I rewrite the
notation of the parameter blocks as ® = (6;.,602,,...,05:1), where 8, = P and 0;,
denotes the parameters in the (j — 1)th regime for j = 2, ...,k + 1. And, let ©®_, denote the

vector © excluding the block 6, .. Starting at g = 1 with el = <9[1}

1,7

..,0[1} ), the G1

k+1,7

random walk MH iterations for © proceed as follows



Step 1. Increment g by 1 and set ® equal to O,

Step 2. Fori=1,...,k+1in turn, generate 67 as
0;, =0 +e, e~ pN(0,diag{bi})+ (1— p) N (0,wdiag {b;})

and replace 9% in ®W by 05 . with the probability min ((;, 1), where

L (wlo:,,0%) (05, 0)

= L (yt‘@[sﬂ> T (@[Q])

Step 3. If g < Gy, go to Step 1.

Upon completion, these first (G; iterations yield the burn-in sample. Following Chen et al.
(2012), T set p = 0.95, w = 100, and tune the positive number b; so that the empirical
acceptance rate lies in the range (0.2,0.45) for the ith block. Tuning is done every 100
iterations by increasing b; when the acceptance rate in the last 100 iterations is higher than
0.45, or decreasing b; when that rate is lower than 0.2.

At the end of the first G iterations, the burn-in sample mean p,  and covariance
matrix 3J; ;- of 8; . with corresponding lower triangular Cholesky factor Eil,/f are computed

forti=1,...,k+1. The MCMC sampling scheme then continues for G5 additional iterations

according to the following independent kernel MH steps:
Step 4. Increment g by 1 and set O equal to O~

Step 5. Fori=1,..,k+1in turn, generate 6; as

0. =, + 2%, e~pN(0,I)+(1—p)N(0,wl)

10



and replace 0% in @ by 0; . with the probability min ((;, 1), where

L(y.l6;,.0") 7 (6:,,0") ¢ (61)

G =
L <yt’(_)[g]> T (@[9]) q (627)
1 /
q(0is) o pexp {—5 (0ir — pi7) Zi7 (0ir — ui,f)}

1—0p 1 "
+wdim(9i,7—)/2 exp {_5 (ei,T - u’i,r) 217; (92',7' - u’i,r)}

Step 6. If g < Gy + G, go to Step 4.
Observe that the use of 3; . in Step 5 accounts for the posterior correlation among the
elements of 6, ., thereby improving the efficiency of the Markov chain. The parameter
updates are sequentially repeated until the convergence of the Markov chain is achieved.
The burn-in draws are discarded, and the steps are iterated a large number of times to
generate draws from which the desired features (means, variances, quantiles, etc.) of the
posterior distribution can be estimated consistently.

In this paper, G; = 50,000 for the random walk MH sampler and Gy = 50,000 with
a thinning of 5 for the independent kernel MH sampler, resulting in posterior samples
comprising 10,000 draws. The convergence of the IK-MH Markov chains is assessed using
the Geweke (1992) test. For each parameter, I also assess the accuracy of its posterior mean
by computing the numerical standard error (NSE) according to the batch-means method
(Ripley, 1987). In all simulated and real data examples of this paper, it is observed that

MCMC chains are well converged inside 50,000 iterations.

5 Simulation

This section carries on a simulation study. In MSQAR nonlinear settings where the number
of parameters increases with the number of regimes, it is very convenient to choose parsi-

monious models that require a low number of parameters. For simplicity in the exposition,

11



data are simulated from the true model with 2 regimes and autoregressive order 1 as

2.0+ O.Zyt_l + O.5€t, St — 1
Yo =
—2.0+ 0'4yt—1 + Et, St = 2

The true parameter values are referenced based on empirical data estimations in next sec-
tion. Three underlying distributions are considered for error terms, including a standard
normal distribution (N (0, 1)), a standardized student-t distribution with 3 degrees of free-
dom (t3), and a mixed distribution between N(0,1) when s; = 1 and ¢3 when s; = 2.

The theoretical 7th conditional quantile of 3; can be expressed in a MSQAR form as

O10(7) + 011 (T)ye-1, s =1
Qyt(Tb"tfl; est) =

O20(T) + O21 (T)yr—1, s¢ =2

with the corresponding quantile parameters as 010(7) = 2.0 + 0.5Q., (1), 611(7) = 0.2,
Oo0(7) = —2.0 + Q,, (7), and b51(7) = 0.4. Q. (7) is the theoretical 7th quantile of a
underlying distribution.

200 data replications are simulated for each underlying distribution. 50,00 observations
are generated for each data replication but only the last 500 observations are kept for
estimation in order to reduce initial effects. MSQAR models are examined in different
sample sizes, T" = {200,500} and quantile levels, 7 = {0.05,0.25,0.5,0.75,0.95}.

Table 1 reports the simulation results. This table includes the true quantile parameters
(True), posterior means (PM), standard errors (Std), the root of mean squared errors
(RMSE), and the mean absolute deviation (MAD). RMSE and MAD errors in Table 1
are small over different quantile levels and distributions. The small difference between the
true and estimated parameters indicates the reasonable accuracy in model estimation. The
small standard errors also show a favorable precision in model estimation. Furthermore, the
accuracy and the precision of model estimations are improved with the increase in sample

sizes considered due to the reduction in RMSEs, MADs and standard errors. As expected,

12



the model estimation for the less extreme quantiles present smaller RMSE and MAD errors
than extreme quantiles. The MSQAR model estimation also shows reasonable performance

for the data generated from mixtures of normal and student-t distributions.

[Table 1 about here]

Figure 1 plotting the posterior kernel densities of parameter estimates along with true
parameters indicated by the vertical lines. Figure 1 shows that the posteriors well contain
the true quantile parameters with a slightly better performance for 7 = 0.5. In many cases,
the posteriors appear skewed but still with most of the density concentrated near the true
parameter values. To save space, Figure 1 plots results for 7 = 0.05,0.5,0.95 and N = 200

from the normal distribution. Other results are similar and available upon request.
|[Figure 1 about here|

Following Guerin and Marcellino (2013), Table 2 reports the quadratic probability scores
(QPS), absolute probability scores (APS) and log probability scores (LPS) for the quantile
autoregressive models with Markov-switching features to check how well these models can
estimate the true regimes. QPS, APS and LPS criteria evaluate the qualitative prediction
abilities of MSQAR models, that is, to what extent the true quantile regimes are predicted.

The predictability of regime 2 is computed for QPS, APS, and LPS as follows:

2 < 3
QPS = = ; (Coup — T (51 = 2))° (5.1)
1 T
APS = — Z |Soaie — 1 (51 = 2))| (5.2)
1 T
LPS = — ; (1—1(3=2))0log (1 — &) + I (5 = 2)log (a1t (5.3)

where &, is obtained from (3.2) and 5, is the simulated states. A score of 0 occurs when

perfect predictions are made. Note that QPS is bounded between 0 and 2. The worst

13



score is 2 for QPS and occurs if at each period probability predictions of 0 or 1 are made
but turn out to be wrong each time. Note that correct predictions have individual scores
between 0 and 0.5, whereas incorrect predictions have individual scores between 0.5 and
2.0 for QPS. Nonetheless, a few incorrect predictions can therefore dominate a majority
of correct predictions in QPS scores. For this reason, a modified version of probability
scores, absolute probability score (APS), is also considered. Like QPS, the best possible
score for APS is 0. The worst score is 1. Here correct predictions have individual scores
between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1. The range
for LPS is 0 to co. LPS penalizes large prediction errors more than QPS and APS. See also
Christoffersen et al. (2007).

[Table 2 about here]

Table 2 shows that all QPS and APS scores are small and less than 0.5, which indicate
the dramatic model predictability for switching regimes. The probability scores are slightly
lower with the increase in sample sizes. The results also show that regime predictions for
lower tails are better than for upper tails. In addition, the statistics of LPS are also smaller

than 0.5 which imply that no prediction outliers are penalized.

6 Empirical Applications

Many studies have employed quantile autoregressive models to estimate risks of financial
markets and assets. In macroeconomics literature, asymmetric dynamics have also been
found for macroeconomic variables. This section applies the proposed MSQAR model to
S&P 500 returns for market risk assessment and to real U.S. GDP growth rates (RGDP)
and real exchange rates of U.S. dolloars (trade-weighted by major currencies, RTWER) for
asymmetric persistence. Monthly and weekly S&P 500 index returns are taken from the
Center for Research in Security Prices (CRSP). The quarterly RGDP and RTWER data
are taken from Federal Reserve Bank of St. Louis as percent changes from year ago. The

data summary in Table 3 show negative skewness for S&P 500 returns and real exchange
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rates. The skewness for real GDP growth is positive but small. S&P 500 returns appear
to have excess kurtosis. Jarque-Bera tests reject the null of data normality for S&P 500
returns, whereas the tests do not reject the null for real exchange rates. The normality for

real GDP is rejected at 10% level. Figure 2 plots the time series of the empirical data.
[Table 3 about here|
|[Figure 2 about here]

As discussed in section 5, for empirical illustration, this paper estimates MSQAR of
order 1 with 2 regimes to keep a parsimonious parameter space. This paper defines that
regime 2 represents more extreme outcomes than regime 1. For instance, at lower tails,
quantiles of regime 2 should be more negative or farther into the left tail areas than those
of regime 1, which is mostly associated with the periods of economic recessions and crises.
In contrary, at upper tails, quantiles of regime 2 should be more positive or farther into the

right tail areas than those of regime 1.

6.1 Stock Market Risk

Table 4 reports the estimation results for monthly and weekly S&P 500 returns. The
entries are the posterior means of parameters with associated numerical standard errors in
parentheses. In general, the values of the Geweke (1992) test statistic in square brackets
indicate convergence of the Markov chain to stationarity. Table 5 shows that the numerical
standard errors are small and the Markov chain appears to be converged well as indicated
by the generally insignificant values of the Geweke (1992) test statistic. Figure 3 also
plots the estimated parameters over quantiles with the 5% and 95% intervals of posterior
distributions. As seen, the quantile intercepts monotonically increase with the increase of
quantile levels. The quantile autoregressive coefficients are close to zero around median,
while they deviate from zero at lower and upper tails. The zero coefficients around median
seem to suggest market efficiency for S&P 500 index. However, it appears to be less efficient

at tails. Moreover, the autoregressive coefficients of regime 2 are larger in magnitude than

15



those of regime 1. This result implies that markets are less efficient when extreme events
occur or during economic recessions and crises. Interestingly, the positive autoregressive
coefficients at lower tails suggest that risk expectation is positively impacted by past risks,
while the negative autoregressive coefficients at upper tails indicate that during market good
times investors is expecting higher risk in future. These results clearly show countercyclical

behaviors in financial markets estimated by MSQAR models.
[Table 4 about here]
|[Figure 3 about here|

The results also show that the variation of transition probabilities across quantiles is
much smaller in regime 1 than in regime 2. The transition probabilities of regime 1 are
ranging from 0.85 to 0.985, compared to the range for regime 2 from 0.381 to 0.945. It seems
that the more extreme the quantile level is, the lower the persistence of regime 2 (pgs) is.?
Despite the large variation in regime persistence, the unconditional probabilities are very
similar across quantiles, i.e., m; and my are around 0.84 and 0.16 for each quantile level,
respectively.? This result is reasonable in that economic conditions provide the common
economic states to different parts of a data distribution. However, persistence is possibly
varying across quantiles. This observation is further consolidated by Figure 4 plotting the
smoothed transition probability §,—s4r for 7 = 0.05,0.5. The shaded areas are NBER-
dated business cycles. This figure shows that the fluctuation within each economic recession
period is much larger in 7 = 0.05 than in 7 = 0.5. The responses of the 5% lower tail to
the economic recessions are much stronger than those of median, by showing much higher

probabilities of switching to regime 2.

|Figure 4 about here]

3The regime persistence for regime 1 and 2can be computed as 1/(1 —pj1) and 1/(1 — pa2), respectively.
*Unconditional probabilities of m; and 75 can be obtained as (1 —paa)/(2 —p11 —pa2) and (1 —p11)/(2—
P11 — P22), respectively.
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Value-at-Risk is implicitly defined on quantiles as a one-to-one function of a quantile,
over a given time interval, of a conditional return distribution (see Jorion (2000)). For as-

sessing S&P 500 return risks, Figure 5 plots 5% Value-at-Risk (VaR) estimated from the dy-

namic quantile of 7 = 0.05 as Qy, (7|y,_,, s¢;©) = Y ics Que (T|yt71, St = 1; 9}) Pr (st = 1|y,; @)
The dark lines in Figure 5 are the estimated 5% VaR dynamics (Q,, (7|y;_,, s¢; ©)) and the
top and bottom light lines are the estimated 5% VaR dynamics of regime 1 (Q,, (7|y,_;, st =
1;6,)) and regime 2 (Q, (7|y,_, st = 2;65)), respectively. As seen, the dynamics in regime 2

is larger than in regime 1 due to the larger autoregressive coefficients. This result indicates

that market efficiency is different across regimes.
|[Figure 5 about here|

The usefulness of the proposed MSQAR model can be immediately recognized from
Figure 5. Value-at-Risk estimated from existing methods are undistinguished from different
distributions associated with i.e., good times or economic recessions. Thus, the VaR values
from those approaches are at best the results of averaging on different economic states.
However, Figure 5 shows VaR values for both regime 1 implied by good economic periods
and regime 2 associated with economic recessions. Risk states identified by the MSQAR
model are particularly beneficial for risk management, as a risk manager would care more
about the most extreme scenarios or the worst possible outcomes. For example, to stress-
testing a hypothetically stressed financial institution, one should use VaR values estimated
from regime 2 (Q, (7|y,_,, s: = 2;65)) as the worst scenario hypothetically occurring. This
may be an appropriate approach to measure systemic risks for considering capital buffer

requirement on financial institutions from the perspectives of central banks.

6.2 Asymmetric Persistence in Macroeconomic Dynamics

To study asymmetric dynamics of macroeconomic variables, this paper estimates MSQAR
models for percentiles. Table 6 reports the estimation results for real GDP growth rates

and real trade-weighted exchange rates. The results of ADF, KPSS, Phillips-Perron and
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Zivot-Andrews tests (not reported here) reject the null hypothesis of unit roots for these
macroeconomic variables.The entries are the posterior means of parameters with associated
numerical standard errors in parentheses and the Geweke (1992) test statistic in square
brackets. Table 5 shows that the numerical standard errors are small and the Markov chain
appears to be converged well as indicated by the generally insignificant values of the Geweke
(1992) test statistic. Figure 6 also plots the estimated parameters over quantile levels with

the 5% and 95% intervals of posterior distributions.

[Table 5 about here]

|Figure 6 about here|

Figure 6 shows that the quantile autoregressive coefficients of real GDP growth rates
vary over different quantiles, displaying asymmetric dynamics. Upper tails appear to have
higher dynamic persistence than lower tails. The quantile autoregressive coefficients of
regime 2 has the range from 0.623 to 0.979, compared to the range of 0.779 to 0.874 for the
coefficients of regime 1. This result indicates that economic regimes demonstrate different
asymmetric dynamics. By contrast, the evidence of asymmetric persistence in real trade-
weighted exchange rates is weak due to much less variation across the quantile autoregressive
coefficients. This result is consistent with Jarque-Bera test in Table 4 showing that the null
of data normality is not rejected for real trade-weighted exchange rates, where it is rejected
for real GDP growth rates at 10% confidence level.

In addition, Figure 6 also shows that transition probabilities slightly vary across quan-
tiles in both regimes. It implies that regime persistence of macroeconomic variables is
mainly driven by common economic conditions, and hence much less dependent on 7. This
result is very different from the regime behaviors of financial markets in section 5, but
consistent with the fact that macroeconomic variables are common economic states and
factors in an economy.

Table 6 examines the regime predictions of real GDP growth rates. This table reports

QPS, APS and LPS values for regime 2 by using NBER-dated business cycles as true
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regimes. The probability scores of QPS and APS are smaller than 0.5 across quantiles,
which indicates a significant predictability of economic regimes based on real GDP growth.
Interestingly, the predictability of regimes from lower tails is much stronger than from upper
tails. In addition, LPS values are larger than one at upper tails than at lower tails. This

result implies the issue of regime predictive outliers.
[Table 6 about here]

The different regime predictabilities across quantiles are also shown by Figure 7 plotting
the smoothed transition probability &,—s,r for 7 = 0.1,0.5,0.9. The shaded areas are
NBER-dated business cycles. As seen, the predicated regimes from 7 = 0.05 and 7 = 0.5
seem closely to trace NBER dated business cycles, whereas the predicated regimes from
7 = 0.9 appear to be lagged. In addition, the responses of the 10% quantile to the economic
recessions are much stronger than those of median, by showing much higher probabilities
(close to 1) of switching to regime 2. These results suggest that lower tails of real GDP
growth rates reveal more information of economic states than upper tails. This might be
due to the economic behaviors of risk aversion and also reflect the effects of macroeconomic

policies.

|[Figure 7 about here|

6.3 Quantile Monotonicity

It is important to evaluate the model by the monotonicity requirement on the conditional
quantile functions. If the monotonicity is satisfied, there should be no crossings over quan-
tiles. Severe crossing problems violate the theorem of equivariance to monotone transfor-
mation from (1.1) to (1.2). Figure 8 plots the estimated quantiles of each single regime.
The straight lines are Q,, (7|y, ,, s = 1;6;) and Qu (TlYyy_1, 50 = 2; 0,) for regime 1 and 2.
The dots are the scatter plots with y; as y-axis and y,_; as z-axis. Despite that the MSQAR
model is nonlinear, it takes a linear form within a single regime. Quantiles within a regime

are not parallel due to its location-scale quantile autoregressive model, unlike location-shift
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quantile functions. Quantiles in regime 2 have no crossing issues, while crossing problems
occur in regime 1 between 7 = 0.4,0.5,0.6. Nonetheless, the proportion of violations of
the monotonicity in regime 1 is below 2% between 7 = 0.4, 0.5, 0.6, except around 10% for
the quantiles of regime 1 of real GDP growth rates crossing between 7 = 0.5 and 7 = 0.6.

Overall, Figure 8 does not show severe crossing issues for the data considered in this paper.

|[Figure 8 about here|

7 Conclusion

This paper proposes a new location-scale quantile autoregression, so-called Markov-switching
quantile autoregression, to characterize behaviors of different parts of a nonstationary time
series distribution. The new method directly inferences and estimates dynamic quantiles
by allowing the location and scale parameters subject to regime shifts. Unobservable eco-
nomic regimes are inferred by standard Hamilton filter approach in which quantile error
terms follow a three parameter asymmetric Laplace distribution. Bayesian estimation is
adopted to deal with some serious computational challenges in this nonlinear model which
has differentiable likelihood functions.

The empirical application to S&P 500 returns is able to show countercyclical risk ac-
cumulations in financial markets. It also illustrates that the dynamic quantiles associated
with economic recessions should be an appropriate extreme scenario for stress-testing hypo-
thetically stressed financial institutions from the perspective of central banks. Furthermore,
the estimation results for macroeconomic variables show evidence of asymmetric dynamics
for quarterly real GDP growth rates but not for quarterly real trade-weighted U.S. dollars.
The transition probabilities are similar across quantiles within a single regime for macroeco-
nomic variables, whereas they vary in financial markets. In addition, this paper has found
that the lower tails of real GDP growth provide more valuable information than the upper

tails for predicting economic regimes.
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Table 1: Simulation Results

(1) Normal errors

N =200 N = 500
True

PM Std RMSE MAD PM Std  RMSE MAD
T =0.05
P11 0.900 0.883  0.034  0.042  0.031 0.895 0.019  0.022 0.017
P22 0.900 0.890 0.034  0.039  0.030 0.901  0.022  0.025 0.019
610(7) 1.178 1.262  0.113  0.120  0.099 1.249  0.081  0.092 0.075
011(7) 0.200 0.181 0.038 0210  0.168 0.184 0.032  0.178 0.145
020(7) -3.645 -3.584  0.295  0.082  0.065 -3.606  0.193  0.054 0.043
021 (1) 0.400 0.401  0.097  0.172  0.200 0.400  0.059  0.147 0.116
T=0.25
P11 0.900 0.887 0.034  0.040  0.029 0.898  0.019  0.021 0.016
P22 0.900 0.889  0.032  0.038  0.029 0.899  0.021  0.024 0.018
010(7) 1.663 1.671  0.088  0.053  0.041 1.665  0.060  0.036 0.029
011(7) 0.200 0.194 0.030 0.151  0.122 0.195 0.024  0.120 0.099
B20(T) -2.674 -2.677  0.221  0.083  0.067 -2.660 0.123  0.046 0.037
021(7) 0.400 0.394 0.067 0.168  0.133 0.402  0.039  0.098 0.081
7=0.5
P11 0.900 0.889  0.034  0.040  0.029 0.900 0.019  0.021 0.015
P22 0.900 0.888 0.032  0.038  0.029 0.897 0.021  0.023 0.018
610(7) 2.000 1.997  0.085 0.043  0.035 1.988  0.055  0.028 0.022
011(7) 0.200 0.196  0.028  0.142  0.112 0.198  0.021  0.106 0.085
020(7) -2.000 -2.057  0.209  0.108  0.089 -2.041  0.119  0.063 0.052
021 (1) 0.400 0.382  0.064 0.165  0.139 0.388  0.037  0.097 0.080
T=0.75
P11 0.900 0.891  0.035 0.040  0.030 0.903  0.019  0.022 0.018
P22 0.900 0.884  0.032  0.040  0.031 0.894  0.021  0.024 0.019
010(7) 2.337 2.323  0.087  0.038  0.031 2311 0.057  0.027 0.021
011(7) 0.200 0.203 0.029 0.144  0.116 0.206 0.021  0.107 0.054
B20(T) -1.326 -1.499  0.231  0.118  0.172 -1.469  0.148  0.105 0.125
021(7) 0.400 0.358 0.075 0177  0.173 0.365  0.047  0.140 0.115
T=0.95
P11 0.900 0.884  0.040  0.048  0.035 0.896  0.024  0.027 0.021
P22 0.900 0.863 0.036  0.057  0.046 0.874  0.025  0.040 0.033
010(7) 2.822 2,779  0.123  0.046  0.037 2772  0.080  0.034 0.027
611(7) 0.200 0217  0.042 0225  0.188 0.215 0.033  0.181 0.148
020(7) -0.355 -0.453  0.124  0.144  0.380 -0.451  0.103  0.123 0.322
021 (7) 0.400 0.337 0.08  0.187  0.215 0.328  0.067  0.145 0.204

RMSE and MAD are the root of mean squared errors and the mean absolute deviation errors.



(2) t3 errors

N =200 N = 500
True

PM Std RMSE MAD PM Std  RMSE MAD
T =0.05
P11 0.900 0.879 0.031  0.042  0.033 0.885  0.021  0.029 0.022
P22 0.900 0.880  0.041  0.050  0.037 0.892  0.024  0.028 0.022
010(7) 1.321 1.428 0.101  0.111  0.094 1.441  0.077  0.108 0.094
011(7) 0.200 0.191  0.035 0.180  0.148 0.193  0.028  0.142 0.117
020 (7) -3.359 -3.319  0.398  0.119  0.093 -3.319  0.246  0.074 0.059
021 (7) 0.400 0.416 0.118  0.197  0.240 0.407  0.080  0.121 0.161
T =0.25
P11 0.900 0.885  0.031  0.038  0.029 0.891  0.021  0.026 0.020
P22 0.900 0.879  0.035  0.045  0.033 0.889  0.021  0.027 0.021
010(7) 1.779 1.770  0.062  0.035  0.028 1.777  0.043  0.024 0.018
611(7) 0.200 0.202 0.024 0.118  0.095 0.202 0.016  0.078 0.060
020(T) -2.442 -2.465 0.156  0.064  0.049 -2.443  0.091  0.037 0.031
021 (1) 0.400 0.393  0.048  0.120  0.093 0.400  0.029  0.073 0.058
T=0.5
P11 0.900 0.886 0.031  0.037  0.028 0.892 0.021  0.025 0.020
P22 0.900 0.876  0.034  0.046  0.034 0.886  0.021  0.028 0.022
610(7) 2.000 1.994  0.058  0.029  0.022 1.993  0.034  0.017 0.014
011(7) 0.200 0.199  0.023 0.115  0.091 0.201  0.013  0.067 0.051
020(T) -2.000 -2.025 0.117  0.060  0.048 -2.025 0.074  0.039 0.028
021 (7) 0.400 0.394  0.037  0.095  0.077 0.396  0.024  0.062 0.049
T=0.75
P11 0.900 0.886  0.032  0.039  0.029 0.892  0.022  0.026 0.020
P22 0.900 0.870  0.034  0.050  0.039 0.881  0.022  0.033 0.026
610(7) 2.221 2218 0.075 0.034  00.025 2212  0.043  0.020 0.016
611(7) 0.200 0.199  0.027 0.133  0.101 0.202 0.016  0.080 0.063
620(T) -1.558 -1.643  0.137  0.103  0.083 -1.647  0.085  0.079 0.065
021 (1) 0.400 0.383  0.042  0.113  0.092 0.385  0.027  0.076 0.062
T=0.95
P11 0.900 0.881 0.039 0.048  0.036 0.888  0.026  0.032 0.024
P22 0.900 0.853  0.037  0.067  0.055 0.861  0.025  0.051 0.044
610(7) 2.679 2.690 0.186  0.069  0.053 2675  0.128  0.048 0.038
011(7) 0.200 0.197  0.066  0.153  0.265 0.202  0.047  0.137 0.186
O20(T) -0.641 -0.596  0.110  0.185  0.141 -0.596  0.073  0.134 0.106
021 (7) 0.400 0.354 0.066 0.201  0.167 0.358  0.048  0.158 0.130

RMSE and MAD are the root, of mean squared errors and the mean absolute deviation errors.

24



(3) Mixed errors

N =200 N = 500
True

PM Std RMSE MAD PM Std  RMSE MAD
T =0.05
P11 0.900 0.885 0.032  0.042  0.030 0.896  0.019  0.025 0.017
P22 0.900 0.893 0.032 0.039  0.028 0.905 0.020  0.023 0.018
010(7) 1.178 1.271  0.118  0.128  0.105 1.252  0.085  0.096 0.078
011(7) 0.200 0.182  0.038 0212  0.167 0.186  0.029  0.160 0.126
020 (7) -3.359 -3.406  0.226  0.127  0.096 -3.348  0.155  0.076 0.059
021 (7) 0.400 0.416 0.128 0.163  0.163 0.409 0.085 0.114 0.169
T =0.25
P11 0.900 0.886  0.034  0.041  0.030 0.895 0.021  0.023 0.016
P22 0.900 0.887  0.031  0.038  0.027 0.898 0.019  0.022 0.016
010(7) 1.663 1.671  0.082  0.049  0.040 1.668  0.059  0.035 0.029
611(7) 0.200 0.197 0.033 0.166  0.13 0.199  0.022  0.108 0.086
020(T) -2.442 -2.462  0.153  0.063  0.049 -2.446  0.094  0.039 0.030
021 (1) 0.400 0.400  0.046  0.115  0.090 0.400  0.029  0.072 0.057
T=0.5
P11 0.900 0.886 0.035 0.039  0.029 0.894  0.021  0.022 0.015
P22 0.900 0.883 0.030  0.037  0.026 0.893  0.019  0.021 0.016
610(7) 2.000 1.998  0.080  0.040  0.033 1.990  0.053  0.027 0.022
011(7) 0.200 0.200 0.031  0.153  0.125 0.202  0.022  0.111 0.088
020(T) -2.000 -2.037  0.119  0.062  0.047 -2.033  0.076  0.041 0.033
021 (7) 0.400 0.393  0.037  0.093  0.073 0.393  0.024  0.062 0.049
T=0.75
P11 0.900 0.886  0.035  0.042  0.032 0.894  0.023  0.026 0.020
P22 0.900 0.878  0.030  0.041  0.031 0.888  0.019  0.025 0.019
610(7) 2.337 2.329 0.084 0.036  0.028 2.315  0.061  0.028 0.022
611(7) 0.200 0.202 0.033 0.167 0.134 0.208 0.025 0.129 0.105
620(T) -1.558 -1.648  0.130  0.104  0.081 -1.651  0.087  0.082 0.070
021 (1) 0.400 0.382  0.040 0.110  0.088 0.382  0.026  0.079 0.064
T=0.95
P11 0.900 0.877 0.041  0.052  0.039 0.884  0.027  0.035 0.027
P22 0.900 0.856  0.034  0.062  0.050 0.866  0.022  0.045 0.039
10(7) 2.822 2.813  0.153  0.054  0.042 2.798  0.095  0.035 0.028
011(7) 0.200 0.204 0.058 0218  0.167 0.208 0.035 0.181 0.145
O20(T) -0.641 -0.600  0.103  0.173  0.135 -0.601  0.087  0.128 0.098
021 (7) 0.400 0.355 0.062 0.192  0.160 0.354  0.044  0.158 0.133

RMSE and MAD are the root, of mean squared errors and the mean absolute deviation errors.
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Table 2: Summary Statistics for the Predictability of Simulated Regimes.

Sample Periods
# of obs.
Mean

Median

Std. dev.
Skewness
Kurtosis

Jarque-Bera

Normal t3 Mixed

QPS APS LPS QPS APS LPS QPS APS LPS
N =200
7=0.05 0.019 0.025 0.046 0.049 0.042 0.251 0.043 0.042 0.206
T=0.25 0.013 0.014 0.025 0.018 0.015 0.040 0.013 0.011 0.031
T=0.5 0.006 0.011 0.014 0.014 0.011 0.038 0.010 0.010 0.029
7=0.75 0.033 0.032 0.065 0.034 0.026 0.101 0.030 0.025 0.088
7=0.95 0.055 0.052 0.138 0.056 0.050 0.305 0.048 0.044 0.286
N = 500
7 =0.05 0.019 0.025 0.046 0.045 0.038 0.196 0.038 0.038 0.136
7=0.25 0.012 0.013 0.024 0.016 0.012 0.038 0.012 0.011 0.030
7=0.5 0.006 0.011 0.013 0.014 0.011 0.040 0.010 0.010 0.025
7=0.75 0.031 0.031 0.063 0.033 0.025 0.102 0.030 0.024 0.086
7=0.95 0.052  0.050 0.140 0.054 0.048 0.297 0.046 0.042 0.274
QPS, APS and LPS represent quadratic, absolute and log probability scores, respectively.

Table 3: Data Summary Statistics
Monthly S&P 500 Weekly S&P 500 Real GDP Real TWER

1926:01-2013:02
1047
0.461
0.907

5.505

-0.525
10.75
<0.001

01/09/1950-02/25,/2013

3294
0.136
0.282
2.091
-0.567
8.744
<0.001

1948Q1-2013Q2

263
3.263
3.200
2.675
0.004
0.692
0.058

159
-0.132
0.201
7.087
-0.256
-0.044
0.412

1974Q1-2013Q2

Note: the p—values are reported for Jarque-Bera statistics test of data normality.
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Table 4: Estimation Results for S&P 500 Index Returns

LT

Monthly S&P 500 Weekly S&P 500

7T=005 7=025 7=05 7=07 7=0.95 7T=005 7=025 7=05 7=07 7=0.95

P11 0.902 0.925 0.985 0.987 0.842 0.850 0.868 0.985 0.947 0.787
(0.018)  (0.055)  (0.010)  (0.009)  (0.016) (0.017)  (0.034)  (0.011)  (0.102)  (0.019)

[1.440]  [-0.447]  [-0.405]  [0.062]  [-0.274] [0.631] [0.065]  [1.273]  [0.685]  [-1.832]

P22 0.572 0.625 0.914 0.917 0.381 0.389 0.641 0.945 0.880 0.415
(0.045)  (0.063)  (0.043)  (0.039)  (0.066) (0.046)  (0.037)  (0.027)  (0.146)  (0.044)

[-0.685]  [-0.570]  [-2.405]  [-0.483]  [-0.244] [-0.276]  [0.446]  [-0.803]  [0.568]  [-0.509]

010(7) -4.121 -0.114 1.045 3.522 4.971 -1.619 -0.039 0.346 1.066 1.647
(0.089)  (0.051)  (0.064)  (0.062)  (0.063) (0.039)  (0.041)  (0.040)  (0.132)  (0.035)

[-2.444]  [-0.464]  [0.648]  [-0.108]  [0.836] [0.322]  [-0.747] [-1.678]  [0.723]  [-1.007]

011(T) 0.084 0.035 0.026 -0.087 -0.082 0.085 0.015 0.035 -0.025 -0.032
(0.042)  (0.026)  (0.027)  (0.031)  (0.042) (0.036)  (0.026)  (0.022)  (0.081)  (0.020)

[1.835]  [-0.307] [-0.518]  [0.098] [0.064] [-0.328]  [1.246] [-0.788] [-0.616]  [-0.126]

020(7) -15.77 -3.978 2,124 5.784 12.05 -5.865 -1.952  -0.094 2.422 4.851
(0.147)  (0.047)  (0.318)  (0.174)  (0.200) (0.094)  (0.040)  (0.147)  (0.147)  (0.080)

[-0.478]  [0.101]  [-1.615] [-0.212]  [0.169)] [-0.296]  [1.404]  [0.965]  [-0.835]  [-0.665]

021(7) 0.378 0.115 0.085 0.042 0.032 0.207 0.010 0.016 -0.196 -0.251
(0.039)  (0.045)  (0.048)  (0.054)  (0.046) (0.038)  (0.017)  (0.056)  (0.069)  (0.018)

[-0.224]  [-0.342]  [0.889]  [0.395] [0.621] [0.317] [0.348]  [0.124]  [0.617] [0.538]

Values in parentheses are numerical standard errors and the Geweke (1992) test statistic in square brackets.

The test distribution for Geweke (1992) statistic is standard normal distribution.
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Table 5: Estimation Results for Macroeconomic Variables

Real GDP Growth Rates

Real Trade-weighted Exchange Rates

P11 P22 610(7) 011(7) 20 (7) 021 (7) P11 P22 610(7) 611(7) 020(T) 021 (T)

7=0.1 0.927 0.647 -0.178 0.781 -2.310 0.623 0.789 0.500 -2.318 0.774 -7.949 0.761
(0.023) (0.046) (0.087) (0.032) (0.162) (0.099) (0.056) (0.093) (0.291) (0.055) (0.264) (0.079)
[-1.085] [1.193] [0.699] [-1.382] [0.737]  [1.090] [-1.110] [0.409] [1.434] [-1.067] [1.083] [-1.205]

7=0.2 0.926 0.667 0.196 0.779 -1.734 0.668 0.811 0.573 -1.149 0.777 -6.199 0.788
(0.021) (0.047) (0.085) (0.037) (0.089) (0.047) (0.066) (0.0533) (0.209) (0.047) (0.327) (0.047)
[0.375] [-1.077] [-2.107] [0.067] [-1.015] [-0.535] [1.368] [-0.837] |[-1.439] [1.294] [-1.110] [-0.585]

T7=0.3 0.930 0.638 0.310 0.801 -1.561 0.716 0.832 0.582 -0.620 0.784 -5.156 0.781
(0.043) (0.063) (0.048) (0.031) (0.143) (0.076) (0.054) (0.041) (0.103) (0.051) (0.211) (0.057)

[0.559] [0.085] [0.227] [-0.407] [-1.193] [-1.127] [-0.392] [-0.794] [0.700] [0.911] [-0.083] [0.489]

T=04 0.943 0.687 0.630 0.784 -1.125 0.758 0.849 0.554 -0.323 0.799 -3.488 0.832
(0.054) (0.134) (0.182) (0.055) (0.276) (0.208) (0.046) (0.066) (0.110) (0.048) (0.193) (0.058)
[-0.125]  [0.076] [0.113] [0.292] [0.047] [0.175] [1.295] [-1.579] [-0.804] [0.771] [-0.858] [-0.453]

T=0.5 0.939 0.706 0.890 0.779 -0.629 0.883 0.926 0.489 -0.196 0.820 -2.307 0.770
(0.015) (0.039) (0.068) (0.034) (0.114) (0.054) (0.033) (0.056) (0.092) (0.025) (0.222) (0.052)

[-0.925] [0.229] [0.043] [-0.178] [1.245] [-0.825] [0.457] [-1.276] [-1.231] [0.357] [-0.514] [0.460]

7=0.6 0.965 0.609 0.917 0.790 3.302 0.938 0.808 0.486 0.485 0.829 2.893 0.831
(0.025) (0.043) (0.032) (0.016) (0.222) (0.043) (0.066) (0.065) (0.130) (0.058) (0.299) (0.126)
[[1.041] [-0.643] [0.874] [-0.637] [-0.242] [-1.456] [-1.150] [0.160] [-1.222] [-0.654] [-0.241] [-0.100]

T=0.7 0.955 0.609 0.974 0.809 3.514 0.958 0.792 0.465 0.995 0.810 4.660 0.878
(0.018) (0.039) (0.036) (0.020) (0.057) (0.013) (0.094) (0.089) (0.177) (0.053) (0.419) (0.135)

[-1.217] [0.589] [0.051] [-0.745] [0.441] [-0.345] [0.666] [-2.952] [-0.132] [-0.109] [1.301] [1.115]

7=0.8 0.940 0.592 1.113 0.834 3.626 0.971 0.779 0.440 1.676 0.791 5.963 0.900
(0.023) (0.054) (0.042) (0.020) (0.074) (0.015) (0.073)  (0.088) (0.230) (0.074) (0.303) (0.096)
[1.427] [-0.311] [0.032] [-0.465] [0.421] [-0.301] [0.370]  [1.522] [-0.580] [1.120] [0.095] [-0.253]

7=0.9 0.924 0.579 1.375 0.874 3.762 0.979 0.808 0.412 2.799 0.754 8.335 0.820
(0.029) (0.038) (0.065) (0.027) (0.175) (0.013) (0.086) (0.069) (0.226) (0.033) (0.506) (0.102)

[0.437] [-0.124] [-0.288] [1.182] [0.423] [1.072] [-1.057] [-1.162] [-0.114] [0.029] [-1.054] [0.991]




Table 6: Real GDP Growth Rates: Predicability of Regime 2

QPS APS LPS

7=0.1 0.135 0.111 0.281
7=10.2 0.131 0.117 0.235
=03 0.134 0.119 0.223
=04 0.132 0.132 0.219
=05 0.151 0.179 0.2539
7=0.6 0.403 0.227 1.039
T=0.7 0.439 0.249 1.075
7=0.8 0.481 0.277 1.134
7=0.9 0.516 0.298 1.370

29



Figure 1: Posteriors

Prt

of the Parameter Estimates with the true parameters indicated by the vertical lines for 7 = 0.05,0.5,0.95.
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Figure 2: Data for Monthly and Weekly S&P 500, Quarterly Real GDP Growth Rates and Real Trade-weighted Exchange Rates
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Figure 3: Quantile Parameter Estimation: S&P 500
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Figure 4: Smoothed Transition Probability. The shaded areas are NBER-dated business cycles
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Figure 5:

The Estimated Quantiles for @Q,, (7 = 0.05|s; = 1) (top light lines), @,, (7 = 0.05|s;) (dark lines), @, (7 = 0.05|s; = 2)(bottom light lines)
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Figure 6: Quantile Parameter Estimations for Macroeconomic Variables
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(2) Real Trade-weighted Exchange Rates
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Figure 7:
Smoothed Transition Probability for Real GDP. The shaded areas are NBER-dated business cycles
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Figure 8:
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