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Abstract

This paper extends the Conditional Value-at-Risk approach of Adrian and Brunner-
meier (2011) by allowing systemic risk structures subject to economic regime shifts, which
are governed by a discrete, latent Markov process. This proposed Markov-Switching Con-
ditional Value-at-Risk is more suitable to Supervisory Stress Scenario required by Federal
Reserve Bank in conducting Comprehensive Capital Analysis and Reveiw, since it is ca-
pable of identifying the risk states in which the estimated risk levels are characterized.
Applying MSCoVaR to stress-testing the U.S. largest commercial banks, this paper
finds that the CoVaR approach underestimates systemic risk contributions of indi-
vidual banks by around 131 basis points of asset loss on average. In addition, this
paper constructs Banking Systemic Risk Index by value-weighted individual risk
contributions for specifically monitoring the systemic risk of the banking system as

a whole.
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1 Introduction

Recently, Adrian and Brunnermeier (2011) propose to measure systemic risk via the con-
ditional value-at-risk (CoVaR) of the financial system, conditional on institutions being in
a state of distress. In their work, an institution’s contribution to systemic risk is defined
as the difference between CoVaR conditional on the institution being in distress and Co-
VaR in the median (“normal”) state of the institution. Hence, it characterizes the marginal
contribution of a particular institution (in a non-causal sense) to the overall systemic risk.

The CoVaR approach is particularly appealing in that it outlines a method to construct
a countercyclical, forward-looking systemic risk measure by predicting future systemic risk
using current institutional characteristics. This is a time-varying systemic risk measure
which does not rely on contemporaneous price movements and thus can be used to antici-
pate systemic risk. This method relates systemic risk measure to macroeconomic variables
and the balance sheet deleveraging and characteristics of individual institutions. This is
essentially a main regulatory concern of central banks.

A number of recent studies have extended and estimated the CoVaR measure of systemic
risk for a variety of financial systems.! Adams et al. (2011) estimate a system of quantile
regressions for four sets of major financial institutions (commercial banks, investment banks,
hedge funds and insurance companies). Wong and Fong (2010) estimate CoVaR for the CDS
of Asia-Pacific banks. Brunnermeier et al. (2012) use the CoVaR approach to examine the
contribution of non-interest income to sytemic bank risk. They find that banks with a
higher non-interest income to interest income ratio have a higher contribution to systemic
risk and their contributions appear to be countercyclical to sytemic risk build-up. Lopez-
Espinosa et al. (2012) use the CoVaR approach to identify the main factors behind systemic
risk in a set of large international banks. They find that short-term wholesale funding is a

key determinant in triggering systemic risk episodes.

!See e.g., Brunnermeier et al. (2012), Lopez-Espinosa et al. (2012), Rodriguez-Moreno and Pena (2012),
Arias et al. (2010), Girardi and Ergun (2012), Roengiptya and Rungcharoenkitkul (2011), and Van Oordt
and Zhou (2010), etc. Bisias et al. (2012) and Brunnermeier and Oehmke (2012) provide comprehensive
reviews on systemic risk analytics.



However, Bisias et al. (2012) raise the important econometric issue of nonstationarity
which is particularly relevant to systemic risk measurement. Virtually the existing methods
of systemic risk estimation and inference rely on the assumption of stationarity. In other
words, the joint distribution of the relevant variables is stable over time. Nonetheless,
the literature has recognized the stylized fact of structural breaks in macroeconomic and
financial time series, so that the distribution structures of a time series might, driven by
economic states, evolve over time. Hence, the very nature of systemic risk implies a certain
degree of nonstationarity that may not always be consistent with the econometric framework
in which risk measures are typically estimated.

Brunnermeier and Oehmke (2012) also concern that the CoVaR approach is vulnerable
to regime changes based on historical data. The estimated CoVaR value is undistinguished
from the distributions associated with i.e., a good economic state or an economic downturn.
In this regard, without informing its associated risk states, the CoVaR measure is at best an
averaging across different economic regimes and hence less advisable to or even misleading
market participants and regulators in managing risks with ambiguous targets. Evidently,
Adams et al. (2011) have shown the sensitivity of systemic risk to tranquil, normal and
volatile economic states, while Lopez-Espinosa et al. (2012) have found that asymmetries
based on the sign of bank returns play an important role in capturing sensitivity of system-
wide risk to individual bank returns. These concerns highlight the need for new systemic
risk methods that are able to address nonstationarity in a more sophisticated way.

This paper specifically considers the systemic risk measure subject to regime shifts.
I extend the CoVaR measure of systemic risk to a nonlinear dynamic structure, namely
Markov-switching CoVaR (MSCoVaR), in which an instituion’s contribution to systemic
risk is measured by allowing the joint distribution evolving over time. Switching regimes
is determined by the outcome of a latent, discrete Markov process, so that the conditional
value-at-risk can be obtained with the filtered probabilities of risk states.

This paper characterizes two risk states: a normal risk level implied by good economic

periods and a high risk level associated with economic recessions, crises or extreme events.



MSCoVaR is thus obtained for each risk state in stress-testing. Particularly, this paper ob-
tains MSCoVaR by estimating Markov-switching quantile autoregressive models (MSQAR)
recently developed by Liu (2014). MSQAR is the location-scale quantile autoregression in
which the location and scale parameters are permitted to evolve over time.

The MSCoVaR measure of systemic risk appears to have the advantage of naturally
fitting to the Supervisory Stress Scenario required by Federal Reserve Bank in Compre-
hensive Capital Analysis and Reveiw (CCAR).? In CCAR, a supervisory stress scenario is
a hypothetical scenario to be used to assess the strength and resillience of BHC capital
in a severely adverse economic environment. It represents an outcome in which the U.S.
economy experiences a significant recession and economic activity in other major economies
also contracts significantly, i.e., a deep recession in the United States, significant declines in
asset prices and increases in risk premia, and a slowdown in global economic activity, etc.
Therefore, the MSCoVaR result from a high risk episode is well-defined for the stress-testing
in Fed’s supervisory stress scenario since it estimates a separate set of parameters for high
risk episodes.

In addition, the MSCoVaR measure of sytemic risk provides various ways to test different
stress scenarios. For instance, if an instituion is systematically important, its hypothetically
distressed scenario should also cause a distress in financial system. The systemic risk of a
systemically important institution can thus be measured by the high risk episodes of both
financial system and the insitution. By contrast, as a non-systemically important instution,
its hyptothetical stress scenario, unless leading to a herding effect, does not cause a distress
in financial system. Hence, its systemic risk can be measured by using the high risk episode
of the insitution and the normal risk period of financial system.

Importantly, the assumption in Liu (2014) that quantile error terms follow a three-
parameter asymmetric Laplace distribution (ADL) for filtering transition probabilities of

regimes can also be used to simulate the Markov-switching conditional expected shortfall

2See Comprehensive Capital Analysis and Review 2012 : Methodology and Results for Stress Scenario
Projections. Board of Governors of the Federal Reserve System: March13 , 201 2; and Comprehensive
Capital Analysis and Review 2013: Assessment Framework and Results. Board of Governors of the Federal
Reserve System: March 2013



(MSCoES) from the MSQAR results. This provides a natural solution to the theoretical
issue that CoVaR is not a coherent risk measure due to its nonsubadditive nature.> Note
that MSCoES takes distributional aspects within the tail into account. To this end, a
banking systemic risk index by value-weighted individual contributions is constructed for
monitoring systemic risk specific to the banking system as a whole.

This paper estimates MSCoVaR and MSCoES as risk contributions of the largest U.S.
commercial banks. The empirical results show strong evidence that financial institutions
and the banking system as a whole experience regime shifts in their lower tails. The new
systemic risk measure shows that the CoVaR approach of Adrian and Brunnermeier (2011)
underestimates systemic risk contributions of individual banks by around 131 basis points
of asset loss on average. The empirical results also show that the banking system is more
sensitive to marginal changes of an individual bank during high risk episodes than during
normal risk periods. In addition, Banking Systemic Risk Index presents the high relavence
of tracing financial distress situations over the sample period.

The rest of this paper is structured as follows. Section 2 defines the Markov-switching
systemic risks measured by MSCoVaR and MSCoES. Markov-Switching Quantile Autore-
gression of Liu (2014) for estimating MSCoVaR and MSCoES are described in Appeniz A.
Section 3 applies MSCoVaR and MSCoES methods to stress-testing the U.S. largest com-
mercial banks. In this section, the banking systemic risk index is also constructed. Section

4 concludes this paper.

2 Systemic Risk Measure

This section briefs the CoVaR measure of systemic risk and then extends it to define the
Markov-Switching CoVaR to identify risk states for a potential nonstationary time series. It
is followed by a discussion of simulating the Markov-switching conditional expected shortfall

as a coherent risk measure.

3See Adrian and Brunnermeier (2011) and Artzner et al. (1999).



2.1 CoVaR

Recall that the value-at-risk of institution n given the probability of 7 is
Pr(X{ <VaR})=T (2.1)

where X' denotes the asset return value of institution n at time ¢. The VaR of the financial

system return (X;") conditional on the event {C(X}") : X' = VaRy }, i.e., institution n’s

w|n
t,7

asset-return attains its VaR value, is denoted by CoVaR such that

Pr(X <CoVaR?|C (X)) =T
Institution n’s contribution to the system risk is thus defined as

ACoVaR"" = CoVaRZ"T" — CoVaR"Im™% (2.2)

T T

where C’oVaRﬂ”’m% denotes the VaR of the financial system when the institution n’s
returns are at their median (“normal”) state as Pr (X;“ < CoVaRYy|X] = VaRZm%) =T.
For simplicity, this paper suppresses the superscript w. Hence, ACoVaR{  denotes the
difference between the VaR of the financial system conditional on the distress of a particular
financial institution n and the VaR of the financial system conditional on the median state
of the institution n. Thus, ACoVaR} quantifies how much an institution n adds to overall
systemic risk. It captures the amount of additional risk that an institution inflicts upon
financial system when the institution attains its VaR value.

Adrian and Brunnermeier (2011) apply quantile autoregressive models (QAR) of Koenker

and Xiao (2006) to estimate CoVaR in two steps as follows

X = ol + PR X[y A D el (2.3)



X = avln g prlnxw 4o guinxn q yeing, gt (2.4)

where ¢, is quantile error terms and Z; is the predictive variables. From (2.2), the risk

contribution of an institution n to financial system is then given by

ACoVaR], = 2" (VaRy . — VaR}s) (2.5)

T

where VaRy_ = o + pI'X[" | +7,"Z,_; is estimated from (2.3) and BYI" is estimated from
(2.4). In this framework, the existence of risk spillovers is captured through the parameter
By ™. for non-zero values of this parameter, the left tail of the system distribution can be

predicted by observing the predetermined distribution of an institution’s returns.

2.2 Markov-Switching CoVaR

To address the vulnerability of CoVaR to regime shifts and the requirement of stress-testing
of an institution in a hypothetically stressed scenario, i.e., a deep economic recession or asset
price downturn, this section defines the Markov-switching CoVaR measure of systemic risk
to identify distinct risk states as CoVaR subject to regime changes.

Let {s;} be an ergodic homogeneous Markov chain on a finite set K = {1,...,k} with a

transition matrix P defined by the following transition probabilities

{pij = Pr (St = j|5t—1 = Z)}

for 7,7 € K and assume s; follow a first-order Markov chain. Transition probabilities
satisfy Zjespij = 1. In this paper, I define two distinct risk regimes, K = {1,2}. Regime
1 (s; = 1) represents a normal risk level which is implied by a good economic state and
regime 2 (s, = 2) represents a high risk episode most likely associated with an economic
recession or financial crisis. The risk structures are determined by data distributions of

each regime over time. Note that economic states, s;, are unobservable so that switching



in s, is inferred by transition probabilities which are estimated from data.
Suppose that X; can be observed directly but can only make an inference about the
value of s; based on the observations as of date t. From (2.1), Markov-switching VaR

(MSVaR) of an instituion n can be defined as
Pr(X] <VaR}|s; =j)=T1

and denoted by MSVaR _ which represents the value-at-risk level of an institution n in

,T

its risk regime j. Accordingly, the VaR of the financial systemic returns conditional on the

event {C(X}") : X = MSVaR? .}, denoted by MSCoVaR? _, is given by

Pr(X <CoVaR!|C(X}|s; =i),s =Jj) =7

Note that the risk states of an institution and the financial system are not necessarily
coincided, i.e., i # j. For instance, a non-systemically important institution being distressed
does not cause the same high risk episode to the whole financial system. However, a
distressed financial system may indeed cause a high risk episode for a non-systemically
important institution.

Apply the definition in (2.2) to obtain an institution n’s contribution to systemic risk

as

AMSCoVaR; . = MSCoVaR}, | — MSCoV aR"?"%

St,T

In this paper, MSCoVaR is estimated by Markov-Switching quantile autoregressive mod-
els (MSQAR), specified as

Xl;n = O/;z,ﬂ' + pgt,TXl;n—l + 7;7:,TZt_1 + 6ZT (26)
X = adln 4 puln x4 B Xy 4z, el (2.7)



such that MSVaR? = o _+ p X"y +7." Z1 is estimated from (2.6) and then

St,T

MSCoVaRy, . = B MSVaR]

St,T St,T

can also be computed based on the estimation results of (2.7). See Appendiz A for details
of the MSQAR model estimation for (2.6) and (2.7).

In this MSCoVaR measure, ﬁ;ﬁ‘? depends on risk states. The response of financial system
to a negative shock to an institution’s balance sheet during a high risk episode (ﬁii:%),
hence, allows to be different from a normal risk period (6;!;17) The set of coefficients
estimated from high risk episodes describes the distributional structures of data in economic
recessions, crises or extreme events. Therefore, it is suitable to be applied to stress-testing
financial instituions in supervisory stress scenario required by Federal Reserve Bank. Note
that if no risk regime-switching presents, MSCoVaR is equivalent to CoVaR. In this sense,
the CoVaR approach is a special case of the MSCoVaR measure when there is no structural
breaks. In this paper, I assume the presentence of distinct economic regimes based on the
findings in literature. However, an appropriate approach of testing the number of regimes
should be considered in future research.

The new framework of the MSCoVaR approach indeed provides flexibility to test differ-

ent stress scenarios. For instance,

Scenario(1) An extreme scenario is that the financial system depends on the regimes of
systemically important banks. This scenario describes the recent financial crisis as:
the financial system is distressed once a systemically important bank is distressed,
while the financial system is away from distress only if none of systemically important
banks are distressed. Hence, systemic risk contribution might be measured by

AMSCoVaRy, = B <MSVaR" - MSVaR”’5O%) (2.8)

$t=2,T St=2,T s¢=1,T

The first product in the right side of (2.8) is the value-at-risk of financial system

conditional on hypothetically assuming both the financial system and the institution



n in their high risk episodes. The second product in (2.8) is the value-at-risk of

financial system conditional on normal states of that institution.
Scenario(2) In comparison, assuming current financial system in regime 1, a distressed
institution n contributes systemic risk to financial system given by

AMSCoVaRy, = B (MSVaR" - MSVaR"’5O%> (2.9)

s¢=1,1 St=2,T s¢=1,T

This scenario implies that the institution n is assumed to be not systemically im-
portant. Its high risk state does not cause a distressed financial system. However,
it might still accumulate and contribute systemic risk to financial system, especially

when herding effects occurring.

Scenario(3) Even during a normal time if a systemically important financial institution
reaches its VaR level, it also likely shocks financial system into its high risk episode.
Hence, the systemic risk contribution of a distressed institution ¢ can also be measured
by

AMSCoVaRy, = gub" (MSVaR" . MSVaR”’50%> (2.10)

St=2,T s¢=1,T se=1,7

For instance, an institution reaching its risk level during a normal period might be
caused by short-term maturity mismatch, while an institution reaching its high risk
episode might be caused by the large number of defaults on loans like the recent
subprime crisis. Despite that risk during a normal time is less severe than during
a high risk period, the highly interconnected banking system, herding effects, and
market panic might contagiously amplify these negative impacts on financial system

and hence lead to crises by i.e., fire-sales and domino effects, etc.

2.3 Markov-Switching CoES

VaR is not a coherent risk measure due to its nonsubadditivity and does not take distri-

butional aspects within the tail into account. This theoretical issue to some extent makes



the CoVaR and MSCoVaR measures of systemic risk invalid. However, the asymmetric
Laplace distribution assumption in the MSQAR framework of Liu (2014) provides a con-
venient solution by obtaining expected shortfall through Monte Carlo simulation based on
model estimation results. Expected shortfall computed as conditional tail expectation is a
coherent risk measure and considers risks beyond the point of a VaR value. See Artzner et
al. (1999).

Using the simulation method in Appendiz A and the estimation results from (2.6),
Markov-switching expected shortfall (MSES) for an institution n can be obtained and
denoted by MSES?”

St,T"

Then, conditional on the event {C(X}"): X = MSES? _}, an

St,T

institution n’s contribution to systemic risk is given by

AMSCoES? . = MSCoES? . — MSCoESX

St,T St,T

with MSCoES™

St,T

= ﬁgj[ﬁMSES?t’T. Expected shortfall can also be applied to the three

scenarios of measuring systemic risk discussed previously:

(1) AMSCoESy, =g, | (MSES?FZT - MSESQ&T{:) (2.11)
(2) AMSCoES?, = g | (MSES?FQJ . MSESQ&%) (2.12)
(3) AMSCoESY, = 8", | (MSESQ:LT - MSESQ’?K:) (2.13)

3 Stress-testing Commercial Banks

In this section, the MSCoVaR and MSCoES measures of systemic risk are estimated for
stress-testing the largest U.S. commercial banks, using the CoVaR measure of systemic
risk as the benckmark model. In addition, given the subadditivity property, the Markov-
switching expected shortfall is used to construct a banking systemic risk index (BSRI) via
value-weighted individual systemic risk contributions for monitoring dynamic systemic risk

of the financial system.
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3.1 Data

Daily market equity data were taken from The Center for Research in Security Prices
(CRSP). The universe of bank holding companies (BHCs) are the stocks corresponding to
CRSP SIC codes 6000-6199 and 6712. Daily market data is used to form weekly returns
on market-valued total assets of individual banks. Following Adrian and Brunnermeier
(2011), a bank market-valued total asset is transformed from book-valued total assets into
market-valued total assets by applying market-to-book equity ratios. Then, the financial
system return is computed as a value-weighted average on the returns of the universe of
banks.

This paper considers the largest U.S. commercial banks since they are the targets of
current regulatory efforts and would likely be considered too-big-to-fail by central banks.
Table 1 provides a bank list considered for stress-testing in this paper. The ultimate crite-
rion to configure the sample of potentially systemically important banks is the availability
of comparable data over a long enough period of time. This sifting criterion rules out some
large banks, i.e., HSBC, etc. The resulting sample is formed by a total of the 27 largest
BHCs sampled from June 1993 to June 2012 with 1000 weekly observations. Note that this
paper estimates the systemic risk contributions of the 27 commercial banks to the financial
system, while the financial system is constructed by the universe of financial institutions
with the STIC code of 6000-6199 and 6712. Hence, the financial system defined in this paper

is equivalently referred to as the banking system hereafter.

[Table 1 about here]

The identification of risk regimes is enhanced by using a set of macro-financial predictive
variables that are acknowledged to capture the expected return in financial markets. I
choose a small set of predictive variables to avoid over-fitting the data. The predictive
variables (Z;) used in this paper include: (1) the change in the credit spread (Acs) between

the 10-year Moody’s seasoned Baa corporate bond and the 10-year U.S. Treasury bond;

4See details in Adrian and Brunnermeier (2011) and Lopez-Espinosa et al. (2012).
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(2) The change in the U.S. Treasury bill secondary market 3-month rate (A3mtb); (3) the
change in the slope of the yield curve (Ays), measured by the yield spread between the
U.S. Treasury benchmark 10-year bonds and the U.S. 3-month T-bill rate; (4) liquidity
spread (Is), defined as the difference between the 3-month U.S. repo rate and the 3-month
T-bill rate; (5) the S&P500 Composite Index return (sp); (6) the volatility Index (viz)
of the Chicago Board Options Exchange (CBOE). All these variables are sampled weekly
and obtained from CBOE, the Federal Reserve Board’s H.15 Release and the Datastream

database, respectively.

3.2 Empirical Results

Table 2 reports the results of the MSQAR model estimation with 7 = 5%. Panel A presents
the results estimated from (2.6) for individual banks (X}*) conditional on predictive variables
(Zi—1), and Panel B estimated from (2.7) for the banking system (X}") conditional on a
individual bank n (X}*) and predictive variables (Z;_;). This table displays the medians of
the coefficient estimates, the numerical standard errors in square brackets, and the posterior

credible intervals (PCI) in parentheses, across banks.?
[Table 2 about here|

In Table 2, the quantile intercepts (o, ,) of both individual banks and the banking
system appear to have the non-overlapped PCIs between regimes (s; = 1 and s; = 2).
This indicates an effective identification of risk regimes by the label switching restriction.
The regime identification is further enhaned by predictive variables: S&P 500 returns, the
changes in T-bill rates, market volatility for individual banks; and contemporaneous returns
of individual banks, the lagged banking system returns, S&P 500 returns, the change in
yield curve, and market volatility for the banking system. These predictive variables have

non-overlapped PCIs between regimes.

5The detail estimation results of each bank are not reported here to save space, but available upon
request. Numerical standard errors are obtained using batch mean method, e.g., Ripley (1987). The
posterior credible intervals are computed using the highest posterior probability regions with the 95%
credible level.

12



In addition, the transition probabilities, which have the non-overlapped PCIs between
regimes, present a much higher level of the regime persistence during regime 1 than during
regime 2. The transition probability of regime 2 at 5% VaR is around 50%, which is
much lower than that at median levels around 92%.® The explanation to this result is
that, compared to a deviation from the median or a normal risk period, whenever an
individual bank attains its 5% VaR (tail risk) in a high risk episode, the bank more likely
takes measures to resolve the risky situation immediately, i.e., adjusting capital structure
to reduce debt levels, implementing more conservative loan policies, etc. Those measures
affect the persistence of a high risk episode. Similarly, when the banking system is stressed
in a high risk episode, regulators also likely intervene markets by monetary and/or fiscal
policies. The scale parameters (s, ) imply much higher standard deviations (around 20.85
and 5.988 for individual banks and the banking system, respectively) during regime 2 than
those during regime 1 (around 4.447 and 1.532 for individual banks and the banking system,
respectively).” This result is highly consistent with the findings in literature that financial
returns are more volatile during economic recessions and crises than economic good times.

Panel A of Table 2 shows that the predictive variables, including S&P 500, changes in
T-bill rates, changes in yield curves and market volatility, which have their PCIs excluded
zero values, show the predictability for the VaRs of individual banks. By contrast in Panel
B of Table 2, the predictors, including contemporaneous returns of individual banks, the
lagged banking system returns, S&P 500 returns, the change in yield curve, and market
volatility, which have their PCIs excluded zero values, present the predictability for the
VaRs of the banking system. For instance, among these predictors, a widening of yield
spreads and spikes in market volatility are generally associated with a larger one-period
ahead VaR value, and hence could be used to anticipate higher levels of downside risk. As
a result, the conditioning variables considered in the analysis have shown the predictability

for financial systemic risk.

6The estimation results for 7 = 50% are not reported in this paper to preserve space, but available upon
request.
"The implied variance is computed based on the formula provided in Appendiz A.
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Interestingly, S&P 500 returns appear to countercyclically contribute to the systemic
risk of the banking system: the negative coefficient of S&P 500 return in regime 1 implies
that a stock market boom accumulates tail risks in the banking system, while its positive
coefficient in regime 2 provides that the increase in stock market prices recovers tail risks
of the banking system. Additionally, the contemporaneous returns of individual banks
appear to have a strong positive relationship with system risk. This contemporaneous
effect exacerbates the downside risk level of the banking system due to the drop of a bank
return. The small numerical standard errors in Table 2 indicate reasonabe model estimation
accuracy.

Table 3 reports the VaR and MSVaR values of individual banks (X]') estimated from
(2.3) and (2.6) conditional on predictive variables (Z;_;), respectively. MSES values are
simulated based on the model estimation results using the approaches in Appendiz A.
Table 3 shows that given 5% probability, the worst possible outcome is MS estimated from
VaR;,; (around 1,017 basis points) and STT (around 5,695 basis points) estimated from
MSVaR,,—5,. On average, MSVaR —s 5% values are about 800 basis points more riskier
than VaR, 5% results and about 1,200 basis points more riskier than M SV aR,,—1 5% results.
From the coherent risk measure, MSES; 259 and MSESs,—; 5% results have about 110
and 120 basis points on average more riskier than MSVaR,—254 and MSVaR -1 5%,

respectively.
[Table 3 about here]

Note that these estimated values are used in (2.5), (2.8)-(2.10), and (2.11)-(2.13) to
compute ACoVaR, AMSCoVaR, and AMSCoFES for measuring systemic risk contribu-
tions of individual banks. Due to the clear difference between VaR and M SV aR values in
Table 3, this evidence shows that existing VaR methods, which provide the results averaging
across different economic regimes, do not well reflect extreme risk scenarios for stress-testing
purposes. In contrary, the risk levels obtained from high risk episodes (regime 2) are more
suitable for measuring hypothetically distressed contributions under supervisory stress sce-

narios.

14
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The disparity between regimes can also be observed in Figure 1, which plots the M SES
values for the six largest U.S. commercial banks. The solid dark lines are the MSESY,
estimates from regime 1 and the dashed light lines from regime 2. Generally speaking, high
risk episodes show higher dynamics and larger volatilities than normal risk periods. The
difference between regimes exists over time, and the gap is dramatically enlarged during

recessions and financial crises. For instance, the risk level during the recent financial crisis

of 2008-2009 is well reflected in regime 2 by showing a deep drop into far left tails.
|[Figure 1 about here]

Table 4 reports the systemic risk sensitivities of the banking system as a whole condi-
tional on individual banks. The banks in this table are ranked based on risk sensitivity
coefficients (6::‘2277). The risk sensitivity coefficients are the important elements for com-
puting systemic risk contributions in (2.5), (2.8)-(2.10), and (2.11)-(2.13). For comparison,

this table also includes the estimation results of the QAR model as the benchmark for

l-regime using (2.4).
[Table 4 about here|

The systemic risk sensitivity coefficients in Table 4 show that many individual banks
tend to impact the banking system heavier during high risk episodes than during normal
risk periods, whereas for some other banks the opposite is true. For instance, the marginal
impact of BK on the banking system is 0.414 during high risk episodes much larger than
0.169 during normal risk periods. Different sensitivities across regimes show asymmetric
effects of individual banks on the banking system. Generally, it is observed that the systemic

risk sensitivity coefficients of Bzfi'ﬁ% are also largerly different from the sensitivity results

win
t,T

of 1-regime estimations ( ). The higher value of a sensitivity coefficient represents the
larger response of the banking system to individual banks’ shocks. The negative coefficients
of BBT and CMA banks imply that during high risk episodes these banks do not worsen
the systemic risk of the banking system, despite that their negative coefficients are small

in magnitudes.
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Table 5 reports the systemic risk contributions of individual banks to the banking system
as a whole. AMSCoVaR;, AMSCoVaRy, AMSCoVaRs, AMSCoES,, AMSCoES,,
and AMSCoESs, are computed in each scenario of (2.8)-(2.10) and (2.11)-(2.13), respec-
tively. For comparison, the systemic risk contributions without switching regimes are also
computed from (2.5) as benchmarks. The ingredients for computing systemic risk con-
tributions are the systemic risk coefficients (ﬁgﬁl?) and individual banks” MSVaR{ | and

MSESY, . values. The banks in each scenario are ordered by their values of the systemic

risk contributions.
|Table 5 about here|

On average across banks, the systemic risk contribution from scenario (1) is around
131 basis points higher than that measured by the CoVaR approach. In addition, scenario
(2) generates the systemic risk contribution to the banking system about 72 basis points
on average higher than that measured by the CoVaR approach. These results clearly
show empirical evidence of the underestimated systemic risk contributions by the CoVaR
approach.

The orders of individual banks’ systemic risk contributions are very different between
AMSCoVaR; and ACoVaR measures as well. For instance, the systemic risk contribu-
tion of STT is the highest in the AMSCoVaR; measure, while the highest systemic risk
contribution in the ACoVaR measure is the AXP bank. The difference between their con-
tributions is as large as about 827 basis points. A strong negative relationship between
systemic risk contributions and bank sizes has also been found through a OLS regression
(not reported here). This result indicates that the bigger the bank asset sizes are, the larger
the banks impact on the banking system. This result provides quantitative evidence for the
recent debate of “too big to fail” of banks.

Apparently, the AMSCoVaR; measure of systemic risk provides the most extreme
stressed outcomes among the 3 scenarios considered. Even in the case that a bank is not

systemically important but distressed during high risk episodes (scenario (2)), the average
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sytemic risk contribution is around 169 basis points which cannot be neglected. The orders
of systemic risk contributions also vary across the 3 scenarios.

In addition, Table 5 reports the simulated results of M SCoES;, ;. As seen, the sytemic
risks are similar between AMSCoES, and AMSCoVaR;, and between AMSCoES,
and AMSCoVaR,, while the results from scenaior (3) are very different. However, this
paper suggests to adopt the systemic risk measurement results of AMSCoES;, ; since
AMSCoVaR is not a coherent risk measure.

Figure 2 plots the dynamics of systemic risk contributions measured by AMSCoV aR,
and ACoV aR approaches along with the correlation.® The results show that the AMSCoVaR,;
measure of systemic risk contributions are more dynamic than the AC'oV aR measure. Some
banks, i.e., JPMorgan Chase, Citi Financial Group and Morgan Stanley, etc., appear to
have high correlations (about 83%-95%) between AMSCoVaR; and ACoV aR, while other
banks, i.e., Bank of America, Well Fargo, etc., have correlations below 50%. Furthermore,
AMSCoVaR, and ACoVaR are negatively correlated for the bank of USB. These results
show that systemic risk contributions measured by AMSCoVaR, and ACoVaR are not

only different in magnitudes, but also in the dynamics over sample periods.

[Figure 2 about here]

Table 6 reports the correlation matrix for banks’ systemic risk contributions measured
by AMSCoVaR;. The correlation matrix shows that banks are highly interconnected. For
instance, Bank of America is positively correlated with other banks ranging from 75%-95%.
Bank of America has the highest correlation of 96% with JPMorgan Chase bank. Among all
the banks sampled, BBT, CMA and SCHW are the only banks negatively correlated with
other banks. Table 6 shows that the potential contagious channels of a crisis are hidden

behind the high interconnections between banks.

8Instead of AMSCoES, and ACoES, this paper makes the comparison between AMSCoVaR; and
ACoVaR, because Adrian and Brunnermier (2011) approach cannot be used to compute expected shortfall.
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3.3 Banking Systemic Risk Index

Figure 3 plots the quarterly systemic risk index of the banking sector (BSRI). The solid
line is the quarterly Financial Stress Index constructed by Federal Reserve Bank of St.
Louis (STLFSI). The dashed line is quarterly BSRI constructed by the value-weighted
AMSCoFES; on individual banks as

N
BSRI, = - Y w; AMSCoES;,
n=1

where weekly AMSCoVaR}, is aggregated to quarterly frequency and wj' is the bank
n’s weight based on its market capitalization at time ¢. The shaded areas are NBER-
dated business cycle phases. Figure 3 shows that the constructed systemic risk index for
the banking sector is capable of reproducing the recent economic recession. The quarterly
BSRI reaches the highest risk during the recent financial crisis of 2007-2009. The BSRI also
shows a milder risk increase than STLFSI for the economic recession during the I'T Bubble
Bust period since it is not a recession highly related to the banking sector. Figure 3 presents
a positive 61.5% comovement between the BSRI and the STLFSI. Furthermore, a simple
linear regression shows that the BSRI is able to significantly explain the dynamics of the
Financial Stress Index by 37.83% (R?). Hence, the constructed BSRI index is supplementary

to monitoring financial market risks by very specific to the risk nature of the banking sector.

|[Figure 3 about here|

4 Conclusion

This paper has defined a Markov-switching conditional Value-at-Risk (MSCoVaR) approach
to measure systemic risk of commercial banks. Applying the Markov-Switching Quantile
Autoregression framework of Liu (2014), systemic risks are estimated subject to regime
shifts within tails. The new method presents the advantage and flexibility in supervisory

stress scenarios required by Federal Reserve Bank. I estimated systemic risk contributions of
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the U.S. largest commercial banks and found around 131 basis points of the underestimated
asset loss by the existing CoVaR measure of systemic risk. The banking system is more
sensitive to marginal changes of an individual bank during high risk episodes than during
normal risk periods. In addition, systemic risk contributions of individual banks are highly
interconnected. Furthermore, Banking Systemic Risk Index, constructed in this paper by
value-weighted individual systemic risk contributions, presents not only a high relavence
to trace financial distress situtions, but also very specific to the risk nature of the banking

industry.
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Table 1
The Sample List of the U.S. Largest Commercial Banks as of 06/30/2012 Ranked in Total Assets

Total Assets

Ticker

Institution Name in thousand dollars as of 06/30,/2012
JPMORGAN CHASE & CO. JPM $2,290,146,000
BANK OF AMERICA CORPORATION BAC $2,162,083,396
CITIGROUP INC. C $1,916,451,000
WELLS FARGO & COMPANY WEFC $1,336,204,000
MORGAN STANLEY MS $748,517,000
U.S. BANCORP USB $353,136,000
BANK OF NEW YORK MELLON CORPORATION, THE BK $330,490,000
PNC FINANCIAL SERVICES GROUP, INC., THE PNC $299,712,018
STATE STREET CORPORATION STT $200,368,976
BB&T CORPORATION BBT $178,560,000
SUNTRUST BANKS, INC. STI $178,307,292
AMERICAN EXPRESS COMPANY AXP $146,890,000
REGIONS FINANCIAL CORPORATION RF $122,344,664
FIFTH THIRD BANCORP FITB $117,542,579
CHARLES SCHWAB CORPORATION SCHW $111,816,000
NORTHERN TRUST CORPORATION NTRS $94,455,895
KEYCORP KEY $86,741,424
M&T BANK CORPORATION MTB $80,807,578
BBVA USA BANCSHARES, INC. BBVA $66,013,042
COMERICA INCORPORATED CMA $62,756,597
HUNTINGTON BANCSHARES INCORPORATED HBAN $56,622,959
ZIONS BANCORPORATION ZION $53,418,819
POPULAR, INC. BPOP $36,612,000
PEOPLE’S UNITED FINANCIAL, INC. PBCT $28,134,752
SYNOVUS FINANCIAL CORP. SNV $26,294,110
BOK FINANCIAL CORPORATION BOKF $25,561,731
FIRST HORIZON NATIONAL CORPORATION FHN $25,493,925

Note: The composition of the banks is based on consolidated assets, lagged by one quarter.
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Table 2

MSQAR model estimation results

Panel A Di Qs 7 ) sp A3mtb Ays Acs ls vix Sy
St,r = 1 0.862 -2.418 -0.105 0.441 -1.740 -0.168 0.008 -0.893 -0.040 0.222
[0.028] [0.143] [0.044] [0.057] [0.301] [0.086] [0.056] [0.184] [0.029] [0.026]
(0.823,0.900)  (-2.927,-1.944)  (-0.156,-0.055)  (0.350,0.531)  (-2.523,-0.029)  (-0.355,0.016)  (-0.071,0.096)  (-1.657,-0.076)  (-0.064,-0.018)  (0.203,0.242)
St,r = 2 0.499 -10.70 -0.170 0.991 -5.404 -1.340 0.179 -1.723 -0.229 1.041
[0.050] [0.336] [0.086] [0.144] [0.384] [0.238] [0.143] [0.347] [0.067] [0.072]
(0.370,0.627)  (-13.04,-8.427)  (-0.368,-0.035)  (0.517,1.582)  (-8.245,-2.461)  (-2.620,-0.146)  (-0.347,0.708)  (-4.119,0.630)  (-3.58,-0.113) (0.870,1.222)
w(n p . win
Panel B pii‘ aln X7 o sp A3mtb Ays Acs ls viT §5t|
St,r = 1 0.852 -0.695 0.125 0.085 -0.109 0.238 -0.115 -0.006 -0.191 -0.026 0.077
[0.028] [0.080] [0.023] [0.043] [0.037] [0.172] [0.051] [0.033] [0.099)] [0.017] [0.015]
(0.813,0.889)  (-0.850,-0.537)  (0.110,0.140) (0.037,0.131)  (-0.145,-0.031)  (-0.324,0.827)  (-0.179,-0.050)  (-0.036,0.023)  (-0.424,0.031)  (-0.034,-0.019)  (0.070,0.083)
St,r = 2 0.469 -2.824 0.164 -0.073 0.201 1.153 -0.669 0.026 0.033 -0.177 0.299
[0.048] [0.187] [0.043] [0.072] [0.081] [0.236] [0.142] [0.067] [0.195] [0.049] [0.040]

(0.350,0.589)

(-3.515,-2.129)

(0.136,0.212)

(-0.204,-0.023)

(0.042,0.361)

(0.048,2.173)

(-1.102,-0.249)

(-0.085,0.139)

(-0.710,0.762)

(-0.238,-0.123)

(0.254,0.347)

Note: Panel A reports the results estimated from (2.6)for individual banks (X]*) conditional on predictive variables. Panel B reports the results estimated from (2.7) for financial

system (X;”) conditional on individual banks (X;*) and predictive variables. This table displays the medians of the coefficient estimates, the medians of the numerical standard errors

in square brackets for evaluating the estimation accuracy, and the medians of the posterior credible intervals in parenthesis. Numerical standard errors are obtained using batch mean

method, e.g., Refly (1987). The posterior credible intervals are computed using the highest posterior probability regions with the 95% confidence level. The detail estimation results

for each bank are not reported here to save space, but available upon request. The results this table is for 7 = 5%.



Table 3
VaR, MSVaR and MSES estimates of individual banks

MSVaR MSES
Val,sn MSVaRg,—1 5% MSVaRg,—2 5% MSES, 1 5% MSES, s 5%
JPM -6.286 -2.642 -9.204 -2.835 -9.760
BAC -7.324 -2.919 -12.21 -3.141 -13.14
C -9.446 -4.711 -35.62 -5.038 -37.56
WEFC -5.813 -2.096 -9.047 -2.269 -9.699
MS -10.17 -5.384 -18.45 -5.750 -20.12
USB -6.670 -4.141 -22.91 -4.419 -25.01
BK -6.069 -2.482 -9.572 -2.687 -10.10
PNC -6.172 -3.105 -10.07 -3.325 -10.79
STT -7.273 -5.403 -56.95 -5.761 -59.75
BBT -6.207 -2.497 -10.16 -2.686 -11.00
STI -6.804 -2.530 -10.89 -2.712 -11.72
AXP -5.664 -2.892 -9.574 -3.105 -10.10
RF -9.327 -3.521 -16.27 -3.757 -17.40
FITB -7.176 -3.360 -15.21 -3.598 -16.19
SCHW -9.652 -5.767 -21.68 -6.158 -23.06
NTRS -5.382 -1.600 -7.555 -1.759 -7.979
KEY -6.730 -3.047 -12.03 -3.256 -12.83
MTB -5.212 -2.711 -11.91 -2.914 -14.17
BBVA -8.094 -3.991 -15.38 -4.277 -17.28
CMA -7.454 -2.990 -11.64 -3.220 -12.44
HBAN -7.482 -2.784 -11.81 -2.990 -12.82
ZION -7.620 -2.709 -12.49 -2.914 -13.45
BPOP -8.345 -2.543 -12.57 -2.729 -13.42
PBCT -5.087 -2.865 -9.344 -3.084 -9.881
SNV -8.161 -2.821 -12.937 -3.039 -13.80
BOKF -5.360 -2.532 -9.309 -2.731 -9.876
FHN -7.372 -2.421 -12.18 -2.623 -13.32

The entries are VaR and MSVaR values of individual banks (X}') estimated from (2.3) and (2.6) conditional on
predictive variables (Z;_1), respectively. M SES values are simulated based on the model estimation results using

the approaches in Appendix A. The values are ordered by banks’ total asset values.
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Table 4
Systemic risk sensitivities

Banks B;U‘?‘an 5:|21 5% 5:?22 5%
BK 0.227 0.169 0.414
NTRS 0.208 0.178 0.374
AXP 0.272 0.213 0.359
BOKF 0.111 0.087 0.279
WEC 0.222 0.207 0.256
USB 0.185 0.116 0.238
PNC 0.209 0.196 0.231
PBCT 0.178 0.080 0.231
JPM 0.195 0.221 0.228
KEY 0.193 0.146 0.224
BBVA 0.096 0.039 0.214
STI 0.158 0.222 0.194
SNV 0.107 0.163 0.184
MTB 0.170 0.119 0.179
STT 0.152 0.071 0.173
BAC 0.143 0.197 0.147
RF 0.136 0.106 0.119
MS 0.090 0.047 0.118
ZION 0.096 0.111 0.113
BPOP 0.016 0.009 0.097
HBAN 0.068 0.162 0.058
FITB 0.112 0.123 0.055
FHN 0.115 0.059 0.049
C 0.040 0.085 0.023
SCHW 0.072 0.019 0.011
BBT 0.136 0.122 -0.048
CMA 0.129 0.110 -0.075

B~ and Bs,,r are estimated from QAR and MSQAR models on (2.4)
and (2.7), respectively. The banks in this table are ranked based

on the risk sensitivity coefficients (B:i

=2,5%
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Table 5

Systemic Risk Contribution of each bank to financial system

1-regime 2-regime
Banks NACoVaR Banks AMSCoVaR; Banks AMSCoVaRy,  Banks AMSCoVaRs Banks AMSCoES, Banks AMSCoESy Banks AMSCoES3
AXP -1.617 STT -9.886 STT -4.064 AXP -1.134 STT -9.857 STT -4.052 USB -0.636
BK -1.413 USB -5.542 C -3.037 BK -1.096 USB -5.528 C -2.960 STT -0.537
KEY -1.339 BK -4.029 USB -2.713 USB -1.084 BBVA -3.241 USB -2.705 BBVA -0.461
WFC -1.336 AXP -3.533 BAC -2.492 STT -0.987 BK -3.174 STI -2.288 AXP -0.435
PNC -1.330 BBVA -3.384 STI -2.491 BBVA -0.951 AXP -2.947 BAC -2.215 KEY -0.327
RF -1.284 NTRS -3.116 SNV -2.192 PNC -0.941 KEY -2.470 SNV -1.974 MS -0.316
USB -1.272 KEY -2.752 PNC -2.162 NTRS -0.887 BOKF -2.308 JPM -1.765 BOKF -0.313
JPM -1.248 BOKF -2.691 JPM -2.110 PBCT -0.829 MTB -2.252 HBAN -1.748 PNC -0.264
NTRS -1.166 PNC -2.550 AXP -2.094 BOKF -0.800 NTRS -2.237 AXP -1.747 SNV -0.254
STT -1.118 SNV -2.476 HBAN -1.933 KEY -0.741 SNV -2.230 FITB -1.727 STI -0.252
STI -1.092 WFC -2.373 WFC -1.921 JPM -0.684 WFC -2.035 PNC -1.686 RF -0.246
BAC -1.071 PBCT -2.323 FITB -1.898 MS -0.664 MS -1.996 RF -1.664 JPM -0.245
CMA -0.985 MS -2.202 KEY -1.794 SNV -0.619 STI -1.996 WFC -1.647 MTB -0.243
PBCT -0.948 JPM -2.178 RF -1.763 WFC -0.595 PNC -1.989 KEY -1.611 BAC -0.180
SNV -0.914 MTB -2.174 BK -1.642 STI -0.554 RF -1.865 MTB -1.497 ZION -0.138
MS -0.905 STI -2.173 NTRS -1.480 MTB -0.532 JPM -1.822 ZION -1.309 WFC -0.135
MTB -0.904 RF -1.976 MTB -1.445 BAC -0.491 PBCT -1.670 BK -1.293 BPOP -0.118
BBT -0.872 BAC -1.857 ZION -1.425 RF -0.462 BAC -1.651 BBT -1.163 BK -0.107
FHN -0.857 ZION -1.443 CMA -1.327 ZION -0.342 ZION -1.325 CMA -1.161 PBCT -0.103
FITB -0.819 BPOP -1.253 BBT -1.306 BPOP -0.284 BPOP -1.151 NTRS -1.062 FITB -0.080
BBVA -0.805 FITB -0.853 MS -0.873 FITB -0.198 C -0.805 MS -0.792 HBAN -0.056
ZION -0.747 C -0.826 BOKF -0.836 HBAN -0.169 FITB -0.777 BOKF -0.717 C -0.055
SCHW -0.681 HBAN -0.691 PBCT -0.808 FHN -0.137 HBAN -0.625 FHN -0.666 FHN -0.031
BOKF -0.621 FHN -0.616 FHN -0.739 C -0.113 FHN -0.555 BBVA -0.593 SCHW -0.026
HBAN -0.507 SCHW -0.235 BBVA -0.619 SCHW -0.062 SCHW -0.210 PBCT -0.581 BBT 0.058
C -0.367 BBT 0.515 SCHW -0.407 BBT 0.145 BBT 0.459 SCHW -0.364 NTRS 0.092
BPOP -0.134 CMA 0.906 BPOP -0.120 CMA 0.256 CMA 0.792 BPOP -0.110 CMA 0.100

Note: the systemic risk contributions are measured for 2-regimes using M SCoVaR approach and for 1-regime using CoVaR method. The banks are ranked based on each systemic

risk measure.
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Table 6

Correlation matrix of banks’ systemic risk contributions measured by AMSCoVaR,

BAC BBT BBVA BK BOKF BPOP C CMA FHN FITB HBAN JPM KEY MS MTB NTRS PBCT PNC RF SCHW SNV STI STT USB WFC ZION
AXP 0.55 -0.25 0.42 0.06 0.66 0.19 0.31 -0.16 0.35 0.23 0.29 0.49 0.39 0.17 0.07 0.33 0.27 0.30 0.12 0.13 0.21 0.29 0.12 0.17 0.23 0.47
BAC 1.00 -0.66 0.57 0.74 0.74 0.72 0.83 -0.76 0.76 0.89 0.90 0.96 0.83 0.85 0.43 0.89 0.55 0.88 0.63 -0.34 0.67 0.90 -0.09 0.28 0.87 0.72
BBT 1.00 -0.84 -0.60 -0.63 -0.78 -0.37 0.87 -0.65 -0.68 -0.83 -0.57 -0.92 -0.66 -0.83 -0.78 -0.28 -0.87 -0.88 0.50 -0.81 -0.73 -0.46 -0.59 -0.68 -0.65
BBVA 1.00 0.27 0.75 0.46 0.35 0.74 0.58 0.55 0.65 0.43 0.79 0.41 0.76 0.60 0.25 0.70 0.64 -0.36 0.60 0.57 0.49 0.56 0.45 0.52
BK 1.00 0.46 0.84 0.70 -0.70 0.58 0.87 0.87 0.81 0.75 0.88 0.49 0.87 0.57 0.82 0.80 -0.49 0.78 0.91 -0.08 0.31 0.88 0.66
BOKF 1.00 0.55 0.58 -0.57 0.49 0.65 0.68 0.68 0.78 0.43 0.50 0.67 0.54 0.72 0.59 -0.29 0.68 0.72 0.34 0.56 0.59 0.78
BPOP 1.00 0.47 -0.77 0.54 0.73 0.88 0.74 0.89 0.76 0.55 0.81 0.39 0.90 0.90 -0.50 0.93 0.85 0.31 0.58 0.89 0.84
C 1.00 -0.61 0.62 0.89 0.75 0.85 0.57 0.77 0.29 0.75 0.62 0.70 0.42 0.35 0.46 0.83 -0.38 0.07 0.75 0.46
CMA 1.00 -0.62 -0.85 -0.9 -0.66 -0.89 -0.76 -0.75 -0.79 -0.45 -0.93 -0.85 0.68 -0.78 -0.85 -0.27 -0.56 -0.84 -0.65
FHN 1.00 0.71 0.78 0.77 0.69 0.85 0.49 0.88 0.17 0.69 0.56 -0.03 0.47 0.69 -0.23 0.02 0.58 0.31
FITB 1.00 0.94 0.88 0.81 0.89 0.58 0.91 0.64 0.92 0.73 -0.54 0.72 0.97 -0.12 0.31 0.91 0.63
HBAN 1.00 0.89 0.94 0.91 0.64 0.96 0.48 0.98 0.84 -0.49 0.85 0.97 0.07 0.42 0.93 0.73
JPM 1.00 0.77 0.88 0.33 0.91 0.52 0.83 0.59 -0.25 0.66 0.91 -0.21 0.17 0.87 0.69
KEY 1.00 0.75 0.73 0.88 0.44 0.97 0.91 -0.51 0.91 0.89 0.38 0.63 0.85 0.84
MS 1.00 0.50 0.94 0.40 0.84 0.69 -0.33 0.63 0.88 -0.28 0.10 0.85 0.48
MTB 1.00 0.62 0.32 0.70 0.79 -0.54 0.62 0.58 0.43 0.53 0.46 0.43
NTRS 1.00 0.47 0.92 0.80 -0.33 0.76 0.93 -0.06 0.29 0.84 0.63
PBCT 1.00 0.53 0.43 -0.50 0.40 0.61 -0.01 0.31 0.53 0.53
PNC 1.00 0.89 -0.58 0.89 0.96 0.22 0.55 0.93 0.80
RF 1.00 -0.59 0.89 0.80 0.44 0.67 0.76 0.74
SCHW 1.00 -0.55 -0.53 -0.35 -0.55 -0.57 -0.49
SNV 1.00 0.84 0.47 0.71 0.84 0.86
STI 1.00 0.02 0.42 0.95 0.76
STT 1.00 0.81 0.05 0.49
USB 1.00 0.43 0.71
WFC 1.00 0.79
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Figure 1
Plots of MSESY, | for a subset of the sample banks. The solid dark lines are the estimated MSESY, | values for s; = 1, and the

dash light lines for s; = 2, respectively.
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Figure 2

Plots of systemic risk contributions for a subset of the sample banks: AMSCoVaR; vs ACoVaR
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Figure 3

Banking Systemic Risk Index (BSRI). The solid line is the financial stress index
constructed by Federal Reserve Bank of St. Louis and the dashed line is BSRI
constructed by the value-weighted AMSCoES; on individual banks.
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A The Markov-Switching Quantile Autoregressive Model
Estimation

This appendix briefly describes the estimation method of Markov-Switching Quantile Au-
toregressive models as proposed in Liu (2014), with an extension of adding exogenous
variables. For more details on the model, see the author’s original work.

Rewrite (2.6) and (2.7) in a general MSQAR model form as follows

L
Xy = Qst,O(T)‘f'Z s, (T) X l+259” ) Zs—r + €4(T)
=1

with the 7th quantile of X, given by

L

Qx, (7| X421, Z1-1,0,,) = 04, 0(7) + Z 50l (T) X - l+255tr ) Zt—r

=1

where 6, (1) = {05,0(7), .., 05,,1.(7), 6., 1 (T), ..., 5., R(T)} X1 ={X;1,.... X yand Z, | =

) Vs, 1
{Zi_1, ..., Zi_r}. Assume quantile error terms, Et(T) follow a three parameter asymmetric
Laplace distribution of Yu and Zhang (2005), ALD(O, ¢, T), with the density function given
by

fe0.6m0,) = LT (A1)
exp {_(Xt —Qy, (7|1X4-1,2Z:-1,05,)) (T — I (Xi < Qy, (1] X¢—1, Zt—laest)))}
Sst

where I(+) is an indicator function. 7 determines the skewness of the distribution, ¢ > 0is a
scale parameter. ALD(0,¢,7) with the location parameter being zero provides that the 7th
quantile of the distribution is zero as Pr (¢, < 0) = 7, which satisfies the quantile regression
condition fi)oo fe(q)dg = 7. The asymmetric-Laplace distribution with the density function
of (A.1) has the mean and variance, E(g;) = ¢(1 — 27)/[(1 — 7)7] and Var(g;) = ¢*(1 —
27 + 27%)/[(1 — 7)%7?], respectively. See Yu and Zhang (2005) for details.

Suppose that X; can be observed directly but can only make an inference about the
value of s; based on the observations as of date t. The inference for unobservable states is
based on the filtering probability as

fj,t|t = Pr (St :j|Xt>Zt§@)
= ZPT (St =J,8-1= i|Xt, Zy; @)
ieK
where > . i §ue = 1 and © = (P, 6,,(7)) is a vector of the parameters with s, € K. The

formulation of filtering probabilities is obtained by Bayes theorem as

it = ZiGK pijgi,tfﬂtflnj,t (A 2)
7 [ (Xl X1, Z40,7;0)
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where 7;, is the conditional density in (A.1) given s, = j, and
f(Xi| X, Zy,7,0©) = Z sz‘jfz‘,t—ut—ﬂ?j,t
jEK ieK
Thus, the relationship between the filtering and prediction probabilities is given by
it = Pr(se = j|1Xe, Z1;©) = Zpijfi,t\t (A.3)
i€k

The inference, similar to Hamilton’s filter (Hamilton, 1994), is performed iteratively
for t = 1,...,T with the initial values, {0 for j € K. The sample likelihood for the 7th
conditional quantile of X; is then given by

L®) =[] fxiXs, 2,,7;0) (A.4)

t=1

In this paper, regimes are labeled by the restrictions on quantile intercepts, for example,
Oro(t) > ... > Oro(7). The MSQAR model is estimated by Bayesian method. See Liu
(2014) for details of the Bayesian model estimation. Note that the cummulative distribution
function of ALD(Q, s, 7) is also provided in Yu and Zhang (2005) as

rexp (Y (z - Qr)) ifr< Q-
1 —

with the quantile function

Q-+ t=log (%), if0<u<rT

FH(wQ,6,7) =
(:Q:<,7) {Qf—flog(i_—g), ifr<u<l1

The expected shortfall is defined as the tail conditional expectation by

ES. = E(X|X < QT)
= F (F’1 (u;Q,6,7)|0 <u < T) (A.5)

Based on the model estimation results of QT, the expected shortfall can be numerically
obtained by Monte Carlo simulation as follows

1. Randomly draw u; for i = 1,..., N from a uniform distribution U = {u; : 0 < u < 7}.
In this paper, N = 5000.

2. Compute ES;, = F~! (ui; Q,<, 7') fori=1,...N

3. Compute ES, = =3V ES,,
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Note that in a dynamic model setting of MSQAR, Q, = Qx, (7| X1, Z;_1, 05,) so that the
steps (1)-(3) are repeated for ¢t = 1,...,T to obtain MSES;, ;.

Generally, the scale parameter ¢ is a nuisance parameter when linking the nonlinear least
square (NLS) quantile autoregression of Koenker and Xiao (2006) to an asymmetric laplace
distribution (see i.e., Gerlach et al. (2011)), since it does not affect quantile locations. How-
ever, in order to filtering transition probabilities, MSQAR model estimation of Liu (2014)
assumes quantile error terms following an asymmetric laplace distribution. Therefore, the
scale parameter ¢ is used to estimate the distribution shape, which is no longer nuisance
and can be identified. An anolog to this sitution is the relationship between ordinary least
square (OLS) estimation and a linear model with the normal distribution assumption. If
assuming data following a normal distribution, its variance parameter must be estimated
and identified. However, using ordinary least square (OLS), the variance parameter is nui-
sance and cannot be identified. In many existing studies, variance parameters of normal
distributions have been modeled subject to regime shifts to describe the varying dispersions
driven by different economic states. Hence, this paper allows the scale parameter subject
to regime shifts as well.

More importantly, since expected shortfall takes distributional aspects within the tail
into account, the shapes of distributions become highly relavant to estimate accurate ex-
pected shortfall. To simulate expected falls, the shape parameter is essential to characterize
the tail distribution shapes.
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