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Abstract

This paper analyzes the relative performance of multi-step forecasting meth-

ods in the presence of breaks and data revisions. Our Monte Carlo simulations

indicate that the type and the timing of the break affect the relative accuracy of

the methods. The iterated method typically performs the best in unstable envi-

ronments, especially if the parameters are subject to small breaks. This result

holds regardless of whether data revisions add news or reduce noise. Empirical

analysis of real-time U.S. output and inflation series shows that the alternative

multi-step methods only episodically improve upon the iterated method.
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ipants of the FDPE Econometrics Workshop in Helsinki, Hecer Time Series Econometrics seminar in
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1. Introduction

The medium- and long-term prospects of the economy are important for consumers,

investors, and policymakers. For example, it is well known that monetary policy af-

fects the economy with a long lag. As a result, central banks conduct forward-looking

monetary policy, i.e., central banks’ interest rate decisions are based on their fore-

casts of future output growth, unemployment, and inflation. Given the importance

of the medium- and long-term economic outlook, economists provide forecasts of key

macroeconomic time series several periods ahead in time. These macroeconomic series

are often serially correlated, implying that their own past values are themselves useful

predictors. Therefore, autoregressive (AR) models are used extensively in economic

forecasting. Despite their parsimonious form, it appears to be difficult to outperform

AR models in practice (see, e.g., Elliott and Timmermann, 2008; Rossi, 2013; Stock

and Watson, 2003).

When generating a multi-step forecast, a forecaster has to decide whether to use

the iterated or direct forecasting strategy. In the iterated approach, forecasts are made

using a one-period ahead model, iterated forward for the desired number of periods.

A central feature of the iterated approach is that the model specification is the same

regardless of the forecast horizon. Direct forecasts, on the other hand, are made using a

horizon-specific model. Thus, a forecaster estimates a separate model for each forecast

horizon. The theoretical literature analyzing the relative merits of the iterated versus

the direct forecast methods includes, e.g., Bao (2007), Brown and Mariano (1989),

Chevillon and Hendry (2005), Clements and Hendry (1996b, 1998), Findley (1985),

Hoque et al. (1988), Ing (2003), Schorfheide (2005), and Weiss (1991). This literature

emphasizes that the choice between iterated and direct multi-step forecasts is not

clear cut, but rather involves a trade-off between bias and estimation variance. The

iterated method uses the largest available data sample in the estimation and thus
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produces more efficient parameter estimates than the direct method. In contrast,

direct forecasts are more robust to model misspecification. Which element, the bias

or the estimation variance, dominates in the composition of the mean squared forecast

error (MSFE) values in practice depends on the sample size, the forecast horizon, and

the (unknown) underlying DGP, and therefore the question of which method to use

cannot be decided ex ante on theoretical grounds alone. Hence, the question of which

multi-step forecasting method to use is an empirical one. In their empirical analysis of

170 U.S. monthly macroeconomic time series, Marcellino et al. (2006) and Pesaran et

al. (2011) find that the iterated approach typically outperforms the direct approach,

especially if the sample size is small, if the forecast horizon is long, and if long lags of

the variables are included in the forecasting model.

Although the parameters in many of the macroeconomic time series are unstable

over time (Stock and Watson, 1996), work on multi-step forecasting in the presence of

breaks has been virtually absent from the literature. However, it is widely accepted

that structural breaks play a central role in economic forecasting (see, e.g., Clements

and Hendry, 2006; Elliott and Timmermann, 2008; Rossi, 2013). Forecast errors are

typically very large after structural breaks. Furthermore, it is possible that a fore-

casting model that performed well before the break performs poorly after the break.

Forecasting models often systematically under- or over-predict in the presence of struc-

tural instability. Therefore, one way to improve their forecast accuracy in an unstable

environment is to use intercept corrections, advocated by Clements and Hendry (1996a,

1998). Intercept corrections are based on the idea that if the forecasts systematically

differ from the true values, i.e., if the forecast errors are systematically either positive

or negative, then adjusting the mechanistic, model-based forecast by the previous fore-

cast error (or an average of the most recent errors) should reduce the forecast bias and

hence improve forecast performance.

Another issue that has been overlooked in the multi-step forecasting literature is
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the fact that key macroeconomic data, such as GDP and inflation series, are subject to

revisions. The real-time nature of macroeconomic time series is potentially important

for the relative performance of multi-step forecasting methods for at least three reasons.

First, because data revisions are usually quite large, the parameters estimated on the

final revised data may differ considerably from those estimated on the real-time data.

Second, data revisions can also affect the dynamic lag structure of the forecasting

model. Finally, real-time forecasts are conditioned on the first-release or lightly revised

data actually available at each forecast origin, whereas forecasts based on the final

revised data are conditioned on the latest available observations of each forecast origin.

Practical forecasting is inherently a real-time exercise and thus the relative accuracy

of multi-step forecasting methods should be evaluated using real-time data.

The main contributions of this paper are as follows. First, we analyze the relative

performance of multi-step forecasting methods in the presence of breaks through Monte

Carlo simulations. Our comparison includes the iterated and direct AR models and

various forms of intercept correction. We consider several break processes, including

changes in the intercept, autoregressive parameter, and error variance. We also examine

how the timing of the break affects the accuracy of the methods. Second, we take into

account in our simulations that most macroeconomic time series are subject to data

revisions. A novelty of our simulation framework is that data revisions can either add

news or reduce noise (see, e.g., Mankiw and Shapiro, 1986). The distinction between

news and noise revisions allows us to study whether the properties of the revision

process matter for the multi-period forecasting problem. Finally, the real-time accuracy

of the multi-step forecasting methods for four key U.S. macroeconomic time series,

namely, real GDP, industrial production, GDP deflator, and personal consumption

expenditures (PCE) inflation, is compared.

The remainder of this paper is organized as follows. Section 2 introduces the nota-

tion and the statistical framework. Section 3 provides a brief overview of the multi-step
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forecasting methods. Section 4 presents the Monte Carlo simulation results and Section

5 presents the empirical results. Section 6 concludes.

2. Statistical framework

Key macroeconomic time series are published with a lag and are subject to revisions.

For instance, a forecaster at period T +1 has access to the vintage T +1 values of GDP

up to time period T . In addition, because of data revisions, the first-released value

and the final value for a period may differ substantially. These two features of real-

time data clearly matter for forecasting. As a result, we incorporate the publication

lag and data revisions into our statistical framework. The statistical framework used

in this paper follows that adopted in Jacobs and van Norden (2011), Clements and

Galvão (2013), and Hännikäinen (2014). It relates a data vintage estimate to the true

value plus an error or errors. More specifically, the period t + s vintage estimate of

the value of y in period t, denoted by yt+s
t

1, where s = 1, ..., l 2, can be expressed as

the sum of the true value ỹt, a news component vt+s
t , and a noise component εt+s

t , i.e.,

yt+s
t = ỹt + vt+s

t + εt+s
t .

In this framework, revisions either add news or reduce noise. Data revisions are

news if they are uncorrelated with the previously published vintages, cov(yt+k
t , vt+s

t ) = 0

∀k ≤ s. On the other hand, data revisions reduce noise if each vintage release is equal

to the true value plus a noise. Noise revisions are uncorrelated with the true values,

cov(ỹt, ε
t+s
t ) = 0. For further discussion of the properties of news and noise revisions,

see Croushore (2011) and Jacobs and van Norden (2011).

We stack the l different vintage estimates of yt, vt and εt into vectors yt =

(yt+1
t , ..., yt+l

t )
′

, vt = (vt+1
t , ..., vt+l

t )
′

and εt = (εt+1
t , ..., εt+l

t )
′

, respectively. Using these

1Throughout this section, superscripts refer to vintages and subscripts to time periods.
2Following Clements and Galvão (2013), we assume that we observe l different estimates of yt

before the true value, ỹt, is observed. In practice, however, data may continue to be revised forever,
so the true value may never be observed.
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vectors we can express each vintage of yt as follows

yt = iỹt + vt + εt, (1)

where i is an l× 1 vector of ones. For simplicity, we consider an AR(1) process for the

true values and assume that a single break has occurred at time T1
3

ỹt =























ρ1 +
l

∑

i=1

µv1i + β1ỹt−1 + σ1η1t +
l

∑

i=1
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ρ2 +
l

∑

i=1

µv2i + β2ỹt−1 + σ2η1t +
l

∑

i=1

σv2iη2t,i, for t > T1,

(2)

where vj,i,t = µvji + σvjiη2t,i (for j = 1,2 and i = 1,..,l) denote news and both η1t and

η2t,i are i.i.d. (0,1) disturbances. This setup allows for changes in the error variance,

the intercept, and the slope immediately after the break.

The news and noise components in (1) before and after the break are specified by
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(3)

3Eklund et al. (2013), Hännikäinen (2014), and Pesaran and Timmermann (2005) also focus on
an AR(1) model in the presence of breaks.
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for t ≤ T1 and

v2t =
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(4)

for t > T1.

The shocks are assumed to be mutually independent. Otherwise stated, if ηt =
[

η1t,η
′

2t,η
′

3t

]′

, then E(ηt) = 0 and E(ηtη
′

t) = I. We assume that ỹt is a stationary

process, so that |βj| < 1 (for j = 1,2). Because ỹt is a stationary process and both

the news and noise terms are stationary, yt is also a stationary process. The means

of the news and noise terms, denoted by µvji and µεji (for j = 1,2 and i = 1,...,l), are

allowed to be non-zero. This is an important feature because the previous literature

has found that revisions to macroeconomic data typically have non-zero means (see,

e.g., Aruoba, 2008; Croushore, 2011; Clements and Galvão, 2013).

3. Methods for multi-step forecasting

In this section, we explain how the multi-step forecasts are computed in the iterated

and direct approaches. We assume that the variable of interest, yt, is a stationary

process. For simplicity, we focus on an AR(1) model. The generalization to AR(p)

models is straightforward.

Iterated forecasts are made using a one-period ahead model, iterated forward for

the required number of periods. The one-step ahead AR model for yt, ignoring data

7



revisions, is

yt+1 = α + βyt + εt. (5)

The parameters in (5) are estimated by OLS and the iterated forecast of yt+h is then

calculated as follows:

ŷIt+h|t = α̂ + β̂ŷIt+h−1|t,

where ŷj|t = yj for j = t. Note that the same model specification is used for all forecast

horizons.

Under the direct approach, the dependent variable in the forecasting model is the

multi-step ahead value being forecasted. Thus, a forecaster selects a separate model

for each forecast horizon. The direct forecasting model, ignoring data revisions, is

yt+h = φ+ ρyt + εt+h. (6)

The parameters in (6) are estimated by OLS using data through period t (i.e., yt is the

last observation on the left-hand side of the multi-step regression). Then, the direct

forecast of yt+h is constructed as

ŷDt+h|t = φ̂+ ρ̂yt.

As discussed in the Introduction, intercept corrections offer some protection against

structural instability. If the forecasting model systematically either under- or over-

predicts after a break, intercept corrections based on the previous forecast errors reduce

forecast bias. On the other hand, intercept corrections increase forecast error variance.

Following Clements and Hendry (1996a, 1998), we consider three alternative inter-
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cept corrections to the iterated approach. The first strategy is a so-called constant

adjustment method, where the adjustment over the forecast period is held constant at

the average of the most recent forecast errors, denoted by e∗t :

ỹIt+h|t = α̂ + β̂ỹIt+h−1|t + e∗t ,

which implies that

ỹIt+h|t = ŷIt+h|t +
h−1
∑

i=0

β̂ie∗t .

The second strategy only adjusts the one-step ahead forecast. The iterated forecast

generated by this one-off adjustment method is

y⃗It+h|t = α̂ + β̂y⃗It+h−1|t, y⃗It+1|t = ỹIt+1|t = α̂ + β̂yt + e∗t ,

so that

y⃗It+h|t = ŷIt+h|t + β̂h−1e∗t .

The third strategy, called the full-adjustment method, adjusts the model-based

forecast by the full amount of the average of the most recent forecast errors:

ȳIt+h|t = ŷIt+h|t + e∗t .

In addition, we consider a full-adjustment to the direct forecasting method. In this

case, the average of the most recent forecast errors from the direct model, denoted by

e∗t,D, is used to adjust the model-based forecast:

ȳDt+h|t = ŷDt+h|t + e∗t,D.
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4. Monte Carlo simulations

In this section, we perform a number of Monte Carlo simulation experiments to evaluate

the performance of the multi-step forecasting methods in the presence of breaks. These

experiments are based on the statistical framework introduced in Section 2. A sample

size of 100 observations, which corresponds to 25 years of quarterly data, is used in the

experiments. We assume that a single break has occurred prior to the forecast origin.

Because the timing of the break might affect the relative accuracy of the multi-step

methods, we consider three different break points: T1 = 25, 50, and 99.

We calibrate the parameter values on actual U.S. data following Hännikäinen (2014).

The parameters remain constant over time in experiment 1 (see Table 1). In this case,

the selected parameter values imply that the mean of the true process lies between 2.0

and 2.5, which corresponds roughly to the average U.S. annual inflation and real GDP

growth over the past 25 years. The parameters in experiment 1 are used as pre-break

parameters in the rest of the experiments (with the exceptions of experiments 4–5).

We consider several break processes. First, we analyze how moderate (0.25) and large

(0.5) changes in the autoregressive parameter in either direction affect the relative per-

formance of the multi-step methods (experiments 2–5). Second, we consider breaks in

the error variance. We allow σ to increase from 1.5 to 4.5 (experiment 6) and decrease

from 1.5 to 0.5 (experiment 7). Finally, we examine how changes in the constant term

affect the accuracy of the methods (experiments 8–9).

We assume that the data revisions are either pure news (σvi ̸= 0, σεi = 0 for i =

1, ..., l) or pure noise (σvi = 0, σεi ̸= 0 for i = 1, ..., l). This allows us to analyze

whether the properties of the revision process matter for the relative performance of

the multi-step forecasting methods. We set l = 14, so that we observe 14 different

estimates of yt before the true value, ỹt, is observed4. Consistent with the previous

4As discussed in Croushore (2011), GDP and inflation data for period t are subject to annual
revisions at the end of July of each of the following three years. Our choice l = 14 is motivated by
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work in Clements and Galvão (2013) and Hännikäinen (2014), only the first and fifth

revisions are assumed to have non-zero means. The means of these revisions are set to

four and two percent of the mean of the first-release data, yt+1
t , both before and after

the break. Similarly, the standard deviation of the first revision is set to 40 percent of

the standard deviation of the first-release data. The standard deviations of revisions

2–13 and 14 are set to 20 and 10 percent of the standard deviation of the first-release

data, respectively. For convenience, the parameter values used in the Monte Carlo

experiments are shown in Table 15.

For simplicity, we focus on forecasting the first-release values and assume that the

lag structure of the forecasting model is correctly specified, i.e., the forecasts are gen-

erated using an AR(1) model6. We estimate the parameters of the forecasting models

using the entire data sample from the latest available vintage. Following Clements and

Hendry (1996a), the intercept corrections are based on the average of the latest four

forecast errors7. The iterated multi-step forecasting method is used as a benchmark in

our Monte Carlo simulations. For each alternative method we compute MSFE values

relative to those produced by the iterated benchmark. Values below (above) unity

imply that the candidate method produces more (less) accurate forecasts than the

benchmark. Multi-step forecasts are computed for horizons of 2, 4, 8, and 12 periods.

The results are based on 10,000 replications and are shown in Tables 2 and 3.

Table 2 shows the relative performance of the multi-step forecasting methods when

the data revisions are pure news. The results indicate that the iterated method gener-

ates the best forecasts in most of the experiments. In particular, the iterated method

the fact that yt+15
t

will have undergone all the regular revisions irrespectively of which quarter of the
year t falls in. For a similar approach, see Clements and Galvão (2013).

5 Appendix A summarizes the means and standard deviations of the first-release and final data for
each experiment. The details of the calibration process are presented in Hännikäinen (2014).

6The results are qualitatively similar if we use the bias correction method suggested by Clements
and Galvão (2013) to forecast the final values or if we consider an AR(2) forecasting model. A full
set of results is available upon request.

7The general conclusions are the same if the intercept corrections are based on the most recent
forecast error or the average of the latest two or three forecast errors.
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dominates the other methods when the parameters remain constant over time (experi-

ment 1), or the variance increases (experiment 6), or the intercept increases (experiment

8). The iterated method also performs particularly well when the autoregressive pa-

rameter decreases moderately (experiment 3), or when the constant term decreases

(experiment 9), although it does not always deliver the most accurate forecasts. In

these few cases, however, the best performing alternative makes only a very slight

improvement over the iterated approach. By contrast, the iterated method performs

poorly when the autoregressive parameter decreases substantially after the break (ex-

periment 5).

The timing of the structural break (T1 = 25, 50, 99) has an impact on the per-

formance of the various approaches. The iterated method appears to be the superior

method when the break occurs early (T1 = 25) during the sample, but its performance

deteriorates when the break occurs closer to the forecast origin. There is a simple ex-

planation for this finding. Table 4 reports the (squared) forecast bias of each method

relative to the MSFE of the benchmark iterated model. As the timing of the break

increases, forecasts become more biased, because fewer post-break values are available

for estimation. This implies that the importance of the bias component in determining

the accuracy of the forecasts increases. The iterated method is more prone to bias than

the other methods. Therefore, it is less successful when the break date T1 gets close to

the end of the sample.

Moreover, the relative performance of the iterated method improves as the forecast

horizon increases. This happens for a subtle reason. As the forecast horizon increases,

the parameters of the direct model are estimated with fewer observations. The param-

eters of the iterated model, on the other hand, are estimated with the largest possible

sample size regardless of the forecast horizon. Thus, for a fixed sample size, it becomes

less desirable to use an inefficient direct method as the forecast horizon lengthens.

Intercept corrections reduce the forecast bias at the cost of increased forecast error
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variance. The additional uncertainty induced by intercept corrections grows with the

forecast horizon. Hence, the bias–variance trade-off is less favorable to intercept cor-

rections at long horizons.

The results in Table 2 suggest that various forms of intercept correction yield rela-

tively poor forecasts in the presence of structural instability. The only exception is the

case where the slope parameter decreases substantially after the break (experiment 5).

In this case, the improvements over the iterated benchmark are very large at longer

forecast horizons (i.e., h = 8 and 12). Hence it is mainly in situations where a break

is believed to decrease substantially the AR parameter (i.e., when both the mean and

variance decrease substantially) that intercept corrections can be recommended. In the

rest of the experiments, intercept corrections have the most potential when the break

has occurred close to the forecast origin (i.e., T1 = 99) and the forecast horizon is short

(i.e., h = 2 and 4). The one-off adjustment to the iterated method is generally more

successful at reducing the MSFE values than the other forms of intercept correction.

The constant adjustment to the iterated method and the full adjustment to the di-

rect method perform worst among all the methods. They produce significantly higher

MSFE values than the iterated benchmark in most of the experiments.

A comparison of the iterated and direct methods reveals that the iterated method

typically delivers more accurate forecasts in the presence of breaks. The direct forecasts

only dominate the iterated ones when the autoregressive parameter decreases substan-

tially (experiment 5) and the timing of the break is either T1 = 25 or T1 = 50. Thus,

there is only very limited evidence that the direct method helps reduce MSFE values

in an unstable environment. The explanation for this finding is again related to the

bias–variance trade-off. It appears that in an unstable environment, the reduction in

bias obtained from the direct model is less important than the reduction in estimation

variance arising from estimating the iterated model.

The results for noise revisions are summarized in Table 3. These results are qual-
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itatively similar to those presented in Table 2. Thus, whether the data revisions add

news or reduce noise does not matter much for the relative performance of the multi-

period forecasting methods. If anything, the iterated method performs slightly better

in relative terms when data revisions reduce noise.

5. Empirical results

Next, we compare the relative performance of the multi-step forecasting methods using

actual U.S. real-time data. We consider h-step ahead forecasts of real GDP and indus-

trial production growth, the GDP deflator, and the PCE inflation rate (annualized).

All forecasts are out-of-sample. At each forecast origin t+1, the t+1 vintage estimates

of data up to period t are used to estimate the parameters of a forecasting model that

is then used to generate a forecast for period t+h. Forecasts are generated for horizons

of h = 2, 4, 8, and 12 quarters. A rolling window of 100 observations is used in the

estimation. We consider two fixed lag lengths, namely p = 1 and p = 4. In addition,

we determine the lag length by the Bayes Information Criterion (BIC) and the Akaike

Information Criterion (AIC). The possible lag lengths are p = 1, . . . , 4. At each fore-

cast origin the model with the lowest information criteria is chosen. Because the BIC

and AIC values are recomputed at each forecast origin, the order of the forecasting

model can change from one period to the next8. Intercept corrections are based on the

average of the four most recent forecast errors9.For simplicity, we focus on forecasting

the first-release values. All real-time data is quarterly and the sample period runs from

1947:Q2 to 2013:Q2. Different vintages are obtained from the Federal Reserve Bank of

Philadelphia’s real-time database.

8Iterated models selected by the AIC on average include two lags for real activity measures and
three lags for inflation series. The BIC selects iterated models with only one lag for the real output
series and models with two or three lags for the inflation series. For the direct models, the AIC
recommends on average one or two lags, whereas the BIC recommends an optimal lag length of one.

9The results are qualitatively similar if intercept corrections are based on the most recent forecast
error or the average of the latest two or three forecast errors.

14



We start our analysis by considering the whole out-of-sample period spanning from

1977:Q2 to 2013:Q2. The performance of the various multi-step forecasting methods

relative to the iterated benchmark over this period is summarized in Table 5. Panels

A and B report the results for the real GDP and industrial production, whereas Panels

C and D contain the results for the GDP deflator and PCE inflation. The first row

in each Panel provides the root MSFE value of the benchmark iterated estimator.

The subsequent rows show the MSFE values of the candidate methods relative to the

MSFE value of the benchmark model. The statistical significance is evaluated using

the Giacomini and White (2006) test.

The results in Panels A and B indicate that the iterated method typically produces

the lowest, or nearly the lowest, MSFE values for both real GDP and industrial produc-

tion irrespective of which lag method or forecast horizon is employed. Even in the few

cases where at least one of the other methods generates more accurate multi-step fore-

casts, even the best performing alternative provides only modest improvements over

the iterated benchmark. For real GDP, the one-off adjustment method systematically

dominates the benchmark at h = 2. Similarly, when short-lag selection methods (p =

1 and BIC) are used, the direct forecast is preferable to the iterated one at the shortest

forecast horizon. However, the p-values indicate that these differences in the predictive

ability are not statistically significant. When industrial production is forecasted, only

the direct estimator outperforms the iterated benchmark in a few cases. Again, the

difference in the predictive accuracy in these cases is so small that the null cannot be

rejected, suggesting that the improvement from the direct estimator is too small to be

of practical forecasting value. For both measures of economic activity, the constant

adjustment to the iterated method and the full-adjustment to both the iterated and

direct methods perform very poorly and they never improve upon the benchmark. In-

deed, the iterated method produces statistically significantly more accurate forecasts

than these three forms of intercept correction in the clear majority of cases.
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Inspection of Panels C and D reveal that the conclusions are substantially different

for the price series. Most importantly, the iterated method performs worse in relative

terms when future inflation is forecasted. For the GDP deflator, the one-off and full-

adjustment to the iterated model dominate the iterated benchmark, with one exception,

regardless of the forecast horizon and lag selection method. These improvements are

large and generally statistically significant. In particular, the relative MSFE value at

h = 4 for the full-adjustment method when an AR(1) specification is used is 0.691,

indicating a 30.9% improvement relative to the benchmark. The results also show

that the performance of the constant adjustment to the iterated method, the direct

method and the full-adjustment to the direct method relative to the iterated benchmark

depends on the method of lag selection. The ability of these methods to forecast the

future GDP deflator is superior to the iterated benchmark in the majority of cases

when the AR(1) model is used. On the other hand, if the results for the AR(1)

specification are excluded, the iterated method is almost universally preferred to these

three alternative methods. The good performance of these three methods when the

AR(1) model is considered is probably due to the fact that low order AR models do

not capture the true dynamics of the GDP deflator and are hence misspecified. At

least the AR(1) model yields less accurate forecasts than the other lag methods.

The evidence for the one-off and full-adjustment to the iterated method is less con-

vincing when changes in PCE inflation are forecasted. These methods generate smaller

forecast errors than the iterated benchmark at h= 8 and h= 12. Although the improve-

ments are quite large, the null of equal accuracy is rejected at conventional significance

levels only for the AR(1) model. In contrast, the one-off and full-adjustment to the

iterated method produce higher MSFE values than the benchmark at h = 2, sometimes

by quite a substantial margin. According to the p-values, the null is rejected in favor of

the iterated benchmark at this horizon in six of eight cases. The direct estimator beats

the iterated one when the forecasts are computed using an AR(1) model, but using
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longer lags in the forecasting model eliminates the advantage of the direct estimator,

particularly at long horizons (h = 8 and h = 12). In contrast with the GDP deflator

results, the constant-adjustment to the iterated method and the full-adjustment to the

direct method never produce better PCE inflation forecasts than the iterated bench-

mark. Indeed, at the longest horizon h = 12, these methods are markedly worse than

the benchmark.

All in all, the results in Table 5 indicate that the iterated method provides the

most accurate real-time output forecasts, whereas the one-off and full-adjustment to

the iterated method help improve the accuracy of the inflation forecast. Thus, there

seems to be no single dominant multi-step forecasting method (cf. Marcellino et al.,

2006; Pesaran et al., 2011). Figure 1 plots the quarterly growth rates of the four

macroeconomic time series (at an annualized rate) over the out-of-sample period. The

figure demonstrates that the series have undergone different types of structural breaks.

In particular, it is well documented that the volatility of the real GDP and indus-

trial production growth have decreased since the mid-1980s (see, e.g., McConnell and

Perez-Quiros, 2000). The simulation results in Section 4 show that when the volatility

changes, the iterated method performs well relative to the other multi-step methods.

On the other hand, due to changes in monetary policy, both the mean and variance

of the two inflation variables have decreased substantially since the early 1980s (Sims

and Zha, 2006). The Monte Carlo results show that when both the mean and vari-

ance decrease substantially, e.g., when the autoregressive parameter of an AR(1) model

decreases substantially (see Appendix A), the iterated method yields rather poor fore-

casts. Hence, the Monte Carlo results are very helpful in understanding why it is

difficult to find a single multi-step method that dominates across all variables.

The results in Section 4 also suggest that the timing of the break affects the accuracy

of the multi-step methods, implying that the relative forecasting performance might be

time-varying in an unstable environment. To examine this possibility, Figure 2 plots
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the Giacomini and Rossi (2010) Fluctuation test as well as the two-sided critical values

at the 5% significance level (dashed horizontal lines) for an AR(4) model at h = 4. The

Fluctuation test is implemented by using a centered rolling window of 40 observations.

The truncation parameter is set to P 1/5 ≈ 3, where P denotes the number of out-of-

sample observations. Positive (negative) values of the test indicate that the candidate

multi-step forecasting method has produced more (less) accurate forecasts than the

iterated benchmark. If the Fluctuation test statistic crosses either the upper or the

lower critical value, the null of equal local predictive ability at each point in time is

rejected.

Several results stand out. First, despite the large differences in the relative predic-

tive ability reported in Table 5, the Fluctuation test rejects the null of equal accuracy

at each point in time only in three cases. Interestingly, the Fluctuation test reveals that

the one-off and full-adjustment to the iterated method contain substantial incremental

real-time predictive information for the GDP deflator in the early 1980s. However,

later in the sample, these two forms of intercept correction give less accurate forecasts

than the iterated benchmark. Broadly speaking, these findings are consistent with the

aforementioned observation that both the mean and variance of the GDP deflator have

decreased substantially in the early 1980s. The simulation results in Tables 2–3 suggest

that in the presence of large and recent decrease in both the mean and variance of a se-

ries only the one-off and full-adjustment to the iterated method of the five alternatives

should dominate the benchmark (see the results for T1 = 99). Furthermore, as time

passes after the break, the gains from these two intercept corrections should diminish.

The Fluctuation test for the two output variables show that the track record of

the constant adjustment to the iterated method and the full-adjustment to both the

iterated and direct method is not good. In fact, the Fluctuation test implies that these

methods yield systematically worse forecasts than the iterated benchmark over the

whole out-of-sample period (the value of the test statistic is always negative), although
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the null of equal accuracy at each point in time cannot be rejected. Similarly, the

direct estimator almost universally produces larger forecast errors for the price series

than the iterated estimator.

Overall, the Fluctuation test indicates that the alternative multi-step methods only

episodically improve upon the iterated benchmark. Therefore, the results over the

whole out-of-sample period might give a somewhat misleading picture of their predic-

tive ability. Most notably, the one-off and full-adjustment to the iterated method do

not systematically beat the iterated benchmark when GDP deflator is forecasted, but

rather they perform particularly well only in the early 1980s. The empirical results,

as well as the simulation results, support the view that the iterated method typically

produces the most accurate real-time forecasts in unstable environment. However, the

results also highlight that if both the mean and variance of the series decrease sub-

stantially and the multi-step forecasts are made shortly after the break, the iterated

method produces inaccurate forecasts and performs poorly in relative terms. In such

a case, an alternative multi-step method, perhaps a one-off adjustment to the iterated

method, should be used.

6. Conclusions

This paper analyzes the real-time performance of various multi-step forecasting meth-

ods in the presence of structural breaks. Our Monte Carlo and empirical analysis leads

us to three main conclusions. First, our results suggest that the iterated method pro-

vides the most accurate multi-step forecasts in the presence of structural instability,

especially if the parameters are subject to small or medium-size breaks. The good per-

formance of the iterated method suggests that the error component dominates the bias

component in the composition of MSFE values in an unstable environment. Second,

the alternative multi-step methods, which are less prone to bias, have the most poten-
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tial when the parameters are subject to large breaks and forecasts are made shortly

after the break. Third, in the presence of breaks, the relative performance of the multi-

step methods might be time-varying. For instance, it is only in the early 1980s that

the one-off and full-adjustment to the iterated method provide more accurate GDP

deflator forecasts than the iterated method.

The finding that the type as well as the timing of the break affects the relative

merit of the multi-step methods is an intriguing one. The previous literature has

found strong evidence for parameter instability in U.S. macroeconomic time series.

These series have been subject to different types of breaks at different dates. This

observation together with our findings might help explain why it is so difficult to find

a single multi-step method that performs well across all variables at all time periods.

Clearly, it would be interesting to analyze the time-variations further using the dataset

of 170 U.S. monthly macroeconomic time series studied in Marcellino et al. (2006) and

Pesaran et al. (2011).
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Table 1: Simulation setup

True process

Experiments ρ1 ρ2 β1 β2 σ1 σ2

1: No break 1 1 0.5 0.5 1.5 1.5
2: Moderate break in β (increase) 1 1 0.5 0.75 1.5 1.5
3: Moderate break in β (decrease) 1 1 0.5 0.25 1.5 1.5
4: Large break in β (increase) 1 1 0.25 0.75 1.5 1.5
5: Large break in β (decrease) 1 1 0.75 0.25 1.5 1.5
6: Increase in post-break variance 1 1 0.5 0.5 1.5 4.5
7: Decrease in post-break variance 1 1 0.5 0.5 1.5 0.5
8: Break in mean (increase) 1 1.5 0.5 0.5 1.5 1.5
9: Break in mean (decrease) 1 0.5 0.5 0.5 1.5 1.5

News

Experiments µv11 µv21 µv15 µv25 σv11 σv21 σv12,..,13 σv22,..,13 σv114 σv214

1: No break 0.085 0.085 0.043 0.043 0.783 0.783 0.391 0.391 0.196 0.196
2: Moderate break in β (increase) 0.085 0.195 0.043 0.098 0.783 2.238 0.391 1.119 0.196 0.560
3: Moderate break in β (decrease) 0.085 0.054 0.043 0.027 0.783 0.634 0.391 0.317 0.196 0.158
4: Large break in β (increase) 0.054 0.195 0.027 0.098 0.634 2.238 0.317 1.119 0.158 0.560
5: Large break in β (decrease) 0.195 0.054 0.098 0.027 2.238 0.634 1.119 0.317 0.560 0.158
6: Increase in post-break variance 0.085 0.085 0.043 0.043 0.783 2.348 0.391 1.174 0.196 0.587
7: Decrease in post-break variance 0.085 0.085 0.043 0.043 0.783 0.261 0.391 0.130 0.196 0.065
8: Break in mean (increase) 0.085 0.128 0.043 0.064 0.783 0.783 0.391 0.391 0.196 0.196
9: Break in mean (decrease) 0.085 0.043 0.043 0.021 0.783 0.783 0.391 0.391 0.196 0.196

Noise

Experiments µε11 µε21 µε12,...,5 µε22,...,5 σε11 σε21 σε12,4,...,14 σε22,4,...,14 σε13,5,...,13 σε23,5,...,13

1: No break 0.113 0.113 0.038 0.038 0.728 0.728 0.188 0.188 0.325 0.325
2: Moderate break in β (increase) 0.113 0.226 0.038 0.075 0.728 0.953 0.188 0.246 0.325 0.426
3: Moderate break in β (decrease) 0.113 0.075 0.038 0.025 0.728 0.651 0.188 0.168 0.325 0.291
4: Large break in β (increase) 0.075 0.226 0.025 0.075 0.651 0.953 0.168 0.246 0.291 0.426
5: Large break in β (decrease) 0.226 0.075 0.075 0.025 0.953 0.651 0.246 0.168 0.426 0.291
6: Increase in post-break variance 0.113 0.113 0.038 0.038 0.728 2.183 0.188 0.564 0.325 0.976
7: Decrease in post-break variance 0.113 0.113 0.038 0.038 0.728 0.243 0.188 0.063 0.325 0.108
8: Break in mean (increase) 0.113 0.170 0.038 0.057 0.728 0.728 0.188 0.188 0.325 0.325
9: Break in mean (decrease) 0.113 0.057 0.038 0.019 0.728 0.728 0.188 0.188 0.325 0.325
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Table 2: Relative MSFE values when revisions add news

Break date T1 = 25 T1 = 50 T1 = 99
Forecast horizon 2 4 8 12 2 4 8 12 2 4 8 12
Exp.1 Constant 1.419 1.623 1.713 1.729 – – – – – – – –

One-off 1.040 1.003 1.000 1.000 – – – – – – – –
Full 1.182 1.175 1.178 1.183 – – – – – – – –
Direct 1.009 1.017 1.024 1.027 – – – – – – – –
Full direct 1.380 1.481 1.504 1.514 – – – – – – – –

Exp.2 Constant 1.436 1.821 2.360 2.528 1.427 1.787 2.271 2.483 0.999 1.024 1.058 1.070
One-off 1.064 1.016 1.004 1.001 1.058 1.015 1.004 1.001 0.981 0.995 1.000 1.000
Full 1.129 1.097 1.107 1.105 1.121 1.090 1.096 1.104 0.979 0.987 1.004 1.009
Direct 1.007 1.026 1.047 1.052 1.009 1.024 1.048 1.068 1.006 1.010 1.008 1.008
Full direct 1.398 1.601 1.723 1.713 1.389 1.592 1.740 1.786 1.007 1.029 1.047 1.060

Exp.3 Constant 1.369 1.406 1.412 1.447 1.344 1.339 1.334 1.341 1.416 1.511 1.464 1.474
One-off 1.024 0.999 1.000 1.000 1.022 0.993 0.999 1.000 1.044 0.995 0.999 1.000
Full 1.205 1.167 1.161 1.176 1.166 1.082 1.060 1.070 1.186 1.114 1.059 1.060
Direct 1.006 1.011 1.011 1.006 1.003 1.004 1.006 0.997 1.009 1.028 1.032 1.038
Full direct 1.332 1.351 1.346 1.370 1.296 1.261 1.235 1.248 1.406 1.475 1.406 1.413

Exp.4 Constant 1.450 1.838 2.351 2.503 1.396 1.797 2.330 2.544 0.961 0.989 1.004 1.014
One-off 1.069 1.018 1.006 1.001 1.045 1.015 1.007 1.002 0.984 0.999 1.000 1.000
Full 1.135 1.101 1.103 1.092 1.102 1.085 1.092 1.094 0.960 0.983 0.995 1.003
Direct 1.003 1.014 1.032 1.052 1.003 1.031 1.068 1.073 1.006 1.005 1.004 1.003
Full direct 1.408 1.612 1.722 1.728 1.368 1.634 1.814 1.877 0.973 0.997 1.010 1.018

Exp.5 Constant 1.390 1.471 1.435 1.476 1.235 1.160 1.013 0.997 1.271 1.272 1.267 1.285
One-off 1.060 0.983 0.984 0.993 0.981 0.919 0.962 0.985 0.949 0.907 0.964 0.987
Full 1.144 1.023 0.934 0.924 1.019 0.849 0.764 0.752 0.990 0.838 0.770 0.761
Direct 0.994 0.952 0.875 0.832 0.986 0.944 0.886 0.845 1.028 1.091 1.159 1.186
Full direct 1.275 1.189 0.981 0.964 1.106 0.861 0.609 0.575 1.617 1.875 1.792 1.750

Exp.6 Constant 1.457 1.657 1.768 1.775 1.450 1.627 1.808 1.795 1.121 1.196 1.240 1.220
One-off 1.054 1.007 1.000 1.000 1.053 1.004 1.001 1.000 1.013 1.003 1.000 1.000
Full 1.210 1.194 1.203 1.193 1.200 1.176 1.211 1.200 1.050 1.054 1.062 1.051
Direct 1.008 1.022 1.024 1.033 1.015 1.026 1.032 1.033 1.003 1.012 1.007 1.014
Full direct 1.421 1.513 1.552 1.564 1.411 1.496 1.576 1.568 1.068 1.090 1.097 1.097

Exp.7 Constant 1.314 1.477 1.531 1.541 1.264 1.382 1.397 1.403 3.431 4.419 4.663 4.721
One-off 0.997 0.992 0.998 1.000 0.974 0.984 0.998 1.000 1.212 1.007 0.999 1.000
Full 1.106 1.096 1.084 1.088 1.063 1.032 1.018 1.014 2.057 1.966 1.905 1.911
Direct 1.013 1.018 1.021 0.997 1.017 1.025 1.023 1.027 1.032 1.070 1.094 1.109
Full direct 1.288 1.348 1.355 1.358 1.232 1.263 1.240 1.252 3.494 4.074 4.044 4.091

Exp.8 Costant 1.438 1.663 1.773 1.775 1.412 1.625 1.720 1.704 1.338 1.493 1.535 1.563
One-off 1.048 1.004 1.000 1.000 1.038 1.001 1.000 1.000 1.026 1.000 1.000 1.000
Full 1.188 1.174 1.180 1.174 1.168 1.157 1.149 1.140 1.139 1.130 1.116 1.127
Direct 1.007 1.014 1.021 1.022 1.006 1.013 1.013 1.003 1.010 1.020 1.026 1.031
Full direct 1.398 1.520 1.526 1.547 1.376 1.485 1.491 1.495 1.327 1.420 1.415 1.440

Exp.9 Costant 1.406 1.652 1.682 1.716 1.361 1.551 1.589 1.601 1.269 1.391 1.400 1.429
One-off 1.038 1.004 1.000 1.000 1.022 0.994 0.999 1.000 1.004 0.995 0.999 1.000
Full 1.168 1.174 1.143 1.157 1.134 1.106 1.082 1.076 1.091 1.078 1.057 1.069
Direct 1.007 1.015 1.014 1.013 1.007 1.017 1.011 1.005 1.011 1.023 1.029 1.031
Full direct 1.370 1.526 1.477 1.499 1.328 1.423 1.392 1.396 1.260 1.316 1.292 1.326

Notes: The experiments are as defined in Table 1. ’Constant’ denotes the method of constant adjustment to the iterated model; ’One-off’ denotes the
one-off adjustment to the iterated method. ’Full’ and ’Full direct’ denote full adjustment to the iterated and direct methods, respectively. Intercept corrections
are based on the average of the latest 4 forecast errors. The sample size is T = 100. The break occurs at T1 = 25, 50, or 99. MSFE values are computed
relative to those produced by the iterated forecasting method.
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Table 3: Relative MSFE values when revisions reduce noise

Break date T1 = 25 T1 = 50 T1 = 99
Forecast horizon 2 4 8 12 2 4 8 12 2 4 8 12
Exp.1 Constant 1.413 1.639 1.680 1.701 – – – – – – – –

One-off 1.046 1.006 1.000 1.000 – – – – – – – –
Full 1.186 1.193 1.170 1.176 – – – – – – – –
Direct 1.008 1.015 1.015 1.022 – – – – – – – –
Full direct 1.354 1.470 1.451 1.482 – – – – – – – –

Exp.2 Constant 1.492 1.877 2.328 2.633 1.431 1.750 2.120 2.234 1.118 1.196 1.296 1.325
One-off 1.104 1.029 1.005 1.002 1.063 1.006 1.001 1.000 0.970 0.990 1.000 1.000
Full 1.177 1.124 1.107 1.122 1.132 1.078 1.067 1.065 1.007 1.011 1.055 1.072
Direct 1.004 1.013 1.028 1.029 1.004 1.019 1.024 1.017 1.018 1.029 1.016 1.012
Full direct 1.403 1.608 1.718 1.806 1.368 1.583 1.716 1.723 1.112 1.159 1.208 1.227

Exp.3 Constant 1.383 1.424 1.377 1.419 1.350 1.407 1.429 1.423 1.431 1.521 1.498 1.490
One-off 1.034 1.000 1.000 1.000 1.030 0.999 1.000 1.000 1.060 1.002 0.999 1.000
Full 1.222 1.189 1.146 1.174 1.177 1.135 1.126 1.123 1.207 1.145 1.099 1.096
Direct 1.008 1.013 1.008 1.011 1.007 1.012 1.008 1.005 1.006 1.016 1.028 1.031
Full direct 1.347 1.360 1.299 1.347 1.302 1.314 1.314 1.319 1.393 1.447 1.391 1.402

Exp.4 Constant 1.517 1.902 2.385 2.668 1.345 1.636 1.971 2.095 0.947 1.014 1.056 1.074
One-off 1.113 1.033 1.006 1.002 1.029 0.995 0.998 0.999 0.958 0.997 1.000 1.000
Full 1.188 1.132 1.109 1.103 1.080 1.030 1.025 1.016 0.923 0.975 1.011 1.025
Direct 1.004 1.015 1.028 1.024 0.992 0.995 1.009 1.003 1.026 1.017 1.012 1.009
Full direct 1.440 1.667 1.778 1.809 1.321 1.582 1.734 1.767 0.975 1.025 1.054 1.066

Exp.5 Constant 1.455 1.569 1.576 1.617 1.430 1.505 1.541 1.489 1.089 1.048 1.005 0.993
One-off 1.089 1.004 0.996 0.999 1.089 0.983 0.982 0.993 0.956 0.932 0.972 0.990
Full 1.206 1.105 1.038 1.029 1.161 1.008 0.913 0.883 0.966 0.860 0.806 0.793
Direct 1.027 1.012 0.952 0.932 1.009 0.962 0.867 0.830 1.012 1.058 1.120 1.137
Full direct 1.407 1.445 1.327 1.275 1.328 1.263 1.088 0.985 1.133 1.174 1.128 1.109

Exp.6 Constant 1.473 1.644 1.746 1.730 1.484 1.688 1.740 1.811 1.204 1.290 1.295 1.297
One-off 1.071 1.008 1.000 1.000 1.072 1.010 1.000 1.000 1.036 1.006 1.000 1.000
Full 1.229 1.196 1.195 1.187 1.232 1.204 1.180 1.205 1.100 1.091 1.073 1.073
Direct 1.004 1.023 1.027 1.031 1.008 1.023 1.035 1.039 1.006 1.011 1.018 1.016
Full direct 1.413 1.490 1.503 1.510 1.429 1.510 1.494 1.546 1.118 1.121 1.111 1.108

Exp.7 Constant 1.372 1.532 1.587 1.573 1.329 1.479 1.530 1.543 3.371 4.432 4.723 4.886
One-off 1.028 0.999 0.999 1.000 1.011 0.993 0.999 1.000 1.232 1.019 0.999 1.000
Full 1.155 1.135 1.119 1.107 1.122 1.105 1.091 1.086 2.051 2.008 1.948 1.992
Direct 1.011 1.025 1.021 1.016 1.008 1.025 1.017 1.025 1.020 1.043 1.069 1.087
Full direct 1.326 1.382 1.373 1.354 1.275 1.348 1.338 1.350 3.510 4.229 4.182 4.288

Exp.8 Constant 1.450 1.691 1.780 1.785 1.426 1.655 1.730 1.757 1.383 1.524 1.602 1.591
One-off 1.062 1.008 1.000 1.000 1.058 1.008 1.000 1.000 1.045 1.004 1.000 1.000
Full 1.203 1.192 1.186 1.181 1.185 1.165 1.151 1.149 1.173 1.149 1.153 1.140
Direct 1.009 1.015 1.018 1.012 1.006 1.010 1.013 1.011 1.005 1.014 1.025 1.028
Full direct 1.404 1.521 1.529 1.524 1.378 1.492 1.506 1.530 1.351 1.429 1.454 1.440

Exp.9 Constant 1.472 1.686 1.738 1.759 1.417 1.599 1.674 1.655 1.284 1.375 1.416 1.447
One-off 1.067 1.008 1.000 1.000 1.048 1.000 0.999 1.000 1.016 0.995 0.999 1.000
Full 1.214 1.187 1.159 1.163 1.171 1.131 1.112 1.101 1.110 1.074 1.070 1.080
Direct 1.004 1.014 1.013 1.007 1.006 1.005 1.002 1.004 1.010 1.021 1.027 1.026
Full direct 1.401 1.507 1.478 1.486 1.362 1.429 1.446 1.433 1.264 1.280 1.285 1.309

See the notes to Table 2.
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Table 4: Squared bias relative to the MSFE of the iterated benchmark when revisions add news

Break date T1 = 25 T1 = 50 T1 = 99
Forecast horizon 2 4 8 12 2 4 8 12 2 4 8 12
Exp.1 Iterated 0.003 0.003 0.004 0.004 – – – – – – – –

Constant 0.000 0.000 0.000 0.000 – – – – – – – –
One-off 0.002 0.003 0.004 0.004 – – – – – – – –
Full 0.001 0.001 0.001 0.001 – – – – – – – –
Direct 0.004 0.003 0.004 0.004 – – – – – – – –
Full direct 0.000 0.000 0.000 0.000 – – – – – – – –

Exp.2 Iterated 0.002 0.004 0.004 0.006 0.014 0.025 0.033 0.036 0.072 0.118 0.158 0.174
Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.057 0.098 0.135 0.150
One-off 0.000 0.003 0.004 0.005 0.005 0.019 0.031 0.035 0.067 0.116 0.157 0.174
Full 0.000 0.001 0.002 0.003 0.002 0.009 0.015 0.017 0.062 0.107 0.146 0.162
Direct 0.002 0.004 0.004 0.003 0.014 0.026 0.033 0.030 0.073 0.121 0.160 0.177
Full direct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.067 0.117 0.156 0.173

Exp.3 Iterated 0.020 0.027 0.022 0.027 0.058 0.071 0.087 0.078 0.155 0.210 0.236 0.222
Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052 0.063 0.074 0.066
One-off 0.011 0.026 0.022 0.027 0.030 0.064 0.087 0.078 0.116 0.198 0.235 0.222
Full 0.001 0.003 0.002 0.003 0.005 0.009 0.016 0.013 0.079 0.119 0.142 0.131
Direct 0.019 0.023 0.014 0.014 0.056 0.064 0.073 0.061 0.161 0.225 0.251 0.235
Full direct 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.074 0.111 0.129 0.118

Exp.4 Iterated 0.005 0.010 0.017 0.016 0.024 0.037 0.051 0.053 0.127 0.191 0.240 0.253
Constant 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.104 0.166 0.213 0.226
One-off 0.002 0.008 0.017 0.016 0.009 0.028 0.048 0.052 0.122 0.191 0.240 0.253
Full 0.001 0.004 0.010 0.009 0.004 0.012 0.022 0.024 0.109 0.172 0.220 0.232
Direct 0.005 0.010 0.013 0.008 0.023 0.035 0.045 0.039 0.129 0.194 0.242 0.254
Full direct 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.111 0.176 0.224 0.235

Exp.5 Iterated 0.066 0.136 0.185 0.190 0.163 0.324 0.421 0.439 0.494 0.623 0.687 0.693
Constant 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.091 0.076 0.059 0.051
One-off 0.024 0.105 0.175 0.186 0.050 0.236 0.392 0.429 0.287 0.512 0.654 0.682
Full 0.010 0.047 0.082 0.086 0.021 0.113 0.196 0.216 0.220 0.351 0.428 0.441
Direct 0.055 0.091 0.089 0.061 0.150 0.275 0.325 0.299 0.515 0.686 0.790 0.804
Full direct 0.000 0.000 0.000 0.002 0.001 0.001 0.006 0.016 0.215 0.355 0.448 0.455

Exp.6 Iterated 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000
Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
One-off 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000
Full 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Direct 0.001 0.000 0.000 0.001 0.000 0.002 0.001 0.000 0.000 0.000 0.001 0.000
Full direct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exp.7 Iterated 0.023 0.031 0.033 0.027 0.023 0.025 0.024 0.030 0.015 0.018 0.020 0.025
Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003
One-off 0.012 0.028 0.033 0.027 0.011 0.022 0.023 0.030 0.009 0.016 0.020 0.025
Full 0.003 0.008 0.009 0.006 0.002 0.004 0.004 0.007 0.004 0.006 0.008 0.011
Direct 0.024 0.034 0.036 0.028 0.024 0.028 0.025 0.032 0.015 0.019 0.023 0.027
Full direct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003

Exp.8 Iterated 0.001 0.003 0.002 0.002 0.020 0.027 0.033 0.040 0.119 0.162 0.177 0.185
Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.091 0.123 0.133 0.140
One-off 0.000 0.003 0.002 0.002 0.008 0.023 0.033 0.040 0.109 0.159 0.177 0.185
Full 0.000 0.001 0.000 0.001 0.002 0.005 0.008 0.011 0.100 0.141 0.155 0.163
Direct 0.001 0.002 0.000 0.000 0.019 0.025 0.026 0.026 0.121 0.169 0.183 0.190
Full direct 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.112 0.168 0.189 0.194

Exp.9 Iterated 0.018 0.022 0.021 0.020 0.058 0.075 0.083 0.089 0.173 0.231 0.260 0.257
Constant 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.081 0.109 0.123 0.121
One-off 0.008 0.019 0.021 0.020 0.027 0.064 0.082 0.089 0.140 0.222 0.259 0.257
Full 0.002 0.004 0.004 0.004 0.008 0.015 0.020 0.023 0.107 0.159 0.183 0.181
Direct 0.017 0.019 0.014 0.009 0.058 0.072 0.071 0.069 0.179 0.243 0.273 0.268
Full direct 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.101 0.150 0.172 0.168

Notes: The table reports the squared bias of the different methods as a ratio of the MSFE of the iterated benchmark model.
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Table 5: MSFE values relative to the iterated benchmark based on the same lag selection method

AR(1) AR(4) BIC AIC
Forecast horizon 2 4 8 12 2 4 8 12 2 4 8 12 2 4 8 12
(A) GDP

Iterated 2.664 2.719 2.723 2.688 2.716 2.786 2.720 2.682 2.673 2.724 2.720 2.685 2.663 2.724 2.722 2.686

Constant 1.227 1.343 1.518∗∗ 1.742∗∗∗ 1.257 1.366 1.660∗∗ 1.908∗∗∗ 1.279 1.461∗ 1.654∗∗ 1.923∗∗∗ 1.275 1.426 1.603∗∗ 1.873∗∗∗

One-off 0.978 0.995 1.000 1.000 0.995 0.993 1.003 1.001 0.993 1.004 0.999 1.000 0.995 1.002 0.999 1.000

Full 1.075 1.098 1.205 1.338∗∗∗ 1.114 1.082 1.239 1.385∗∗∗ 1.127 1.142 1.219 1.355∗∗∗ 1.127 1.126 1.199 1.337∗∗∗

Direct 0.978 1.019 1.015 0.999 1.022 1.010 1.040 1.015 0.971 1.023 1.017 1.001 1.006 1.038 1.021 1.005

Full direct 1.217 1.387 1.375∗ 1.483∗∗∗ 1.236 1.347 1.491∗∗ 1.466∗∗∗ 1.208 1.384∗ 1.379∗ 1.486∗∗∗ 1.270∗ 1.405∗ 1.424∗∗ 1.481∗∗∗

(B) Industrial production

Iterated 6.639 6.744 6.748 6.859 6.705 6.798 6.767 6.832 6.618 6.744 6.749 6.860 6.781 6.716 6.752 6.831

Constant 1.504∗∗ 1.787∗∗∗ 1.575∗∗ 1.872∗∗∗ 1.424∗ 1.714∗∗ 1.653∗∗ 1.938∗∗∗ 1.505∗∗ 1.786∗∗∗ 1.571∗∗ 1.865∗∗∗ 1.395∗ 1.693∗∗ 1.619∗∗ 1.880∗∗∗

One-off 1.057 1.009 1.000 1.000 1.033 1.028 1.002 1.001 1.057 1.009 1.000 1.000 1.025 1.015 1.001 1.001∗

Full 1.272∗ 1.359∗∗ 1.195 1.388∗∗∗ 1.208 1.297∗ 1.253∗ 1.429∗∗∗ 1.271∗ 1.359∗∗ 1.195 1.386∗∗∗ 1.191 1.301∗ 1.247∗ 1.436∗∗∗

Direct 1.004 1.004 1.020 0.978 0.997 0.982 1.065 1.004 1.012 1.000 1.019 0.981 0.976 1.019 1.015 0.997

Full direct 1.472∗∗ 1.596∗∗ 1.408∗∗ 1.657∗∗∗ 1.380∗ 1.497∗∗ 1.569∗∗∗ 1.593∗∗∗ 1.486∗∗ 1.584∗∗ 1.400∗∗ 1.655∗∗∗ 1.438∗ 1.594∗∗ 1.405∗∗ 1.684∗∗∗

(C) GDP deflator

Iterated 1.479 1.779 2.279 2.444 1.231 1.396 1.851 2.122 1.289 1.436 1.910 2.186 1.246 1.412 1.861 2.124

Constant 0.971 0.725 0.811 1.114 1.151 1.158 1.471∗ 2.040∗∗∗ 1.123 1.122 1.384 1.907∗∗ 1.123 1.142 1.474∗ 2.063∗∗∗

One-off 0.872∗∗ 0.838∗∗∗ 0.948∗∗∗ 0.983∗∗∗ 0.967 0.891∗∗∗ 0.937∗∗ 0.968∗ 0.955 0.878∗∗∗ 0.926∗∗∗ 0.964∗∗ 0.957 0.889∗∗∗ 0.935∗∗ 0.967∗

Full 0.857∗ 0.691∗∗∗ 0.718∗∗∗ 0.764∗∗∗ 1.015 0.866∗ 0.853∗∗ 0.900∗ 0.992 0.831∗∗ 0.813∗∗∗ 0.862∗∗ 0.995 0.856∗∗ 0.847∗∗ 0.896∗

Direct 0.886∗∗∗ 0.675∗∗∗ 0.756∗∗∗ 0.895 1.019 1.076∗∗∗ 1.196∗∗∗ 1.292∗∗ 0.965 1.037 1.080∗∗ 1.231∗ 1.005 1.059∗∗ 1.160∗∗∗ 1.318∗∗

Full direct 0.869 0.665∗ 0.857 1.127 1.096 1.155 1.487 1.757∗ 0.998 1.023 1.225 1.504 1.062 1.094 1.381 1.720∗

(D) PCE inflation

Iterated 1.898 2.051 2.482 2.678 1.830 1.955 2.323 2.555 1.847 2.016 2.389 2.609 1.823 1.960 2.337 2.568

Constant 1.364∗∗∗ 1.345∗ 1.397 1.629∗ 1.485∗∗∗ 1.658∗∗∗ 1.985∗∗∗ 2.404∗∗∗ 1.385∗∗∗ 1.473∗∗ 1.669∗∗ 2.078∗∗ 1.446∗∗∗ 1.604∗∗∗ 1.892∗∗∗ 2.334∗∗∗

One-off 1.061 0.940∗ 0.954∗∗∗ 0.980∗∗ 1.080∗∗ 1.012 0.969 0.982 1.061 0.990 0.962∗ 0.983 1.067∗ 1.005 0.969 0.984

Full 1.129∗∗ 0.949 0.879∗∗ 0.867∗∗∗ 1.247∗∗∗ 1.085 0.986 0.958 1.168∗∗ 1.025 0.936 0.925 1.221∗∗ 1.078 0.976 0.953

Direct 1.009 0.947 0.959 0.983 0.994 1.018 1.162∗∗ 1.146 1.003 0.967 1.036 1.070 0.997 1.016 1.121∗ 1.125

Full direct 1.241∗∗ 1.079 1.127 1.446 1.333∗∗∗ 1.244 1.553∗ 1.785∗ 1.305∗∗ 1.166 1.220 1.552 1.330∗∗ 1.230 1.419 1.630

Notes: Forecast period spans from 1977:Q2 to 2013:Q2. The first row in each panel shows the root mean squared forecast error for the iterated benchmark. Subsequent rows report
the ratio of the MSFE of each candidate multi-step method relative to the MSFE of the iterated benchmark. Intercept corrections are based on the average of the latest 4 forecast errors.
Asterisks mark rejection of the two-sided Giacomini and White (2006) test at the 1%(***), 5%(**), and 10%(*) significance levels, respectively.
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Appendix A

Table 6: Means and standard deviations

News

Experiment E(ỹ1t) E(ỹ2t) E(yt+1
1t ) E(yt+1

2t ) σỹ1t σỹ2t σ
y
t+1
1t

σ
y
t+1
2t

1 2.255 2.255 2.128 2.128 2.514 2.514 1.957 1.957
2 2.255 5.171 2.128 4.878 2.514 7.187 1.957 5.595
3 2.255 1.442 2.128 1.361 2.514 2.035 1.957 1.584
4 1.442 5.171 1.361 4.878 2.035 7.187 1.584 5.595
5 5.171 1.442 4.878 1.361 7.187 2.035 5.595 1.584
6 2.255 2.255 2.128 2.128 2.514 7.541 1.957 5.871
7 2.255 2.255 2.128 2.128 2.514 0.838 1.957 0.652
8 2.255 3.383 2.128 3.191 2.514 2.514 1.957 1.957
9 2.255 1.128 2.128 1.064 2.514 2.514 1.957 1.957

Noise

Experiment E(ỹ1t) E(ỹ2t) E(yt+1
1t ) E(yt+1

2t ) σỹ1t σỹ2t σ
y
t+1
1t

σ
y
t+1
2t

1 2.000 2.000 1.887 1.887 1.732 1.732 1.879 1.879
2 2.000 4.000 1.887 3.774 1.732 2.268 1.879 2.460
3 2.000 1.333 1.887 1.258 1.732 1.549 1.879 1.680
4 1.333 4.000 1.258 3.774 1.549 2.268 1.680 2.460
5 4.000 1.333 3.774 1.258 2.268 1.549 2.460 1.680
6 2.000 2.000 1.887 1.887 1.732 5.196 1.879 5.636
7 2.000 2.000 1.887 1.887 1.732 0.577 1.879 0.626
8 2.000 3.000 1.887 2.830 1.732 1.732 1.879 1.879
9 2.000 1.000 1.887 0.943 1.732 1.732 1.879 1.879
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Figure 1: Quarterly growth rates
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Notes: Sample period 1977:Q2—2013:Q2. The Figure plots the first-release growth rates, annualized.
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Figure 2: Fluctuation test for equal out-of-sample predictability at h = 4
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(C) GDP deflator
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(D) PCE inflation
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Notes: The Figure plots the two-sided Giacomini and Rossi (2010) Fluctuation test based on sequences of the

Giacomini and White (2006) unconditional test statistic for AR(4) specification. The test is implemented by

using a centered rolling window of 40 observations. The sample period spans from 1977:Q4 to 2013:Q2. Positive

(negative) values indicate that the candidate method has produced more (less) accurate forecasts than the

benchmark. The dashed lines represent critical values at the 5% level. If the absolute value of the Fluctuation

test exceeds the critical value, the null that the two multi-step methods have equal predictive ability at each

point in time is rejected. 34
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