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1. Introduction 

More than a decade ago some climatologists 

led by Michael Mann, after performing past 

temperature reconstructions on a millennial scale, 

have come up with the conclusion that the Recent 

Warming Period (RWP) is an unprecedented 

phenomenon in the climatic history of the Earth 

(Mann et al., 1998, 1999). The unusual behavior 

of recorded temperatures in the late 20th century 

was attributed by the authors to anthropogenic 

influences, and chiefly to substantial hikes in the 

recorded greenhouse gas concentrations caused 

by the worldwide expansion of industrial activities 

and to the sharp world population increase.

The authors produce statistical evidence

graphically shaped as a hockey-stick that has 

been prominently featured in the Nobel-prized 

Intergovernmental Panel on Climate Change 

(IPCC) activity since the Third Assessment Report

(IPCC, 2001). This evidence spurred a worldwide 

dispute on both the validity of the empirical 

evidence and on its causes. By consequence, the 

purported dramatic rise of recent temperatures 

and the associated anthropogenic origin have 

found advocates and skeptics still to date igniting 

the “hockey-stick curve” controversy (Montford, 

2010).
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Criticism of the anthropogenic origins of global 

warming includes studies questioning the 

methods utilized for temperature reconstructions 

(Baliunas and Soon, 2003; McKitrick, 2006; 

McIntyre and McKitrik, 2006, 2009), and other 

studies pointing to the prevalence of long-run 

natural causes such as solar activity 

(Abdussamatov, 2004; Alanko-Huotari, 2006; 

Fouka et al., 2006), cosmic rays (Shaviv, 2005; 

Svensmark and Frijs-Christensen, 2007; Bard and 

Frank, 2006; Usoskin et al., 2004a, 2004b, 2006), 

ocean currents (Gray et al., 1997; Trouet et al., 

2009), and volcanic activity (Shindell et al., 2004).

In this context, probably the only consensus 

among the opposing sides is couched in terms of 

the available evidence of climate changes on a 

millennial scale that may inform on the role of 

anthropogenic forcing in the RWP. (e.g. Folland et 

al. 2001). In fact, the lack of widespread 

instrumental surface temperature estimates prior 

to the mid-19th century has placed particular 

emphasis on the need to accurately track the 

history of climate changes, which can only be 

achieved by utilizing carefully reconstructed long-

term empirical evidence (Jones et al., 2001; Von 

Storch et al., 2004; Mann et al., 2008, 2009).

Such evidence consists of long-term Climate 

Change Proxies (CCP) which may shed some 

light on the difference between natural and 

anthropogenic influences on the climate system 

and enable statistical inferences on millennial-

scale anomalies, such as the Medieval Warming 

Period (MWP) and the RWP. 

Many regional or global sea and/or surface 

temperature reconstructions are now available 

customarily utilizing proxies of climate variability 

derived from the environment; and from 

documentary evidence (Crowley, 1991; Bradley, 

1999; Jones et al., 2001; Guiot et al., 2010). 

Particularly useful are the high-resolution proxies 

such as tree rings (Fritts et al., 1971; Fritts, 1991), 

corals (Evans et al., 2002; Hendy et al., 2002), ice 

cores (Appenzeller et al., 1998), lake sediments 

(Loehle, 2007; Loehle and McCulloch, 2008), 

oceanic oscillations (Li et al., 2011; Wilson et al., 

2006), and many more reported in the Reference 

Section. 

All of the reconstruction methods contain a 

sizable element of uncertainty, usually determined 

by red-noise behavior. This is the reason why very 

different results can be obtained by using the 

same or similar methodological approaches 

(Christiansen et al., 2009; Christiansen and 

Ljungqvist, 2011; Christiansen, 2011; McShane 

and Wyner, 2011; Smerdon et al., 2008). The 

method based on Gibbs sampling that is utilized in 

this paper significantly reduces this kind of risk 

and avoids all too common calibration pitfalls 

(Mann et al., 1999).

The ample taxonomical and geographical 

diversity of the CCP series contained in the 19 

datasets supplied offers enough information for 

testing the hockey-stick hypothesis on a global 

scale, in spite of the official statements of the 

IPCC (2007) according to which the reconstructed 

estimates of the MWP are significantly 

heterogenous because regionally confined to 

Northern Europe, Northern America and 

Greenland (Crowley and Lowery, 2000; Bradley et 

al., 2001; Folland et al., 2001; Esper et al., 2002; 

D’Arrigo et al., 2006; Juckes et al., 2007; Mann et 

al., 2009; Graham et al., 2010).

However, several more or less recent studies 

reverse this conclusion by proving that the MWP 

was a global phenomenon (Broecker, 2001; Cook 

et al., 2002; Zunli et al., 2012; Scafetta, 2013). In 

addition to this evidence, a vast amount of papers

- more than 1,000 - reporting results obtained 
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from applied research in the six continents 

demonstrate that the MWP was a global 

phenomenon that has indeed been warmer than 

the RWP. References are available at:

http://www.co2science.org/data/mwp.

Most of the CCP series scrutinized in the 

paper are longer than one millennium and thus 

meet the MWP requirement (~900–1350 A.D.). 

Also, quite a few series include previous likely 

warmings, like the Roman Warm Period

(Ljungqvist, 200) to be compared with the RWP 

(Crowley and Lowery, 2000; Bradley et al., 2001; 

Baliunas and Soon, 2003; Loso, 2008; Esper and 

Frank, 2009; Graham et al., 2010; Tingley and Li, 

2012). The series also include the Maunder 

Minimum, i.e., the European Little Ice Age 

(~1645–1715 A.D.) as a relevant event of the 

climatic cyclical pattern recognized by several 

authors (e.g. Baliunas and Soon, 2003; Büntgen 

et al., 2011).

The instrumental temperatures utilized for 

calibration are the medians of the global Best 

Estimated Anomaly (BEA) of the HADCRUT4 

gridded dataset, which includes the CRUTEM4

land-surface air temperature and the 

HadSST3 sea-surface temperature datasets 

(Morice at al., 2012). The recorded readings of 

ensemble medians cover the period 1850–

2010.The authors supply four different 

geographical areas of the readings: Northern 

Hemisphere (NH), Southern Hemisphere (SH), 

Tropics and Global (GL), which is the mean of 

NH+SH. In the present context, although the vast 

majority of the CC series has been recorded in the 

NH, the GL series is utilized with no loss of 

generality, especially because the correlation 

coefficients between NH and SH exceeds 0.97.

Sect. II tackles the classical calibration method 

and its associated likelihood of obtaining hockey-

stick behavior (HSB) in the presence of a 

statistically inconsistent Millennial-scale Time 

Series (MTS) made of calibrated and 

nonstationary actual time series (Noriega and 

Ventosa-Santaulària, 2007; Ventosa-Santaulària, 

2009). Sect. III discusses the superiority of the 

Bayesian calibration technique over its classical 

counterpart and illustrates the principles of Gibbs 

sampling of the two-way Time Varying Parameter 

(TVP) Kalman Filter (KF) model for state 

prediction in a State-Space (SS) context (Kalman, 

1960; Carter and Kohn, 1994).Sect. IV illustrates 

the stepwise procedure necessary to produce 

correct calibration estimators and statistically 

consistent pre- and post-1850 series that enter 

the MTS. Sect. V introduces both the BEA and 

CCP series by displaying their timelines and their 

major descriptive characteristics and also 

produces the results of the TVP parameter 

estimation and the median single break dates as 

well as the temperature multiple peak dates of the 

MTS. Sect. VI concludes.

2. Classical Calibration and Hockey-

Stick Behavior

Classical Calibration (CC) and Bayesian 

Calibration (BC) are methods utilized in computer 

engineering, climate modeling, economic 

forecasting, and other disciplines such as 

chemistry and biology (Kennedy and O’Hagan, 

2001; O’Keefe and Kueter, 2004; Sansó and 

Forest, 2009; Cooley, 1997).

The CC univariate problem (e.g. Juckes et al., 

2007) consists of finding some Time-Fixed 

Parameter (TFP) set B that “best” reproduces an 

actual time series y , observed over a given 

timespan T  , into a virtual time series ˆ
t

Y

defined over a different but adjacent timespan 

t T . In SS jargon, the two variables are 
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respectively defined as the “observable” and as 

the “state”. We have ,  Tt T   and either 

T 1,T 2,...,t T    for the forward or 

leading indicator (Stock and Watson, 1989; 

Banerjee et al., 2005), or 1 ,t  
2,...,  1   for adaptive backward 

reconstruction (e.g. Mann et al., 1998). In both 

cases, an observable dataset s
Y is produced, 

where  1,s S and TS T  that spans the 

timeline of both adjacent components in either 

direction.

For the specific case of adaptive backward 

reconstruction, we have the following parameter 

and data sizes

: ( 1)B n (1)

 : T 1y  (2)

 : TY n  (3)

  1ˆ     ' 'B Y Y Y y   
 (4)

where 2n  includes a constant term and B̂ is 

the direct Ordinary Least Squares (OLS) estimator 

of the size of (1). In addition, we have

    :   
t

Y T n (5)

 ˆ     :   1  
t

Y T  (6)

where (5) and  (6) are bound together by means 

of the following conventional fit 

ˆ ˆ
t t

Y Y B (7)

where ˆ
t

Y is the virtual or calibrated time series. 

Concatenating (7) and (2) produces the following 

MTS 

 ˆ ˆ    ,  's tY Y y (8)

where  ˆ :   1
s

Y S  .

This calibration procedure produces 

statistically consistent results if the correlation 

among y and Y is significant. However, the risk 

of obtaining fitted values in (7) that do not 

consider data uncertainties (Von Storch et al., 

2004; Scafetta, 2013) and the likelihood of 

obtaining HSB in (8) are very high. In fact, after 

defining the standard deviations of y and ˆ
t

Y

respectively as  y and  ˆ
tY , we have 

   ˆ tY f y   (9)

where ˆf B and 0 f  if the slope 

parameter of ˆ 0B  as shown in Appendix A. 

Since 0f   , f may be comfortably defined 

as a percent ratio of the left-hand-side variable 

with respect to the right-hand-side variable of (9).

    The HSB, better defined as an abrupt change 

in mean and variance occurring at some point in 

time of the series under scrutiny, may lead to 

erroneous statistical interpretations and 

inferences of (8) (McKitrick, 2006; McIntyre and 

McKitrik, 2006, 2009; Ventosa-Santaulària, 

2009). The occurrence of 0f  conditional on 

the estimated slope parameter of ˆ 0B 

originates from nonstationarity of the series y , 

and the risk of HSB increases as the series ˆ
t

Y is 

stationary and even more so if nonnormal. This 

can be numerically proven by Monte Carlo 

simulations on two different distributional and two 

integration specifications regarding ˆ
t

Y after 

letting y be a Random Walk (RW). 

The HSB is stated as a null hypothesis that 

can be tested over the entire time series s
Y of 

(8). Needless to specify, this procedure 

automatically implies testing for the above-
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mentioned hockey-stick hypothesis with real-

world data as performed in Sections 3 and 4. 

Table I exhibits, for ˆ
t

Y given by (7), the 

probability of HSB in (8) with select values of f

in (9) ranging from 1 per mille to 100%, namely, 

for1 .001f  . For this purpose, 10,000 Monte 

Carlo draws are produced for a normal and 

nonnormal, both nonstationary and stationary, 

Data Generation Process (DGP) of ˆ
t

Y with 

1,000T  . Nonnormality is set by arbitrary 

nonzero skewness and a kurtosis of 4. Then, for 

each value of f and given a prior  

  0.261y  as from Table II, col. (1), the 

HSB probabilities are estimated for normal and 

nonnormal DGP of ˆ
t

Y with zero mean and select 

skewness.

From Table I, the normal DGP (col. 1) shows 

that, for 5%f  in the nonstationarity case and 

for 50%f  in the stationary case, the 

probability of HSB in (8) is over 90%. With 

nonnormal DGPs, the first cutoff rate stays 

constant, but the second rises to 60% and 70% as 

skewness is made to rise (cols. 2-3). In practice, 

nonnormality and stationarity of ˆ
t

Y coupled with 

nonstationarity of y produce a sizable probability

of achieving HSB. This occurs even with relatively 

large values of f and of the slope coefficient in 

the parameter set B̂ .

A proof of these findings is obtainable from 

replication of the computations performed by 

Mann and co-authors (Mann et al., 1998) by using 

older BEA series (HADCRUT2) available from 

1856 to 2001 together with fifteen proxy variables 

available from 1400 to 1980. Define these as 

  and y Y , respectively. These variables are 

respectively found to be not significantly stationary 

and nonstationary at the 5% level by means of 

both the Augmented Dickey-Fuller (ADF) test for 

first-difference stationarity (Said and Dickey, 

1984; Elliott et al., 1996) and the KPSS test for 

trend stationarity (Kwiatkowski et al., 1992).

Moreover, the vast majority of the proxies are 

found to be normally distributed by means of the 

Jarque-Bera (JB) test (Jarque and Bera, 1987).

Finally, we have    0.180y  . From direct 

OLS of the synchronous observables over time 

  the mean slope value of B̂ is found to be 

equal to 0.016 , and the mean absolute value of 

the t-statistic is 2.42. From (7), we have 

 ˆ 0.094tY  such that finally  0.524f  in 

(9). The value of the percent factor is almost equal 

to the cutoff rate of 0.5 reported in Table 1, col. 1. 

This implies that the variables utilized by Mann 

and co-authors produce a probability of HSB close 

to 98% in (8).

3. Bayesian Calibration and Gibbs 

Sampling

The occurrence of abnormally low OLS 

estimators together with nonstationarity of the 

instrumental series was shown to be conducive 

to HSB with high probability. To avoid this pitfall, 

its causes must be corrected for by producing a 

MTS that includes mutually statistically consistent 

series. The present Section discusses the 

properties of BC and of Monte Carlo Markov 

Chain (MCMC) simulation for the purpose of 

producing correct calibration, while the following 

Section illustrates the steps for obtaining 

statistically consistent MTS.

BC is preferable to CC since the parameter set 

depends on the data utilized and on their 

distributional properties. BC can be carried out by 

multi-draw Gibbs sampling if the data supplied 

are not sufficiently informative and the underlying 

model is nonlinear.
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The departure point of this procedure requires 

an initialization parameter like the OLS-estimated 

set  B̂   obtained from a “training period”, a flat 

prior or simply a scalar or vector of zeros. Normal 

distribution of the parameter set and Inverse-

Gamma distribution of the variance are assumed, 

while conditional posteriors of both are made to 

depend on the data and on each other’s priors. 

This avoids the intricacies of joint posterior 

distribution typical of Monte Carlo integration and 

allows simulating the conditional posteriors to 

produce J random draws of the parameter set 

and construct the MCMC (Koop and Korobilis, 

2009).

The process is replicated at each draw to 

finally obtain the averaged-out desired parameter 

set denoted as 
tB . Alternatively, a TVP sequence 

may be obtained by means of the procedure 

described in Appendix B. Suffice here to mention 

that this procedure, due to its characteristic of 

sequential forward and backward estimation in a 

SS context, is defined as a two-way optimal KF 

specifically designed for Bayesian estimation

(Carter and Kohn, 1994; Koop and Korobilis, 

2009).

The BC method requires that the parameter 

MCMC meet Hadamard’s three criteria of “well 

posedness”: (i) for all admissible data, a solution 

exists, (ii) for all admissible data, the solution is 

unique, (iii) the time path of the solution is 

stationary, where “solution” refers in the present 

context to the calibration process and its 

underlying parameters, and “stationarity” implies 

no overtime explosive behavior of both 

parameters and their variances. 

This occurrence requires meeting specific 

targets, as shown in Appendix B, in order to 

minimize the curse of uncertainty that plagues 

many climate reconstructions (e.g. Mann et al., 

1999). As with CC, the BC fitted time series is 
ˆ
t t

Y Y B and ˆ
t t T

Y Y B , respectively for the TFP 

and for the TVP case. In the present context, to 

save space and gain in efficiency, only the latter 

case is applied.

Finally, the BC method compares with some 

calibration procedures that utilize Bayesian 

estimation for spatiotemporal climate 

reconstructions (Tingley, 2010a, 2010b). In spite 

of data constraints given by the absence of large 

space and time coordinates that stem from 

gridded information about instrumental and target 

datasets, the BC is the optimal calibrating 

procedure because it fully exploits the advantages 

of Gibbs sampling and of the two-way TVP KF 

advanced in the Introduction and formalized in 

Appendix B. 

It is quite obvious that additional information to 

the available datasets in terms of time and field 

records, model assumptions and priors are likely 

to convey richer results, as maintained by some 

authors (e.g. Tingley and Li, 2012). However, the 

BC method may still be defined as a direct 

competitor of Tingley’s own Bayesian data 

reconstruction procedure, which is loosely defined 

by the author as being capable of providing 

results that admittedly are in some sense 

equivalent to the Kalman smoother.

Finally, a valuable and hotly-debated piece of 

paleodata reconstructions by McShane and 

Wyner (2011) falls short of the informational set 

provided by the conditional probability distribution 

of observables and states that is contained in the 

BC. By consequence, their inconclusive results 

regarding the hockey-stick hypothesis, obtained 

by an unspecified brand of CC, are still fraught 

with uncertainties (Rougier, 2011; Tingley 2011).
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4. Data transformations in Bayesian 

Calibration

The MTS produced is shaped as shown in (8). 

However, different from CC, data transformations 

in a TVP setting are required to avoid the 

occurrence of HSB that leads to statistical 

inconsistencies and to the curse of “spurious 

regression” (Granger and Newbold, 1974).These 

data transformations are implemented through 

several steps:

1) Test for normality the series commencing in the 

year 1850 in (2) and (6) by means of the Jarque-

Bera, the Shapiro-Wilk and/or of the D’Agostino 

tests (D’Agostino et al., 1990; Royston, 1995). For 

each time series, if nonnormality cannot be 

rejected, proceed to ordinary normalization to 

ensure outlier-free estimation. The transformed 

and homogenized series, to avoid notational 

clutter, are still defined as  and Y y  , respectively. 

They exhibit values within the range  0,1 and 

retain the stationarity or nonstationarity properties 

of the original series;

2) If necessary, proceed to first-order differencing 

of the above series, now denoted as 

 and Y y   , respectively, to perform 

nonspurious and robust OLS estimation, and to 

subsequently ensure during Gibbs sampling that 

the parameter MCMC meet Hadamard’s three 

criteria;

3) Regress Y over y to obtain the direct 

OLS estimator B̂ of (4) or alternatively regress 

y over Y to obtain the indirect OLS 

estimator, a practice not free from inference 

problems (Tellinghuisen, 2000);

4) Find by optimal Gibbs sampling the MCMC 

sequence of the parameter set ˆ
t

B in order to 

produce the fitted series ˆ   
t t t

Y Y B   prior to 

the year 1850.

5) Standardize both series ˆ  and 
t

Y y  . For 

each time series, proceed to ordinary centering 

and scaling or else to centering by the median 

and scaling by the standard deviation obtained by 

the inter quartile 25%-

75% range. Both transformed series, denoted as
* *ˆ  and 

t
Y y  , are  0,1NID and are expected 

to produce the series

 * *ˆ ˆ     ,  's tY Y y    (10)

with no breaks in the immediate neighbourhood of 

time T, i.e.at the junction of their observed values. 

Tests for the equality of means and variances of 

both series are available for this occurrence. The 

first test may be conducted by standard paired t-

tests or by the Mann-Whitney U-test for medians 

(Hollander and Wolfe, 1999). The second test 

employs textbook one-way Analysis of Variance, 

the Kruskal-Wallis test (Kruskal and Wallis, 1992),

or the nonparametric Ansari-Bradley’s test of 

dispersion (Ansari and Bradley, 1960), designed 

to incorporate outliers that may cause a 

nonrejection significance level beneath 90-95%. 

6) If necessary, integrate overtime (10) and finally 

form the MTS of (8) (Banerjee et al., 2005). For a 

smoother output, if desired, apply to (8) the 

Savitzky-Golay’s filter (Savitzky and Golay, 1964; 

Orphanides, 2010) and attach to the output series 

the appropriate confidence intervals (e.g., Loehle, 

2007; Loehle and McCulloch, 2008).

7) Test the obtained MTS for structural change at 

an unknown date by means of the Kim-Perron 

procedure (Perron and Zhu, 2005; Kim and 

Perron, 2009). This method is based on the 

minimization, over all possible break dates, of the 

squared residual sum of a dynamic regression of 

the endogenous variable in (8). Thereafter, rank 

the highest peaks of each series, separated by a 
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minimum distance of 150 years. This technique is 

mandatory in the stochastic environment 

generated by Gibbs sampling to define the spread 

of the highest temperature dates in long-term 

series.

8) Repeat the steps 4–6 for J times in order to 

ensure asymptotic validity of the results as shown 

in Appendix B.

It should be made clear that step 1 is essential 

to the procedure as it enables the researcher to 

deal with series measured in different units, 

thereby producing a single homogenous MTS. 

Therefore, paleodata series (Appendix D) not 

expressed in temperature terms, like some of 

BÜNTGEN, PEDERSON, ME_STAHLE, GAGEN 

and STAMBAUGH, as well as reconstructed past 

temperatures (e.g. series 4 in G_CUBED and 

GUIOT) are normalized and then standardized to 

the BEA temperature data and thus yield 

Maximum-Likelihood estimators in OLS  

regressions and  enable unfettered Gibbs 

sampling.

In addition, the structural change test for a 

break in the MTS at an unknown date that 

features in step 7 entails by construction the 

detection of the date corresponding to the 

minimum squared residual sum. No inferences 

about nonlinearity properties of the series are 

involved, such as fractional integration, 

asymmetric cyclicality and mean reversion (Fan 

and Yao, 2003). By consequence, in the present 

context, the shape of the series is irrelevant to 

break date detection, which merely stands as a 

piece of evidence of a regime change in the 

variability of the residuals.

In order to better describe the workings of the 

above procedure, four renowned time series of 

the G_CUBED dataset (see Appendix D) were 

selected. These are two series by Mann and 

collaborators (Mann et al., 1999, 2009), the 

Crowley series (Crowley, 2000), and the series by 

D’Arrigo and collaborators (D’Arrigo et al., 2006). 

The timelines of the original series are then 

visually exhibited in Fig. 1 together with their 

calibrated MTS counterparts. For improved 

comparison purposes, the coupled series are 

appropriately normalized and rescaled as in step 

1, and also smoothed (Savitzky and Golay, 1964; 

Orphanides, 2010).The four original transformed 

series undisputedly manifest HSB by exhibiting 

peak dates in the late 90’s, while their 

corresponding calibrated MTS do not exhibit HSB, 

and their peak dates are all distributed within the 

MWP. Precisely, they correspond to the years 

968, 1249, 1087, and 895. 

5. The Bea, the CCP datasets and the MTS 
results

We retain the notation of Sect. II and in particular 

that of (1)–(6). Hence, let 1
,  for  [ ,T]y   be 

the BEA series where  1 1850, T=2010 , and let 

also N = 258 be the total number of CCP series 

pertaining to the 19 datasets shown in Appendix D 

in sequential order. Each of the CCP series is 

characterized by a different length, that is, by 

different beginning and ending dates. Each of 

these overlaps the timeline of the BEA series and 

is necessary for performing OLS estimation of the 

parameter set B̂ . More precisely, after defining 

each CCP series as    , , for , , s i i iY s t i N

where ,
i i

t  respectively are the i.th series-

specific commencing and ending dates, the length 

of each series is  T
i i

T  which is the sum of the 

number of observation prior to and after the year 

1850. The overlapping length with the BEA series 

is thus  1,Ti
  , the time stretch suitable for 

performing OLS estimation. 
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For illustrative purposes, Table II provides 

some descriptive statistics regarding the BEA 

series for the following geographical areas: Global 

(GL), Northern Hemisphere (NH), and the 

Southern Hemisphere (SH). Basic descriptive 

statistics and the p-values of the ADF and KPSS 

tests for stationarity with optimal lag selection 

based on the Bayesian Information Criterion (BIC) 

and of the Jarque-Bera statistics for normality are 

reported. The volatilities of the three series are 

almost all identical, and they share also 

nonrejection of the unit-root null hypothesis, in 

particular the KPSS test, and also a significant 

rejection level of normality. Also the dates of 

maximum achieved temperatures are almost 

identical, while their corresponding minima are 

barely similar probably because of some 

recording heterogeneity.

As far as the 258 CCP series are concerned, 

space limitations prevent us from fully reporting 

the same statistics as those of Table II, and even 

more so to produce graphs of their performances 

apart from those exhibited in Fig. 1. Due to space 

limitations, only averaged aggregate results for 

each dataset are exhibited in Table III. 

    Not unexpectedly, the series are characterized 

by great diversity even when pertaining to the 

same dataset. Out of the total number of series, 

the percent of stationarities computed by the BIC-

corrected ADF test at a 5% level amounts to 32% 

(col. 4) and the percent of normalities computed 

by the JB test at the same level amounts to 20% 

(col. 5). The KPSS test results are not reported 

here, but they point to an even lower percent 

stationarities indicating a large presence of 

significantly trended series. 

Hence, from the test results at the given level, 

there is no significant evidence that the majority of 

the CCP series are stationary and normal.  

However, these features do not impact the results 

exhibited in Tables IV and V once the 

methodology expounded in Sect. IV is applied 

with due diligence to construct the MTS.

In addition, Table III reports the average 

correlation coefficient of the CCP series with BEA 

after the year 1850 (col. 6), namely, the statistical 

relationship between the variables y and Y

utilized for the OLS estimation of the parameter 

set B̂ . Only four series datasets, ENSO_LI, 

FS_LINDHOLM, ME_STAHLE and 

STAMBAUGH, and some series contained in 

LJUNGQVIST, exhibit insignificant correlation 

coefficients by common standards. On the other 

hand, some other series contained in 

LJUNGQVIST exhibit absolute correlation 

coefficients that exceed 0.70, while for the first 

three series of the G_CUBED dataset that were 

discussed in Sect.3 the correlation coefficient 

largely exceeds 0.80. 

The reader is however warned of the relative 

unimportance of low correlation in a context of BC 

contrary to the workings of CC. In fact the OLS-

estimated parameter set B̂ is merely a prior that 

is utilized for initialization of the MCMC estimation 

process in optimal Gibbs sampling, as shown in 

Sect. III. Further on, the series are individually 

calibrated according to the criteria expounded in 

Sections II and III. Their most relevant results, 

expressed as dataset averages including variance 

tests, parameter values and both break and peak 

dates are exhibited in Tables IV and V. 

In Table IV, the average results of TVP 

parameter estimation are produced for each 

dataset. The first column shows the percent value 

of factor f in (9). Values of the factor close to 

zero (e.g., ENSO_YAN and TROUET) are a 

potential source of HSB. However, the score 

sums of the three equal-variance tests considered 



46

in step 5 of Sect. IV point irrefutably to 

nonrejection of the implied null hypothesis (col. 2). 

Thereby, the MTS produced according to the 

construct indicated in the steps of Sect. IV is 

mostly unlikely to produce HSB for any of the 258 

CCP series, as also shown on a smaller scale in 

Fig. 1. 

Table IV also reports the average values of the 

TVP parameter set (B.11) and the corresponding 

t-test computed statistics. The parameter set 

includes a slope and a constant-term coefficient 

(cols. 3 and 5). The majority of the slope 

coefficients are significantly different from zero as 

shown by the absolute values of their statistics 

(col. 4). More specifically, only the two series of 

STAMBAUGH, three series of the GUIOT and one 

series each of the BÜNTGEN and 

CHRISTIANSEN datasets fall beneath the 

customary two-tailed 5% critical value. The 

average t-test statistics of the constant term, 

instead, fare sizably worse as seven of them fall 

beneath the two-tailed 10% critical value (col. 6). 

However, the second occurrence is irrelevant for 

the purpose of detecting HSB in the calibrated 

MTS, and may thus be comfortably disregarded.

GUIOT, LJUNGQVIST and a few more, meets this 

requirement.

Table V reports some useful results of the 

temperature single break dates and the ranked 

peak dates of the calibrated MTS. The dataset 

median break dates, where negatives correspond 

to years B.C. (col. 1), are obtained via the Kim-

Perron procedure while the peak dates are 

obtained via the  last step of the  procedure 

shown in Sect. III and are ranked from the first to 

the second highest (cols. 3-6). None of the break 

dates is located in the 20th century or after, while 

the majority are concentrated, as from the data 

reported (col. 2), around the year 1076 A.D. 424

which stands well far away from the RWP. In 

addition, Table V reports the average ratio 

between the first and the second peak dates (col. 

7). For the entire MTS dataset, this ratio amounts 

to 1.91. The ratio of the first to the third peak date 

value is roughly three, large enough for requiring 

no further consideration.

In sum, by taking into account the vast 

differences existing between and often within the 

datasets, and also the intrinsic stochastics of the 

peak-finding methodology, the first two ranked 

peaks along with their standard deviations are 

necessary and sufficient to produce reasonable 

inferences. Their mean dates respectively are the 

years 970 A.D. 407 and the years 854 398 A.D. , 

highly insufficient to enter even perchance the 20th

century. Because of the large geographical scope 

covered by the 19 datasets analyzed, we may 

conclude that the MWP was a global phenomenon. 

Even within each dataset, the first two peak dates 

exceeding the year 1900 (col. 8), regarded as critical 

by the supporters of the anthropogenic climate 

change hypothesis, are very few or null in most 

cases. In fact, just a limited bunch of these, exactly 

16, located in the datasets CHRISTIANSEN, 

6. Conclusions 

Bayesian Calibration applied to the reported 258 

CCP series, and based on the HADCRUT4 BEA 

instrumental temperature records, has produced 

interesting results from both the theoretical and 

applied viewpoints. After discarding the relevance of 

Classical Calibration because highly likely to 

produce HSB, BC is  shown  to be highly  flexible 

and reliable especially because of its treatment of 

conditional posteriors that facilitates the production 

of a TVP set in a long-term time series context. Its 

implementation however requires data 

transformations necessary to produce consistency 

between the calibrated and the instrumental series. 
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Mean- and especially variance-equality tests are 

recommended in order to correctly proceed to the 

Gibbs sampling routine. From the applied viewpoint, 

the values and the significance of the TVP 

estimation are satisfactory in most cases, while 

temperature breaks and peaks suggest widespread 

rejection of the hockey-stick hypothesis. In fact, 

single break points in no case detect structural 

change at or around RWP dates, while less than 

10% of the highest peak dates of the CCP series 

enter the 20th century. Rather, temperature breaks 

and peaks are centered within the Middle Ages so 

that, given the large geographical scope covered by 

the available data, we may conclude that the MWP 

was a global phenomenon significantly warmer than 

the RWP, as demonstrated also by the large amount 

of referenced authors.

Appendix A. Classical Calibration and Hockey-

Stick Behavior

In its simplest form, backward CC reconstruction for 

producing (8) involves two simple steps:

1)  direct OLS estimation of the equation

        y Y B e    (A.1)

linking the synchronous observables y (the BEA 

temperature readings) and the regressor Y where

 0, ,
e

e IID ฀ 0
e

   , and for consistency 

of the estimator  E ' 0Y e   . Obviously, spurious 

correlation and biased parameter estimation should 

be accounted for by stationarizing the available time 

series if necessary (Granger and Newbold, 1974);

2)  fitting the unobservable ˆ
t

Y of  (3) from the 

parameter set B̂ and the observable t
Y of  (7) such 

that

ˆ ˆ             
t t

Y Y B (A.2)

where ˆ
t

Y is the reconstructed or virtual series and 

  1ˆ     ' 'B Y Y Y y   
 (A.3)

is the calibration estimator of  (4).

Combining in sequence the reconstructed and 

the actual temperature series produces the dataset 

of contiguous series shown in (8), here replicated

 ˆ ˆ                                          ,  's tY Y y (A.4)

such that the HSB hypothesis may be tested for a 

stochastic change in the trend of the series ˆ
s

Y at an 

unknown date 
*

T T possibly in the close 

neighborhood of the ending date of ˆ
t

Y and the 

beginning date of y . 

A further test of the HSB hypothesis may be 

obtained by comparing the variances of the two 

contiguous time series in (A.4) as evidenced in step 

5, Sect. IV. Substitution of eq (A.3) into (A.2) 

produces

  1ˆ    ' 't tY Y Y Y Y y   
 (A.5)

which is the product of three variable components, 

for convenience rewritten in stacked form 

3

1

ˆ    
t i

i

Y x


 (A.6)

where   1

1 2 3
,  ' ,  

t
x Y x Y Y Y x y   

   , such that 

ˆ ˆ             
t t

Y Y B (A.2)

where ˆ
t

Y is the reconstructed or virtual series and 

  1ˆ     ' 'B Y Y Y y   
 (A.3)

is the calibration estimator of (4).

Combining in sequence the reconstructed and 

the actual temperature series produces the dataset 

of contiguous series shown in (8), here replicated

 ˆ ˆ                                          ,  's tY Y y (A.4)
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such that the HSB hypothesis may be tested for a 

stochastic change in the trend of the series ˆ
s

Y at an 

unknown date 
*

T T possibly in the close 

neighborhood of the ending date of ˆ
t

Y and the 

beginning date of y . 

A further test of the HSB hypothesis may be 

obtained by comparing the variances of the two 

contiguous time series in (A.4) as evidenced in step 

5, Sect. IV. Substitution of eq (A.3) into (A.2) 

produces

  1ˆ    ' 't tY Y Y Y Y y   
 (A.5)

which is the product of three variable components, 

for convenience rewritten in stacked form 

3

1

ˆ    
t i

i

Y x


 (A.6)

where   1

1 2 3
,  ' ,  

t
x Y x Y Y Y x y   

   , such that 

     

 

3 3
2 2

11

2
3

1

ˆ                 

                              

t i i i

ii

i i

i

Var Y Cov x x Var x

Cov x x





  

 
  
 




(A.7)

where i
x is the mean of i

x (Goodman, 1960, 1962). 

It is of particular interest computing from (A.7) the 

ratio that describes the impact of the variance of the 

last component of ˆ
t

Y over its variance

                                                      

 
   

2 2
2

113

ˆ
t

i i

ii

Var Y
x Var x

Var x 


 

              (A.8)

which leads to 

 
 

ˆ

       
tY

f
y









(A.9)

where  . expresses the standard deviation of the 

bracketed variable. From (A.9) we can write

   ˆ      tY f y   (A.10)

which is  (8) of Sect. II here replicated, wherein the 

factor f is such that, by the given construct 

ˆf B . In fact, 0f   and obviously 

 E 1f  if all the component series are random 

White Gaussian Noise (WGN). However, if the 

variable y is not WGN, and specifically is Random 

Walk (RW) or RW with drift (RWD), then 

    0,  1, 2 if RW, RWD
i

Lim f i y
 

  
(A.11)

which means that  O i

pf T
 i.e., it converges to 

zero with order in probability of 1  and 
2

1  if the 

variable y is RW or RWD, respectively. The 

outcome derives, for ˆ
t

Y a WGN variable where 

 2

1

ˆ  = O
T

t p

t

Y T

 , from  2 2

1

 = O
p

y






 if y is 

RW, and from   2 3

1

 = O
p

y






 if y is RWD

(Hamilton, 1994, Ch. 17).

For ˆ
t

Y to be WGN we require from (A.2) that 

either t
Y and Y be WGN and/or 0B  . If t

Y and 

Y are not WGN, then  
ˆ 0

ˆ =0t
B
Lim Y


which implies 

that from (A.3) the following holds for 0 

    
ˆ 0

ˆ                       Pr 1
t

B

Lim y Y  


   
  (A.12)

a corollary of which is the HSB in (A.4), namely

    
ˆ 0

ˆ     Pr min max 1
t

B

Lim y Y 


   
 

   

(A.13)

which means that on the limit, for the necessary 

condition ˆ 0B  , the probability that the minimum 



49

observation of y is at least equal to the maximum 

achieved observation of ˆ
t

Y approaches unity.

Appendix B. Gibbs sampling for State-Space 

models

The Carter and Kohn procedure (Carter and 

Kohn, 1994) is a TVP Gibbs sampler where the 

coefficients are modeled as state variables following 

a RW and the observables are linearly tied to them. 

The procedure yields MCMC sampling and is 

designed for Bayesian estimation of select 

coefficient vectors or scalars. It is indeed an optimal 

Gibbs sampler because it exploits all the properties 

of the two-way KF. In fact it is implemented over the 

select J number of draws through four sequential 

steps: 

1) setting up the underlying SS model and its prior 

parameters;

2) forward filtering through the sample period 

1,...,T and recovery of the estimated parameters;

3) appropriate probability conditioning and 

parameter sampling;

4)  optimal adaptive backward smoothing of the 

estimated parameters by means of the Rauch-Tung-

Striebel algorithm, a standard toolkit in the two-way 

KF procedure (Koop and Korobilis, 2009).

Let 2 and 1n p  , where n is defined in  (1) 

and p is the number of elements in the measurable 

dataset such that  :   .
t

Y T p The first step of Gibbs 

sampling departs from the following SS model 

originally developed by Kalman (1960)

1      t t tB B v  (B.1)

'    t t t tY B C   (B.2)

where the first and second equation respectively 

represent the dynamics of the state and of the 

measurement variables. In particular, t T  we 

have: 

00
    ,  

00

t t

t t

Q
NID

R




     
     
     

฀ (B.3)

and    :   ,  :   ,t tB n p Q n n   ,  : 1  t tY e p ,

 :   tC n p , and  :   tR p p . In a univariate 

context, 1p  , such that  some parameters are 

vectors or scalars. The matrix t
Q is diagonal such 

that the n estimated elements of t
B are mutually 

orthogonal.

The nonlinear SS model so conceived 

accommodates many kinds of estimation models of

t
Y , including Vector Auto-Regressions (Hamilton, 

1994, Ch. 11) where 1p  , and requires prior 

initialization of the ,   and 
t t t

B Q R parameters if 

under a regime of flat priors. If priors are informative, 

this kind of initialization is replaced by utilizing the 

OLS results over a training period of preselect 

length. In both cases, the pre-sample parameters 

are denoted respectively as 0 0 0
,   and B Q R . 

Define  :   tP n n as the Riccati matrix 

expressing the state covariance matrix of t
B while 

t
Q and t

R from (B.3) are defined as the covariance 

matrix of the state and of the measurement error, 

respectively. Finally, t
C is a Kronecker Product (KP) 

of the measurement variable for each t observation 

and preselected lags 1k 

        ,t p t k pC I Y I  (B.4)

where
pI is the identity matrix of size p. Inclusion of 

the latter into the bracketed expression of (B.4) adds 

constant terms to the estimation process. As an 

example to better describe the construction of t
C , 

by assuming 1k  for simplicity, as 1t  the 

bracketed expression includes the first row of 

observations of t
Y . Likewise as 2t  , the second 
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row of t
Y is included in the KP equation and so on 

until Tis reached. 

The Kalman gain is a p p  matrix defined as 

  1
'

        
t t t t t

H C PC R


  (B.5)

and the dynamic Riccati matrix is

' '

1        = -   t t t t t t t tP P Q P C H C P  (B.6)

where the sequence of the vectorized diagonal 

elements of t
Q , is sampled once from a multivariate 

normal distribution because  0,1tQ NID฀ . In 

addition, the dynamic evolution of the state variable 

is expressed as

 '
'

1     = 
t t t t t t

B B PC H   (B.7)

and finally the measurement errors and their 

covariance matrix are

' '    ,  Rt t t t t t tY B C     (B.8)

The second step of Gibbs sampling is 

accomplished by estimating in sequence (B.3)–(B.8) 

after providing the necessary initializations. 

Estimation is performed via forward KF and during 

the process (B.5) to (B.7) are stored. The third step 

consists of retrieving the time series of the estimated 

parameters of length 
*

1T T  and to produce by 

single sample the following conditional posteriors: 

1

1

ˆ , 

ˆ ˆ ,  

ˆˆ ,

ˆ ˆ .

t t t

t t t

t t t

t t t

P P B

B B P

B B

Q Q













 



(B.9)

In accordance with Gibbs sampling, the 

conditional posterior distributions are 

  
 

 
  

ˆ ˆ ,  ,  

ˆ ˆ,  ,  

ˆˆ 0,  , 

ˆ ˆ ,  

t t

t t

t t

t t

P IW Var B T

B B P

NID Q

Q IW Var T





฀

฀

฀

฀

(B.10)

where IW refers to the Inverse Wishart distribution, 

and 

  'ˆ ˆ ˆ
t t tVar B B B (B.11)

which, together with ˆ
t

P and ˆ
t

Q is of size    n n . 

The state and the observable covariances are 

instead Inverse-Gamma distributed.

The fourth and final step of the TVP Gibbs 

sampling procedure is represented by adaptive 

backward KF estimation of the parameters of (B.9). 

In practice, the process entails running in reverse 

time, from
* 1T T  , down to the first observation, 

the following two equations

* 1 * 1 *

* 1 * 1
* 1

ˆ ,  

ˆ ˆ

T t T t T t

T t T t
T t

P P B

B B P

    

     




(B.12)

which are appropriately modified versions of (B.6)–

(B.7), respectively. The end result of interest is

 *ˆ :   
T

B T np , where the parameter vector ˆ
tB of 

(B.9) is sampled once under the assumption posited 

in (B.10). Hadamard’s three criteria for “well 

posedness” are then tested at this stage by tracking 

the evolution of the norms of the error and 

covariance parameters of (B.9). These should 

converge toward zero or at least manifest no 

nonstationarity within their own timespan. 

Once a stationary solution is found, the above 

process is replicated J times in Gibbs sampling after 

averaging out the parameter set of (B.12), denoted 

as
*

B . This in turn at each jth draw is conditioned on 
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its own Riccati covariance matrix similarly denoted 

as 
*

P such that, eventually, we have the required 

Gibbs-sampled MCMC parameter series denoted as  

  ** *
: ,J j j

B J n B P . Averaging out this new

outcome over all draws eventually produces the 

desired BC-estimated time series which is ˆ
t t

Y Y B , 

where the estimator

1 *

1

     
J

j

j

B J B



  (B.13)

is of size    n p and  ˆ,  :   
t t

Y Y T n . 

Asymptotically, for B the true population parameter 

vector, the following applies

              Pr 1
J
Lim B B


 
(B.14)

as expected from optimal Gibbs sampling.

Appendix C. Table of acronyms used in the text

ADF: Augmented Dickey-Fuller test

BC: Bayesian Calibration

BEA: Best Estimated Anomaly

BIC: Bayesian Information Criterion

CC: Classical Calibration

CCP: Climate Change Proxy

DGP: Data Generation Process

GL: Global

HSB: Hockey-Stick Behavior

IPCC: Intergovernmental Panel on Climate Change

JB: Jarque-Bera test

KF: Kalman Filter

KP: Kronecker Product

KPSS: Kwiatkowski-Phillips-Schmidt-Shin test

MCMC: Monte Carlo Markov Chain

MTS: Millennial-scale Time Series

MWP: Medieval Warming Period

NH: Northern Hemisphere

OLS: Ordinary Least Squares

RW: Random Walk

RWD: Random Walk with Drift

RWP: Recent Warming Period

SH: Southern Hemisphere

SS: State-Space

TFP: Time Fixed Parameter

TVP: Time Variable Parameter

WGN: White Gaussian Noise

Appendix D. Table of acronyms and sources of 

the 19 datasets

1. BÜNTGEN, Büntgen U. et al., 2011: Central 

Europe 2,500 year tree ring summer climate 

reconstructions, includes two series: Reconstructed 

April-May-June precipitation (398 B.C.-2008 A.D.), 

and Reconstructed June-July-August temperature 

anomaly (499 B.C.-2003 A.D.); Büntgen U. et al., 

2010, Reconstructed precipitation (996–2005 A.D.); 

Büntgen U. et al., 2006, Reconstructed temperature 

(755–2004 A.D.). 

2. CHRISTIANSEN, Christiansen B. and Ljungqvist 

F.C., 2011: Northern Hemisphere extratropical 1,000 

year temperature reconstruction (1000–2000 A.D.). 

3. COOK, Cook E.R. et al., 2000: Tasmania 

temperature reconstruction (1600 B.C.-1991 A.D.).
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4. CUVEN, Cuven S. et al., 2011: East Lake, 

Melville Island, Canada 4,200 year varve thickness 

data (2192 B.C.-2005 A.D.). 

5. ENSO_LI, Li J. et al., 2011: 1,100 Year El 

Niño/Southern Oscillation (ENSO) index 

reconstruction (900–2002 A.D.). 

6. ENSO_YAN, Yan H. et al., 2011: 2,000 year 

precipitation-based Southern Oscillation index 

reconstruction (50–1955 A.D.). 

7. FS_GAGEN, Gagen M. et al., 2007: 

Fennoscandia 1,100 year summer (July-August) 

sunshine reconstruction (886–2001 A.D.). 

8. FS_LINDHOLM, Lindholm M.R. et al., 2010: 

Fennoscandia 1,250 year height increment summer 

temperature reconstruction (745–2007 A.D.).

9. GUIOT, Guiot J. et al., 2010: Latitude-longitude 

point gridded panel (1408 x 125) (600–2007 A.D.) 

made up of different proxies (tree-ring width, 

historical and ice-core data). 

10. LJUNGQVIST, Ljungqvist F.C., 2009: Proxy 

series and assembled from different published 

sources and with at least centennial sample 

resolution covering the last two millennia, most of

which commencing the year 0 A.D. and quite a few 

ending in the late 90s. 
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TABLE I. Probabilities of “hockey-stick” behaviour (HSB) for select factor f and data-generating processes of stationary (STA) and nonstationary (NON) series ˆ
t

Y together 

with their computed mean standard deviations (SD)

Normal DGP, (1) Nonnormal DGP, skewness = 0.95, (2) Nonnormal DGP, skewness = 1.95, (3)

Prob. HSB 

of NON ˆ
tY

Prob. HSB 

of STA ˆ
tY

Mean SD of 

NON ˆ
tY

Mean SD 

of STA ˆ
tY

Prob. HSB 

of NON ˆ
tY

Prob. HSB 

of STA ˆ
tY

Mean SD of 

NON ˆ
tY

Mean SD 

of STA ˆ
tY

Prob. HSB 

of NON ˆ
tY

Prob. HSB 

of STA ˆ
tY

Mean SD of 

NON ˆ
tY

Mean SD of 

STA ˆ
tY

1.000 1.000 0.003 0.000 1.000 1.000 0.003 0.000 1.000 1.000 0.003 0.000

0.999 1.000 0.074 0.007 1.000 1.000 0.080 0.007 0.999 1.000 0.074 0.007

0.928 1.000 0.144 0.013 0.900 1.000 0.160 0.013 0.932 1.000 0.144 0.013

0.832 1.000 0.224 0.020 0.780 1.000 0.234 0.020 0.810 1.000 0.225 0.020

0.719 1.000 0.296 0.026 0.670 1.000 0.318 0.026 0.724 1.000 0.295 0.026

0.458 1.000 0.878 0.078 0.440 1.000 0.952 0.078 0.471 1.000 0.879 0.078

0.396 0.984 1.470 0.130 0.400 1.000 1.534 0.130 0.404 1.000 1.480 0.130

0.348 0.339 2.036 0.182 0.310 0.190 2.272 0.183 0.369 1.000 2.033 0.183

0.374 0.183 2.661 0.235 0.330 0.160 2.814 0.234 0.344 0.159 2.660 0.234

0.351 0.193 2.893 0.261 0.360 0.110 3.271 0.262 0.327 0.135 2.981 0.261
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Table II. Basic descriptive statistics of the BEA series, p-values of the ADF and KPSS tests for 

stationarity and of the Jarque-Bera test statistic for normality, and critical dates

Statistics Hadcrut4_GL Hadcrut4_NH Hadcrut4_SH

Mean −0.125 −0.081 −0.168

Variance 0.068 0.084 0.061

Volatility 2.082 3.570 1.465

ADF test p-value 0.432 0.515 0.242

KPSS test p-value 0.011 0.010 0.010

Max. temperature date 2005 2005 1998

Min. temperature date 1911 1862 1911

Table III. Summary information and aggregate test statistic results of the CCP datasets

Order and Series 

Name

Number 

of series 

included

(1)

Maximum 

length

(2)

Minimum 

length

(3)

Percent 

nonstationarities

(4)

Percent 

nonnormalities

(5)

Average absolute 

correlation with 

BEA beyond 1850

(6)

1. BÜNTGEN 4 2503 1010 50 25 0.214

2. CHRISTIANSEN 19 1001 971 0 32 0.294

3. COOK 2 3592 3592 100 0 0.327

4. CUVEN 2 4198 4198 0 0 0.141

5. ENSO_LI 1 1103 1103 0 0 0.091

6. ENSO_YAN 1 1906 1906 0 0 0.269

7. FS_GAGEN 3 1116 1116 100 0 0.345

8. FS_LINDHOLM 2 1263 1263 50 0 0.035

9. GUIOT 125 1408 1408 0 34 0.346

10. LJUNGQVIST 66 2001 1738 62 6 0.374

11. LOSO 1 1557 1557 0 0 0.408

12. ME_STAHLE 5 1238 1238 0 0 0.038

13. NEUKOM 3 1096 1096 0 33 0.528

14. PEDERSON 9 1637 1637 0 33 0.146

15. SINHA 1 1383 1383 100 100 0.401

16. STAMBAUGH 2 1013 1013 0 0 0.052

17. TROUET 1 959 959 0 0 0.244

18. WILSON 1 1276 1276 100 100 0.340

19. G_CUBED 10 4062 981 40 0 0.551
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Table IV. Averaged results of TVP estimation: factors, scores of variance tests, coefficients and t-statistics

Order and Series 

Name

Percent 

value of 

factor f

(1)

Score of the 

three equal-

variance tests

(2)

Slope 

coefficient

(3)

t-stat of slope 

coefficient

(4)

Constant 

coefficient

(5)

t-stat of 

constant

coefficient

(6)

1. BÜNTGEN 1.218 3.00 0.005 7.968 0.022 2.668

2. CHRISTIANSEN 1.254 3.00 −0.008 21.804 0.018 1.827

3. COOK 0.734 3.00 0.083 16.943 0.020 3.856

4. CUVEN 0.513 3.00 −0.105 48.686 0.020 3.590

5. ENSO_LI 2.197 3.00 0.191 24.049 0.014 1.479

6. ENSO_YAN 0.059 3.00 −1.098 155.127 0.016 1.108

7. FS_GAGEN 0.443 3.00 −0.044 4.750 0.010 1.224

8. FS_LINDHOLM 1.724 3.00 0.124 15.410 0.008 0.908

9. GUIOT 1.712 3.00 0.046 20.889 0.016 2.146

10. LJUNGQVIST 0.312 3.00 0.618 158.173 0.058 4.411

11. LOSO 1.278 3.00 0.261 34.426 0.011 1.213

12. MESO_STAHLE 1.054 3.00 −0.187 21.555 0.017 1.694

13. NEUKOM 1.137 3.00 0.278 29.755 0.018 1.542

14. PEDERSON 0.708 3.00 −0.141 30.614 0.013 1.906

15. SINHA 0.543 3.00 −0.241 28.046 0.016 1.540

16. STAMBAUGH 1.626 3.00 0.011 1.269 0.040 4.828

17. TROUET 0.138 3.00 0.272 24.916 0.028 2.185

18. WILSON 1.309 3.00 0.319 36.658 0.027 2.461

19. G_CUBED 0.813 3.00 0.449 66.184 0.010 1.907
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Fig.1. Comparative plots of select normalized and smoothed original series from G_CUBED and 

corresponding calibrated series


