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Abstract

Bridges([4]) has constructively shown the existence of continuous de-
mand function for consumers with continuous, uniformly rotund prefer-
ence relations. We extend this result to the case of multi-valued demand
correspondence. We consider a weakly uniformly rotund and monotonic
preference relation, and will show the existence of convex-valued demand
correspondence with closed graph for consumers with continuous, weakly
uniformly rotund and monotonic preference relations. We follow the
Bishop style constructive mathematics according to [1], [2] and [3].
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1 Introduction

Bridges([4]) has constructively shown the existence of continuous demand func-
tion for consumers with continuous, uniformly rotund preference relations. We
extend this result to the case of multi-valued demand correspondence. We con-
sider a weakly uniformly rotund and monotonic preference relation, and will
show the existence of convex-valued demand correspondence with closed graph
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for consumers with continuous, weakly uniformly rotund and monotonic prefer-
ence relations

In the next section we summarize some preliminary results most of which
were proved in [4]. In Section 3 we will show the main result.

We follow the Bishop style constructive mathematics according to [1], [2]
and [3].

2 Preliminary results

Consider a consumer who consumes N goods. N is a finite natural number
larger than 1. Let X ⊂ RN be his consumption set. It is a compact (totally
bounded and complete) and convex set. Let ∆ be an n−1-dimensional simplex,
and p ∈ ∆ be a normalized price vector of the goods. Let pi be the price of the
i-th good, then

∑N

i=1 pi = 1 and pi ≥ 0 for each i. For a given p the budget set
of the consumer is

β(p, w) ≡ {x ∈ X : p · x ≤ w}

w > 0 is his initial endowment. A preference relation of the consumer ≻ is a
binary relation on X. Let x, y ∈ X. If he prefers x to y, we denote x ≻ y. A
preference-indifference relation ≿ is defined as follows;

x ≿ y if and only if ¬(y ≻ x)

x ≻ y entails x ≿ y, the relations ≻ and ≿ are transitive, and if either x ≿ y ≻ z

or x ≻ y ≿ z, then x ≻ z. Also we have

x ≿ y if and only if ∀z ∈ X (y ≻ z ⇒ x ≻ z).

A preference relation ≻ is continuous if it is open as a subset of X ×X, and ≿

is a closed subset of X ×X.
A preference relation ≻ on X is uniformly rotund if for each ε there exists a

δ(ε) with the following property.

Definition 1 (Uniformly rotund preference). Let ε > 0, x and y be points of X
such that |x − y| ≥ ε, and z be a point of RN such that |z| ≤ δ(ε), then either
1
2 (x+ y) + z ≻ x or 1

2 (x+ y) + z ≻ y.

Strict convexity of preference is defined as follows;

Definition 2 (Strict convexity of preference). If x, y ∈ X, x ̸= y, and 0 < t < 1,
then either tx+ (1− t)y ≻ x or tx+ (1− t)y ≻ y.

Bridges [5] has shown that if a preference relation is uniformly rotund, then
it is strictly convex.

On the other hand convexity of preference is defined as follows;

Definition 3 (Convexity of preference). If x, y ∈ X, x ̸= y, and 0 < t < 1,
then either tx+ (1− t)y ≿ x or tx+ (1− t)y ≿ y.
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We define the following weaker version of uniform rotundity.

Definition 4 (Weakly uniformly rotund preference). Let ε > 0, x and y be
points of X such that |x− y| ≥ ε. Let z be a point of RN such that |z| ≤ δ for
δ > 0 and z ≫ 0(every component of z is positive), then 1

2 (x + y) + z ≻ x or
1
2 (x+ y) + z ≻ y.

We assume also that consumers’ preferences are monotonic in the sense that
if x′ > x (it means that each component of x′ is larger than or equal to the
corresponding component of x, and at least one component of x′ is larger than
the corresponding component of x), then x′ ≻ x.

Now we show the following lemmas.

Lemma 1. If x, y ∈ X, x ̸= y, then weak uniform rotundity of preferences
implies that 1

2 (x+ y) ≿ x or 1
2 (x+ y) ≿ y.

Proof. Consider a decreasing sequence (δm) of δ in Definition 4. Then, either
1
2 (x + y) + zm ≻ x or 1

2 (x + y) + zm ≻ y for zm such that |zm| < δm and
zm ≫ 0 for each m. Assume that (δm) converges to zero. Then, 1

2 (x+ y) + zm
converges to 1

2 (x + y). Continuity of the preference (closedness of ≿) implies
that 1

2 (x+ y) ≿ x or 1
2 (x+ y) ≿ y.

Lemma 2. If a consumer’s preference is weakly uniformly rotund, then it is
convex.

This is a modified version of Proposition 2.2 in [5].

Proof. 1. Let x and y be points in X such that |x− y| ≥ ε. Consider a point
1
2 (x+ y). Then, |x− 1

2 (x+ y)| ≥ ε
2 and | 12 (x+ y)− y| ≥ 1

2ε. Thus, using
Lemma 1 we can show 1

4 (3x+ y) ≿ x or 1
4 (3x+ y) ≿ y, and 1

4 (x+3y) ≿ x

or 1
4 (x + 3y) ≿ y. Inductively we can show that for k = 1, 2, . . . , 2n − 1

k
2nx+ 2n−k

2n y ≿ x or k
2nx+ 2n−k

2n y ≿ y for each natural number n.

2. Let z = tx + (1 − t)y with a real number t such that 0 < t < 1. We can
select a natural number k so that k

2n ≤ t ≤ k+1
2n for each natural number

n. (k+1
2n − k

2n ) = ( 1
2n ) is a sequence. Since, for natural numbers m and

n such that m > n, l
2m ≤ t ≤ l+1

2m and k
2n ≤ t ≤ k+1

2n with some natural
number l, we have

∣

∣

∣

∣

(

l + 1

2m
−

l

2m

)

−

(

k + 1

2n
−

k

2n

)
∣

∣

∣

∣

=

∣

∣

∣

∣

2n − 2m

2m2n

∣

∣

∣

∣

<
1

2n
,

(k+1
2n − k

2n ) is a Cauchy sequence, and converges to zero. Then, (k+1
2n ) and

( k
2n ) converge to t. Closedness of ≿ implies that either z ≿ x or z ≿ y.

Therefore, the preference is convex.

Lemma 3. Let x and y be points in X such that x ≻ y. Then, if a consumer’s
preference is weakly uniformly rotund and monotonic, tx + (1 − t)y ≻ y for
0 < t < 1.
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Proof. By continuity of the preference (openness of ≻) there exists a point x′ =
x− λ such that λ ≫ 0 and x′ ≻ y. Then, since weak uniform rotundity implies
convexity, we have tx′+(1− t)y ≿ y or tx′+(1− t)y ≿ x′. If tx′+(1− t)y ≿ x′,
then by transitivity tx′ + (1 − t)y = tx + (1 − t) − tλ ≿ x′ ≻ y. Monotonicity
of the preference implies tx + (1 − t)y ≻ y. Assume tx′ + (1 − t)y ≿ y. Then,
again monotonicity of the preference implies tx+ (1− t)y ≻ y.

Let S be a subset of ∆×R such that for each (p, w) ∈ S

1. p ∈ ∆.

2. β(p, w) is nonempty.

3. There exists ξ ∈ X such that ξ ≻ x for all x ∈ β(p, w).

In [4] the following lemmas were proved.

Lemma 4 (Lemma 2.1 in [4]). If p ∈ ∆ ⊂ RN , w ∈ R, and β(p, w) is nonempty,
then β(p, w) is compact.

Lemma 4 with Proposition (4.4) in Chapter 4 of [1] or Proposition 2.2.9 of [3]
implies that for each (p, w) ∈ S β(p, w) is located in the sense that the distance

ρ(x, β(p, w)) ≡ inf{|x− y| : y ∈ β(p, w)}

exists for each x ∈ RN .

Lemma 5 (Lemma 2.2 in [4]). If (p, w) ∈ S and ξ ≻ β(p, w) (it means ξ ≻ x

for all x ∈ β(p, w)), then ρ(ξ, β(p, w)) > 0 and p · ξ > w.

Lemma 6 (Lemma 2.3 in [4]). Let (p, c) ∈ S, ξ ∈ X and ξ ≻ β(p, c). Let H be
the hyperplane with equation p · x = c. Then, for each x ∈ β(p, c), there exists
a unique point ϕ(x) in H ∩ [x, ξ]. The function ϕ so defined maps β(p, c) onto
H ∩ β(p, c) and is uniformly continuous on β(p, c).

Lemma 7 (Lemma 2.4 in [4]). Let (p, w) ∈ S, r > 0, ξ ∈ X, and ξ ≻ β(p, w).
Then, there exists ζ ∈ X such that ρ(ζ, β(p, w)) < r and ζ ≻ β(p, w).

Proof. See Appendix.

And the following lemma.

Lemma 8 (Lemma 2.8 in [4]). Let R,c, and t be positive numbers. Then there
exists r > 0 with the following property: if p, p′ are elements of RN such that
|p| ≥ c and |p− p′| < r, w,w′ are real numbers such that |w−w′| < r, and y′ is
an element of RN such that |y′| ≤ R and p′ · y′ = w′, then there exists ζ ∈ RN

such that p · ζ = w and |y′ − ζ| < t.

It was proved by setting r = ct
R+1 .
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3 Convex-valued demand correspondence with

closed graph

With the preliminary results in the previous section we show the following our
main result.

Theorem 1. Let ≿ be a weakly uniformly rotund preference relation on a com-
pact and convex subset X of RN , ∆ be a compact and convex set of normalized
price vectors (an n− 1-dimensional simplex), and S be a subset of ∆×R such
that for each (p, w) ∈ S

1. p ∈ ∆.

2. β(p, w) is nonempty.

3. There exists ξ ∈ X such that ξ ≻ x for all x ∈ β(p, w).

Then, for each (p, w) ∈ S there exists a subset F (p, w) of β(p, w) such that
F (p, w) ≿ x (it means y ≿ x for all y ∈ F (p, w)) for all x ∈ β(p, w), p·F (p, w) =
w (p · y = w for all y ∈ F (p, w)), and the multi-valued correspondence F (p, w)
is convex-valued and has a closed graph.

A graph of a correspondence F (p, w) is

G(F ) = ∪(p,w)∈S(p, w)× F (p, w).

If G(F ) is a closed set, we say that F has a closed graph.

Proof.

1. Let (p, w) ∈ S, and choose ξ ∈ X such that ξ ≻ β(p, w). By Lemma 7 con-
struct a sequence (ζm) in X such that ζm ≻ β(p, w) and ρ(ζm, β(p, w)) <

r
2m−1 with r > 0 for each natural number m. By convexity and transitiv-
ity of the preference tζm + (1 − t)ζm+1 ≻ β(p, w) for 0 < t < 1 and each
m. Thus, we can construct a sequence (ζn) such that |ζn − ζn+1| < εn,
ρ(ζn, β(p, w)) < δn and ζn ≻ β(p, w) for some 0 < ε < 1 and 0 < δ < 1,
and so (ζn) is a Cauchy sequence in X. It converges to a limit ζ∗ ∈
X. By continuity of the preference (closedness of ≿) ζ∗ ≿ β(p, w), and
ρ(ζ∗, β(p, w)) = 0. Since β(p, w) is closed, ζ∗ ∈ β(p, w). By Lemma 5
p · ζn > w for all n. Thus, we have p · ζ∗ = w. Convexity of the prefer-
ence implies that ζ∗ may not be unique, that is, there may be multiple
elements ζ ′ of β(p, w) such that p · ζ ′ = w and ζ ′ ≿ β(p, w). Therefore,
F (p, w) is a set and we get a demand correspondence. Let ζ ∈ F (p, w)
and ζ ′ ∈ F (p, w). Then, ζ ≿ β(p, w), ζ ′ ≿ β(p, w), and convexity of the
preference implies tζ + (1− t)ζ ′ ≿ β(p, w). Thus, F (p, w) is convex.

2. Next we prove that the demand correspondence has a closed graph. Con-
sider (p, w) and (p′, w′) such that |p − p′| < r and |w − w′| < r with
r > 0. Let F (p, w) and F (p′, w′) be demand sets. Let y′ ∈ F (p′, w′),
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c = ρ(0,∆) > 0 and R > 0 such that X ⊂ B̄(0, R). Given ε > 0, t = δ > 0
such that δ < ε, and choose r as in Lemma 8. By that lemma we can
choose ζ ∈ RN such that p · ζ = w and |y′ − ζ| < δ. Similarly, we can
choose ζ ′(y) ∈ RN such that p′ · ζ ′(y) = w′ and |y − ζ ′(y)| < δ for each
y ∈ F (p, w). y′ ∈ F (p′, w′) means y′ ≿ ζ ′(y). Either |y′ − y| > ε

2 for all
y ∈ F (p, w) or |y′− y| < ε for some y ∈ F (p, w). Assume that |y′− y| > ε

2
for all y ∈ F (p, w) and y ≻ ζ. If δ is sufficiently small, |y′ − y| > ε

2
means |y − ζ| > ε

k
and |y′ − ζ ′(y)| > ε

k
for some finite natural number

k. Then, by weak uniform rotundity there exist zn and z′n such that
|zn| < τn, |z

′

n| < τn with τn > 0, zn ≫ 0 and z′n ≫ 0, 1
2 (y + ζ) + zn ≻ ζ

and 1
2 (y

′ + ζ ′(y)) + z′n ≻ ζ ′(y) for n = 1, 2, . . .. Again if δ is sufficiently
small, |y − ζ ′(y)| < δ and |y′ − ζ| < δ imply 1

2 (y + ζ) + zn ≻ y′ and
1
2 (y

′ + ζ ′(y)) + z′n ≻ y. And it follows that | 12 (y + ζ)− 1
2 (y

′ + ζ ′(y))| < δ.
By continuity of the preference (openness of ≻) 1

2 (y + ζ) + z′n ≻ y. Let
y1 = 1

2 (y + ζ). Consider a sequence (τn) converging to zero. By conti-
nuity of the preference (closedness of ≿) y1 ≿ y′ and y1 ≿ y. Note that
p · y1 = w. Thus, y1 ∈ β(p, w). Since y ∈ F (p, w), we have y1 ∈ F (p, w).
Replacing y with y1, we can show that y+3ζ

4 ∈ F (p, w). Inductively we

obtain y+(2m−1)ζ
2m ∈ F (p, w) for each natural number m. Then, we have

|y− ζ| < η for some y ∈ F (p, w) for any η > 0. It contradicts |y− ζ| > ε
k
.

Therfore, we have |y′ − y| < ε or ζ ≿ y (it means |y′ − ζ| < δ and
ζ ∈ F (p, w)), and so F (p, w) has a closed graph.

Appendix: Proof of Lemma 7

This proof is almost identical to the proof of Lemma 2.4 in Bridges [4]. They
are different in a few points.

Let H be the hyperplane with equation p · x = w and ξ′ the projection of ξ
on H. Assume |ξ − ξ′| > 3r. Choose R such that H ∩ β(p, w) is contained in
the closed ball B̄(ξ′, R) around ξ′, and let

c =

√

1 +

(

R

|ξ − ξ′|

)2

.

Let H ′ be the hyperplane parallel to H, between H and ξ and a distance r
2c

from H; and H ′′ the hyperplane parallel to H, between H and ξ and a distance
r
c
from H. For each x ∈ β(p, w) let ϕ(x) be the unique element of H ∩ [x, ξ],

ϕ′(x) be the unique element of H ′ ∩ [x, ξ], and ϕ′′(x) be the unique element of
H ′′ ∩ [x, ξ]. Since ξ ≻ β(p, w), we have ϕ′′(x) ≻ ϕ(x) ≿ x by convexity and
continuity of the preference. ϕ′(x) is uniformly continuous, so

T ≡ {ϕ′(x) : x ∈ β(p, w)}

is totally bounded by Lemma 4 and Proposition (4.2) in Chapter 4 of [1].
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ξ

ξ′

ϕ(x)
ϕ′(x)

H

H′

x

Figure 1: Calculation of |ϕ(x)− ϕ′(x)|

Since ϕ′′(x) ≻ ϕ(x) and ϕ′(x) = 1
2ϕ

′′(x) + 1
2ϕ(x) we have ϕ′(x) ≻ x, and so

continuity of the preference (openness of ≻) means that there exists δ > 0 such
that ϕ′(xi) ≻ x when |ϕ′(xi)−ϕ′(x)| < δ. Let (x1, . . . , xn) be points of β(p, w)
such that (ϕ′(x1), . . . , ϕ

′(xn)) is a δ-approximation to T . Given x in β(p, w)
choose i such that |ϕ′(xi)− ϕ′(x)| < δ. Then, ϕ′(xi) ≻ x.

Now from our choice of c we have |ϕ(x) − ϕ′(x)| < r
2 for each x ∈ β(p, w).

It is proved as follows. Since by the assumption |ϕ(x) − ξ′| < R, |ϕ(x) − ξ| <
√

R2 + |ξ − ξ′|2. Thus, we have

|ϕ(x)− ϕ′(x)| <
r

2c
×

√

R2 + |ξ − ξ′|2

|ξ − ξ′|
=

r

2c

√

1 +

(

R

|ξ − ξ′|

)2

=
r

2
.

See Figure 1.
Let

t1 = 1−
r

2n|ϕ′(x1)− ξ|
,

and
η1 = t1ϕ

′(x1) + (1− t1)ξ.

Then, |η1 − ϕ′(x1)| =
r
2n , ρ(η1, β(p, w)) <

r(n+1)
2n (because |ϕ(x1)− ϕ′(x1)| <

r
2

and ϕ(x1) ∈ β(p, w)), and by convexity of the preference η1 ≿ ξ or η1 ≿ ϕ′(x1).
In the first case we complete the proof by taking ζ = η1. In the second,

assume that, for some k (1 ≤ k ≤ n − 1), we have constructed η1, . . . , ηk in X

such that
ηk ≿ ϕ′(xi) (1 ≤ i ≤ k),

and

ρ(ηk, β(p, w)) <
r(n+ k)

2n
.

As |ξ − ηk| > r (because |ξ − ξ′| > 3r), we can choose y ∈ [ηk, ξ] such that

|y− ηk| =
r
2n . Then ρ(y, β(p, w)) < r(n+k+1)

n
and either y ≿ ξ or y ≿ ηk. In the
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former case, the proof is completed by taking ζ = y. If y ≿ ηk, y +
λ
2 ≻ ηk − λ

2

for all λ such that λ ≫ 0. Then, either y + λ
2 ≻ ϕ′(xk+1) for all λ and so

y ≿ ϕ′(xk+1), in which case we set ηk+1 = y; or else ϕ′(xk+1) ≻ ηk − λ
2 for all

λ and so ϕ′(xk+1) ≿ ηk, then we set ηk+1 = ϕ′(xk+1).
If this process proceeds as far as the construction of ηn, then, setting ζ = ηn,

we see that ρ(ζ, β(p, w)) < r and that ζ ≿ ϕ′(xi) for each i; so ζ ≻ x for each
x ∈ β(p.w).
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