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A BST R AC T 

The estimated Vector AutoRegressive (VAR) model is sensitive to model 

misspecifications, such as omitted variables, incorrect lag-length, and 

excluded moving average terms, which results in biased and inconsistent 

parameter estimates. Furthermore, the symmetric VAR model  is more likely 

misspecified due to the assumption that  variables in the VAR have the same 

level of endogeneity.  This paper extends the Bayesian Averaging of Classical 

Estimates, a robustness procedure in cross-section data, to a vector time-series 

that is estimated using a large number of Asymmetric VAR models, in order to 

achieve  robust results . The combination of the two procedures is deemed to 

minimize the effects of misspecification errors by extracting and utilizing 

more information on the interaction of the variables, and cancelling out the 

effects of omitted variables and omitted MA terms through averaging. The 

proposed procedure  is applied to simulated data from various forms of model 

misspecifications. The forecasting accuracy of the proposed procedure was 

compared to an automatically selected equal lag-length VAR. The results of 

the simulation suggest that, under misspecification problems, particularly if an 

important variable and MA terms are omitted, the proposed procedure is better 

in forecasting than the automatically selected equal lag-length VAR model. 
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1. Introduction 
 

The Vector Autoregressive (VAR) model by Sims (1980) became a popular tool for 

forecasting a group of interrelated economic variables because of its ease of use. However, 

Braun & Mittnik (1993) showed that the ordinary least squares (OLS) coefficients VAR 

estimates are sensitive to misspecification errors due to omitted variables, incorrect lag-

length, and excluded moving average (MA) terms. This results in having  biased and 

inconsistent estimators and creates problems in forecasting and the estimation of the impulse 

response function (IRF) and variance decompositions. If these problems are not considered in 

the modeling procedure, then the results of the VAR model may be misleading. A certain 

degree of caution must be emphasized for the purpose of policy and decision making under 

these circumstances. 

The effects of excluded MA terms in the VAR model are alleviated by using a large number 

of lags. However, the problem of omitting an important variable in the VAR model is the 

hardest to solve.  This problem is common in practice partly because of the  true model is 

usually unknown. .  

Furthermore, the VAR model itself is misspecified. It assumes  the lags of all variables in the 

system are the same or symmetric. This is a problem in applied research since variables tend 

to have different degrees of endogeneity. Keating (1993, 1995 & 2000) addressed this 

problem by allowing unequal lag length or asymmetry in the VAR model (AVAR).  

Another way of dealing with these problems is to use model averaging that is deemed to 

produce robust results under problems of model misspecifications. Strachan & van Dijk 

(2007) were  the first to apply Bayesian Model Averaging (BMA) on VAR. The authors 

assumed  prior distribution for each parameter in the model. In analyzing cross-section data, 

Sala-i-Martin (1997) proposed the Averaging of Classical Estimates (ACE) that uses the 
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likelihood function of the regression model as weights in averaging the OLS estimates, where 

the average is taken across all models generated in the context of the Extreme Bounds 

Analysis of Leamer (1983). Sala-i-Martin, Doppelhofer & Miller (2004) formulated the 

Bayesian Averaging of Classical Estimates (BACE) that uses the posterior model probability 

as weights for the OLS estimates that needs only one prior information – the number of 

variables in the true model.  

The main objective of this paper  is to develop a modeling procedure that will yield robust 

VAR forecasts by the use of BACE on the forecasts of AVAR models using  less assumption, 

particularly on the parameter’s prior distributions of popular Bayesian VAR methods. The 

combination of the two procedures, the BACE and the AVAR, is expected  to minimize the 

effects of misspecification errors by extracting and utilizing more information on the 

interaction of the variables, and cancelling out the effects of omitted variables and omitted 

MA terms through averaging. The paper  also aims to determine the forecasting performance 

of the BACE-AVAR method by applying it to stationary and deseasonalized vector of 

variables simulated from different data characteristics. The Modified Diebold-Mariano test 

and the relative MAPE will be used in the forecasting accuracy of the BACE-AVAR 

procedure with respect to a model with automatic selection procedure.  

 

2. VAR, AVAR and BACE Procedures 
 

This section  will provide  a background on VAR and AVAR models, how these models are 

specified and estimated, and how to measure their predictive accuracy. The BACE procedure 

in the context of cross-section data is also discussed. 
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2.1 Vector Autoregressive Moving Average (VARMA) Models  

Following Lütkepohl (2004), consider the generalized form of the finite order VARMA(�, �) 

model that is given by: 

� ��∗�	
�
�

��
= � ��∗�	
�

�

��
 (1) 

 

where �	 = ���	, … , ��	�� , � = 1, … , � , is stationary, ��∗  and ��∗  are �����  autoregressive 

and moving average coefficient matrices, respectively, and �	 = ���	, … , ��	�′   is a K-

dimensional white noise process, that is  !��	� = " and  

 

!��	�#� � = $ %&,    '( � = ℎ0    +�ℎ,-.'/,, (2) 

 

and %& is positive definite.  

Due to the difficulties in estimating a VARMA��, �� model, it is a common practice among 

researchers to estimate VARMA��, 0� model, which is popularly known as the VAR��� 

model. The VAR���4 model is commonly represented by: 

 

�	 = � ��∗�	
�
�

���
+ �	 (3) 

 

where the terms are as defined in Equation (1). The parameters are usually estimated using 

ordinary least squares (OLS) for all equations in the system.  

                                                           
4
 The VAR operator is stable and the process is stationary if det�∗�5� ≠ 0, where 5 ∈ ℂ. If this is the case, then 

the VAR(�) model can also be expressed as �	 = ∑ :��	
�;�� , where : = <� , if �∗ = �∗ = <� , and :� = ∑ :�
=�=∗�=�� , ' = 1,2, …, with �=∗ = 0 for ? > �. The :� ’s are popularly known as the impulse response 

function in the literature. In practice, researchers use the orthogonalized form of the IRF that can be expressed 

by :�A = :�B where B is a lower triangular matrix of the Cholesky decomposition of %, that is  % = BB′. The 

interpretations of the VAR(�) model is coursed through the estimated IRF as it gives the reaction of the value 

of a variable when there is an abrupt change in the other variables.  
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Another approach in estimating the VAR model parameters is through the Bayesian VAR, 

which was introduced by Litterman (1980). This approach was extensively used in modeling 

and forecasting economic variables.
5

 The BVAR procedure involves setting the prior 

distributions of the parameters and running MCMC simulations. Sun & Ni (2003; 2004) 

indicated that the use of the non-informative Jeffrey’s prior in BVAR is likely to have over-

estimated posterior mean variance. Their study also showed that the results of BVAR across 

different priors were different. This indicates that  results of the BVAR are sensitive to the 

selected prior information. 

2.2 Automatic Selection Procedure  

In practice, the model builder usually starts with VAR(�∗� model where �∗ is selected using 

an automatic selection procedure. This involves the estimation of all VAR(�� model for 

� = 1, … , �∗, and selecting the initial model that yields the “best” value of a pre-selected 

information criterion. The common information criteria are the Akaike Information Criterion 

(1973) that is given by: 

CDE = logIJKI + 2 -� (4) 

 

and the Bayesian Information Criterion by Schwarz (1978) that is of the form: 

LDE = logIJKI + - log ��  (5) 

 

where - is the number of estimated parameters, � is the number of dependent variables in the 

vector, and � is the sample size. Hurvich & Tsai (1993) corrected the AIC for small samples 

and it has the form: 

                                                           
5
 Some of the studies that used BVAR and variants of it are from Po, Chi, Shyu, & Hsiao (2002), Chen & Leung 

(2003), Ramos (2003), Carriero, Kapetanios, & Marcellino (2009). 
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CDEM = logIJKI + 2 -� − -/� . (6) 

 

Kadilar & Eldemir (2002) analyzed the performance of the popular information criteria by 

simulating VAR(1) and VAR(2) models, with and without seasonality. They showed  that  

performance of the information criteria is better in VAR without seasonality than VAR with 

seasonality. They also noted  the improvement in the performance of AIC as the number of 

variables in the VAR model, without seasonality, increases. However, the result for the AIC 

is reversed for VAR with seasonal data. Hence, the authors recommended not to use the AIC  

in the presence of seasonality in the  VAR data. Overall, they ranked the performance of the 

information criteria from highest to lowest as: Schwarz (SIC), Hannan-Quinn (HQ), Akaike 

(AIC). 

Waele & Broersen (2003) noted that the AIC is an unbiased estimate of the Kullback-Leibler 

discrepancy.
6
 However, for a finite sample size, it tends to over-fit the model by choosing a 

high number of lags, as discussed earlier. They also showed that the Kullback-Leibler 

discrepancy can be used as an information criterion which they call KIC. Seghouane (2006) 

proposed a refinement to the KIC, which the author called KICvc, where vc stands for vector 

correction. The KICvc performs better than the KIC in model specification for small sample 

sizes. 

George, Sun & Ni (2004) developed a Bayesian stochastic search approach in determining 

the VAR model that can incorporate restrictions on the VAR coefficients and on the elements 

of the error covariance matrix. Korobilis (2010) developed an automatic variable selection 

procedure using the Gibbs sampler for linear and nonlinear VARs. Numerical simulations 

                                                           
6
 For an in-depth discussion of the Kullback-Leibler discrepancy, see “On Information and Sufficiency” by 

Kullback & Leibler (1951) and “Finite sample effects in vector autoregressive modeling” by Waele & Broersen 

(2002). 
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indicated that both procedures select a satisfactory model with improved forecasting 

performance.  

 

2.3 Asymmetric Vector Autoregressive (AVAR) Models 

Hsiao (1981) was the first to suggest the estimation of VAR models with variables having 

unequal lag length. However, Keating (1993) argued that Hsiao’s method depends on the 

inclusion sequence of the explanatory variables in the model and that Litterman’s Bayesian 

(Litterman, 1980) approach gives biased parameter estimates, a  minor issue in forecasting 

but a potential problem in determining macroeconomic structures. Keating  introduced  

asymmetries in the lag lengths of the variables in the VAR system and named this as 

Asymmetric VAR (AVAR) model. The  AVAR(��, … �Q), can be written as 

�	 = � R��∗�	
�
�∗

���
+ �	 (7) 

 

where �∗ = max {��, �W, … , �Q} ; R = diag{1{�Z�[}, 1{�Z�\}, … , 1{�Z�]}} , a diagonal matrix 

having indicator variables as elements  such that 1^�Z�_` = {1 '( ' ≤ �=;  0 +�ℎ,-.'/,}; the 

rest are as previously described. The R matrix restricts some of the parameters to zero and 

this matrix introduces the inequalities in the lag-length of the variables.  

The AVAR model is a VAR model that permits unequal lag length for the variables in the 

equations. However, the lag specification should be the same across all equations in the 

system. Because of this, the AVAR gives a parsimonious model with a substantial reduction 

in the standard errors compared to the ordinary VAR. This translates to the clarity in the 

interpretations from the impulse response function and variance decompositions. 

 Keating also performed an  automatic selection procedure over a set of AVAR models. For a 

vector of variables, the procedure estimates all possible AVAR models given a maximum 
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number of lags c , and for each estimated model, the selected information criterion is 

computed. The best AVAR model with the best information criterion is selected. There are cQ 

number of AVAR models needed to be estimated in the procedure. For convenience, the 

values of the AIC, SIC and HQ that are computed using Keating’s procedure will be called 

KAIC, KSIC and KHQ respectively.
7
 

Ozcicek & McMillin (1999) studied the performance of the popular information criteria, such 

as AIC, SIC,  KAIC and KSIC, in determining the lag length of a VAR model.  Using a 

variety of autoregressive data structure such as either short or long-lagged process, and 

symmetric and asymmetric lag lengths, the authors showed that  AIC is best for symmetric 

data, since the other information criteria under-fits the model. The authors also showed that 

KAIC is the best criterion to use for asymmetric data  and they proposed this criterion to be 

used in modeling since the lag length structure of the data is uncertain and most of the time 

asymmetric in theory. 

 

2.4 Predictive Accuracy 

Diebold and Mariano (1995) developed a test for predictive accuracy in forecasting that is not 

restricted to the quadratic loss function and can handle a wide variety of error characteristics. 

For the two forecasts {�d�	}	��e  and {�dW	}	��e  for the series {�	}	��e  , let {,�	}	��e  and {,W	}	��e  

be the associated forecast errors. The loss associated with a forecast at time � is given by the 

loss function  f��	, �d�	� and  the authors pointed out that  the loss function  is a direct 

function of the forecast errors, that is, f���	, �d�	� = f�,�	� . The null hypothesis of the 

Diebold-Mariano test is  !�g	� = 0, where g	 = f�,�	� − f�,W	� is the loss differential. So 

                                                           
7
 The names KAIC and KSIC are adapted from Ozcicek & McMillin (1999). 
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that if we have {g	}	��e , then under the assumption that the loss differential series is 

covariance stationary and short memory,  

√�ig̅ − kl m→ oi0,2p(m�0�l, (8) 

 

where, g̅ = �
e ∑ g	e���  and (m�0� = �

Wq ∑ rm�s�;t�
; , the spectral density of the loss 

differential at frequency zero, having rm�s� = !{�g	 − k��g	
t − k} , the sample 

autocovariance of the loss differential to lag s, and k  is the population mean of the loss 

differential. 

Harvey, Leybourne and Newbold (HLN) (1997) corrected the Diebold-Mariano (DM) test for 

finite samples. The ℎ-step ahead forecasts DM test statistic is given by: 

uv = g̅wxyig̅lz
�W (9) 

where xyig̅l is the estimated variance of g̅ that is given by 

xyig̅l ≈ 1� |rd + 2 � rdQ
#
�

Q��
} (10) 

 

and, rdQ is the estimated autocovariance of g̅ that has the form: 

rdQ = 1� � �g	 − g̅��g	
Q − g̅�e

	�Q~�
 (11) 

The ℎ-step ahead forecasts Modified DM test (MDM) is of the form: 

vuv = �� + 1 − 2ℎ + �
�ℎ�ℎ − 1�� �
�W uv (12) 

 

having a Student’s � distribution with  � − 1 degrees of freedom. The MDM test statistic was 

used in determining the forecasting performance of the BACE-AVAR procedure against the 
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forecasting performance of the VAR model that is selected automatically using an 

information criterion. 

The Mean Absolute Percentage Error (MAPE) is a descriptive measure of predictive accuracy 

that is given by: 

vC�! = 1� � ��	 − �d	�	 �e

	��
 (13) 

where |⋅| is the absolute value function. The MAPE was used in the study to measure the 

distance between the actual and predicted forecasts. The ratio of two MAPE is called the 

relative MAPE and is given by the form 

�,�vC�!� = vC�!�vC�!∗ (14) 

  
where vC�!� is from the '	# model and vC�!∗ is from the baseline model. Relative MAPE 

of less than 1 implies that the model that is being evaluated is better than the baseline model. 

 

2.5 Bayesian Averaging of Classical Estimates 

The BACE by Sala-i-Martin, et. al. (2004) computes the weighted average of the OLS 

coefficient estimates weighted by the probability that the model where it is estimated from is 

the true model. This approach also has an advantage over BMA, since it only needs the 

number of variables in the model as prior information under the assumption of equal prior 

inclusion probabilities for each variable, whereas the BMA must be given assumed prior 

distributions for all of the parameters. 

The procedure involves estimating all regression models of the form  

� = � + ��=� + ��=� � + ��=� �= + � (15) 

 



 

18 

 

where �  is the variable of interest, � is a vector of fixed variables that appear in all the 

regressions, and �= ∈ �  is a vector of variables taken from the �  collection of all other 

variables under consideration.  

If it is assumed that the prior inclusion probability of each variable in the model are equal, the 

prior probability of model ?, denoted as �iv=l, will be: 

�iv=l =  �����Q_ �1 − �����
Q_
 (16) 

 

where �� is the speculated number of variables in the true model, � is the total number of 

variables in the dataset, and �= is the number of variables in the ?	# model. 

The weights that will be used in the averaging is the posterior probabilities of the v=′/. The 

weight is a function of the prior probability and is given by: 

�iv=|�l = �iv=l�
Q_/W ��!=
�/W 
∑ ��v���
Q�/W ��!�
�/W W]���

 (17) 

 

where the ��!= is the sum of squared errors in model ?. Therefore, the posterior mean of � is 

given by: 

!��|�� = � �iv=I�l�K=
W�

=��
 (18) 

 

where �K=  is the estimated value of the vector of coefficients under OLS; and its 

corresponding posterior variance is of the form: 

x�-��|�� = � �iv=I�lx�-��|�, v=�W]

=��
+ � �iv=I�lw�K= − !��|��zWW]

=��
 (19) 
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3. The BACE-AVAR Procedure 

In specifying the AVAR model, the procedure of Keating (1995) estimates c� AVAR models 

given a maximum lag length of c that is set by the researcher. The best specification will be 

selected based on the model that gives the best value of an information criterion.  

The prior probability �i�=l will be assumed to be equal for all the equations in the ?	# 

estimated VAR model. The formula for the prior probability for the AVAR model �=  is 

given by: 

�i�=l =  �c�=� �� ̅
c��_ �1 − � ̅

c��
�_
 (20) 

 

where, �= is the total number of AR lag regressors for each of the equations in the ?	# model, 

and � ̅is the assumed total number of lags of all the variables in the true model. To simplify 

the procedure, the value for � ̅can be given by running an automatic selection procedure over 

VAR models and setting � ̅ based on the recommended number of lags. Alternatively, the 

researcher may run BACE-AVAR using a different �.̅ 
The formula for the posterior probability will be: 

�iv=� |�l = �i�=l�
�_/W ��!=
e/W 
∑ ������
��/W ��!�
e/W �����

 (21) 

 

where ��!=  is the sum of squared errors of the AVAR model that is given by ��!= =
∑ ∑ ��Q� − �dQ��We����Q�� . 8  This will give a single weight for an estimated AVAR model 

depending on the ability of all its equations to fit their corresponding variables. 

 

                                                           
8
 See Section 4.1 for the explanation in the power of ��!=  from −�/2  to −0.1�/2. 
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3.1 BACE-AVAR on Forecasted Values 

The posterior probabilities will also be used in computing for the forecasts of the BACE-

AVAR procedure. The forecasts will be the weighted mean of the forecast series produced by 

the AVAR models, with the posterior probabilities as its weights. The �� + ��	# forecast for 

the vector of variables �e~	 from the BACE-AVAR procedure is given by: 

� e~	¡¢£¤ = � ¥=� =,e~	 ��

=��
 (22) 

 

where �d=,e~	  is the forecast at time � + �  of the ?	#  AVAR model, and ¥=  is as discussed 

above. The corresponding standard error of  � e~	¡¢£¤ is the average of the standard errors of the 

AVAR forecasts that is given by the formula 

/,�� e~	¡¢£¤� = � ¥=w/,i� =,e~	lz ��

=��
 (23) 

 

3.2 Summary of the Procedure 

For a �-dimensional vector of stationary time-series variables �� in �, the procedure of the 

Bayesian Averaging of Classical Estimates in Asymmetric Vector Autoregressions (BACE-

AVAR) is as follows: 

1. Set c  and � ̅ , the maximum lag length for the AVAR models and the assumed 

symmetric lag length of the models. The � ̅can be set by using the automatic selection 

procedures for VAR models given a certain information criterion. c may be set as 

c = � ̅ + 3, as adding a constant 3 to the lag length as specified by an automatic 

selection procedure is considered a rule of thumb among practitioners.  
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2. Estimate all possible AVAR models given c using OLS. The total number of models 

to be estimated is c�. 

3. For each of these models, compute the prior probability �i�=l  and the posterior 

probability �i�=|�l that the ?	# AVAR model has the correct specification. 

4. For each model, obtain the forecasts along with their variances.  

5. Compute the weighted forecasts and its corresponding variance at time �, � e~	¡¢£¤ and 

/,�� e~	¡¢£¤�. 
 

3.3 Performance of BACE-AVAR through Simulations  

The performance of BACE-AVAR was assessed using simulations. A 3-dimensional vector 

time-series dataset
9
 was generated from a VAR or VARMA; for that particular dataset, all 

possible AVAR models were estimated given a maximum number of lags c, as well as their 

corresponding posterior probabilities of being the true model; the impulse responses and 

variable forecasts were weighted using these posterior model probabilities, and the results 

were compared with the true impulse response function and true forecasted values, 

respectively. The forecasting performance of the method was compared to the symmetric 

VAR that is selected by AIC for the cases with sample size 1000 and AICc for the other 

cases. The number of iterations for each case was set to 100.  

 

                                                           
9
 A 4-dimensional vector time-series data will be generated in the cases where one important variable is 

omitted. See Section 3.3.1.4 for the discussion of Omitted Variable. 
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3.3.1 Specific Scenarios 

The data were generated arbitrarily with the restriction that the time-series is stable and non-

stationary. The BACE-AVAR was evaluated using cases summarized in Table 3.1. Overall, 

sixty scenarios were considered.  

 

 

 

 

 

 

 

 
Table 3.1 

Simulation Cases 

Omitted Variable MA Terms �§ Covariance Matrix Sample Size 

1 With  1 With  1 Constant Variance 2 1 30 (1) 

2 Without 2 Without 2 Constant Variance 3 2 50 (4) 

        3 Constant Variance 5 3 100 (6) 

  

 

        4 300 (7) 

            5 1000 (8) 

 

3.3.1.1 Sample Size 

The range for the sample size is from 30 to 1000. The choice of range for the sample size is 

mainly due to the periodicity of the data that is being used in practice. A sample size of 30 

can be viewed as an annual data; a sample size of 50, as quarterly data; a sample size of 100 

as a monthly data; a sample size of 300 can be viewed as weekly data; and 1000 can be 

associated to daily data. Though these specifications were a generalization of common 

practice, the BACE-AVAR procedure does not limit the sample size with respect to the 

periodicity of the data. It is just more likely in practice that the sample size of the data is 

directly related to the period of the series, that is, higher sampling rate will have a larger 

sample size compared to lower sampling rates. 



 

23 

 

Furthermore, data collected on lower sampling rates have a higher amount of aggregated 

information than higher frequency samples. In mimicking this phenomenon, the AR part of 

the true model will have a lag order that is directly related to the sample size that will be 

obtained. The AR lag orders are enclosed in parenthesis beside the sample sizes in Table 3.1. 

 

3.3.1.2 Covariance Matrix  

Three cases will be set for the covariance matrix %  of the innovation series �	 =
���	, �¨	 , ��	�′, or �	 = ���	, �¨	, ��	 , ��	�′, in the case of an omitted variable. These will be 

limited to a diagonal matrix with equal elements, which were set to be two, three and five, 

that is, Σ = ' ∗ I� , ' ∈ {2, 3, 5} and � ∈ {3, 4}. These values for the scalar covariance matrix 

were chosen to determine the performance of the BACE-AVAR procedure through different 

magnitudes of variances, relative to the performance of the automatically selected model. The 

starting values of the simulated data and the parameters for each replicate will be the same in 

order to have comparable results for the different specification of  %. 

3.3.1.3 Omitted Moving Average Terms  

The case wherein there is an omitted MA term was also considered in the simulations. The 

MA term are restricted to lag order of one. The MA terms will be omitted in the modeling 

procedure. 

3.3.1.4 Omitted Variable 

It is likely in practice that some of the important variables in the system were not included in 

the modeling. It may be because that the variable is difficult to measure, the variable has not 

been measured, or the variable cannot be measured directly. In simulating this phenomenon, a 

4-dimensional vector time-series will be generated, and only the three variables of interest 
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will be used in modeling. The AR and/or MA parameters of this omitted variable will be 

generated using the same procedure as the parameter generation of the variables of interest. 

 

4. Results & Discuss ion 

This chapter discusses the performance of the BACE-AVAR procedure in forecasting and in 

determining the interaction of the variables given some misspecification errors. The problems 

that were encountered in the simulation proper will be discussed first. The discussion of the 

results will then follow. In summary, the BACE-AVAR procedure has an advantage in 

forecasting over the automatically selected model under the problem of an omitted important 

variable and excluded MA term. 

 

4.1 Preliminary Concerns on the Simulation 

The formula for the posterior probability of the BACE procedure in cross-section data given 

Equation (17) involves the ��! being raised to the power −�/2, where � is the sample size 

of the cross-section data. In the BACE-AVAR procedure, the resulting posterior probability 

will be zero for a large sample size � due to the small size of the ��!. Therefore, the problem 

was counteracted by raising the ��! to −�0.1��/2 on this part of the formula that is given in 

Equation (21) for the sample sizes � = 300 and � = 1000 since any power of the ��! that is 

less than −100/2 yields undefined posterior probabilities. However, this stands only as a 

temporary remedy to the problem. This issue posits that the order in which the ��! converges 

in the formula of the posterior probability may be different, in time-series data, from cross-

section data, even if the model is estimated using OLS. 
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There were cases wherein the steps taken in order to have a simulated data that is stable and 

stationary do not work, since the generated parameters were selected at random. In order to 

guarantee a model that gives a stable data, a data burning of 10,000 time points were done.  

Table 4.1 gives the lag length of the symmetric VAR models in the simulation. The number 

of AVAR models for models with lower lag length is small because c = � ̅ + 3. This may 

affect the results of the averaging and may decrease the performance of the BACE-AVAR on 

smaller samples. Therefore, the performance for small samples of the BACE-AVAR 

procedure as stated in the results of the simulation may still be further improved.  

 

Table 4.1 

Average VAR Lag Lengths from Automatic Selection Procedure Using AICc 

Sample Size 
No Omitted Variable With an Omitted Variable 

No MA Term With MA Term No MA Term With MA Term 

30 (1) 1.03 1.36 1.07 1.33 

50 (4) 3.02 3.46 2.44 2.86 

100 (6) 5.66 6.27 4.85 5.4 

300 (7) 7.04 8.93 7.27 8.64 

1000* (8) 8.07 12.79 11.25 13.79 

* AIC for Sample Size 1000 

4.2 Forecasting Accuracy 

This section will discuss the results of the forecasting accuracy of the BACE-AVAR 

procedure relative to the automatically selected model having the least value of AIC for large 

samples and least value of AICc for small samples, which will be hereafter called MINIC. In 

determining the forecasting accuracy of the procedures, the MDM test and the MAPE were 

used. 
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4.2.1 Modified Diebold-Mariano Test  

The results for the forecasting accuracy are given in Table 4.2 and Table 4.3. The tables 

present the proportion of significant MDM test result at 10% level of significance that the 

BACE-AVAR procedure has a better measure of forecasting accuracy than the MINIC, and 

vice versa, for the different sample sizes, and by the loss functions that were used. The 

differences of the proportion of significant tests between the BACE-AVAR and the MINIC 

were also reported, as well as the average proportion of significant MDM tests for the 

variables of interest. The MDM test result for each of the variable of interest is given in 

Appendix A. Generally, the results of the MDM test indicate that the BACE-AVAR 

procedure is better than the MINIC in forecasting under the omitted variable problem. The 

BACE-AVAR procedure performs the same with respect to the MINIC across the different 

variance specification. This indicates that the BACE-AVAR procedure is not affected by the 

variance specification as specified in the simulations, relative to the automatically selected 

model.  

In Table 4.2, for the case of no omitted variable and no omitted MA term, the BACE-AVAR 

is slightly better than the MINIC for small samples (� = 30, 50 ��g 100�. However, its 

performance diminished for sample sizes where the posterior model probability was 

modified. For � = 1000,  the forecasting accuracy of MINIC over the BACE-AVAR 

procedure is about 25%. For the case of no omitted variable but with an omitted MA term, 

the results indicate similar outcome as the previous case, but the improvement of the MINIC 

over the BACE-AVAR procedure now comes with smaller magnitude. 

Table 4.2 

MDM Test: Proportion of Significance for the Case of No Omitted Variable 

Alpha: 0.10; Number of Iterations: 100 

Model 
Sample 

Size 

No MA Term With MA Term 

Absolute Loss  Squared Loss Absolute Loss  Squared Loss 
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Significance 

of BACE 

over MINIC 

30 14.3 15.7 14.0 18.7 

50 16.0 15.0 14.3 16.0 

100 10.7 11.3 12.7 15.0 

300 4.3 6.0 6.0 6.0 

1000 3.3 5.3 7.0 5.3 

Significance 

of MINIC 

over BACE 

30 10.0 13.3 13.3 13.0 

50 5.7 6.7 11.3 12.0 

100 10.3 12.3 6.3 8.0 

300 22.3 22.3 19.0 20.0 

1000 26.3 31.7 11.0 15.0 

Difference 

(BACE-

MINIC) 

30 4.3 2.3 0.7 5.7 

50 10.3 8.3 3.0 4.0 

100 0.3 -1.0 6.3 7.0 

300 -18.0 -16.3 -13.0 -14.0 

1000 -23.0 -26.3 -4.0 -9.7 

 

In Table 4.3, for the case of an omitted variable with no excluded MA term, the BACE-

AVAR procedure has better forecasting accuracy than the MINIC except for � = 30 . 

Furthermore, the magnitude of this improvement increases as the sample size increases. The 

improvement of the BACE-AVAR procedure drastically increases for sample sizes involving 

the modified posterior probability. For the case of omitting an important variable and MA 

term, the BACE-AVAR is better than the MINIC in terms of forecasting accuracy at around 

15% to 20% depending on the sample size. The results emphasize that more information can 

still be extracted by the BACE-AVAR procedure for small samples by improving the weights 

or the posterior model probability. 

Increasing the level of significance to 5% as stated in Tables A.2.1 to A.2.4 in Appendix A, 

yields the same interpretation that the MINIC is better than the BACE-AVAR procedure 

when there are no misspecification errors. In addition to this, the outputs also show that the 

result is reversed when there are misspecification errors. Increasing the level of significance 

to 1% as given in Tables A.3.1 to A.3.4 still has the same result, but the forecasting accuracy 
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of one procedure over the other may just be deemed as negligible due to the small values of 

the significant percentages. Full results are given in Appendix A. 

 

Table 4.3 

MDM Test: Proportion of Significance for the Case of an Omitted Variable 

Alpha: 0.10; Number of Iterations: 100 

Model 
Sample 

Size 

No MA Term With MA Term 

Absolute Loss  Squared Loss Absolute Loss  Squared Loss 

Significance 

of BACE 

over MINIC 

30 5.7 7.0 7.0 6.7 

50 10.7 10.3 11.0 11.7 

100 7.7 9.3 14.7 14.0 

300 19.3 17.7 20.7 23.0 

1000 16.3 20.7 15.0 18.0 

Significance 

of MINIC 

over BACE 

30 11.7 11.3 8.7 8.0 

50 5.0 6.0 5.0 8.7 

100 5.0 6.0 4.3 2.7 

300 2.3 2.0 2.3 3.0 

1000 2.0 2.0 2.7 1.3 

Difference 

(BACE-

MINIC) 

30 -6.0 -4.3 -1.7 -1.3 

50 5.7 4.3 6.0 3.0 

100 2.7 3.3 10.3 11.3 

300 17.0 15.7 18.3 20.0 

1000 14.3 18.7 12.3 16.7 

 

4.2.2 Mean Absolute Percentage Error 

The forecasting accuracy was also measured descriptively by the relative MAPE. The relative 

MAPE forecasts of the BACE-AVAR procedure with respect to the MAPE forecasts of the 

MINIC are given in Table 4.4 and Appendix B. Relative MAPE values that are less than one 

imply that the BACE-AVAR forecasts are closer to the outsample data than the MINIC, 

whereas values greater than one indicate the opposite.  

Table 4.4 

Average Relative MAPE of Forecasts 

Sample 

Size 

No Omitted Variable With Omitted Variable 

No MA With MA No MA With MA 
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30 0.6195 0.6390 1.0007 0.7803 

50 0.7221 1.3715 0.9521 1.1204 

100 1.1456 0.7054 1.2131 1.3044 

300 0.5876 0.6308 0.4813 0.6042 

1000 0.7547 1.5094 0.5429 0.7231 

 

The result in Table 4.4 for the case of no omitted variable and no omitted MA term reveals 

that the forecasts of the BACE-AVAR procedure using the unmodified posterior probability 

are closer to the actual values compared to the forecasts of the MINIC by about 35% except 

for the sample size 50. For the case of � = 300 ��g 1000, the BACE-AVAR procedure also 

has the same performance over the MINIC. This indicates that even if the MDM test suggests 

that the MINIC is superior to the BACE-AVAR for cases of no misspecification, the 

forecasts of BACE-AVAR are closer to the actual values than the forecasts of the MINIC on 

the average.  

For the case of no omitted variable but with an omitted MA term, it seems that the forecasts 

of the BACE-AVAR procedure is closer to the outsample data than that of the MINIC by 

about 35% except for � = 50.  The result still holds for the cases of the modified posterior 

probability except for  � = 1000. Thus, the BACE-AVAR procedure is, on the average, still 

at par or better in some cases than the MINIC based on the relative MAPE. 
The BACE-AVAR procedure is better than or at par to the MINIC for the case wherein an 

important variable is omitted. The relative MAPE of BACE-AVAR to the MAPE of the 

MINIC reaches around 0.50 for the sample size of 1000 – a 50% improvement over the 

MINIC. All the relative MAPE of the sample sizes that were subjected to the modified 

posterior probability are less than one. This result is not contained only for the sample size of 

300 and 1000 but is also evident for � = 300, except for � = 100, that exhibits a relative 

MAPE of 1.21. This may give an indication that the power of the ��!= in Equation (21) may 
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not be a linear function of the sample size. Nevertheless, it is evident that the BACE-AVAR 

procedure can reach a 50% improvement over the MINIC in terms of MAPE forecasts.  

For the case of an omitted variable and excluded MA term, the BACE-AVAR procedure 

improves over the MINIC for  � = 30, 300 ��g 1000. The relative MAPE for the sample 

size 50 and 100 is 1.12 and 1.30, respectively. Furthermore, the improvement of the MINIC 

over the BACE-AVAR procedure exhibits an upward trend from the sample size of 30 to 

100, which are the sample sizes that use the original form of the posterior model probability. 

This may imply that correction on the posterior probability may also be applied to improve 

the overall performance of the BACE-AVAR procedure. Full results are given in Appendix 

B. 

 
5. Conclusion 

Misspecification problems in VAR modeling such as incorrect AR lag, excluded MA terms, 

and omitted relevant variables, are common in practice. The worst problem among those that 

were stated is omitting an important variable since it is immeasurable given the data on hand. 

Aside from that, it also gives biased and inconsistent estimates. The implication of this 

problem is crucial in policy evaluation since it will yield misleading forecasts and incorrect 

variable relationships.  

This study presents the application of the BACE on AVAR models in forecasting in presence 

of misspecification errors. Simulations under different scenarios were done to evaluate the 

performance of the BACE-AVAR procedure over an automatically selected model using an 

information criterion.  

The results suggest that the BACE-AVAR procedure produces more accurate forecasts than 

the automatically selected model using the corrected AIC when there is a problem of omitted 
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variables and omitted MA term. The forecasting accuracy of the BACE-AVAR procedure is 

better for large sample sizes. On the other hand, if there are no omitted variable and excluded 

MA term, the automatically selected model is better than the BACE-AVAR procedure. Given 

the results of the study, the BACE-AVAR procedure is recommended in forecasting. 

It is recommended to simulate the performance of the BACE-AVAR procedure for processes 

generated from a structural VAR. It is also recommended to extend the BACE-AVAR 

procedure for cointegrated variables. But before working on these recommendations, it is 

suggested to improve the posterior model probability in order for the BACE-AVAR 

procedure to be at par with the automatically selected model when there is no 

misspecification error. 
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APPENDIX A 
MDM Tes t :  P ropor t ion  of  S ign i f i cance  

 

Table A.1.1 

Alpha: 0.10; Number of Iterations: 100 

Case: No Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 0.15 0.13 0.15 15.7 0.14 0.13 0.20 0.15 

50 0.18 0.15 0.15 15.0 0.16 0.15 0.14 0.18 

100 0.11 0.13 0.08 11.3 0.10 0.16 0.08 0.11 

300 0.06 0.05 0.02 6.0 0.08 0.07 0.03 0.06 

1000 0.01 0.03 0.06 5.3 0.05 0.05 0.06 0.01 

Significance of MINIC over 

BACE 

30 0.12 0.10 0.08 13.3 0.14 0.16 0.10 0.12 

50 0.08 0.04 0.05 6.7 0.10 0.06 0.04 0.08 

100 0.07 0.12 0.12 12.3 0.09 0.15 0.13 0.07 

300 0.23 0.22 0.22 22.3 0.21 0.27 0.19 0.23 

1000 0.28 0.26 0.25 31.7 0.33 0.32 0.30 0.28 

Difference 

(BACE-MINIC) 

30 0.03 0.03 0.07 2.3 0.00 -0.03 0.10 0.03 

50 0.10 0.11 0.10 8.3 0.06 0.09 0.10 0.10 

100 0.04 0.01 -0.04 -1.0 0.01 0.01 -0.05 0.04 

300 -0.17 -0.17 -0.20 -16.3 -0.13 -0.20 -0.16 -0.17 

1000 -0.27 -0.23 -0.19 -26.3 -0.28 -0.27 -0.24 -0.27 

 

 
Table A.1.2 

Alpha: 0.10; Number of Iterations: 100 

Case: No Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 14.0 0.10 0.14 0.18 18.7 0.12 0.24 0.20 

50 14.3 0.11 0.18 0.14 16.0 0.14 0.18 0.16 

100 12.7 0.12 0.16 0.10 15.0 0.15 0.19 0.11 

300 6.0 0.07 0.06 0.05 6.0 0.07 0.05 0.06 

1000 7.0 0.08 0.07 0.06 5.3 0.07 0.04 0.05 

Significance of MINIC over 

BACE 

30 13.3 0.18 0.12 0.10 13.0 0.19 0.10 0.10 

50 11.3 0.12 0.11 0.11 12.0 0.10 0.14 0.12 

100 6.3 0.08 0.05 0.06 8.0 0.11 0.07 0.06 

300 19.0 0.18 0.23 0.16 20.0 0.17 0.22 0.21 

1000 11.0 0.10 0.08 0.15 15.0 0.18 0.13 0.14 

Difference 

(BACE-MINIC) 

30 0.7 -0.08 0.02 0.08 5.7 -0.07 0.14 0.10 

50 3.0 -0.01 0.07 0.03 4.0 0.04 0.04 0.04 

100 6.3 0.04 0.11 0.04 7.0 0.04 0.12 0.05 

300 -13.0 -0.11 -0.17 -0.11 -14.0 -0.10 -0.17 -0.15 

1000 -4.0 -0.02 -0.01 -0.09 -9.7 -0.11 -0.09 -0.09 
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Table A.1.3 

Alpha: 0.10; Number of Iterations: 100 

Case: With Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 5.7 0.09 0.03 0.05 7.0 0.11 0.06 0.04 

50 10.7 0.07 0.10 0.15 10.3 0.10 0.11 0.10 

100 7.7 0.08 0.09 0.06 9.3 0.08 0.11 0.09 

300 19.3 0.14 0.22 0.22 17.7 0.15 0.20 0.18 

1000 16.3 0.17 0.15 0.17 20.7 0.23 0.21 0.18 

Significance of MINIC over 

BACE 

30 11.7 0.11 0.09 0.15 11.3 0.09 0.10 0.15 

50 5.0 0.09 0.04 0.02 6.0 0.09 0.06 0.03 

100 5.0 0.07 0.04 0.04 6.0 0.10 0.05 0.03 

300 2.3 0.04 0.01 0.02 2.0 0.03 0.01 0.02 

1000 2.0 0.03 0.01 0.02 2.0 0.02 0.02 0.02 

Difference 

(BACE-MINIC) 

30 -6.0 -0.02 -0.06 -0.10 -4.3 0.02 -0.04 -0.11 

50 5.7 -0.02 0.06 0.13 4.3 0.01 0.05 0.07 

100 2.7 0.01 0.05 0.02 3.3 -0.02 0.06 0.06 

300 17.0 0.10 0.21 0.20 15.7 0.12 0.19 0.16 

1000 14.3 0.14 0.14 0.15 18.7 0.21 0.19 0.16 

 

 

 
Table A.1.4 

Alpha: 0.10; Number of Iterations: 100 

Case: With Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 7.0 0.08 0.03 0.10 6.7 0.07 0.05 0.08 

50 11.0 0.12 0.07 0.14 11.7 0.13 0.09 0.13 

100 14.7 0.15 0.20 0.09 14.0 0.12 0.20 0.10 

300 20.7 0.18 0.23 0.21 23.0 0.21 0.26 0.22 

1000 15.0 0.17 0.15 0.13 18.0 0.19 0.18 0.17 

Significance of MINIC over 

BACE 

30 8.7 0.07 0.10 0.09 8.0 0.08 0.08 0.08 

50 5.0 0.04 0.09 0.02 8.7 0.09 0.12 0.05 

100 4.3 0.02 0.04 0.07 2.7 0.02 0.04 0.02 

300 2.3 0.04 0.01 0.02 3.0 0.04 0.02 0.03 

1000 2.7 0.03 0.04 0.01 1.3 0.02 0.01 0.01 

Difference 

(BACE-MINIC) 

30 -1.7 0.01 -0.07 0.01 -1.3 -0.01 -0.03 0.00 

50 6.0 0.08 -0.02 0.12 3.0 0.04 -0.03 0.08 

100 10.3 0.13 0.16 0.02 11.3 0.10 0.16 0.08 

300 18.3 0.14 0.22 0.19 20.0 0.17 0.24 0.19 

1000 12.3 0.14 0.11 0.12 16.7 0.17 0.17 0.16 
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Table A.2.1 

Alpha: 0.05; Number of Iterations: 100 

Case: No Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 10.0 0.11 0.08 0.11 11.0 0.11 0.10 0.12 

50 9.3 0.10 0.10 0.08 8.7 0.08 0.09 0.09 

100 6.3 0.06 0.09 0.04 7.3 0.08 0.11 0.03 

300 2.0 0.04 0.02 0.00 4.0 0.06 0.04 0.02 

1000 1.0 0.00 0.00 0.03 2.0 0.02 0.01 0.03 

Significance of MINIC over 

BACE 

30 8.0 0.08 0.08 0.08 7.7 0.09 0.08 0.06 

50 2.7 0.04 0.02 0.02 3.7 0.04 0.04 0.03 

100 5.0 0.04 0.07 0.04 6.7 0.05 0.08 0.07 

300 16.3 0.17 0.17 0.15 16.0 0.19 0.14 0.15 

1000 21.0 0.23 0.19 0.21 21.0 0.19 0.22 0.22 

Difference 

(BACE-MINIC) 

30 2.0 0.03 0.00 0.03 3.3 0.02 0.02 0.06 

50 6.7 0.06 0.08 0.06 5.0 0.04 0.05 0.06 

100 1.3 0.02 0.02 0.00 0.7 0.03 0.03 -0.04 

300 -14.3 -0.13 -0.15 -0.15 -12.0 -0.13 -0.10 -0.13 

1000 -20.0 -0.23 -0.19 -0.18 -19.0 -0.17 -0.21 -0.19 

 

 

 
Table A.2.2 

Alpha: 0.05; Number of Iterations: 100 

Case: No Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 9.7 0.07 0.08 0.14 12.0 0.05 0.18 0.13 

50 9.0 0.07 0.09 0.11 10.3 0.10 0.08 0.13 

100 9.7 0.10 0.13 0.06 9.0 0.10 0.12 0.05 

300 3.0 0.03 0.04 0.02 3.7 0.04 0.01 0.06 

1000 3.7 0.05 0.02 0.04 3.0 0.05 0.02 0.02 

Significance of MINIC over 

BACE 

30 9.0 0.12 0.07 0.08 9.7 0.13 0.07 0.09 

50 7.7 0.07 0.09 0.07 7.7 0.07 0.09 0.07 

100 4.3 0.08 0.02 0.03 3.3 0.07 0.02 0.01 

300 12.0 0.11 0.15 0.10 12.3 0.14 0.13 0.10 

1000 8.0 0.08 0.08 0.08 7.7 0.09 0.07 0.07 

Difference 

(BACE-MINIC) 

30 0.7 -0.05 0.01 0.06 2.3 -0.08 0.11 0.04 

50 1.3 0.00 0.00 0.04 2.7 0.03 -0.01 0.06 

100 5.3 0.02 0.11 0.03 5.7 0.03 0.10 0.04 

300 -9.0 -0.08 -0.11 -0.08 -8.7 -0.10 -0.12 -0.04 

1000 -4.3 -0.03 -0.06 -0.04 -4.7 -0.04 -0.05 -0.05 
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Table A.2.3 

Alpha: 0.05; Number of Iterations: 100 

Case: With Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 3.0 0.07 0.01 0.01 3.7 0.09 0.01 0.01 

50 8.0 0.05 0.09 0.10 6.3 0.05 0.08 0.06 

100 3.7 0.02 0.05 0.04 5.3 0.06 0.04 0.06 

300 9.3 0.08 0.11 0.09 9.3 0.07 0.12 0.09 

1000 11.0 0.14 0.10 0.09 9.3 0.11 0.09 0.08 

Significance of MINIC over 

BACE 

30 7.7 0.07 0.07 0.09 6.0 0.05 0.07 0.06 

50 2.3 0.04 0.03 0.00 3.0 0.05 0.02 0.02 

100 3.3 0.06 0.01 0.03 3.0 0.04 0.02 0.03 

300 1.7 0.02 0.01 0.02 2.0 0.03 0.01 0.02 

1000 1.0 0.02 0.00 0.01 0.7 0.00 0.00 0.02 

Difference 

(BACE-MINIC) 

30 -4.7 0.00 -0.06 -0.08 -2.3 0.04 -0.06 -0.05 

50 5.7 0.01 0.06 0.10 3.3 0.00 0.06 0.04 

100 0.3 -0.04 0.04 0.01 2.3 0.02 0.02 0.03 

300 7.7 0.06 0.10 0.07 7.3 0.04 0.11 0.07 

1000 10.0 0.12 0.10 0.08 8.7 0.11 0.09 0.06 

 

 

 
Table A.2.4 

Alpha: 0.05; Number of Iterations: 100 

Case: With Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 5.0 0.05 0.03 0.07 4.0 0.05 0.02 0.05 

50 7.3 0.08 0.05 0.09 7.7 0.10 0.04 0.09 

100 7.7 0.09 0.09 0.05 10.0 0.11 0.14 0.05 

300 12.3 0.11 0.13 0.13 12.0 0.07 0.14 0.15 

1000 9.0 0.13 0.07 0.07 12.3 0.13 0.12 0.12 

Significance of MINIC over 

BACE 

30 4.7 0.04 0.05 0.05 5.3 0.05 0.05 0.06 

50 2.7 0.02 0.05 0.01 4.0 0.04 0.05 0.03 

100 2.0 0.00 0.03 0.03 1.0 0.00 0.03 0.00 

300 1.3 0.03 0.01 0.00 1.7 0.03 0.01 0.01 

1000 0.0 0.00 0.00 0.00 0.7 0.01 0.00 0.01 

Difference 

(BACE-MINIC) 

30 0.3 0.01 -0.02 0.02 -1.3 0.00 -0.03 -0.01 

50 4.7 0.06 0.00 0.08 3.7 0.06 -0.01 0.06 

100 5.7 0.09 0.06 0.02 9.0 0.11 0.11 0.05 

300 11.0 0.08 0.12 0.13 10.3 0.04 0.13 0.14 

1000 9.0 0.13 0.07 0.07 11.7 0.12 0.12 0.11 
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Table A.3.1 

Alpha: 0.01; Number of Iterations: 100 

Case: No Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 4.7 0.06 0.03 0.05 5.7 0.06 0.04 0.07 

50 4.0 0.06 0.03 0.03 4.0 0.06 0.03 0.03 

100 1.3 0.01 0.02 0.01 2.0 0.02 0.03 0.01 

300 0.7 0.02 0.00 0.00 1.0 0.02 0.01 0.00 

1000 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 

Significance of MINIC over 

BACE 

30 4.7 0.03 0.05 0.06 4.3 0.04 0.03 0.06 

50 1.0 0.01 0.01 0.01 1.0 0.02 0.01 0.00 

100 2.7 0.04 0.02 0.02 2.0 0.04 0.02 0.00 

300 8.0 0.10 0.07 0.07 7.0 0.08 0.07 0.06 

1000 7.3 0.10 0.04 0.08 5.0 0.06 0.04 0.05 

Difference 

(BACE-MINIC) 

30 0.0 0.03 -0.02 -0.01 1.3 0.02 0.01 0.01 

50 3.0 0.05 0.02 0.02 3.0 0.04 0.02 0.03 

100 -1.3 -0.03 0.00 -0.01 0.0 -0.02 0.01 0.01 

300 -7.3 -0.08 -0.07 -0.07 -6.0 -0.06 -0.06 -0.06 

1000 -7.3 -0.10 -0.04 -0.08 -5.0 -0.06 -0.04 -0.05 

 

 

 
Table A.3.2 

Alpha: 0.01; Number of Iterations: 100 

Case: No Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 4.7 0.02 0.06 0.06 6.0 0.04 0.07 0.07 

50 4.7 0.05 0.04 0.05 4.0 0.03 0.03 0.06 

100 2.3 0.02 0.04 0.01 2.3 0.04 0.02 0.01 

300 1.0 0.01 0.02 0.00 1.7 0.01 0.01 0.03 

1000 1.0 0.01 0.00 0.02 1.3 0.03 0.00 0.01 

Significance of MINIC over 

BACE 

30 5.7 0.07 0.04 0.06 6.0 0.08 0.04 0.06 

50 5.7 0.05 0.07 0.05 4.3 0.04 0.06 0.03 

100 0.7 0.02 0.00 0.00 1.0 0.01 0.01 0.01 

300 4.3 0.07 0.05 0.01 4.3 0.06 0.05 0.02 

1000 2.3 0.00 0.03 0.04 2.3 0.03 0.02 0.02 

Difference 

(BACE-MINIC) 

30 -1.0 -0.05 0.02 0.00 0.0 -0.04 0.03 0.01 

50 -1.0 0.00 -0.03 0.00 -0.3 -0.01 -0.03 0.03 

100 1.7 0.00 0.04 0.01 1.3 0.03 0.01 0.00 

300 -3.3 -0.06 -0.03 -0.01 -2.7 -0.05 -0.04 0.01 

1000 -1.3 0.01 -0.03 -0.02 -1.0 0.00 -0.02 -0.01 
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Table A.3.3 

Alpha: 0.01; Number of Iterations: 100 

Case: With Omitted Variable; No MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 1.0 0.02 0.00 0.01 0.7 0.01 0.00 0.01 

50 2.7 0.02 0.03 0.03 2.3 0.02 0.03 0.02 

100 1.3 0.01 0.01 0.02 0.7 0.00 0.01 0.01 

300 3.7 0.01 0.06 0.04 1.7 0.02 0.03 0.00 

1000 3.0 0.04 0.03 0.02 3.0 0.05 0.03 0.01 

Significance of MINIC over 

BACE 

30 2.3 0.01 0.02 0.04 3.0 0.02 0.04 0.03 

50 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 

100 1.7 0.03 0.00 0.02 1.7 0.03 0.01 0.01 

300 0.7 0.01 0.01 0.00 0.0 0.00 0.00 0.00 

1000 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 

Difference 

(BACE-MINIC) 

30 -1.3 0.01 -0.02 -0.03 -2.3 -0.01 -0.04 -0.02 

50 2.7 0.02 0.03 0.03 2.3 0.02 0.03 0.02 

100 -0.3 -0.02 0.01 0.00 -1.0 -0.03 0.00 0.00 

300 3.0 0.00 0.05 0.04 1.7 0.02 0.03 0.00 

1000 3.0 0.04 0.03 0.02 3.0 0.05 0.03 0.01 

 

 

 
Table A.3.4 

Alpha: 0.01; Number of Iterations: 100 

Case: With Omitted Variable; With MA Terms 

Model 
Sample 

Size 

Absolute Loss Function Squared Loss Function 

Average 

(%) 
V1 V2 V3 

Average 

(%) 
V1 V2 V3 

Significance of BACE over 

MINIC 

30 1.3 0.01 0.01 0.02 1.0 0.01 0.01 0.01 

50 3.0 0.04 0.03 0.02 3.3 0.03 0.03 0.04 

100 2.3 0.03 0.03 0.01 3.0 0.04 0.04 0.01 

300 3.3 0.02 0.04 0.04 3.0 0.03 0.04 0.02 

1000 3.0 0.06 0.02 0.01 2.3 0.05 0.02 0.00 

Significance of MINIC over 

BACE 

30 1.3 0.00 0.01 0.03 2.0 0.02 0.02 0.02 

50 1.0 0.01 0.02 0.00 1.7 0.00 0.04 0.01 

100 0.3 0.00 0.01 0.00 0.3 0.00 0.01 0.00 

300 1.0 0.03 0.00 0.00 0.0 0.00 0.00 0.00 

1000 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 

Difference 

(BACE-MINIC) 

30 0.0 0.01 0.00 -0.01 -1.0 -0.01 -0.01 -0.01 

50 2.0 0.03 0.01 0.02 1.7 0.03 -0.01 0.03 

100 2.0 0.03 0.02 0.01 2.7 0.04 0.03 0.01 

300 2.3 -0.01 0.04 0.04 3.0 0.03 0.04 0.02 

1000 3.0 0.06 0.02 0.01 2.3 0.05 0.02 0.00 
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APPENDIX B 
Rela t ive  MAPE of  Forecas t s  

MAPE(BACE-AVAR)/MAPE(MINIC) 

 

 
Table B.1 

Case: No Omitted Variable; No MA Term 

n V1 V2 V3 Average 

30 0.4684 0.6977 0.6924 0.6195 

50 0.6220 0.7342 0.8100 0.7221 

100 0.6338 1.4573 1.3457 1.1456 

300 0.6588 0.5710 0.5329 0.5876 

1000 0.6678 0.7614 0.8349 0.7547 

 

 
Table B.2 

Case: No Omitted Variable; With MA Term 

n V1 V2 V3 Average 

30 0.6718 0.6824 0.5628 0.6390 

50 2.1923 1.0767 0.8456 1.3715 

100 0.2722 0.7403 1.1038 0.7054 

300 0.3998 0.8795 0.6133 0.6308 

1000 2.6022 0.9538 0.9723 1.5094 

 

 
Table B.3 

Case: With Omitted Variable; No MA Term 

n V1 V2 V3 Average 

30 0.7150 0.8818 1.4053 1.0007 

50 0.6256 0.9643 1.2664 0.9521 

100 1.2097 1.3674 1.0622 1.2131 

300 0.4643 0.4511 0.5285 0.4813 

1000 0.6053 0.5543 0.4691 0.5429 

 

 

Table B.4 

Case: With Omitted Variable; With MA Term 

n V1 V2 V3 Average 

30 0.5468 0.5716 1.2224 0.7803 

50 1.2342 1.1004 1.0267 1.1204 

100 1.4864 1.2833 1.1436 1.3044 

300 1.1347 0.3448 0.3331 0.6042 

1000 0.6644 0.8525 0.6523 0.7231 

 


