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Abstract

We investigate the differences and connections between discrete-space and
continuous-space social interaction models. Although our class of continuous-
space model has a unique equilibrium, we find that discretized models can
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dynamics by using the properties of a potential game. Although the equilib-
rium population distribution in the continuous space is uniquely given by a
symmetric unimodal distribution, we find that such a distribution is not always
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1 Introduction

Beckmann’s (1976) social interaction model has been an important benchmark

for the study of spatial agglomeration. Considering the fact that face-to-face com-

munications are important to understand the mechanisms behind spatial distribu-

tions of economic activities, Beckmann presents a model in which people aiming

to interact with others choose their locations. People can save the costs of inter-

actions by locating close to one other, but agglomeration causes congestion such

as increases in housing prices. Equilibrium population distributions, which are of

interest to this paper, emerge as a result of the trade-off between the positive and

negative effects of agglomeration. This type of model has been of particular inter-

est for urban economists because the location of an urban center is not specified a

priori unlike classical urban models such as the monocentric city model.1

Beckmann (1976) considers social interactions among households for a linear

city that is represented by a real line, and Tabuchi (1986) and Mossay and Picard

(2011) also consider social interactions among a single type of agents on the real

line.2 All of these studies attain symmetric unimodal population distributions

as unique equilibria. The uniqueness result is compelling, and the equilibrium

distribution is intuitively reasonable. Moreover, if the planner would like to address

any inefficiencies due to externalities, he could support the optimum as the unique

equilibrium by internalizing externalities because the equilibrium under such an

intervention is also unique. Their analysis is theoretically concise and insightful,

1See, for example, Section 3.3 of Fujita and Thisse (2013).
2Mossay and Picard (2011) consider consumers, whereas Tabuchi (1986) considers firms. Besides

models on the real line, O’Hara (1976) considers the social interactions of firms in a square city, and
Borukhov and Hochman (1977) consider the social interactions of consumers in a circular city. They
also obtain a symmetric unimodal distribution as a unique equilibrium. However, in Borukhov
and Hochman (1977), the cost of social interaction is not weighted by population density, so social
interactions do not cause any externality.
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but it is also important to study whether the results attained in continuous-space

models are robust in terms of the discretization of space, because they might

represent idealization in the smooth continuous world. In particular, if we would

like to empirically test the model, we would have to discretize it. In a discrete

world, we expect that the equilibrium is generally not unique. In such a case,

we have to address the stability of equilibria, and there is no guarantee that the

symmetric unimodal distribution always represents a stable equilibrium.

There are few papers on spatial social interactions using a discrete-space model.

Anas and Xu (1999) present a multi-regional general equilibrium model in which

every region employs labor and produces goods. Although the technology exhibits

a constant return to scale, the goods are differentiated over regions and consumers

travel to each region to purchase them, which yields an agglomeration force in

the central region.3 Although their model is useful for the evaluation of urban

policies, they rely entirely on numerical simulations, forcing us to consider par-

ticular equilibrium that might be unstable in case of multiple equilibria. Turner

(2005) and Caruso et al. (2009) consider one-dimensional discrete-space location

models with neighborhood externalities in the sense that utility, at a particular

location, depends on the population distribution of that neighborhood.4 Caruso et

al. (2009) rely on numerical simulations, while Turner (2005) generically attains a

unique equilibrium outcome by considering an extreme type of neighborhood ex-

ternalities wherein an individual located between vacant neighborhoods receives

a bonus. However, because they focus on the effects of residential locations on

open spaces, they abstract away from the endogenous determination of an urban

3Braid (1988) considers a five-town model having a similar structure, although he abstracts away
from general equilibrium effects. He shows that, depending on the degree of product differentiation,
the equilibrium firm distribution can be bimodal.

4Caruso et al. (2007) considers a two-dimensional discrete space.
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center, although this remains an important feature of the model in which we are

interested.5

In this paper, we consider social interactions among consumers in the discrete

space in which a finite number of cities are evenly distributed on a line segment,

and we study the properties of equilibria accordingly. To this end, we begin with

writing the model for a general quasi-linear utility function, invoking the fact

that our model of location choice can be described as a potential game (Moderer

and Shapley, 1996).6 One important consequence of being a potential game is

that the equilibrium can be characterized with a finite-dimensional optimization

problem. Indeed, by assuming that the pair-wise interaction cost between cities is

symmetric, we can identify a function, which is called a potential function, so that

the set of equilibria coincides exactly with the set of Kurash-Kuhn-Tucker points

for the maximization problem of the function. Moreover, for our stability analysis,

we recognize the fact that every local maximizer of the potential function is a stable

equilibrium under a broad class of myopic evolutionary dynamics. Note that the

stability of equilibria has not been addressed in continuous-space models.7 The

discretization of space reduces the dimension of stability analysis and enables us

to scrutinize the properties of equilibria more closely.

After the general characterization of equilibria and their stability mentioned

above, we focus on a discrete version of Mossay and Picard’s (2011) model to have

a closer look at equilibrium properties. Because the utility function is linear in city

populations under their model, it is possible to obtain analytical results regarding

5Moreover, they make the so-called open-city assumption in which the equilibrium utility level
is exogenous, whereas the total city population is endogenous.

6See Oyama (2009a, b) and Fujishima (2013) for applications of the potential game approach to
geography models.

7Naturally, continuous-space models are not always free from the problem of multiple equilibria,
as we will discuss in the concluding remarks.

4



equilibrium properties for an arbitrary number of cities.8 We show that, as long

as the interaction cost is not too small, the equilibrium is essentially non-unique

in the sense that equilibria having different numbers of populated cities coexist.

In particular, we can pin down a range of the interaction costs where multiple

equilibria arise for any finite number of cities. Thus, the uniqueness is not robust in

terms of the discretization of space. Moreover, although the equilibrium population

reaches its peak at the central city in the continuous-space model, we find a case in

which the single largest city does not emerge at any stable equilibria. Therefore, the

type of population distribution that is uniquely attained in the continuous-space

model is not always stable in the discrete world.

Although the results above address the difference of equilibrium properties be-

tween discrete and continuous spaces, we also investigate the connections among

them. In particular, we increase the number of cities while the total size of location

space remains fixed, and we study the limiting properties of equilibria. We show

that any sequence of the discrete-space model’s equilibria converges to the equilib-

rium of the continuous-space model as the number of cities goes to infinity, or the

distance between adjacent cities vanishes. This means that the set of equilibria is

continuous in the number of cities at their limit because equilibrium in a continu-

ous space is unique. This result merits attention because the non-uniqueness result

mentioned above can be true for any finite number of cities if the interaction cost

is sufficiently large. Our result implies that, even if there were multiple equilibria,

all of them would converge to a single equilibrium as discretization is refined.

This paper proceeds as follows. Section 2 introduces a general class of social

interaction models, characterizing this class as a potential game. Section 3 examines

8Tabuchi (1982) considers the same class of discrete-space social interaction model, though he
studies only the social planner’s problem.
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the uniqueness and stability of equilibria. Section 4 investigates the connections

between discrete-space and continuous-space models by increasing the number of

cities. Section 5 concludes the paper. Proofs omitted in the main text are provided

in Appendix.

2 The Model

We start with a general class of discrete-space social interaction models that

includes the discrete-space analogue of Beckmann’s (1976) and Mossay and Picard’s

(2011) models as special cases. This description allows us to illustrate how the

potential function approach generally works for the equilibrium characterization

and stability analysis of discrete-space social interaction models.

2.1 Basic Assumptions

We consider a region in which K cities are evenly distributed on a line segment

normalized as the unit interval [0, 1]. Cities are labeled by i ∈ S ≡ {1, 2, · · · ,K} in

order of distance from location 0, and city i’s location is xi ≡ 1
K

(

i − 1
2

)

∈ [0, 1]. Each

city has the same amount of land A/K so that the total amount of land in the region

is fixed at A regardless of the number of cities. See Figure 1 for the structure of this

region. As is common in the literature, the land is owned by absentee landlords.

The opportunity cost of land is normalized to zero.

Figure 1: The regional structure
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There are a unit mass of identical consumers in this region. Let ni ∈ [0, 1] be

the mass of consumers in city i and let ∆ ≡
{

n = (n1, · · · ,nK) ∈ RK
+ :

∑K
i=1 ni = 1

}

denote the set of consumers’ spatial distributions. Each consumer travels to every

other consumer for social interaction. In each city, they have the same preference

ui(zi, yi) for residential land yi and for the composite good zi which is chosen as

the numéraire. Given land rent ri and population distribution n ∈ ∆, the utility

maximization problem of consumers in city i is expressed as

max
zi,yi

{

ui(zi, yi) | zi + riyi + Ti(n) ≤ Y, i ∈ S
}

, (1)

where ri denotes the land rent in city i and Y is the fixed income. Ti(n) is the total

cost of traveling to other consumers from city i, which is defined as

Ti(n) ≡ τ
K

∑

j=1

di jn j, (2)

where τdi j denotes the travel cost from city i to j. We assume that D = (di j) fulfills

the following four conditions: (i) dii = 0 for all i ∈ S; (ii) di j = d ji for any i, j ∈ S;

(iii) D is conditionally negative definite; and (iv) di j + d jk ≤ dik for any i < j < k.9

In the terminology of spatial statistics, the first three conditions imply that di j is

an isotropic variogram. This class of travel costs includes the exponential cost

(di j = e|xi−x j| − 1) and the linear cost (di j = |xi − x j|), both of which are commonly

assumed in the literature of spatial interaction.

The utility function ui(zi, yi) is assumed to be quasi-linear:

ui(zi, yi) = zi + fi(yi), (3)

9An n× n matrix M is conditionally negative definite if x′Mx < 0 for all x ∈ Rn such that
∑n

i=1 xi = 0.
See, e.g., Bapat and Raghavan (1997) for properties of conditionally negative definite matrices.
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where fi(x) is a strictly increasing, concave, and twice differentiable function for

x > 0. We also assume that limx→0 f ′
i
(x) = ∞. Note that fi can be city-specific. If

fi(x) = α ln x [resp. fi(x) = − α
2x

] where α > 0 is a constant, we obtain the discrete-

space analogue of Beckmann’s (1976) [resp. Mossay and Picard’s (2011)] model.

2.2 Spatial Equilibrium and Potential Games

Having elaborated the structure of the model, we will now define the equilib-

rium. Because our model includes the location choice of consumers, the equilibrium

conditions require that a consumer chooses a city that gives him the highest utility,

in addition to choosing an optimal allocation in his city.

Definition 1. An equilibrium is a collection of allocations (z∗
i
, y∗

i
)K
i=1

, land rents (r∗
i
)K
i=1

,

and a population distribution n∗ ∈ ∆ such that

1. Given r∗
i

and n∗ ∈ ∆, (z∗
i
, y∗

i
) solves problem (1) for all i ∈ S;

2. For all i ∈ S, the land market clears whenever ni > 0;

3. Given (r∗
i
)K
i=1

and n∗ ∈ ∆, no one has incentive to change his location. That is, there

exists u∗ ∈ R such that



























u∗ = ui(z
∗
i
, y∗

i
) if n∗

i
> 0,

u∗ ≥ ui(z
∗
i
, y∗

i
) if n∗

i
= 0,

∀i ∈ S. (4)

In particular, we call an equilibrium population distribution n∗ ∈ ∆ a spatial equi-

librium. Under the quasi-linear utility function specified in (3), the first-order

condition for the utility maximization problem (1) is

f ′i (yi) ≤ ri ∀i ∈ S, (5)
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where the equality holds whenever yi > 0. However, because the marginal utility of

residential land is infinity at yi = 0 by assumption, we must have yi > 0. Therefore,

f ′
i
(yi) = ri for all i ∈ S. For yi > 0, let gi( f ′

i
(yi)) be the inverse function of f ′

i
(yi) (i.e.,

gi( f ′
i
(yi)) = yi).

10 Then, gi(ri) is the per-capita demand for the residential land in

city i, and the indirect utility of consumers in city i is

vi(ri,Y − Ti(n)) ≡ max
zi,yi

{

ui(zi, yi) | zi + riyi + Ti(n) ≤ Y, i ∈ S
}

= Y − Ti(n) − rigi(ri) + fi(gi(ri)).

(6)

The equilibrium land rent is determined so that the land market clears, as long

as consumers are willing to pay more than the opportunity cost of land that is

assumed to be zero. Let r̄i be the land rent at which the total demand nigi(ri) of the

residential land in city i is equal to the total land supply A/K. Then,

r∗i = max{r̄i, 0} ∀i ∈ S. (7)

If r̄i < 0, land is used for non-residential purpose, and we necessarily have y∗
i
= 0.

However, it follows from ri = f ′
i
(yi) > 0 that this does not occur. Therefore, the

equilibrium condition (7) reduces to

gi(r
∗
i ) =

A

n∗
i
K

∀i ∈ S. (8)

Let

hi(ni) = fi

(

A

niK

)

− A

niK
f ′i

(

A

niK

)

. (9)

Because ri = f ′
i
( A

niK
), this is the net utility from land consumption. Then, the

10From the assumption that f (x) is a strictly increasing function, the inverse function exists for
x > 0.
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argument above leads to the following lemma.

Lemma 1. n∗ ∈ ∆ is a spatial equilibrium if and only if there exists v∗ ∈ R such that



























v∗ = vi(n
∗) if n∗

i
> 0,

v∗ ≥ vi(n
∗) if n∗

i
= 0,

∀i ∈ S, (10)

where vi(n) is the indirect utility function in city i defined by

vi(n) ≡ vi

(

f ′i

(

A

niK

)

,Y − Ti(n)
)

= Y − Ti(n) + hi(ni). (11)

Writing the indirect utilities in a vector form, we have

v(n) ≡ (vi(n))K
i=1 = Y1 − T(n) + h(n) (12)

where T(n) = (Ti(n))K
i=1

(= Dn), h(n) = (hi(ni))
K
i=1

, and 1 is a vector of ones with an

appropriate dimension. Note that T(n) summarizes the social interaction costs,

and people prefer to agglomerate to reduce these costs. On the other hand, h(n)

summarizes the net utilities from land, and land consumption causes congestion

because h′
i
(ni) =

A2

n3
i
K2 f ′′

i
( A

niK
) < 0. Therefore, people prefer to disperse and escape

from the congestion. As we will see, a spatial equilibrium is attained as a result of

tradeoffs between the agglomeration force represented by T(n) and the dispersion

force represented by h(n).

In what follows, to characterize spatial equilibria and their stability, we invoke

the properties of a potential game that is introduced by Monderer and Shapley (1996).

Note that, because we are interested in the spatial equilibrium, our model may be

viewed as a game in which the set of players is [0, 1], the (common) action set is

10



S, and the payoff vector is (vi)
K
i=1

by Lemma 1.11 Moreover, as is evident from the

definition, a spatial equilibrium is actually a Nash equilibrium of the game. Thus,

let us denote our game by G = (vi)
K
i=1

. Then, we define that G is a potential game if

(vi)
K
i=1

allows for a continuously differentiable function W such that

∂W(n)

∂ni
− ∂W(n)

∂n j
= vi(n) − v j(n) ∀n ∈ ∆,∀i, j ∈ S (13)

where W is defined on an open set containing ∆ so that its partial derivative is

well-defined on ∆. If the condition above holds, W is called a potential function.

Suppose, for the moment, that G is a potential game with the potential function

W. As mentioned in the introduction, the equilibria of a potential game are charac-

terized with the optimization problem of an associated potential function. Indeed,

let us consider the following problem:

max
n∈∆

W(n). (14)

Let µ be a Lagrange multiplier for the constraint
∑K

i=1 ni = 1. Then, the first-order

condition is ∂W(n)

∂ni
≤ µ where the equality holds whenever ni > 0. Then, by (13), we

have vi(n) = v j(n) for any populated cities i and j, and vk(n) ≤ vi(n) if nk = 0 and

ni > 0. Therefore, n is a spatial equilibrium. By similar reasoning, it follows that the

converse is also true.12 That is, if n is a spatial equilibrium, it satisfies the necessary

condition for problem (14). Therefore, the equilibrium set of G exactly coincides with

the set of Karush-Kuhn-Tucker (KKT) points of problem (14).

The necessary and sufficient condition for the existence of a potential function

11A game with a continuum of anonymous players is called a population game (Sandholm, 2001).
In our game, players are anonymous in that the payoff depends on only strategy distributions.

12See Proposition 3.1 of Sandholm (2001).
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is the triangular integrability (see, e.g., Hofbauer and Sigmund, 1988), which, in our

model, is stated as

di j + d jk + dki = dik + dkj + d ji for any i, j, k ∈ S. (15)

Recall that our travel costs are pair-wise symmetric (i.e., di j = d ji for any i, j ∈ S).

Hence, the condition above necessarily holds, and our game is a potential game.

Indeed, the following lemma explicitly constructs a potential function for (vi)
K
i=1

.

Lemma 2. G is a potential game with the potential function

W(n) ≡ τW1(n) +W2(n) (16)

where

W1(n) = −
∮

T(n′)dn
′ = −1

2

K
∑

i=1

K
∑

j=1

di jnin j, (17)

W2(n) =

∮

h(n′)dn
′ =

K
∑

i=1

ni fi

(

A

niK

)

. (18)

∮

denotes the line integral over a path in ∆ connecting 0 to n. Because di j = d ji for

any i, j ∈ S, it is guaranteed that the line integrals are path-independent.

Observe that, in our potential game, we can recognize the tradeoff between

centrifugal and centripedal forces as the tradeoff between the concavity and con-

vexity of the potential function. Indeed, W2 is strictly concave because fi’s are

strictly concave, whereas W1 is quasiconvex because D is nonnegative and condi-

tionally negative definite.13 If the concavity of W2 dominates so that W is strictly

concave, a dispersed population distribution (i.e., an interior point in ∆) is attained

13See, for example, Theorem 4.4.6 of Bapat and Raghavan (1997).
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as a unique equilibrium. On the other hand, if the convexity of W1 dominates,

equilibrium population distributions would be more agglomerated. Therefore, W1

represents the centripedal force whereas W2 represents the centrifugal force.

It is also worth pointing out that, by using the potential function, the discrete-

space social interaction model might be viewed as a deterministic representation

of the random utility discrete choice model. To illustrate this point, let us consider

the following choice probability function:

Ψ(π) = arg max
n∈∆
π · n +W2(n) (19)

where we interpretπ ∈ RK as the original payoff vector and W2(n) as a deterministic

perturbation to the payoffs.14 Then, it can easily be verified that n∗ ∈ ∆ is a spatial

equilibrium if and only if n∗ = Ψ(Dn∗).15

2.3 Stability

2.3.1 Adjustment Dynamics

We are interested in the stability of equilibria particularly because our model

generally includes multiple equilibria, as shown in the next section. Specifically,

14See Hofbauer and Sandholm (2002) for more details.
15If W2(n) = −α

∑K
i=1 ni ln ni + const, which corresponds to Beckmann’s (1976) model, it is well

known that the resulting choice probability is induced by the logit model:

Ψi(π) =
exp(α−1πi)

∑K
j=1 exp(α−1π j)

. (20)

Then, because the spatial equilibrium is a fixed point ofΨ(Dn), it solves

ni =
exp(α−1Ti(n))

∑K
j=1 exp(α−1T j(n))

∀i ∈ S, (21)

and thus it is the quantal response equilibrium due to McKelvey and Palfrey (1995). See also earlier
contributions in transportation science such as Daganzo and Sheffi (1977).
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we are interested in whether we can justify an equilibrium through the existence of

a learning process that makes players settle down in their equilibrium strategies. It

would be unlikely to attain equilibria that cannot be justified in the above sense, so

we would like to restrict our attention to stable equilibria. In this paper, we describe

players’ learning process with an evolutionary dynamic, or a (set-valued) dynamical

system V that maps population distribution n0 ∈ ∆ to a set of Lipschitz paths

in ∆ that starts from n0.16 Although we usually consider a specific evolutionary

dynamic for stability analysis, we will see that a more general analysis is possible

due to the existence of a potential function. That is, the stability of equilbria can be

characterized under a broad class of dynamics. In particular, we consider the class

of admissible dynamics defined below:

Definition 2. An evolutionary dynamic V is admissible for G = (vi)
K
i=1

if for almost all

t ≥ 0 and for all n0 ∈ ∆, it satisfies the following conditions:

(PC) ṅ(t) , 0⇒ ṅ(t) · v(n(t)) > 0 for all n( · ) ∈ V(n0),

(NS) ṅ(t) = 0⇒ n(t) is a Nash equilibrium of G for all n( · ) ∈ V(n0).

To interpret condition (PC), which is called positive correlation, we rewrite it as

ṅ(t) · v(n(t)) =

K
∑

i=1

ṅi(t)

















vi(n(t)) − 1

K

K
∑

j=1

v j(n(t))

















. (22)

In general, it would be reasonable to expect that each term in the summation

over i is positive: if the payoff from city i is higher than the average payoff (i.e.,

vi(n(t)) − 1
K

∑K
j=1 v j(n(t)) > 0), then the mass of consumers choosing city i should

increase (i.e., ṅi(t) > 0), and vice versa. Condition (PC) only requires that this

be true in the aggregate. Therefore, in learning periods, it is possible that the
16Considering a general dynamical system allows us to include set-valued dynamics such as the

best-response dynamics which is important from the game-theoretic point of view.
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mass of consumers choosing city i increases even though it yields a less-than-

average payoff. Condition (NS), which is called Nash stationary, states that if there

is a profitable deviation, some consumers change their locations. Under condition

(PC), the converse is also true.17 Therefore, under conditions (PC) and (NS), ṅ(t) = 0

if and only if n(t) is a Nash equilibrium of G.

Specific examples of admissible dynamics include the best response dynamic

(Gilboa and Matsui, 1991), the Brown-von Neumann-Nash (BNN) dynamic (Brown,

1950), and the projection dynamic (Dupuis, 1993).18 One important remark is that

the replicator dynamic (Taylor, 1978), which is often used in spatial economic models

(e.g., Fujita et al., 1999), is not admissible. Under the replicator dynamic, a rest point

is always attained on the boundary, but the boundary points are not always Nash

equilibria. Thus, condition (NS) does not hold under the replicator dynamic.19

2.3.2 Stability Condition of Equilibrium

The admissible dynamics are closely connected to the potential function, and

thereby to the stability of Nash equilibria. Given a dynamic, we say that a popula-

tion distribution n ∈ ∆ is stable if there exists a neighborhood U ⊆ ∆ of n such that

n(t) → n for any trajectory n( · ) of the dynamic with n(0) ∈ U. In particular, if we

can consider ∆ for U, n is globally stable. n ∈ ∆ is unstable if it is not stable.

To understand how the admissible dynamics are related to the potential func-

tion, let us consider our game G = (vi)
K
i=1

with the potential function W given by

(18). Note that, by conditions (PC) and (NS), any trajectory n( · ) of an admissi-

ble dynamic monotonically ascends the potential function until it reaches a Nash

17See Proposition 4.3 of Sandholm (2001).
18See Sandholm (2005) for more examples.
19The replicator dynamics belongs to the class of strict myopic adjustment dynamics due to Swinkels

(1993) where Nash stationary is not imposed.
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equilibrium because

Ẇ(n(t)) =

K
∑

i=1

∂W(n(t))

∂ni
ṅi(t) =

K
∑

i=1

vi(n(t))ṅi(t) > 0 (23)

whenever ṅ(t) , 0.20 Therefore, if Nash equilibrium n∗ does not locally maximize

W, we can perturb n∗ so that the trajectory ascends W and goes away from the

equilibrium. In other words, assuming that each Nash equilibrium is isolated, a

Nash equilibrium is stable under any admissible dynamics if and only if it locally maximizes

an associated potential function.21 Therefore, if a game has a potential function, we

can characterize the stability of equilibria under admissible dynamics by looking

at the shape of the potential function.

2.3.3 Instability of Population Distributions

In view of the observation above, we investigate the relationship between in-

teraction cost τ and the instability of spatial equilibria. We elaborate this point by

obtaining a sufficient condition under which a population distribution could not

be stable even if it were a spatial equilibrium.

Let n ∈ ∆ be a spatial equilibrium such that supp n = L ⊆ S where supp n is

the support of n (i.e., supp n = {i ∈ S : ni > 0}). We denote the cardinality of L

by |L|. Because a stable spatial equilibrium locally maximizes potential function

W, we may investigate its Hessian H, while we have to consider the fact that

trajectories of admissible dynamics stay in ∆. To this end, let GL be the matrix of

the active constraints’ gradients corresponding to L. For example, if L = S \ {1},

GL =
(

1 1 ··· 1
−1 0 ··· 0

)′
, where the prime means the transpose of matrix, because the active

20Recall that ṅ(t) = 0 if and only if n(t) is a Nash equilibrium.
21See Sandholm (2001) for a formal argument about this.
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constraints are
∑K

i=1 ni = 1 and −n1 ≤ 0. Let ZL be a GL’s null-space matrix. Then,

the second-order necessary condition implies that n does not locally maximize W

if HL ≡ Z′LHZL is not negative semi-definite, and this boils down to showing that

the largest eigenvalue of HL is positive.22

Choosing reference city k ∈ L, let DL be the submatrix of D representing travel

costs within L \ {k} and dkL = (dki)i∈L\{k}. Then, we can take ZL so that

HL = τH1 +H2 (24)

where

H1 = dkL ⊗ 1 + (dkL ⊗ 1)′ −DL, (25)

H2 = diag[(h′i(ni))i∈L\{k}] + h′k(nk)1
′1. (26)

In the formula above, ⊗ denotes the Kronecker product, 1 is a vector of ones with an

appropriate dimension, and diag(x) is the diagonal matrix having x as its diagonal

elements. For analytical convenience, we choose the left end city in support of n as

a reference city. Note that every matrix and vector is defined for support L which

is generally a subset of S. However, to simplify notations, we sometimes suppress

subscript L when no confusion arises.23

In the following analysis, we exploit the fact that a support of spatial equilibrium

can be considered a downsized replica of the full support. Specifically, populated

cities in a spatial equilibrium are congregated (i.e., there is no vacant city between

any populated cities) as shown in the following lemma:

22HL is called the reduced Hessian. See, for example, Griva et al. (2009).
23For example, H1 and H2 should have been written as H1L and H2L.
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Lemma 3. Suppose n ∈ ∆ is a spatial equilibrium. Then, supp n ∈ SC where

SC =
{

{i1, ..., ia} ⊆ S : i j+1 = i j + 1, 1 ≤ j ≤ a − 1, a ∈ S
}

. (27)

Proof. All proofs are relegated to the Appendix. □

As a result, the properties of D carry over to DL. As we will see in further sections,

this significantly simplifies the analysis and enables us to obtain analytical insights.

To attain a threshold value of τ above which the largest eigenvalue of HL is

positive, we invoke Weyl’s inequality that says

λmax(HL) ≡ λ|L|−1(HL) ≥ τλ|L|− j(H1) + λ j(H2) (28)

for 2 ≤ j ≤ |L|−1 whereλi(M) is the i-th smallest eigenvalue of matrix M.24 Although

we made some adjustments to account for feasibility constraints, we can see that H1

corresponds to agglomeration force W1 whereas H2 corresponds to dispersion force

W2. Indeed, because DL is conditionally negative definite as D is by Lemma 3, it

follows that H1 is positive definite, and thus all of its eigenvalues are also positive.

Therefore, H1 acts as the destabilizing force against interior distribution. On the

other hand, because hi is a decreasing function, all of H2’s eigenvalues, except for

one zero eigenvalue, are negative, and thus H2 acts as the stabilizing force. The

threshold value is attained when those two forces are balanced:

Proposition 1. A population distribution n ∈ ∆ such that supp n = L cannot be a stable

spatial equilibrium if τ > min2≤ j≤|L|−1 λ j−1(diag[(|h′
i
(ni)|)i∈L\{k}])/λ|L|− j(H1).

To closely examine the instability condition above, we consider the linear cost

24Weyl’s inequality states that λp(B+C) ≤ λp+q(B)+λn−q(C) for q ∈ {0, 1, 2, ..., n−p} and λp(B+C) ≥
λp−q+1(B) + λq(C) for q ∈ {1, 2, ..., p} where B and C are n × n symmetric matrices. See Theorem 4.3.1
and Corollary 4.3.3 of Horn and Johnson (2013).
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(di j = |xi − x j|) and the exponential cost (di j = e|xi−x j| − 1). Moreover, to abstract away

from the spatial variation of h′
i
(ni), we assume h′

i
(ni) = −αK/A for any i ∈ S.25 Then,

we can see that HL is independent of the population distribution, and HL = HL′

whenever L,L′ ∈ SC and |L| = |L′|. Thus, we may focus on the number of populated

cities in a spatial equilibrium. The following corollaries give the explicit expressions

of threshold values of τ for each case:

Corollary 1.1. Suppose h′
i
(ni) = −αK/A and di j = |xi−x j|. Then, a population distribution

n ∈ ∆ having R populated cities cannot be a stable spatial equilibrium if

τ > τl(R) ≡
(

1 − cos
2π

2R + 1

)

αK2

A
. (29)

Corollary 1.2. Suppose h′
i
(ni) = −αK/A and di j = e|xi−x j| − 1. Then, a population distri-

bution n ∈ ∆ having R populated cities cannot be a stable spatial equilibrium if

τ > τe(R) ≡ 1

e2/K − 1

(

1 + e2/K − 2e1/K cos
2π

R − 1

)

αK

A
. (30)

There are two remarks here. First, because τe(R) and τl(R) are decreasing in

R, the maximum possible number of populated cities that might constitute a stable spatial

equilibrium is decreasing in τ in either of exponential and linear cases. Second,

it follows that τe(K) and τl(K) are increasing in K whereas τe(K) → α
2A

(1 + 4π2)

and τl(K) → απ2/(2A) as K → ∞. Therefore, if τ is sufficiently large, a population

distribution with full support cannot be a stable spatial equilibrium for any finite K.

25This can be induced through Mossay and Picard’s (2011) model. See Section 3.
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3 Equilibrium Analysis

We have seen how the potential function approach generally works for discrete-

space social interaction models, and, as an illustration, we obtained an instability

condition with respect to τ. In deriving a sufficient condition for the statement

that a population distribution cannot be a stable spatial equilibrium, we do not

have to guarantee that a population distribution is indeed a spatial equilibrium.

However, if we are interested in equilibrium properties such as the multiplicity

and stability of equilibria, we have to demonstrate that population distributions

under consideration are actually spatial equilibria. Therefore, there would be no

hope for attaining analytical observations under a general environment.

Thus, in what follows, to get clear insights into the equilibrium properties of the

discrete-space model, we adopt Mossay and Picard’s (2011) specification in which

fi(x) = − α
2x

and di j = |xi − x j|, and exploit its linear structure. Indeed, under these

assumptions, we have

hi(ni) = fi

(

A

niK

)

− A

niK
f ′i

(

A

niK

)

= −αniK/A (31)

for all i ∈ S, and therefore the net utility from land at equilibrium is linear in n.

In this section, we compare the equilibrium properties of our model with those of

Mossay and Picard’s continuous-space model. As mentioned in the introduction,

a symmetric unimodal population distribution is attained as the unique spatial

equilibrium in their model. Invoking the argument above, we would like to see

whether this result is robust in terms of the discretization of space.

Let us formally define the properties of a population distribution (i.e., unimodal-

ity and symmetry) that characterize the unique equilibrium of the continuous-space
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model. We can say that a population distribution is unimodal if there is k ∈ S such

that nk > ni for all i , k. This means that the single largest city exists in the region.

Moreover, a population distribution is symmetric if



























n K
2 −i = n K

2 +i for all 1 ≤ i ≤ K
2

if K + 1 is odd,

n K−1
2
= n K+1

2
and n K−1

2 −i = n K+1
2 +i for all 1 ≤ i ≤ K−3

2
if K + 1 is even.

Because the total number of cities is exogenously given, we are interested in the

essential multiplicity of equilibria in terms of population distributions restricted

to the support of spatial equilibria. As we observed, all spatial equilibria exhibit

the same population distribution over their supports, as long as the number of

populated cities is fixed. Therefore, we aim to find cases in which spatial equilibria

with different numbers of populated cities simultaneously exist.

In Section 3.1, we are concerned with the essential multiplicity of spatial equi-

libria. We show that, if τ is large, the spatial equilibrium is essentially non-unique.

It is worth pointing out that this result is true for any K. In Section 3.2, we show

that a stable equilibrium having the properties of the continuous-space model’s

unique equilibrium does not always exist. In particular, we find a case in which

the single largest city does not exist at any stable equilibrium.

3.1 Multiplicity of Spatial Equilibria

Now that we are interested in the existence of multiple equilibria, we need to

examine equilibrium conditions. Note that, because v(n) ≡ (vi(n))K
i=1

is linear in n,

the distribution over the support of a spatial equilibrium solves a system of linear

equations. To simplify notations, we focus on population distribution having full

support without loss of generality. Then, observing that (2) can be expressed in
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matrix form τDn, payoff vector v(n) is written as

v(n) = Y1 − τDn − αK

A
En = Y1 − Cn (32)

where E is the identity matrix with an appropriate dimension and

C = τD +
αK

A
E. (33)

Because n is a spatial equilibrium, there exists v∗ ∈ R such that vi(n) = v∗ for all

i ∈ S. Furthermore, the equilibrium value of w ≡ Y − v∗ is given by (1′C−11)−1 ∈ R

because

w 1 = Cn⇒ w 1′C−11 = 1′n = 1

where the prime means the transpose of vector or matrix. Therefore, n solves

Cn =
(

1′C−11
)−1

1. (34)

Note that the analogue argument holds for support L ⊆ S if matrices and vectors are

restricted to L. This implies that a spatial equilibrium with support L is generically

unique if it exists.26 Thus, the number of equilibria is at most one for each L ⊆ S, and

therefore, the set of spatial equilibria is finite. Furthermore, recall that populated

cities in a spatial equilibrium are congregated (Lemma 3). Therefore, we can see

that the number of spatial equilibria having R populated cities is K − R + 1 where

1 ≤ R ≤ K. Then, by invoking index theory, we obtain the following result:

Lemma 4. If there is a spatial equilibrium n such that |supp n| < K, then there is another

spatial equilibrium n′ such that |supp n′| , |supp n|.

26For spatial equilibria, we have to address unpopulated cities in addition to (34).
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Thus, if a spatial equilibrium having some unpopulated cities exists, then there is

necessarily another spatial equilibrium that is essentially different from the equilib-

rium. Therefore, the only situation in which the (essential) multiplicity of equilibria

will not arise is when the spatial equilibrium with full support uniquely exists.

We illustrate the multiplicity of spatial equilibria by finding cases when a spa-

tial equilibrium with full support cannot be stable even if it exists. Since every

admissible evolutionary dynamics converges to a spatial equilibrium, if the spatial

equilibrium with full support exists but is unstable, an admissible dynamic start-

ing in the unstable manifold converges to another equilibrium that must have a

different number of populated cities.

In view of Corollary 1.1, we already know that a population distribution with

full support cannot represent a stable spatial equilibrium if τ > τl(K) where τl(K) is

given by (29). Therefore, we conclude the following result:

Proposition 2. The spatial equilibrium is essentially non-unique if τ > τl(K).

As we observed, τl(K) is increasing in K but converges to απ2

2A
as K → ∞. Thus, if

τ > απ
2

2A
, the spatial equilibrium is essentially non-unique for any finite K.

3.2 Stability of Symmetric Unimodal Distributions

Recall that, in Mossay and Picard’s continuous-space model, the unique equi-

librium displays a symmetric distribution in which the peak is attained at a single

central location. In our discrete-space model, the model’s structure implies that

any spatial equilibrium has a symmetric distribution over its support. Moreover,

its peak is attained at a single city if the number of populated cities is odd, but

not if it is even. In particular, the following lemma provides a sufficient condition

for the existence of stable spatial equilibria with two populated cities, at which the
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population is evenly distributed over the cities:

Lemma 5. If αK2/(2A) < τ < αK2/A, a population distribution n ∈ ∆ such that supp n =

{i, j} ∈ SC and ni j =
(

1
2
, 1

2

)

is a stable spatial equilibrium.27

Note that, by (34), there is no other equilibrium such that ni j ,

(

1
2
, 1

2

)

.

Observe that the single largest city does not exist at
ei+e j

2
which is characterized

in the lemma above. Thus, we are interested in whether there exists another stable

spatial equilibrium in which a single city attains the highest population when

αK2/(2A) < τ < αK2/A. Note that HR+1, the Hessian of W restricted to population

distributions having R + 1 populated cities, can be written as





















HR y

y′ a





















(35)

where y is the last column of HR and a = 2τ
K

R − 2αK
A

. Then, by Cauchy’s interlacing

theorem, λmax(HR+1) ≥ λmax(HR).28 Thus, if a spatial equilibrium having R populated

cities is unstable, then there is no stable equilibrium having more than R populated cities. In

particular, because λmax(H3) = 2τA−αK2

AK
, there is no stable equilibrium having more

than two populated cities if τ > αK2/(2A).

Thus, if τ > αK2/(2A), the only situation in which a single city attains the highest

population is represented by a full agglomeration in one city. However, by Lemma

A1, such a population distribution is not a spatial equilibrium when τ < αK2/A.

Therefore, it turns out that
ei+e j

2
where {i, j} ∈ SC is the only stable equilibrium when

αK2/(2A) < τ < αK2/A, and we conclude the following result:

Proposition 3. The single largest city does not emerge at any stable spatial equilibria if

αK2/(2A) < τ < αK2/A.
27For notational convenience, we write ni j for n{i, j}.
28See, for example, Theorem 4.3.17 of Horn and Johnson (2013).
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4 The Limit of Discrete-Space Models

We investigated the equilibrium properties of discrete-space model in the pre-

vious section, but we have not studied any potential connections between discrete-

space and continuous-space models. In particular, a natural question to ask is

whether there is a sequence of the discrete-space model’s spatial equilibria that

converges to the unique equilibrium of a continuous-space model as the number

of cities goes to infinity while the size of a region is fixed (or the distance between

adjacent cities vanishes). In this section, we provide a positive answer to this ques-

tion. In fact, we show that any sequence of spatial equilibria in a discrete space

converges to a single equilibrium in a continuous space.

In Mossay and Picard’s (2011) model, the unique equilibrium has (−b, b) ⊆ R

as its support where b = π
2

√

α
2τ . To make our analysis compatible with theirs, we

assume that the region is given by [−c, c] where b < c and the location of city i is

xK
i
= 2c

K

(

i − 1
2

)

− c for i ∈ S. Moreover, because they assume that the land density is

uniformly one, we let A = 2c.

We start with a continuous-space model and denote the population at location

x by ϕ(x). Mossay and Picard (2011) characterize the equilibrium conditions as

ϕ(x) +
α

2τ
ϕ”(x) = 0, (36)

ϕ(−b) = 0, ϕ(b) = 0,

∫ b

−b

ϕ(x)dx = 1. (37)

Note that, because the general solution of (36) is an even function, ϕ(−b) = 0 ⇔

ϕ(b) = 0. Hence, it suffices to impose ϕ(−b) = 0. Moreover, integrating both sides

of (36) over [−b, b] and invoking the population constraint
∫ b

−b
ϕ(x)dx = 1, we have

ϕ′(−b)−ϕ′(b) = 2τ/α. Then, becauseϕ′(x) is an odd function,ϕ′(−b) = −ϕ′(b) = τ/α.
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Therefore, the conditions reduce to:

ϕ(x) +
α

2τ
ϕ”(x) = 0, (38)

ϕ′(−b) =
τ

α
, (39)

ϕ(−b) = 0. (40)

We would like to show that the equilibrium conditions of a discrete-space model

converge to the above ones as K→∞. To this end, let us take a sequence of spatial

equilibria, and let nK be the population distribution restricted to the support of

spatial equilibrium for K. By Lemma 3, we may assume that the support for K is

LK =
{

ℓ̄K, ℓ̄K + 1, ℓ̄K + 2, ..., ℓ̄K + RK − 1
}

where ℓ̄K, ℓ̄K + RK − 1 ∈ S. Let ε = 2c/K. In what follows, we approximate ϕ(xK
i
)

by ϕK
i
≡ nK

i
/ε that is interpreted as the population density in city i. The following

lemma summarizes equilibrium conditions that nK has to satisfy:

Lemma 6. Suppose that nK is a population distribution over LK ⊆ {1, 2, ...,K} that is the

support of a spatial equilibrium. Then, it solves

ϕK
j +

α

2τε2
(ϕK

j−1 − 2ϕK
j + ϕ

K
j+1) = 0 for j ∈

{

ℓ̄K + 1, ℓ̄K + 2, ..., ℓ̄K + RK − 2
}

, (41)

εϕK
ℓ̄K
+
α

2τε
(ϕK
ℓ̄K+1
− ϕK

ℓ̄K
) =

1

2
, (42)

ϕK
ℓ̄K
+ ϕK

ℓ̄K+R−1
≤ 2τε

α
. (43)

Note that, because xK
j+1
− xK

j
= ε, (41) becomes (38), whereas (42) becomes

ϕ′(xℓ̄) =
τ

α
(44)
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where xℓ̄ = limK→∞ xK
ℓ̄K

as K goes to infinity, or ε goes to zero. Moreover, because

each of ϕK
ℓ̄K

and ϕK
ℓ̄K+R−1

are nonnegative, (43) becomes

ϕ(xℓ̄) = 0 (45)

as K → ∞. Therefore, limiting population distribution solves differential equation

(38) with boundary conditions (44) and (45). Thus, the equilibrium conditions of

population distribution with support LK converge to the equilibrium conditions in

the continuous space only when xℓ̄ = −b.

However, it follows that this is always true as long as we take a sequence of

spatial equilibria. Indeed, if xℓ̄ , −b, the solution to differential scheme (38), (44),

and (45) does not satisfy the population constraint (i.e.,
∫

ϕ(x)dx , 1). This means

that the population constraint does not hold either when K is sufficiently large,

but this contradicts the fact that we are taking a sequence of spatial equilibria. In

other words, we cannot take a sequence of spatial equilibria such that the support

does not converge to (−b, b). Therefore, equilibrium conditions (41)-(43) converge

to equilibrium conditions (38)-(40) as K→∞.

In general, the convergence of a discrete scheme to a differential scheme does

not necessarily imply that the solution also converges.29 However, by solving

scheme (41)-(43), we can verify that the solution of scheme (41)-(43) converges to

that of scheme (38)-(40) as K→∞. We thus obtain the following result:

Proposition 4. max1≤i≤K

∣

∣

∣ϕ(xK
i
) − ϕK

i

∣

∣

∣→ 0 as K→∞.

Observe that, in the argument above, the sequence of spatial equilibria is arbi-

trary. Thus, any sequence of spatial equilibria converges to the unique equilibrium

29The mathematics literature including the finite difference method addresses the relationship be-
tween difference and differential equations. See, for example, LeVeque (2007).
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of the continuous-space model. Recall that spatial equilibrium in a discrete space

is generally not unique. In particular, when τ is large, a spatial equilibrium is

essentially non-unique whenever K is finite (Proposition 2). Nevertheless, each

equilibrium converges to the single equilibrium as K → ∞. This means that the

set of spatial equilibria parametrized by K is upper hemi-continuous at the limit.

Furthermore, because the spatial equilibrium in the continuous space is unique,

the lower hemi-continuity is implied by the upper hemi-continuity. Therefore, the

set of spatial equilibria is continuous in K at the limit.

5 Conclusion

We studied the properties of discrete-space social interaction models by us-

ing the potential game approach. Although the continuous-space model has a

symmetric unimodal distribution as a unique equilibrium, we showed that such

a distribution is not always stable, and that the uniqueness is not robust in the

discrete-space model. However, we also showed that any sequence of the discrete-

space model’s equilibria converges to the equilibrium of the continuous-space

model as the distance between adjacent cities vanishes.

In this paper, we considered social interactions among a single type of agents.

Thus, a natural extension is to consider multiple types of agents. There is a rich

literature on (continuous-space) social interaction models having both consumers

and firms.30 Because of general equilibrium effects, the properties of equilibrium is

more complex than the class of models considered here. In particular, equilibrium

is generally not unique even in the continuous-space model, although the stability

of equilibria has not been explored. It is difficult to determine the stability of

30See Chapter 6 of Fujita and Thisse (2013) and references therein.
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equilibria in the continuous-space model, but we may be able to address this by

approximating the model with a discrete-space model.

Finally, although we did not engage in policy discussions, the spatial equi-

librium of our model is generally not efficient because social interactions cause

externalities. Indeed, population distribution is more concentrated at social opti-

mum than at market equilibrium. This is a consequence of positive externalities

in social interactions, which yields under-agglomeration. Thus, to achieve a social

optimum, it is necessary that the planner internalize those externalities. However,

because the equilibrium under such an intervention is not necessarily unique as

in a laissez-faire case, there may exist a stable equilibrium besides social optima.

Therefore, in contrast to the continuous world, the policy design to achieve a social

optimum in the discrete world is not straightforward because of the multiplicity of

equilibria. This is an important subject of future research.31

Appendix

Lemma A1. ei ∈ ∆ is a spatial equilibrium if and only if τ ≥ αK2/A.

Proof. vi(ei) − v j(ei) = h(1) − h(0) + d ji. Therefore,

vi(ei) ≥ v j(ei) for any j , i⇔ h(0) − h(1) ≤ min
j,i

d ji = τ/K. □

Proof of Lemma 3. Suppose to the contrary that there exists an equilibrium n in

which, for some i, j ∈ supp n with j−i ≥ 2, nℓ = 0 for all i < ℓ < j. Let k ∈ {i+1, .., j−1}.

31Sandholm (2007) and Fujishima (2013) consider Pigouvian tax policies in the presence of mul-
tiple equilibria.
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Then, because diℓ + dik ≤ dkℓ and dkℓ + d jk ≤ d jℓ for ℓ ≤ i,

i
∑

ℓ=1

diℓnℓ + dik

i
∑

ℓ=1

nℓ ≤
i

∑

ℓ=1

dkℓnℓ ≤
i

∑

ℓ=1

d jℓnℓ − d jk

i
∑

ℓ=1

nℓ. (46)

Similarly,
K

∑

ℓ= j

d jℓnℓ + d jk

K
∑

ℓ= j

nℓ ≤
K

∑

ℓ= j

dkℓnℓ ≤
K

∑

ℓ= j

diℓnℓ − dik

K
∑

ℓ= j

nℓ. (47)

Without loss of generality, suppose
∑K
ℓ= j nℓ ≤

∑i
ℓ=1 nℓ. Then,

K
∑

ℓ=1

d jℓnℓ ≥
K

∑

ℓ=1

d jℓnℓ +

K
∑

ℓ= j

(diℓ − d jℓ − dik − d jk)nℓ (48)

≥
K

∑

ℓ=1

d jℓnℓ +

K
∑

ℓ= j

(diℓ − d jℓ − dik)nℓ − d jk

i
∑

ℓ=1

nℓ ≥
K

∑

ℓ=1

dkℓnℓ. (49)

Therefore,

hi(ni) − h j(n j) −
K

∑

ℓ=1

(diℓ − d jℓ)nℓ > hi(ni) − h j(0) −
K

∑

ℓ=1

(diℓ − d jℓ)nℓ

≥ hi(ni) − hk(0) −
K

∑

ℓ=1

(diℓ − dkℓ)nℓ ≥ 0 ∵ vi(n) ≥ vk(n).

But this contradicts i, j ∈ supp n (i.e., vi(n) = v j(n)). □

Proof of Proposition 1. Because D is conditionally negative definite, it follows from

Lemma 3 that DL is also conditionally negative definite, and this further implies

that H1 is positive definite. Thus, all of H1’s eigenvalues are positive. On the other

hand, the eigenvalues of h′
k
(nk)1

′1 are (|L| − 1)h′
k
(nk) and 0, so the matrix has exactly

one negative eigenvalue because h′
i
(n) < 0 for any i ∈ S. Thus, by Weyl’s inequality,

λi(H2) ≥ λi−1(diag[(h′
i
(ni))i∈L\{k}]).
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Then, by invoking Weyl’s inequality for τH1 +H2, we obtain

λmax(HL) ≡ λ|L|−1(HL) ≥ τλ|L|− j(H1) + λ j(H2) (50)

≥ τλ|L|− j(H1) + λ j−1(diag[(h′i (ni))i∈L\{k}]) (51)

where 2 ≤ j ≤ |L| − 1. Because ni > 0 for all i ∈ L, λ j−1(diag[(h′
i
(ni))i∈L\{k}]) ∈ (−∞, 0)

for 2 ≤ j ≤ |L| − 1. Therefore, we obtain the stated result. □

Proof of Corollaries 1.1 and 1.2. Suppose h′
i
(ni) = −αK/A. Because the Hessian does

not depend on population distribution, we may focus on the number of populated

cities by letting HL = HR for any L ∈ SC such that |L| = R.

Suppose di j = |xi − x j|. In this case, we can directly compute the inverse of H1 as

H
−1
1 =

K

2















































































2 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1















































































. (52)

This is an (R− 1)× (R− 1)-dimensional tridiagonal Toeplitz matrix where the lower

right corner is perturbed. Yueh and Cheng (2008) attain explicit expressions for

the eigenvalues of this class of matrices. Invoking their results, it follows that

λp(H−1
1

) = K
(

1 − cos
2pπ

2R+1

)

. Thus, λp(H1) = 1
K

(

1 − cos
2(R−p)π

2R+1

)−1
. Then, because

λmax(HR) ≥ τλR−1(H1) − αK/A, we obtain τl(R).
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Next, suppose di j = e|xi−x j| − 1, and let γ = exp(1/K). Then, DR = ΓR − 1′1 where

ΓR =































































1 γ γ2 · · · γR−2

γ 1 γ · · · γR−3

γ2 γ 1 · · · γR−4

...
...

...
. . .

...

γR−2 γR−3 γR−4 · · · 1































































. (53)

Unfortunately, the eigenvalues of H1 are no longer easily attainable, as opposed

to the linear case. Thus, instead, we obtain the eigenvalues of ΓR, and attain a

condition stronger than the one in Proposition 1.

The inverse of ΓR is

Γ
−1
R =

1

1 − γ2































































1 −γ

−γ 1 + γ2 −γ
. . . . . . . . .

−γ 1 + γ2 −γ

−γ 1































































. (54)

This is a tridiagonal Toeplitz matrix where the upper left and lower right corners are

perturbed. On the basis of the results of Yueh and Cheng (2008), we haveλp(−Γ−1
R ) =

1
γ2−1

(

1 + γ2 − 2γ cos
(p−1)π

R−1

)

, and thus λp(−ΓR) = (γ2 − 1)
(

1 + γ2 − 2γ cos
(R−p−1)π

R−1

)−1
.

On the other hand, the eigenvalues of 1′
R−1

1R−1 are R − 1 and 0. Thus, the matrix

does not have a negative eigenvalue, and hence λi(−DR) ≥ λi(−ΓR).

The eigenvalues of dkL⊗1+(dkL⊗1)′ are
∑

j∈L\{k} dkj±
√

R − 1
√

∑

j∈L\{k} d
2
kj

and 0. By

Hölder’s inequality,
∑

j∈L\{k} dkj ≤
√

R − 1
√

∑

j∈L\{k} d
2
kj

, thus the matrix has at most

one negative eigenvalue. Hence, λi(H1) ≥ λi−1(−DR). Then, because λmax(HR) ≥
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τλR−2(H1) + λ1(diag[(h′
i
(ni))i∈L\{k}]) ≥ τλR−3(−ΓR) − αK/A, we obtain τe(R). □

Proof of Lemma 4. Suppose, to the contrary, that every spatial equilibrium has R

populated cities where R < K. To show the result, we use index theory. Define the

index of a spatial equilibrium having L as its support by

indL =











































−1 if det HL > 0,

0 if det HL = 0,

1 if det HL < 0,

(55)

where det HL is the determinant of HL. Then, indices of each spatial equilibria must

sum up to one by the index theorem of Simsek et al. (2007).32 However, because

HL = HL′ whenever L, L′ ∈ SC and |L| = |L′|, it follows from Lemma 3 that the total

value of indices of spatial equilibria having R populated cities is either K − R + 1,

−(K − R + 1), or 0. In either case, it is not one. □

Proof of Lemma 5. Suppose αK2/(2A) < τ < αK2/A, and let n ∈ ∆ be a population

distribution such that supp n = {i, j} ∈ SC and ni j =
(

1
2
, 1

2

)

. Let W(λ) = W(λei + (1 −

λ)e j) where λ ∈ [0, 1] and ei is the unit vector having one for the i-th element. Note

that n =
ei+e j

2
. Then, because di j = d ji = 1/K, W′(λ) = ∇iW(λ) − ∇ jW(λ) = 0 at λ = 1

2
.

Moreover,

W′′(λ) =
∂2W(λ)

∂n2
i

+
∂2W(λ)

∂n2
j

− 2
∂2W(λ)

∂ni∂n j
= h′(λ) + h′(1 − λ) + 2τdi j.

Then, because h′(n) = −αK/A, W′′( 1
2
) < 0 if τ < αK2/A, and thus W(λ) is locally

maximized at λ = 1
2

on the line segment connecting ei and e j. On the other hand,

32Simsek et al. (2007) establish the index theorem that is applicable to the KKT set of nonlinear
programming (See, in particular, Proposition 5.2). Their theorem is relevant to us because the set of
spatial equilibria coincides with that of KKT points of the potential’s maximization problem.
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because mink∈S\{i, j}
dki+dkj

2
= 3

2K
and τ > αK2/(2A),

∇iW( 1
2
) − ∇ℓW( 1

2
) = h(1

2
) − τ

(

di j

2
−

dℓi + dℓ j

2

)

≥ h(1
2
) − τ

(

di j

2
− min

k∈S\{i, j}

dki + dkj

2

)

= −αK

2A
− τ

2K
+

3τ

2K
> 0

for any ℓ ∈ S \ {i, j}. Therefore, it follows that W is locally maximized at n, and we

obtain the desired result. □

Proof of Lemma 6. To simplify notations, we omit superscript k of LK, ℓ̄K, and RK.

Recall from Section 3.1 that nK must solve a system of linear equations. Specifically,

multiplying both sides of CLnK = wK 1 by 1
τD
−1
L from the left, nK solves

(

E +
α

τε
D
−1
L

)

n
K = wK

D
−1
L 1 (56)

where wK = (1′C−1
L 1)−1. Note that, because |L| = R,

D
−1
L =

1

2ε















































































1
R−1
− 1 1 1

R−1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1
R−1

1 1
R−1
− 1















































































. (57)
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Then, we have

εϕK
j +

α

2τε

(

ϕK
κ( j) − ϕK

j +
1

R − 1
(ϕK
ℓ̄
+ ϕK

ℓ̄+R−1
)
)

=
1

τε

1

R − 1
wK for j ∈ {ℓ̄, ℓ̄ + R − 1},

(58)

ϕK
j +

α

2τε2
(ϕK

j−1 − 2ϕK
j + ϕ

K
j+1) = 0 for j ∈ {ℓ̄ + 1, ℓ̄ + 2, ..., ℓ̄ + R − 2}, (59)

where κ(ℓ̄) = ℓ̄ + 1 and κ(ℓ̄ + R − 1) = ℓ̄ + R − 2. Summing the first and last rows of

CLnK = wK 1 in each of left-hand and right-hand sides, we have

wK =
τε

2
(R − 1) +

α

2
(ϕK
ℓ̄
+ ϕK

ℓ̄+R−1
). (60)

Substituting this into (58), we obtain

εϕK
ℓ̄
+
α

2τε
(ϕK
ℓ̄+1
− ϕK

ℓ̄
) =

1

2
. (61)

The analogue relationship holds for j = ℓ̄ + R − 1. Moreover, because ℓ̄ − 1, ℓ̄ + R <

supp nK,
∑R

j=1 jnK
ℓ̄−1+ j

≥ wK and
∑R

j=1(ℓ̄ + 1 − j)nK
ℓ̄−1+ j

≥ wK. Hence, by (60),

2wK − τε(R + 1) = α(ϕK
ℓ̄
+ ϕK

ℓ̄+R−1
) − 2τε ≤ 0. (62)

Therefore, the equilibrium conditions are summarized as (41)-(43). □

Proof of Proposition 4. Multiplying the LHS of (41) by 2τε2/α, we get

ϕK
i+1 − 2aKϕK

i + ϕ
K
i−1 = 0. (63)

where aK = 1−τε2/α. It follows that the solution property crucially depends on the

sign of DK = (aK)2 − 1. Because we are interested in the case where K is sufficiently
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large, we assume DK < 0. Then, the solution is represented as

ϕK
i = CK

1 cos(ωKi) + CK
2 sin(ωKi) (64)

= CK cos(ωKi − ξK) (65)

where CK =

√

(CK
1
)2 + (CK

2
)2, ωK = cos−1(aK) with 0 ≤ ωK < 2π, and ξK satisfies

CK cos ξK = CK
1

and CK sin ξK = CK
2 . Because ϕK

i
, which is given by cosine function

(65), is nonnegative for all i ∈ L, we assume [ωKℓ̄ − ξK, ωK(ℓ̄ + R − 1) − ξK] ⊆ [−π
2
, π

2
]

without loss of generality.

By symmetry, ϕK
ℓ̄
= ϕK

ℓ̄+R−1
. Thus, ξK =

ωK(2ℓ̄+R−1)

2
. Then, because ε =

xK
ℓ̄+R−1

−xK
ℓ̄

R−1
,

1

CK

α

2τε
(ϕK
ℓ̄+1
− ϕK

ℓ̄
) =

α

2τε

(

cos(ωK(ℓ̄ + 1) − ξK) − cos(ωKℓ̄ − ξK)
)

(66)

=
αωK(R − 1)

2τ(xK
ℓ̄+R−1

− xK
ℓ̄
)

sin
(

ωK(R−2)

2

)

sin
(

ωK

2

)

ωK/2
. (67)

Note that limK→∞ ϕK
ℓ̄+R−1

= 0 ⇒ limK→∞ωK(R − 1) = π. Moreover, limK→∞ωK = 0

because aK → 1 as K→∞. Therefore, by (42), CK → τ(xℓ̄+R−1−xℓ̄)

απ as K→∞.

Now, fix location x. Then,

CK cos
[

ωK
(

1 + K

2
+

x

ε

)

− ξK
]

= CK cos













ωK

ε













x −
xK
ℓ̄+R−1

+ xK
ℓ̄

2

























(68)

→ τ(xℓ̄+R−1 − xℓ̄)

απ
cos

(

π

2

2x − xℓ̄+R−1 − xℓ̄
xℓ̄+R−1 − xℓ̄

)

(69)

as K → ∞. Then, because xℓ̄+R−1 = b and xℓ̄ = −b, we obtain π
4b

cos
(

π
2b

x
)

. This is the

solution to scheme (38)-(40), and we thus complete the proof. □
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